JP3793856B2 - Magnetic bearing device - Google Patents

Magnetic bearing device Download PDF

Info

Publication number
JP3793856B2
JP3793856B2 JP20331396A JP20331396A JP3793856B2 JP 3793856 B2 JP3793856 B2 JP 3793856B2 JP 20331396 A JP20331396 A JP 20331396A JP 20331396 A JP20331396 A JP 20331396A JP 3793856 B2 JP3793856 B2 JP 3793856B2
Authority
JP
Japan
Prior art keywords
rotating body
magnetic bearing
control device
magnetic
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20331396A
Other languages
Japanese (ja)
Other versions
JPH1047346A (en
Inventor
厚 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP20331396A priority Critical patent/JP3793856B2/en
Publication of JPH1047346A publication Critical patent/JPH1047346A/en
Application granted granted Critical
Publication of JP3793856B2 publication Critical patent/JP3793856B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0442Active magnetic bearings with devices affected by abnormal, undesired or non-standard conditions such as shock-load, power outage, start-up or touchdown

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、回転体が複数組の制御型磁気軸受により非接触支持される磁気軸受装置に関する。
【0002】
【従来の技術】
磁気軸受装置として、回転体をアキシアル方向およびラジアル方向に非接触支持する電磁石を有する複数組の制御型磁気軸受(たとえば1組のアキシアル磁気軸受および2組のラジアル磁気軸受)と、回転体のアキシアル方向およびラジアル方向の位置を検出する位置検出装置と、回転体を回転駆動する電動機と、電動機を制御するとともに回転体の位置に基づいて各磁気軸受の電磁石に供給する励磁電流を制御する制御装置と、回転体のアキシアル方向およびラジアル方向の可動範囲を規制して磁気軸受による支持がないときに回転体を機械的に支持するタッチダウン軸受(保護軸受)とを備えているものが知られている。制御装置は、励磁電流として、一定の定常電流(バイアス電流)と、回転体の位置によって変化する制御電流とを電磁石に供給するようになっている。
【0003】
上記の磁気軸受装置において、運転を停止する場合、磁気軸受で回転体を非接触支持した状態で、回転体にブレーキをかけて、徐々に減速し、回転体の回転が停止した時点で、磁気軸受による支持をなくし、停止した回転体をタッチダウン軸受で支持するようになっている。
【0004】
また、この種の磁気軸受装置では、運転中に磁気軸受に異常が生じることにより、回転体を所望の位置に支持できなくなることがある。このような場合、従来は、上記と同様に回転体を減速、停止させて、タッチダウン軸受で支持するようになっている。上記のように正常な状態で回転体を停止させる場合、回転体の回転が停止するまでは、磁気軸受によって回転体が所望の一定位置に非接触支持されているため、回転体は停止するまでタッチダウン軸受に接触することがない。これに対し、磁気軸受に異常が発生して回転体を停止させる場合は、磁気軸受によって回転体を一定位置に支持できないことがあり、その場合は、減速中に回転体がタッチダウン軸受に接触し、タッチダウン軸受が高速で回転させられる。また、回転体の減速は、通常、電動機の回生制動により行われるため、停止までの時間が長く、タッチダウン軸受が長時間高速で回転させられるため、タッチダウン軸受に破損や損傷が生じ、人や装置の他の部分に被害を及ぼしたり、タッチダウン軸受の寿命が短くなるという問題がある。
【0005】
【発明が解決しようとする課題】
この発明の目的は、磁気軸受異常時の回転体の高速回転から回転停止までの時間を短縮して、タッチダウン軸受の破損や損傷を防止できる安全な磁気軸受装置を提供することにある。
【0006】
【課題を解決するための手段および発明の効果】
この発明による磁気軸受装置は、回転体を回転駆動する電動機と、回転体を非接触支持する電磁石を有する複数組の制御型磁気軸受と、前記回転体の位置を検出する位置検出手段と、前記位置検出手段の出力に基づいて前記電磁石に供給する励磁電流を制御する制御手段とを備え、さらに、前記制御手段が、励磁電流として一定の定常電流と前記位置検出手段の出力によって変化する制御電流を供給する主制御装置と、主制御装置からの指令に基づいて前記電動機の回転を制御する回転制御装置とを備えている磁気軸受装置において、前記制御手段が、前記磁気軸受の異常を検知した際に、回転体停止指令信号を前記回転制御装置に出力して、回生制動を行うと同時に、所定の電磁石に供給する定常電流を増加させ、渦電流損を増大させることにより、前記磁気軸受の回転損失を増加させるようになされていることを特徴とするものである。
【0007】
磁気軸受に異常が発生した場合、回生制動を行うことにより、回転体が減速すると同時に、電磁石に供給される定常電流が増加するため、渦電流損が増大し、磁気軸受の回転損失が増加する。このため、回転体が高速回転から停止するまでの時間が短くなる。したがって、タッチダウン軸受が減速中の回転体とともに高速で回転する時間が短くなり、タッチダウン軸受の破損や損傷のおそれが少なく、人や装置の他の部分に被害を及ぼしたり、タッチダウン軸受の寿命が短くなったりするおそれも少ない。
【0008】
【発明の実施の形態】
以下、図面を参照して、この発明の実施形態について説明する。
【0009】
図1は、磁気軸受装置の主要部を概略的に示している。
【0010】
磁気軸受装置は縦型のものであり、ケーシング(1) 内に鉛直に配置された軸状の回転体(2) を備えている。ケーシング(1) 内には、さらに、回転体(2) を非接触支持する制御型磁気軸受である1組のアキシアル磁気軸受(3) および上下2組のラジアル磁気軸受(4)(5)、回転体(2) のアキシアル方向の変位を検出するための1個のアキシアル位置センサ(6) 、回転体(2) のラジアル方向の変位を検出するための上下2組のラジアル位置センサ(7)(8)、回転体(2) を高速回転させる回転駆動手段としての高周波電動機(9) 、ならびに回転体(2) のアキシアル方向およびラジアル方向の可動範囲を規制して回転体(2) を磁気軸受(3)(4)(5) で支持していないときにこれを機械的に支持する規制手段としての上下2組のタッチダウン軸受(10)(11)が設けられている。
【0011】
通常、アキシアル磁気軸受(3) はアキシアル方向に対をなす1対の電磁石(3a)から、各ラジアル磁気軸受(4)(5)は互いに直交する2つのラジアル方向に対をなす2対の電磁石(4a)(5a)から構成されている。以下の説明において、互いに直交する2つのラジアル方向の制御軸(水平軸)をX軸およびY軸、これらと直交するアキシアル方向の制御軸(鉛直軸)をZ軸とする。図1には、ラジアル磁気軸受(4)(5)の電磁石(4a)(5a)およびラジアル位置センサ(7)(8)については、X軸方向のものだけが図示されている。なお、これら磁気軸受(3)(4)(5) 、位置センサ(6)(7)(8) については、公知のものであるから、詳細な説明は省略する。
【0012】
アキシアル位置センサ(6) およびラジアル位置センサ(7)(8)はセンサ駆動回路(12)によって駆動され、センサ駆動回路(12)は、各センサ(6)(7)(8) の出力に基づいて、回転体(2) のアキシアル方向(Z軸方向)およびラジアル方向(X軸方向およびY軸方向)の変位を検出し、各制御軸方向のアナログ位置検出信号を出力する。位置センサ(6)(7)(8) およびセンサ駆動回路(12)により、回転体(2) のアキシアル方向およびラジアル方向の変位を検出する変位検出手段が構成されている。
【0013】
