JP3601844B2 - Magnetic bearing control device - Google Patents

Magnetic bearing control device Download PDF

Info

Publication number
JP3601844B2
JP3601844B2 JP02190094A JP2190094A JP3601844B2 JP 3601844 B2 JP3601844 B2 JP 3601844B2 JP 02190094 A JP02190094 A JP 02190094A JP 2190094 A JP2190094 A JP 2190094A JP 3601844 B2 JP3601844 B2 JP 3601844B2
Authority
JP
Japan
Prior art keywords
circuit
rotor
driver circuit
magnetic bearing
driver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02190094A
Other languages
Japanese (ja)
Other versions
JPH07208471A (en
Inventor
昌典 斉藤
敏治 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP02190094A priority Critical patent/JP3601844B2/en
Publication of JPH07208471A publication Critical patent/JPH07208471A/en
Application granted granted Critical
Publication of JP3601844B2 publication Critical patent/JP3601844B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Description

【0001】
【産業上の利用分野】
本発明は磁気軸受制御装置に係り、特に磁気軸受けで支持された回転中のロータが異常振動を起こし、磁気軸受制御範囲を逸脱した場合に速やかに正常状態に復帰させることのできる磁気軸受制御装置に関する。
【0002】
【従来の技術】
磁気軸受装置は、ロータ側の回転軸に固定された磁性材に、軸受側に固定された電磁石の磁気吸引力を及ぼすことによりロータを非接触で支持する軸受装置である。この軸受装置は、ロータを非接触で支持することができるため、潤滑材の必要が無く、高速回転に適する、あるいは高清浄度環境等の特殊環境での使用に好適である等の特徴を有する。
係る磁気軸受の制御装置は、一般に、ロータの変位を検出するセンサ回路と、このセンサ回路の信号を位相補償及び増幅する位相補償回路と、この位相補償回路の信号により磁気軸受けの電磁石コイルへ電流を供給するドライバ回路と、このドライバ回路に電流を供給する電源回路とで構成される。
【0003】
しかしながら、ロータの高速回転時等に外乱等によってロータの異常振動が発生する場合がある。この異常振動が極端に大きくなる非常時には、ロータの振動が磁気軸受制御範囲を越え、制御不能状態となってしまう。このため、従来はロータの振動が磁気軸受制御ドライバ回路の制御範囲を逸脱した場合には、ロータを定格回転数からその1/5程度の回転数まで低下させ、ロータの回転状態が自然復帰するのを待つことが行なわれている。
【0004】
ところが、ロータの回転数を低減し、ロータの回転が正常状態に復帰するまでの自然復帰の間には磁気軸受けコイルに供給する電力は増大する。このような非常時のために、磁気軸受用電源は、定常状態の設計マージンの他に定格容量の数倍程度の電源容量を持たせなければならない。また、自然復帰するまでの間に磁気軸受用電源の電力容量が足りずにロータが保護用の回転軸周囲に設けられたタッチダウンベアリングに接触する場合もあり、この間にタッチダウン保護用ベアリングが著しく摩耗し、タッチダウンの際の接触音を伴った異常振動が長時間に渡り継続するという問題点があった。
【0005】
【発明が解決しようとする課題】
本発明は、係る従来技術の問題点に鑑みて為されたものであり、ロータが磁気軸受制御装置の制御範囲を逸脱した場合に、ロータの回転を速やかに正常状態に復帰させることができ、磁気軸受装置の電源容量を低減することができると共にタッチダウン保護用ベアリングの摩耗を防止することのできる磁気軸受制御装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の磁気軸受制御装置は、ロータの変位を検出するセンサ回路と、前記センサ回路の信号を位相補償及び増幅する位相補償回路と、前記位相補償回路の信号により磁気軸受けコイルへ電流を供給するドライバ回路と、前記ドライバ回路に電流を供給する電源回路とから構成される磁気軸受制御装置に於いて、前記センサ回路から検出された信号を異常振動とみなす一定値で作動する保護回路と、前記ドライバ回路の電流出力を任意にオン/オフできるスイッチ機能を持つリセット回路とを具備し、前記異常振動とみなす一定値を超えて保護回路が作動した場合に、前記保護回路からリセット回路を介してドライバ回路の出力をオフすることで、前記ロータを強制的にタッチダウンさせ、前記タイマ回路によって前記オフから一定時間経過後に前記ドライバ回路の出力オフを解除し、再度前記ロータを磁気浮上させることを特徴とする。
【0007】
【作用】
ロータの振動が異常振動とみなす一定値を超えて保護回路が作動した場合に、保護回路からリセット回路を介してドライバ回路の出力をオフする。そしてロータを強制的にタッチダウンさせたのちに、タイマ回路によって一定時間経過後に再度ロータを磁気浮上させる。従って、ロータの制御範囲を逸脱する異常振動状態から瞬間的にロータを正常な回転状態に戻すことができる。それ故、従来の制御範囲の逸脱状態から自然復帰までの長時間を瞬間的に復帰させることができるので、異常振動に伴うタッチダウン保護用ベアリングの摩耗防止とドライバ回路に供給する電力容量を低減させることができる。
【0008】
【実施例】
以下、本発明の一実施例について添付図面を参照しながら説明する。図1は、本発明に係わる磁気軸受制御装置のブロック図である。
【0009】
ロータ1にはラジアルターゲットである磁性材2が固定され、ロータ1の外周に配置された電磁石3の磁気吸引力によりロータ1はラジアル方向に支持される。同様に、ロータ1には磁性材からなるスラストディスク5が固定され、電磁石6のスラストディスク5に及ぼす磁気吸引力によりロータ1はスラスト方向に支持される。タッチダウンベアリング7は、ロータ1の外周に配置され、ロータ1が異常振動を起こし制御不能に陥った場合に、ロータが接触し回転することにより電磁石3等の破損を防止する非常用ベアリングである。
【0010】
磁気軸受制御装置10は、ロータの変位を検出するセンサ8からの信号を増幅するセンサ回路11と、このセンサ回路の信号を位相補償及び増幅する位相補償回路15と、この位相補償回路の信号により磁気軸受けコイルへ電流を供給するドライバ回路16とから構成される。電源回路18は磁気軸受けコイルに流す電流を制御するドライバ回路16に電流を供給するためのものである。
【0011】
ロータ1のラジアル方向変位はセンサ8で検出され、センサ回路11で増幅される。そして、位相補償回路15によりセンサ回路11の信号が位相補償及び増幅され、電磁石3の磁気軸受けコイル3の励磁電流を供給することにより、ロータ1に固定された磁性材2への磁気吸引力が制御され、ロータ1の回転軸は軸受センタ付近の目標位置に支持される。スラスト方向に関しても、センサ9がロータ1のスラスト方向変位を検出し、図示しない磁気軸受制御装置により電磁石6の磁気軸受けコイルへ電流を供給することにより、スラストディスク5に及ぼす磁気吸引力が制御されロータ1は所定のスラスト方向の目標位置に支持される。
【0012】
以上は基本的な磁気軸受制御装置の構成であるが、本実施例の磁気軸受制御装置10においては、異常振動検出回路12、保護回路13、タイマ回路14、リセット回路17等を備える。異常振動検出回路12は、センサ回路11の信号からロータ1の異常振動を検出し、非常状態の異常振動とみなす一定値で保護回路13を作動させる。保護回路13はドライバ回路16の電流出力を任意にオン/オフできるスイッチ機能をもつリセット回路17を作動させる。タイマ回路14は時間を計測する回路であり、一定時間経過後に保護回路13に信号を送りリセット回路17をオン/オフする。
【0013】
この磁気軸受制御装置10の動作は次の通りである。ロータ1に何らかの外乱等によって異常振動が生じたとする。ドライバ回路16が制御範囲を逸脱する異常振動の場合には、異常振動検出回路12で異常振動が検出され、保護回路13の動作によってリセット回路17から強制的な出力オフ信号がドライバ回路16に出力され、電磁石3への電流出力を停止する。電磁石3の電流出力がオフされることによりロータ1は強制的にタッチダウンする。出力オフと同時にタイマ回路14が作動し、比較的短時間の一定時間が経過した後、保護回路13からリセット回路17によりドライバ回路16の出力オフ信号を解除する。リセット回路17から位相補償回路15へ電源投入時からの状態と同一にするための初期設定を行なった後に、ドライバ回路16を再動作させ電磁石3のコイルへ出力電流を供給する。すなわち、タイマ回路14によって電流オフから一定時間経過後に位相補償回路15とドライバ回路16をそれぞれ電源投入状態に戻し、ドライバ回路16の出力オフを解除し再度ロータ1を磁気浮上させる。ドライバ回路16の出力オフから位相補償回路15及びドライバ回路16に電源再投入状態に戻すまでの一定時間は瞬間的な短時間で良い。このため、異常振動の検出とともにロータを強制的にタッチダウンさせた後に、瞬間的に正常回転状態に復帰させることができる。
