JP3600332B2 - Engine driven air conditioner - Google Patents

Engine driven air conditioner Download PDF

Info

Publication number
JP3600332B2
JP3600332B2 JP29742395A JP29742395A JP3600332B2 JP 3600332 B2 JP3600332 B2 JP 3600332B2 JP 29742395 A JP29742395 A JP 29742395A JP 29742395 A JP29742395 A JP 29742395A JP 3600332 B2 JP3600332 B2 JP 3600332B2
Authority
JP
Japan
Prior art keywords
exhaust gas
temperature
heat exchanger
engine
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29742395A
Other languages
Japanese (ja)
Other versions
JPH09113060A (en
Inventor
忠広 加藤
鈴木  寛
立二 森島
実 花井
道雄 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP29742395A priority Critical patent/JP3600332B2/en
Publication of JPH09113060A publication Critical patent/JPH09113060A/en
Application granted granted Critical
Publication of JP3600332B2 publication Critical patent/JP3600332B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Silencers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は水冷式エンジンにより駆動される圧縮機を具備する空気調和機に関する。
【0002】
【従来の技術】
従来のこの種空気調和機の系統図が図3に示されている。
水冷式エンジン1により駆動される圧縮機2、四方弁3、室外熱交換器4、絞り機構5、室内熱交換器6を冷媒配管で接続することによって冷凍サイクルが構成されている。
【0003】
冷房運転時、エンジン1によって圧縮機2が駆動されると、この圧縮機2から吐出されたガス冷媒は実線矢印で示すように、四方弁3を経て室外熱交換器4に入り、ここで室外フアン7により送風される外気に放熱することによって凝縮液化する。
【0004】
この液冷媒は絞り機構5を流過する過程で断熱膨張した後、室内熱交換器6に入り、ここで室内フアン8により送風される室内空気を冷却することによって蒸発気化する。しかる後、このガス冷媒は四方弁3を経て圧縮機2に戻る。
【0005】
暖房運転時には、四方弁3が上記と逆方向に切り換えられ、圧縮機2から吐出された冷媒は破線矢印で示すように、四方弁3、室内熱交換器6、絞り機構5、室外熱交換器4、四方弁3をこの順に経て圧縮機2に戻る。
【0006】
エンジン1を冷却することによって昇温した冷却水はラジェータ9に入り、ここでラジェータフアン10により送風される外気に放熱することによって降温した後、冷却水循環ポンプ11により付勢され、排ガス熱交換器12の伝熱管を流過する過程で管外の排気ガスと熱交換した後、エンジン1に戻る。
【0007】
エンジン1の排気ガスは排気管13及びこれに介装された排ガス熱交換器12及び排気マフラ14を通って大気に放出される。
【0008】
排ガス熱交換器12を流過する冷却水の温度が低下したり、流量が増大すると、排ガス中の水分が凝縮してドレンとなる。
このドレンは中和器15内に導入され、ここで炭酸カルシウム等の中和剤16によって中和された後、排出管17を経て排出される。
【0009】
【発明が解決しようとする課題】
上記従来の空気調和機においては、排ガス熱交換器12で凝縮したドレンを中和するために中和器15を設けていたので、その設備費及び運転経費が嵩むという問題があった。
【0010】
【課題を解決するための手段】
本発明は上記課題を解決するために発明されたものであって、第1の発明の要旨とするところは、水冷式エンジンにより駆動される圧縮機、室外熱交換器、絞り機構、室内熱交換器を冷媒配管により接続してなる冷凍サイクルと、上記水冷式エンジンからラジエータへエンジン冷却水を循環させる冷却水循環ポンプと、当該冷却水循環ポンプが付勢するエンジン冷却水と上記水冷式エンジンの排気ガスとを熱交換させる排ガス熱交換器を具備するエンジン駆動式空気調和機において、上記排ガス熱交換器出口の排気ガス温度を検出する温度センサと、この温度センサの検出温度が設定された露点温度より高い設定温度に到達したとき、上記冷却水循環ポンプの回転数を低減することによって上記排ガス熱交換器出口の排気ガス温度を設定温度以上に制御するコントローラを設けたことを特徴とするエンジン駆動式空気調和機にある。
【0012】
第2の発明の要旨とするところは、水冷式エンジンにより駆動される圧縮機、室外熱交換器、絞り機構、室内熱交換器を冷媒配管により接続してなる冷凍サイクルと、上記水冷式エンジンからラジエータへエンジン冷却水を循環させる冷却水循環ポンプと、当該冷却水循環ポンプが付勢するエンジン冷却水と上記水冷式エンジンの排気ガスとを熱交換させる排ガス熱交換器を具備するエンジン駆動式空気調和機において、
上記排ガス熱交換器出口の排気ガス温度を検出する温度センサと、この温度センサの検出温度が設定された露点温度より高い設定温度に到達したとき、上記ラジエータファン回転数を低減することによって排ガス熱交換器出口の排気ガス温度を設定温度以上に制御するコントローラを設けたことを特徴とするエンジン駆動式空気調和機にある。
【0013】
しかして、排ガス熱交換器出口の排気ガス温度を検出し、これが設定温度以上になるようにコントローラによって冷却水循環ポンプの回転数又は冷却水放熱用ラジェータのフアン回転数を制御する。
【0014】
【発明の実施の形態】
本発明の第1の実施形態が図1に示されている。図1に示すように、排ガス熱交換器12出口の排気ガスの温度を検出する温度センサ20が設けられ、この温度センサ20の検出温度はコントローラ21に入力される。このコントローラ21は排気ガス温度が設定器25に設定された露点温度より若干高い設定温度に到達したとき、インバータ22に出力して冷却水循環ポンプ11の駆動モータ23に供給される電流の周波数を低下させることによって冷却水循環ポンプ10の回転数を低減するようになっている。
【0015】
かくして、排ガス熱交換器12を流過する冷却水の循環量が低減するので、排ガス熱交換器12の出口の排ガス温度は設定温度以上に維持される。この結果、排ガス熱交換器12内で排ガス中の水分が凝縮するのを阻止できる。
【0016】
本発明の第2の実施形態が図2に示されている。この第2の実施形態においては、温度センサ20によって検出された排気ガスの温度が設定温度に到達したとき、コントローラ21Aはラジェータフアン10の駆動モータ24に出力してラジェータフアン10の回転数を低減するようになっている。他の構成は図1に示す第1の実施形態と同様であり、対応する部材には同じ符号を付してその説明を省略する。
【0017】
かくして、ラジェータ9における冷却水の放熱量が低下し、排ガス熱交換器12を流過する冷却水の温度が上昇するので、排ガス熱交換器12の出口の排ガス温度は設定温度以上に維持される。この結果、排ガス熱交換器12内で排ガス中の水分が凝縮するのを阻止できる。
【0018】
【発明の効果】
本発明においては、排ガス熱交換器出口の排気ガス温度が設定温度以上になるように冷却水循環ポンプの回転数又は冷却水放熱用ラジェータのフアン回転数を制御するので、排ガス熱交換器内で排ガス中の水分が凝縮するのを阻止することができ、従って、ドレンを中和するための中和器を省略してその設備費及び運転経費を節減することが可能となる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態を示す系統図である。
【図2】本発明の第2の実施形態を示す系統図である。
【図3】従来のエンジン駆動式空気調和機の系統図である。
【符号の説明】
1 水冷式エンジン
2 圧縮機
4 室外熱交換器
5 絞り機構
6 室内熱交換器
9 ラジェータ
10 ラジェータフアン
11 冷却水循環ポンプ
12 排ガス熱交換器
20 温度センサ
21 コントローラ
25 設定器
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an air conditioner including a compressor driven by a water-cooled engine.
[0002]
[Prior art]
A system diagram of this type of conventional air conditioner is shown in FIG.