磁気軸受装置は、また、磁気軸受(3)(4)(5) および電動機(9) を制御する制御手段としての主制御装置(13)および回転制御装置(14)を備えている。主制御装置(13)は、回転体(2) のアキシアル方向およびラジアル方向の変位に基づいて各磁気軸受(3)(4)(5) の電磁石(3a)(4a)(5a)に供給する励磁電流の大きさを制御するとともに、回転制御装置(14)を介して電動機(9) の回転を制御するものであり、その主要部はディジタル信号処理プロセッサ(Digital Signal Processor)より構成されている。ディジタル信号処理プロセッサとは、ディジタル信号を入力してディジタル信号を出力し、ソフトウェアプログラムが可能で、高速実時間処理が可能な専用ハードウェアを指す。以下、これを「DSP」と略すことにする。回転制御装置(14)は、主制御装置(13)からの指令に基づいて電動機(9) の回転を制御するものであり、公知のインバータから構成されている。回転制御装置(14)には、回生制動を行うためのブレーキ回路部が備えられている。
【0014】
センサ駆動回路(12)からのアナログ位置検出信号は、A/Dコンバータ(15)によりディジタル位置検出信号に変換されて、主制御装置(13)に入力する。主制御装置(13)は、上記のディジタル位置検出信号すなわち回転体(2) のアキシアル方向およびラジアル方向の変位に基づいて各磁気軸受(3)(4)(5) の電磁石(3a)(4a)(5a)に供給する励磁電流の大きさを制御する。主制御装置(13)からのディジタル制御信号はD/Aコンバータ(16)によりアナログ信号に変換され、このアナログ信号に基づいて、パワーアンプ(17)から各電磁石(3a)(4a)(5a)に励磁電流が供給され、その結果、回転体(2) が電磁石(3a)(4a)(5a)により吸引されてアキシアル方向およびラジアル方向の所定位置に非接触支持される。各磁気軸受(3)(4)(5) における各制御軸の1対の電磁石(3a)(4a)(5a)に供給される励磁電流は、互いに等しい一定の定常電流に回転体(2) の位置によって制御される制御電流が加わったものである。
【0015】
主制御装置(13)には、磁気軸受(3)(4)(5) の異常を検知して回転体(2) を停止させるための異常停止手段が設けられている。すなわち、主制御装置(13)のDSPに、異常停止手段を構成するソフトウェアプログラムが格納されている。そして、主制御装置(13)は、磁気軸受(3)(4)(5) の状態を常時監視し、磁気軸受(3)(4)(5) に異常が発生したときに、次のようにして回転体(2) を停止させる。磁気軸受(3)(4)(5) の異常には、外乱による制御不能、電磁石(3a)(4a)(5a)もしくは位置センサ(6)(7)(8) の断線などがある。このような磁気軸受(3)(4)(5) の異常は、位置センサ(6)(7)(8) の出力がしきい値を越えることなどにより検知される。主制御装置(13)は、磁気軸受(3)(4)(5) の異常を検知すると、磁気軸受(3)(4)(5) の複数対の電磁石(3a)(4a)(5a)のうちの所定の対のものについて、定常電流を同じ量だけ増加させる。好ましくは、水平方向に対をなす電磁石(4a)(5a)の定常電流を増加させる。この実施形態のような縦型の磁気軸受装置の場合は、上部ラジアル磁気軸受(4) の2対の電磁石(4a)と下部電磁石(5) の2対の電磁石(5a)の定常電流を増加させる。これと同時に、主制御装置(13)は回転制御装置(14)に回転体停止指令を出力し、これを受けて、回転制御装置(14)は回生制動を開始し、回転体(2) にブレーキをかける。これにより、回転体(2) は徐々に減速し、やがて回転を停止する。回転体(2) の回転が停止すると、主制御装置(13)は電磁石(3a)(4a)(5a)への励磁電流の供給を停止する。これにより、磁気軸受(3)(4)(5) が作動を停止して、回転体(2) を支持しなくなり、回転体(2) はタッチダウン軸受(10)(11)により支持される。
【0016】
磁気軸受(3)(4)(5) に異常が発生した場合、回転体(2) を所望の一定位置に保持できなくなることがある。このような場合、回転体(2) が減速して停止するまでの間、回転体(2) がタッチダウン軸受(10)(11)に接触し、タッチダウン軸受(10)(11)が回転体(2) とともに高速で回転する。しかし、上記実施形態の場合は、回転体(2) を減速させると同時に、所定の電磁石(4a)(5a)の定常電流が増加させられるため、渦電流損が増大して、磁気軸受(4)(5)の回転損失が増加し、従来のものに比べて、回転体(2) が停止するまでの時間が短くなる。このため、タッチダウン軸受(10)(11)が減速中の回転体(2) ともに高速で回転する時間が短くなり、タッチダウン軸受(10)(11)の破損や損傷のおそれが少ない。
【0017】
磁気軸受装置には、回転体が水平に配置される横型のものもあるが、その場合は、アキシアル磁気軸受の1対の電磁石が水平方向に対をなすように配置されるので、磁気軸受の異常を検知したときに、好ましくは、アキシアルの1対の電磁石に供給する定常電流を増加させるようにする。
【図面の簡単な説明】
【図1】図1は、この発明の実施形態を示す磁気軸受装置の概略構成図である。
【符号の説明】
(2) 回転体
(3) アキシアル磁気軸受
(3a) 電磁石
(4)(5) ラジアル磁気軸受
(4a)(5a) 電磁石
(6) アキシアル位置センサ
(7)(8) ラジアル位置センサ
(12) センサ駆動回路
(13) 主制御装置
(14) 回転制御装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnetic bearing device in which a rotating body is supported in a non-contact manner by a plurality of sets of control type magnetic bearings.
[0002]
[Prior art]
As a magnetic bearing device, a plurality of sets of control type magnetic bearings (for example, one set of axial magnetic bearings and two sets of radial magnetic bearings) having electromagnets that support a rotating body in an axial direction and a radial direction in a non-contact manner, and an axial of a rotating body Position detecting device for detecting the position in the direction and radial direction, an electric motor for rotationally driving the rotating body, and a control device for controlling the motor and exciting current supplied to the electromagnet of each magnetic bearing based on the position of the rotating body And a touch-down bearing (protective bearing) that mechanically supports the rotating body when there is no support by the magnetic bearing by restricting the movable range in the axial direction and the radial direction of the rotating body. Yes. The control device supplies a constant steady current (bias current) and a control current that varies depending on the position of the rotating body to the electromagnet as the excitation current.
[0003]
In the above magnetic bearing device, when the operation is stopped, the rotating body is braked and gradually decelerated while the rotating body is supported in a non-contact manner by the magnetic bearing. The support by the bearing is eliminated, and the stopped rotating body is supported by the touchdown bearing.
[0004]