【0014】
尚、以上の実施例の説明はロータ1のラジアル方向の制御の例についてのものであるが、スラスト方向の磁気軸受制御装置についても適用できるのはもちろんのことである。このように、本発明の主旨を逸脱することなく種々の変形実施例が可能である。
【0015】
【発明の効果】
以上に説明したように本発明によれば、ロータの異常振動により磁気軸受の制御範囲を逸脱する時には、ロータを瞬間的にタッチダウンと再浮上をさせるものである。従って、従来のロータの異常振動検出から自然復帰するまでの長時間の磁気軸受逸脱時間が防止でき、これによりドライバ回路に供給する電力容量を半分程度に低減させることができると同時に、タッチダウン保護用ベアリングの摩耗を大幅に低減させることができる。それ故、磁気軸受制御装置の小型化、経済化が図れ、且つ安定に磁気軸受装置を作動させることができる。
【図面の簡単な説明】
【図1】本発明の一実施例の磁気軸受制御装置のブロック図。
【符号の説明】
1 ロータ
2,5 磁性材
3,6 電磁石
7 タッチダウンベアリング
11 センサ回路
12 異常振動検出回路
13 保護回路
14 タイマ回路
15 位相補償回路
16 ドライバ回路
17 リセット回路
18 電源回路
[0001]
[Industrial applications]
The present invention relates to a magnetic bearing control device, and more particularly to a magnetic bearing control device that can quickly return to a normal state when a rotating rotor supported by a magnetic bearing causes abnormal vibration and deviates from a magnetic bearing control range. About.
[0002]
[Prior art]
A magnetic bearing device is a bearing device that supports a rotor in a non-contact manner by applying a magnetic attraction force of an electromagnet fixed to a bearing side to a magnetic material fixed to a rotating shaft on a rotor side. Since this bearing device can support the rotor in a non-contact manner, there is no need for a lubricant, and it has features such as being suitable for high-speed rotation, or suitable for use in a special environment such as a high cleanliness environment. .
Such a magnetic bearing control device generally includes a sensor circuit for detecting displacement of the rotor, a phase compensation circuit for phase-compensating and amplifying the signal of the sensor circuit, and a current supplied to the electromagnet coil of the magnetic bearing by the signal of the phase compensation circuit. And a power supply circuit for supplying a current to the driver circuit.
[0003]
However, abnormal vibration of the rotor may occur due to disturbance or the like at the time of high-speed rotation of the rotor. In an emergency in which the abnormal vibration becomes extremely large, the vibration of the rotor exceeds the magnetic bearing control range, and the control becomes impossible. For this reason, conventionally, when the vibration of the rotor deviates from the control range of the magnetic bearing control driver circuit, the rotor is reduced from the rated rotation speed to approximately one fifth of the rotation speed, and the rotation state of the rotor is spontaneously returned. Waiting for is being done.
[0004]
However, the power supplied to the magnetic bearing coil increases during the spontaneous return until the rotation of the rotor is reduced and the rotation of the rotor returns to the normal state. For such an emergency, the magnetic bearing power supply must have a power supply capacity several times the rated capacity in addition to a steady-state design margin. In some cases, the power capacity of the magnetic bearing power supply is insufficient before the spontaneous return, and the rotor contacts the touch-down bearing provided around the protective rotating shaft. There is a problem in that wear is remarkable, and abnormal vibration accompanied by a contact sound at the time of touchdown continues for a long time.
[0005]
[Problems to be solved by the invention]
The present invention has been made in view of the problems of the related art, and when the rotor deviates from the control range of the magnetic bearing control device, the rotation of the rotor can be quickly returned to a normal state, An object of the present invention is to provide a magnetic bearing control device capable of reducing the power supply capacity of the magnetic bearing device and preventing wear of the touchdown protection bearing.
[0006]
[Means for Solving the Problems]