A refrigeration cycle is configured by connecting a compressor 2, a four-way valve 3, an outdoor heat exchanger 4, an expansion mechanism 5, and an indoor heat exchanger 6 driven by a water-cooled engine 1 by refrigerant piping.
[0003]
During the cooling operation, when the compressor 2 is driven by the engine 1, the gas refrigerant discharged from the compressor 2 enters the outdoor heat exchanger 4 through the four-way valve 3 as shown by the solid line arrow, where It is condensed and liquefied by radiating heat to the outside air blown by the fan 7.
[0004]
The liquid refrigerant adiabatically expands in the process of flowing through the throttle mechanism 5 and then enters the indoor heat exchanger 6 where it evaporates and vaporizes by cooling the indoor air blown by the indoor fan 8. Thereafter, the gas refrigerant returns to the compressor 2 via the four-way valve 3.
[0005]
At the time of the heating operation, the four-way valve 3 is switched in the opposite direction to the above, and the refrigerant discharged from the compressor 2 has the four-way valve 3, the indoor heat exchanger 6, the throttle mechanism 5, the outdoor heat exchanger 4. Return to the compressor 2 via the four-way valve 3 in this order.
[0006]
The cooling water that has been heated by cooling the engine 1 enters the radiator 9, where it is cooled by radiating heat to the outside air blown by the radiator fan 10 and then energized by the cooling water circulating pump 11 to be cooled by the exhaust gas heat exchanger. After the heat exchange with the exhaust gas outside the tubes in the process of flowing through the 12 heat transfer tubes, the process returns to the engine 1.
[0007]
The exhaust gas of the engine 1 is discharged to the atmosphere through an exhaust pipe 13 and an exhaust gas heat exchanger 12 and an exhaust muffler 14 interposed therebetween.
[0008]
When the temperature of the cooling water flowing through the exhaust gas heat exchanger 12 decreases or the flow rate increases, the moisture in the exhaust gas condenses and becomes drain.
This drain is introduced into a neutralizer 15, where it is neutralized by a neutralizing agent 16 such as calcium carbonate, and then discharged via a discharge pipe 17.
[0009]
[Problems to be solved by the invention]
In the above-mentioned conventional air conditioner, since the neutralizer 15 is provided to neutralize the drain condensed in the exhaust gas heat exchanger 12, there is a problem that the equipment cost and the operating cost increase.
[0010]
[Means for Solving the Problems]
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and a gist of the first invention is to provide a compressor driven by a water-cooled engine, an outdoor heat exchanger, a throttle mechanism, and an indoor heat exchanger. Refrigeration cycle in which the heat exchanger is connected by a refrigerant pipe, a cooling water circulation pump for circulating engine cooling water from the water-cooled engine to the radiator, engine cooling water energized by the cooling water circulation pump, and exhaust gas of the water-cooled engine. In an engine-driven air conditioner equipped with an exhaust gas heat exchanger for exchanging heat with a temperature sensor for detecting an exhaust gas temperature at the outlet of the exhaust gas heat exchanger, a temperature detected by the temperature sensor is set based on a set dew point temperature. upon reaching the high set temperature, it sets the exhaust gas temperature of the exhaust gas heat exchanger outlet temperature by reducing the rotational speed of the cooling water circulation pump In an engine driving type air conditioner which is characterized in that a controller for controlling the above.
[0012]
The gist of the second invention is that a refrigeration cycle in which a compressor driven by a water-cooled engine, an outdoor heat exchanger, a throttle mechanism, and an indoor heat exchanger are connected by refrigerant piping, An engine-driven air conditioner comprising: a cooling water circulation pump for circulating engine cooling water to a radiator; and an exhaust gas heat exchanger for exchanging heat between engine cooling water energized by the cooling water circulation pump and exhaust gas of the water-cooled engine. At