Further, in this type of magnetic bearing device, an abnormality may occur in the magnetic bearing during operation, and the rotating body may not be supported at a desired position. In such a case, conventionally, the rotating body is decelerated and stopped in the same manner as described above, and is supported by the touch-down bearing. When the rotating body is stopped in a normal state as described above, the rotating body is non-contact supported by the magnetic bearing until the rotating body stops until the rotating body stops. There is no contact with the touchdown bearing. On the other hand, when an abnormality occurs in the magnetic bearing and the rotating body is stopped, the rotating body may not be supported at a fixed position by the magnetic bearing. In this case, the rotating body contacts the touch-down bearing during deceleration. The touchdown bearing is rotated at a high speed. Also, since the rotating body is usually decelerated by regenerative braking of the motor, the time to stop is long and the touchdown bearing is rotated at high speed for a long time. And other parts of the device, and the life of the touchdown bearing is shortened.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a safe magnetic bearing device capable of shortening the time from high-speed rotation of a rotating body to a rotation stop when a magnetic bearing is abnormal and preventing damage and damage to the touchdown bearing.
[0006]
[Means for Solving the Problems and Effects of the Invention]
The magnetic bearing device according to the present invention includes an electric motor that rotationally drives the rotating body, a plurality of sets of control type magnetic bearings having electromagnets that support the rotating body in a non-contact manner, position detection means that detects the position of the rotating body, based on the output of the position detecting means and control means for controlling an excitation current supplied to the electromagnet, further said control means, change the output of the constant current of a constant as the excitation current before Symbol position detecting means a main control unit for supplying a control current to the magnetic bearing device and a rotation control device for controlling rotation of the motor based on a command from the main control unit, said control means, said magnetic bearing When an abnormality is detected, the rotating member stop command signal is output to the rotation control device, and at the same time performs the regenerative braking, to increase the steady-state current supplied to a predetermined electromagnet increases the eddy current loss this By, is characterized in that it is adapted to increase the rotation loss of the magnetic bearing.
[0007]
When an abnormality occurs in the magnetic bearing, regenerative braking reduces the speed of the rotating body and increases the steady current supplied to the electromagnet, increasing the eddy current loss and increasing the rotational loss of the magnetic bearing. . For this reason, the time until the rotating body stops from the high speed rotation is shortened. Therefore, the time during which the touchdown bearing rotates at a high speed together with the rotating body that is decelerating is shortened, and there is little risk of breakage or damage to the touchdown bearing. There is little risk of shortening the service life.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0009]
FIG. 1 schematically shows the main part of a magnetic bearing device.
[0010]
The magnetic bearing device is of a vertical type and includes a shaft-like rotating body (2) arranged vertically in the casing (1). The casing (1) further includes a set of axial magnetic bearings (3) which are non-contact support of the rotating body (2) and two sets of upper and lower radial magnetic bearings (4) (5), One axial position sensor (6) for detecting the axial displacement of the rotating body (2), and two sets of upper and lower radial position sensors (7) for detecting the radial displacement of the rotating body (2) (8), the high-frequency motor (9) as a rotation drive means for rotating the rotating body (2) at high speed, and the moving range of the rotating body (2) in the axial direction and the radial direction are regulated to make the rotating body (2) magnetic Two sets of upper and lower touchdown bearings (10) and (11) are provided as restricting means for mechanically supporting the bearings (3), (4), and (5) when they are not supported by the bearings.