A magnetic bearing control device according to the present invention includes a sensor circuit for detecting displacement of a rotor, a phase compensation circuit for phase-compensating and amplifying a signal of the sensor circuit, and a current supplied to a magnetic bearing coil by a signal of the phase compensation circuit. In a magnetic bearing control device including a driver circuit and a power supply circuit that supplies current to the driver circuit, a protection circuit that operates at a constant value that regards a signal detected from the sensor circuit as abnormal vibration; A reset circuit having a switch function that can arbitrarily turn on / off the current output of the driver circuit, and when the protection circuit operates beyond a certain value regarded as the abnormal vibration, the protection circuit operates via the reset circuit. by turning off the output of the driver circuit, forcibly touchdown said rotor, a predetermined time has elapsed from the off by said timer circuit Wherein releasing the output off of the driver circuit, and wherein Rukoto be magnetically levitated the rotor again.
[0007]
[Action]
When the protection circuit is activated when the vibration of the rotor exceeds a certain value regarded as abnormal vibration, the output of the driver circuit is turned off from the protection circuit via the reset circuit. And after forcibly touchdown of the rotor, is magnetically levitate the again rotor after a predetermined time has elapsed by the timer circuit. Therefore, the rotor can be instantaneously returned to the normal rotation state from the abnormal vibration state that deviates from the control range of the rotor. Therefore, it is possible to instantaneously recover the long time from the departure state of the conventional control range to the spontaneous return, thus preventing wear of the touch-down protection bearing due to abnormal vibration and reducing the power capacity supplied to the driver circuit. Can be done.
[0008]
【Example】
Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a block diagram of a magnetic bearing control device according to the present invention.
[0009]
A magnetic material 2 as a radial target is fixed to the rotor 1, and the rotor 1 is supported in the radial direction by the magnetic attraction of an electromagnet 3 arranged on the outer periphery of the rotor 1. Similarly, a thrust disk 5 made of a magnetic material is fixed to the rotor 1, and the rotor 1 is supported in the thrust direction by the magnetic attraction of the electromagnet 6 exerted on the thrust disk 5. The touchdown bearing 7 is an emergency bearing that is disposed on the outer periphery of the rotor 1 and prevents the electromagnet 3 and the like from being damaged by the rotor contacting and rotating when the rotor 1 causes abnormal vibration and falls out of control. .
[0010]
The magnetic bearing control device 10 includes a sensor circuit 11 for amplifying a signal from the sensor 8 for detecting the displacement of the rotor, a phase compensation circuit 15 for compensating and amplifying the signal of the sensor circuit, and a signal of the phase compensation circuit. And a driver circuit 16 for supplying a current to the magnetic bearing coil. The power supply circuit 18 is for supplying a current to the driver circuit 16 for controlling a current flowing through the magnetic bearing coil.
[0011]
The radial displacement of the rotor 1 is detected by the sensor 8 and amplified by the sensor circuit 11. Then, the signal of the sensor circuit 11 is phase-compensated and amplified by the phase compensation circuit 15, and the excitation current of the magnetic bearing coil 3 of the electromagnet 3 is supplied, so that the magnetic attraction to the magnetic material 2 fixed to the rotor 1 is reduced. Under the control, the rotating shaft of the rotor 1 is supported at a target position near the bearing center. Also in the thrust direction, the sensor 9 detects the displacement of the rotor 1 in the thrust direction and supplies a current to the magnetic bearing coil of the electromagnet 6 by a magnetic bearing control device (not shown), whereby the magnetic attraction force applied to the thrust disk 5 is controlled. The rotor 1 is supported at a target position in a predetermined thrust direction.
[0012]