A temperature sensor for detecting the temperature of the exhaust gas at the outlet of the exhaust gas heat exchanger, and when the temperature detected by the temperature sensor reaches a set temperature higher than a set dew point temperature, the exhaust gas heat is reduced by reducing the rotation speed of the radiator fan. An engine-driven air conditioner is provided with a controller for controlling the temperature of exhaust gas at the outlet of the exchanger to a temperature equal to or higher than a set temperature .
[0013]
Then, the temperature of the exhaust gas at the outlet of the exhaust gas heat exchanger is detected, and the rotation speed of the cooling water circulation pump or the fan rotation speed of the cooling water radiator is controlled by the controller so that the exhaust gas temperature becomes equal to or higher than the set temperature.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
A first embodiment of the present invention is shown in FIG. As shown in FIG. 1, a temperature sensor 20 for detecting the temperature of the exhaust gas at the outlet of the exhaust gas heat exchanger 12 is provided, and the detected temperature of the temperature sensor 20 is input to a controller 21. When this controller 21 is the exhaust gas temperature reaches slightly higher set temperature above the set point temperature to set Joki 25, the frequency of the current supplied by the output to the inverter 22 to drive motor 23 of the cooling water circulation pump 11 By lowering the rotation speed, the rotation speed of the cooling water circulation pump 10 is reduced.
[0015]
Thus, the circulation amount of the cooling water flowing through the exhaust gas heat exchanger 12 is reduced, so that the exhaust gas temperature at the outlet of the exhaust gas heat exchanger 12 is maintained at or above the set temperature. As a result, the water in the exhaust gas can be prevented from condensing in the exhaust gas heat exchanger 12.
[0016]
A second embodiment of the present invention is shown in FIG. In the second embodiment, when the temperature of the exhaust gas detected by the temperature sensor 20 reaches the set temperature, the rotational speed of the Rajetafuan 10 and output to the drive motor 24 of the controller 21A is Rajetafuan 10 Is to be reduced. Other configurations are the same as those of the first embodiment shown in FIG. 1, and corresponding members are denoted by the same reference numerals and description thereof will be omitted.
[0017]
Thus, the heat radiation amount of the cooling water in the radiator 9 decreases, and the temperature of the cooling water flowing through the exhaust gas heat exchanger 12 increases, so that the exhaust gas temperature at the outlet of the exhaust gas heat exchanger 12 is maintained at or above the set temperature. . As a result, the water in the exhaust gas can be prevented from condensing in the exhaust gas heat exchanger 12.
[0018]
【The invention's effect】
In the present invention, since the rotation speed of the cooling water circulation pump or the fan rotation speed of the cooling water radiator is controlled so that the exhaust gas temperature at the exhaust gas heat exchanger outlet is equal to or higher than the set temperature, the exhaust gas heat exchanger It is possible to prevent the moisture in the water from condensing, so that it is possible to omit the neutralizer for neutralizing the drain and to reduce the equipment cost and the operating cost.
[Brief description of the drawings]
FIG. 1 is a system diagram showing a first embodiment of the present invention.
FIG. 2 is a system diagram showing a second embodiment of the present invention.
FIG. 3 is a system diagram of a conventional engine-driven air conditioner.
[Explanation of symbols]
Reference Signs List 1 water-cooled engine 2 compressor 4 outdoor heat exchanger 5 throttle mechanism 6 indoor heat exchanger 9 radiator 10 radiator fan 11 cooling water circulation pump 12 exhaust gas heat exchanger 20 temperature sensor 21 controller 25 setting unit