[0011]
Usually, the axial magnetic bearing (3) is a pair of electromagnets (3a) paired in the axial direction, and each radial magnetic bearing (4) (5) is a pair of electromagnets paired in two radial directions orthogonal to each other. (4a) and (5a). In the following description, two radial control axes (horizontal axes) orthogonal to each other are assumed to be an X axis and a Y axis, and an axial control axis (vertical axis) orthogonal to them is a Z axis. FIG. 1 shows only the electromagnets (4a) and (5a) and the radial position sensors (7) and (8) of the radial magnetic bearings (4) and (5) in the X-axis direction. Since these magnetic bearings (3), (4), (5) and position sensors (6), (7), and (8) are known ones, detailed description thereof is omitted.
[0012]
The axial position sensor (6) and the radial position sensor (7) (8) are driven by the sensor drive circuit (12), and the sensor drive circuit (12) is based on the output of each sensor (6) (7) (8). Thus, the displacement of the rotating body (2) in the axial direction (Z-axis direction) and radial direction (X-axis direction and Y-axis direction) is detected, and an analog position detection signal in each control axis direction is output. The position sensors (6), (7), (8) and the sensor drive circuit (12) constitute displacement detecting means for detecting the displacement of the rotating body (2) in the axial direction and radial direction.
[0013]
The magnetic bearing device also includes a main control device (13) and a rotation control device (14) as control means for controlling the magnetic bearings (3), (4), (5) and the electric motor (9). The main controller (13) supplies the electromagnets (3a), (4a) and (5a) of the magnetic bearings (3), (4) and (5) based on the axial and radial displacements of the rotating body (2). It controls the magnitude of the excitation current and the rotation of the motor (9) via the rotation control device (14), and its main part is composed of a digital signal processor. . A digital signal processor refers to dedicated hardware that inputs a digital signal and outputs a digital signal, can be software-programmed, and can perform high-speed real-time processing. Hereinafter, this is abbreviated as “DSP”. The rotation control device (14) controls the rotation of the electric motor (9) based on a command from the main control device (13), and includes a known inverter. The rotation control device (14) includes a brake circuit unit for performing regenerative braking.
[0014]
The analog position detection signal from the sensor drive circuit (12) is converted into a digital position detection signal by the A / D converter (15) and input to the main controller (13). The main controller (13) generates the electromagnets (3a) (4a) of the magnetic bearings (3) (4) (5) based on the digital position detection signal, i.e., the axial and radial displacements of the rotating body (2). ) Controls the magnitude of the excitation current supplied to (5a). The digital control signal from the main control device (13) is converted into an analog signal by the D / A converter (16), and each electromagnet (3a) (4a) (5a) is converted from the power amplifier (17) based on this analog signal. As a result, the rotating body (2) is attracted by the electromagnets (3a), (4a), and (5a) and is supported in a non-contact manner at predetermined positions in the axial and radial directions. The excitation current supplied to the pair of electromagnets (3a), (4a), and (5a) of each control shaft in each magnetic bearing (3), (4), and (5) is a constant steady current that is equal to each other. The control current controlled by the position is added.