The above is the basic configuration of the magnetic bearing control device. The magnetic bearing control device 10 of the present embodiment includes an abnormal vibration detection circuit 12, a protection circuit 13, a timer circuit 14, a reset circuit 17, and the like. The abnormal vibration detection circuit 12 detects abnormal vibration of the rotor 1 from the signal of the sensor circuit 11, and activates the protection circuit 13 at a constant value regarded as abnormal vibration in an emergency state. The protection circuit 13 activates a reset circuit 17 having a switch function for arbitrarily turning on / off the current output of the driver circuit 16. The timer circuit 14 is a circuit for measuring time, and sends a signal to the protection circuit 13 after a certain time has elapsed to turn on / off the reset circuit 17.
[0013]
The operation of the magnetic bearing control device 10 is as follows. It is assumed that abnormal vibration has occurred in the rotor 1 due to some disturbance or the like. If the driver circuit 16 has an abnormal vibration that deviates from the control range, the abnormal vibration is detected by the abnormal vibration detection circuit 12, and a forced output off signal is output from the reset circuit 17 to the driver circuit 16 by the operation of the protection circuit 13. Then, the current output to the electromagnet 3 is stopped. When the current output of the electromagnet 3 is turned off, the rotor 1 is forcibly touched down. The timer circuit 14 operates at the same time as the output is turned off, and after a relatively short period of time elapses, the output off signal of the driver circuit 16 is released from the protection circuit 13 by the reset circuit 17. After performing initialization from the reset circuit 17 to the phase compensation circuit 15 to make it the same state as when power was turned on, the driver circuit 16 is operated again to supply an output current to the coil of the electromagnet 3. That is, the power supply of the phase compensation circuit 15 and the driver circuit 16 is returned to the power-on state after a lapse of a predetermined time from the current OFF by the timer circuit 14, the output OFF of the driver circuit 16 is released, and the rotor 1 is magnetically levitated again. The fixed time from when the output of the driver circuit 16 is turned off to when the power supply to the phase compensation circuit 15 and the driver circuit 16 is turned on again may be an instantaneous short time. Therefore, after the rotor is forcibly touched down together with the detection of the abnormal vibration, the rotor can be instantaneously returned to the normal rotation state.
[0014]
Although the description of the above embodiment relates to an example of control of the rotor 1 in the radial direction, it is needless to say that the present invention can be applied to a magnetic bearing control device in the thrust direction. Thus, various modified embodiments are possible without departing from the gist of the present invention.
[0015]
【The invention's effect】
As described above, according to the present invention, when the rotor deviates from the control range of the magnetic bearing due to abnormal vibration, the rotor is instantaneously touched down and re-emerged. Therefore, it is possible to prevent the conventional magnetic bearing from deviating for a long time from the detection of the abnormal vibration of the rotor to the spontaneous return, thereby reducing the power capacity supplied to the driver circuit to about half and at the same time protecting the touchdown. Wear of the bearing can be greatly reduced. Therefore, the magnetic bearing control device can be reduced in size and economy, and the magnetic bearing device can be operated stably.
[Brief description of the drawings]
FIG. 1 is a block diagram of a magnetic bearing control device according to one embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Rotor 2, 5 Magnetic material 3, 6 Electromagnet 7 Touchdown bearing 11 Sensor circuit 12 Abnormal vibration detection circuit 13 Protection circuit 14 Timer circuit 15 Phase compensation circuit 16 Driver circuit 17 Reset circuit 18 Power supply circuit