Claims (2)

水冷式エンジンにより駆動される圧縮機、室外熱交換器、絞り機構、室内熱交換器を冷媒配管により接続してなる冷凍サイクルと、上記水冷式エンジンからラジエータへエンジン冷却水を循環させる冷却水循環ポンプと、当該冷却水循環ポンプが付勢するエンジン冷却水と上記水冷式エンジンの排気ガスとを熱交換させる排ガス熱交換器を具備するエンジン駆動式空気調和機において、
上記排ガス熱交換器出口の排気ガス温度を検出する温度センサと、この温度センサの検出温度が設定された露点温度より高い設定温度に到達したとき、上記冷却水循環ポンプの回転数を低減することによって上記排ガス熱交換器出口の排気ガス温度を設定温度以上に制御するコントローラを設けたことを特徴とするエンジン駆動式空気調和機。
A refrigeration cycle in which a compressor driven by a water-cooled engine, an outdoor heat exchanger, a throttle mechanism, and an indoor heat exchanger are connected by refrigerant piping, and a cooling water circulation pump that circulates engine cooling water from the water-cooled engine to a radiator. And an engine-driven air conditioner including an exhaust gas heat exchanger for exchanging heat between engine cooling water energized by the cooling water circulation pump and exhaust gas of the water-cooled engine ,
A temperature sensor for detecting the exhaust gas temperature at the exhaust gas heat exchanger outlet, and when the temperature detected by the temperature sensor reaches a set temperature higher than a set dew point temperature, by reducing the number of revolutions of the cooling water circulation pump. An engine-driven air conditioner, comprising a controller for controlling the exhaust gas temperature at the outlet of the exhaust gas heat exchanger to a temperature equal to or higher than a set temperature.
水冷式エンジンにより駆動される圧縮機、室外熱交換器、絞り機構、室内熱交換器を冷媒配管により接続してなる冷凍サイクルと、上記水冷式エンジンからラジエータへエンジン冷却水を循環させる冷却水循環ポンプと、当該冷却水循環ポンプが付勢するエンジン冷却水と上記水冷式エンジンの排気ガスとを熱交換させる排ガス熱交換器を具備するエンジン駆動式空気調和機において、
上記排ガス熱交換器出口の排気ガス温度を検出する温度センサと、この温度センサの検出温度が設定された露点温度より高い設定温度に到達したとき、上記ラジエータファン回転数を低減することによって排ガス熱交換器出口の排気ガス温度を設定温度以上に制御するコントローラを設けたことを特徴とするエンジン駆動式空気調和機。
A refrigeration cycle in which a compressor driven by a water-cooled engine, an outdoor heat exchanger, a throttle mechanism, and an indoor heat exchanger are connected by refrigerant piping, and a cooling water circulation pump that circulates engine cooling water from the water-cooled engine to a radiator. And an engine-driven air conditioner including an exhaust gas heat exchanger for exchanging heat between engine cooling water energized by the cooling water circulation pump and exhaust gas of the water-cooled engine,
A temperature sensor for detecting the temperature of the exhaust gas at the outlet of the exhaust gas heat exchanger, and when the temperature detected by the temperature sensor reaches a set temperature higher than a set dew point temperature, the exhaust gas heat is reduced by reducing the rotation speed of the radiator fan. An engine-driven air conditioner, comprising a controller for controlling an exhaust gas temperature at an outlet of the exchanger to a temperature equal to or higher than a set temperature .
JP29742395A 1995-10-20 1995-10-20 Engine driven air conditioner Expired - Fee Related JP3600332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29742395A JP3600332B2 (en) 1995-10-20 1995-10-20 Engine driven air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29742395A JP3600332B2 (en) 1995-10-20 1995-10-20 Engine driven air conditioner