[0015]
The main controller (13) is provided with an abnormal stopping means for detecting an abnormality of the magnetic bearings (3), (4) and (5) and stopping the rotating body (2). That is, a software program constituting the abnormal stopping means is stored in the DSP of the main control device (13). The main controller (13) constantly monitors the state of the magnetic bearings (3), (4), and (5), and when an abnormality occurs in the magnetic bearings (3), (4), and (5), the following occurs. To stop the rotating body (2). Abnormalities in the magnetic bearings (3), (4), and (5) include uncontrollable due to disturbance, and disconnection of the electromagnets (3a), (4a), (5a) or the position sensors (6), (7), (8). Such abnormalities of the magnetic bearings (3), (4) and (5) are detected when the output of the position sensors (6), (7) and (8) exceeds a threshold value. When the main controller (13) detects an abnormality in the magnetic bearings (3), (4), and (5), multiple pairs of electromagnets (3a), (4a), and (5a) of the magnetic bearings (3), (4), and (5) For a given pair of, increase the steady current by the same amount. Preferably, the steady current of the electromagnets (4a) and (5a) paired in the horizontal direction is increased. In the case of the vertical magnetic bearing device as in this embodiment, the steady current of the two pairs of electromagnets (4a) of the upper radial magnetic bearing (4) and the two pairs of electromagnets (5a) of the lower electromagnet (5) is increased. Let At the same time, the main control device (13) outputs a rotating body stop command to the rotation control device (14), and in response to this, the rotation control device (14) starts regenerative braking and applies to the rotating body (2). Apply the brakes. As a result, the rotating body (2) gradually decelerates and eventually stops rotating. When the rotation of the rotating body (2) stops, the main controller (13) stops supplying the exciting current to the electromagnets (3a) (4a) (5a). As a result, the magnetic bearings (3), (4) and (5) stop operating and no longer support the rotating body (2), and the rotating body (2) is supported by the touchdown bearings (10) and (11). .
[0016]
If an abnormality occurs in the magnetic bearings (3), (4), and (5), the rotating body (2) may not be held at a desired fixed position. In such a case, until the rotating body (2) decelerates and stops, the rotating body (2) contacts the touchdown bearings (10) and (11), and the touchdown bearings (10) and (11) rotate. Rotates at high speed with body (2). However, in the case of the above embodiment, since the rotating body (2) is decelerated and at the same time the steady current of the predetermined electromagnets (4a) (5a) is increased, the eddy current loss is increased and the magnetic bearing (4 ) (5) increases the rotation loss and shortens the time until the rotating body (2) stops compared to the conventional one. For this reason, the time during which the touchdown bearings (10) and (11) rotate at a high speed together with the rotating body (2) being decelerated is shortened, and the touchdown bearings (10) and (11) are less likely to be damaged or damaged.
[0017]
Some magnetic bearing devices have a horizontal type in which a rotating body is horizontally arranged. In this case, a pair of electromagnets of an axial magnetic bearing are arranged so as to form a pair in the horizontal direction. When an abnormality is detected, the steady current supplied to the pair of axial electromagnets is preferably increased.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a magnetic bearing device showing an embodiment of the present invention.
[Explanation of symbols]
(2) Rotating body
(3) Axial magnetic bearing
(3a) Electromagnet
(4) (5) Radial magnetic bearing
(4a) (5a) Electromagnet
(6) Axial position sensor
(7) (8) Radial position sensor
(12) Sensor drive circuit
(13) Main controller
(14) Rotation control device