Claims (2)

ロータの変位を検出するセンサ回路と、前記センサ回路の信号を位相補償及び増幅する位相補償回路と、前記位相補償回路の信号により磁気軸受けコイルへ電流を供給するドライバ回路と、前記ドライバ回路に電流を供給する電源回路とから構成される磁気軸受制御装置に於いて、
前記センサ回路から検出された信号を異常振動とみなす一定値で作動する保護回路と、前記ドライバ回路の電流出力を任意にオン/オフできるスイッチ機能を持つリセット回路と、一定時間経過後に前記リセット回路をオン/オフするタイマ回路とを具備し、
前記異常振動とみなす一定値を超えて保護回路が作動した場合に、前記保護回路からリセット回路を介してドライバ回路の出力をオフすることで、前記ロータを強制的にタッチダウンさせ、前記タイマ回路によって前記オフから一定時間経過後に前記ドライバ回路の出力オフを解除し、再度前記ロータを磁気浮上させる手段を備えたことを特徴とする磁気軸受制御装置。
A sensor circuit for detecting displacement of the rotor, a phase compensation circuit for phase-compensating and amplifying a signal of the sensor circuit, a driver circuit for supplying a current to a magnetic bearing coil by a signal of the phase compensation circuit, and a current supplied to the driver circuit. And a power supply circuit for supplying
A protection circuit that operates at a constant value that regards a signal detected from the sensor circuit as abnormal vibration; a reset circuit that has a switch function that can arbitrarily turn on / off the current output of the driver circuit; And a timer circuit for turning on / off the
When the protection circuit operates beyond a certain value regarded as the abnormal vibration, by turning off the output of the driver circuit from the protection circuit via a reset circuit, the rotor is forcibly touched down, and the timer circuit is turned off. And a means for releasing the output of the driver circuit after a lapse of a predetermined time from the turning-off, thereby causing the rotor to magnetically levitate again.
ロータの変位を検出するセンサ回路と、前記センサ回路の信号を位相補償及び増幅する位相補償回路と、前記位相補償回路の信号により磁気軸受けコイルへ電流を供給するドライバ回路と、前記ドライバ回路に電流を供給する電源回路とから構成される磁気軸受制御装置に於いて、
前記センサ回路から検出された信号を異常振動とみなす一定値で作動する保護回路と、前記ドライバ回路の電流出力を任意にオン/オフできるスイッチ機能を持つリセット回路と、一定時間経過後に前記リセット回路をオン/オフするタイマ回路とを具備し、
前記異常振動とみなす一定値を超えて保護回路が作動した場合に、前記保護回路からリセット回路を介してドライバ回路の出力をオフすることで、前記ロータを強制的にタッチダウンさせ、前記タイマ回路によって前記オフから一定時間経過後に前記位相補償回路とドライバ回路をそれぞれ電源投入状態に戻し、前記ドライバ回路の出力オフを解除し再度前記ロータを磁気浮上させる手段を備えたことを特徴とする磁気軸受制御装置。
A sensor circuit for detecting displacement of the rotor, a phase compensation circuit for phase-compensating and amplifying a signal of the sensor circuit, a driver circuit for supplying a current to a magnetic bearing coil by a signal of the phase compensation circuit, and a current supplied to the driver circuit. And a power supply circuit for supplying
A protection circuit that operates at a constant value that regards a signal detected from the sensor circuit as abnormal vibration; a reset circuit that has a switch function that can arbitrarily turn on / off the current output of the driver circuit; And a timer circuit for turning on / off the
When the protection circuit operates beyond a certain value regarded as the abnormal vibration, by turning off the output of the driver circuit from the protection circuit via a reset circuit, the rotor is forcibly touched down, and the timer circuit is turned off. And a means for returning the phase compensating circuit and the driver circuit to a power-on state after a lapse of a predetermined time from the turning-off, canceling the output off of the driver circuit, and magnetically levitating the rotor again. Control device.
JP02190094A 1994-01-21 1994-01-21 Magnetic bearing control device Expired - Lifetime JP3601844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02190094A JP3601844B2 (en) 1994-01-21 1994-01-21 Magnetic bearing control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02190094A JP3601844B2 (en) 1994-01-21 1994-01-21 Magnetic bearing control device

Publications (2)

Publication Number Publication Date
JPH07208471A JPH07208471A (en) 1995-08-11
JP3601844B2 true JP3601844B2 (en) 2004-12-15

Family

ID=12067988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02190094A Expired - Lifetime JP3601844B2 (en) 1994-01-21 1994-01-21 Magnetic bearing control device

Country Status (1)

Country Link
JP (1) JP3601844B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270936A (en) * 2006-03-31 2007-10-18 Jtekt Corp Magnetic bearing device
JP5827492B2 (en) * 2011-04-28 2015-12-02 株式会社日立製作所 Vibration characteristic measuring apparatus and vibration characteristic measuring method
CN103122931A (en) * 2011-11-21 2013-05-29 上海航天控制工程研究所 Drive and control circuit used in magnetic levitation wind-driven generator
CN113217540B (en) * 2021-06-08 2023-01-03 北京泓慧国际能源技术发展有限公司 Magnetic bearing axial suspension position self-correction system and method
CN113719540B (en) * 2021-08-27 2022-12-20 中国人民解放军海军工程大学 Asymmetric axial magnetic bearing device with one-way high bearing capacity density

Also Published As

Publication number Publication date
JPH07208471A (en) 1995-08-11

Similar Documents

Publication Publication Date Title
US4982126A (en) Auxiliary bearing having a graphite stator for a rotary shaft mounted on magnetic bearings
US5345127A (en) Magnetic bearing back-up
US6604918B2 (en) Turbomolecular pump
JP3601844B2 (en) Magnetic bearing control device
JP2002013532A (en) Magnetic bearing control system
JP2620855B2 (en) Magnetic bearing device
JP3733160B2 (en) Magnetic bearing device
JPS60190697A (en) Control system of magnetic bearing in turbo molecular pump
JP3717013B2 (en) Magnetic bearing device
JP2003097554A (en) Magnetic bearing control device
JPH0641796Y2 (en) Spindle unit
JP3779105B2 (en) Power failure compensation system for magnetic bearings
JP3414918B2 (en) Rotary electric machine with magnetic bearing
JPH06311699A (en) Magnetic bearing-mounted rotary electric machine
JP3176673B2 (en) Magnetic bearing control device
JP3793856B2 (en) Magnetic bearing device
JPH07127594A (en) Magnetic bearing turbo molecular pump
JPH0356711A (en) Magnetic bearing device
JPH10292818A (en) High-speed rotating machine
JP3600261B2 (en) Magnetic bearing device
JPH07139546A (en) Magnetic bearing device
JPH056221U (en) Magnetic bearing type spindle
JP2993111B2 (en) Magnetic bearing damage prevention device
JPH06165548A (en) Motor brake unit
JP2546625Y2 (en) Magnetic bearing control device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040921

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term