Publications (2)

Publication Number Publication Date
JPH09113060A JPH09113060A (en) 1997-05-02
JP3600332B2 true JP3600332B2 (en) 2004-12-15

Family

ID=17846324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29742395A Expired - Fee Related JP3600332B2 (en) 1995-10-20 1995-10-20 Engine driven air conditioner

Country Status (1)

Country Link
JP (1) JP3600332B2 (en)

Also Published As

Publication number Publication date
JPH09113060A (en) 1997-05-02

Similar Documents

Publication Publication Date Title
JP3485379B2 (en) Vehicle air conditioner
US7155927B2 (en) Exhaust heat utilizing refrigeration system
EP1628102A2 (en) Electricity generating and air conditioning system with dehumidifier
JP2919829B2 (en) Cooling / heating combined air conditioner and control method therefor
KR0136768B1 (en) Heating apparatus for air-conditioner
JP3600332B2 (en) Engine driven air conditioner
JP3329091B2 (en) Heat pump type air conditioner for vehicles
JP3399023B2 (en) Vehicle air conditioner
JP4259693B2 (en) Air conditioner
US20050045321A1 (en) Control apparatus and control method of vehicle cooling fan
JP2003262427A (en) Ventilation controller of engine driven system
JP3572124B2 (en) Operating method of engine driven air conditioner
JP3546102B2 (en) Engine driven air conditioner
JP3564212B2 (en) Engine driven air conditioner
JP3370043B2 (en) In-vehicle air conditioner
JPH06206439A (en) Heat pump type air-conditioning device for vehicle
JPH05240528A (en) Heat pump and air conditioner
JPH08232629A (en) Engine drive-type air conditioner
JPH0996471A (en) Engine driven air conditioner
KR200153175Y1 (en) A cooling and heating device of an electric vehicle
JPH09119747A (en) Engine drive type air conditioner
JPH0552444A (en) Engine-driven heat pump device
JP4402235B2 (en) Reheat dry operation start control method and reheat type air conditioner for reheat type air conditioner
JPH08210726A (en) Engine-drive type heat pump air-conditioner
JP3408681B2 (en) Engine driven air conditioner

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040109

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20040121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040916

LAPS Cancellation because of no payment of annual fees