Claims (1)

回転体を回転駆動する電動機と、回転体を非接触支持する電磁石を有する複数組の制御型磁気軸受と、前記回転体の位置を検出する位置検出手段と、前記位置検出手段の出力に基づいて前記電磁石に供給する励磁電流を制御する制御手段とを備え、さらに、前記制御手段が、励磁電流として一定の定常電流と前記位置検出手段の出力によって変化する制御電流を供給する主制御装置と、主制御装置からの指令に基づいて前記電動機の回転を制御する回転制御装置とを備えている磁気軸受装置において、
前記主制御装置が、前記磁気軸受の異常を検知した際に、回転体停止指令信号を前記回転制御装置に出力して、回生制動を行うと同時に、所定の電磁石に供給する定常電流を増加させ、渦電流損を増大させることにより、前記磁気軸受の回転損失を増加させるようになされていることを特徴とする磁気軸受装置。
Based on an electric motor that rotationally drives the rotating body, a plurality of sets of control type magnetic bearings having electromagnets that support the rotating body in a non-contact manner, position detecting means that detects the position of the rotating body, and output of the position detecting means and control means for controlling the excitation current supplied to the electromagnet, further main supply said control means, the control current which varies with the output of the exciting current to the a constant steady current pre Symbol position detecting means In a magnetic bearing device comprising a control device and a rotation control device that controls the rotation of the electric motor based on a command from the main control device ,
When the main control device detects an abnormality in the magnetic bearing, it outputs a rotating body stop command signal to the rotation control device to perform regenerative braking, and at the same time, increases a steady current supplied to a predetermined electromagnet. The magnetic bearing device is characterized in that the rotational loss of the magnetic bearing is increased by increasing the eddy current loss.
JP20331396A 1996-08-01 1996-08-01 Magnetic bearing device Expired - Fee Related JP3793856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20331396A JP3793856B2 (en) 1996-08-01 1996-08-01 Magnetic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20331396A JP3793856B2 (en) 1996-08-01 1996-08-01 Magnetic bearing device

Publications (2)

Publication Number Publication Date
JPH1047346A JPH1047346A (en) 1998-02-17
JP3793856B2 true JP3793856B2 (en) 2006-07-05

Family

ID=16471962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20331396A Expired - Fee Related JP3793856B2 (en) 1996-08-01 1996-08-01 Magnetic bearing device

Country Status (1)

Country Link
JP (1) JP3793856B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210018005A1 (en) * 2017-08-31 2021-01-21 Edwards Japan Limited Vacuum pump and controller

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6077286B2 (en) * 2012-11-30 2017-02-08 エドワーズ株式会社 Electromagnetic rotating device and vacuum pump provided with the electromagnetic rotating device
US10208760B2 (en) 2016-07-28 2019-02-19 General Electric Company Rotary machine including active magnetic bearing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210018005A1 (en) * 2017-08-31 2021-01-21 Edwards Japan Limited Vacuum pump and controller
US11680572B2 (en) * 2017-08-31 2023-06-20 Edwards Japan Limited Vacuum pump and magnetic bearing controller with multiple rigidity modes at high and low gains

Also Published As

Publication number Publication date
JPH1047346A (en) 1998-02-17

Similar Documents

Publication Publication Date Title
JP2002013532A (en) Magnetic bearing control system
JP3421904B2 (en) Magnetic bearing spindle device for machine tools
JP3793856B2 (en) Magnetic bearing device
JP3677826B2 (en) Magnetic bearing device
JP3069704B2 (en) Turbo molecular pump braking control device
JP2006022914A (en) Magnetic bearing device
JP3738337B2 (en) Magnetic bearing device
JP2003222096A (en) Magnetic-bearing type turbo-molecular pump
JP4318395B2 (en) Method of operating a rotor having a magnetic bearing device
JPH11159530A (en) Magnetically floatable rotary device
JPH11166533A (en) Magnetic bearing device
JPH1084656A (en) Rotating machine for magnetic levitation
JP3624271B2 (en) Magnetic bearing device
JP2009303284A (en) Flywheel-type uninterruptible power supply device and its controlling method
JP3785524B2 (en) Control type magnetic bearing device
JP2791515B2 (en) Controller for magnetic bearing
JP2546625Y2 (en) Magnetic bearing control device
JP2006009759A (en) Turbo-molecular pump device
JP3176673B2 (en) Magnetic bearing control device
JP4483431B2 (en) Turbo molecular pump device
JPH0979259A (en) Magnetic levitation rotary device
JPH1122729A (en) Magnetic bearing device
JP4110305B2 (en) Magnetic bearing device
JP3564595B2 (en) Magnetic levitation rotating device
JP4322494B2 (en) Magnetic bearing device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060327

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees