JP3599148B2 - Plasma generating method, plasma generating apparatus and plasma generating element - Google Patents

Plasma generating method, plasma generating apparatus and plasma generating element Download PDF

Info

Publication number
JP3599148B2
JP3599148B2 JP21761896A JP21761896A JP3599148B2 JP 3599148 B2 JP3599148 B2 JP 3599148B2 JP 21761896 A JP21761896 A JP 21761896A JP 21761896 A JP21761896 A JP 21761896A JP 3599148 B2 JP3599148 B2 JP 3599148B2
Authority
JP
Japan
Prior art keywords
plasma
ferroelectric
electrodes
gas
plasma generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21761896A
Other languages
Japanese (ja)
Other versions
JPH1064698A (en
Inventor
泰宣 井上
勝敏 野崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP21761896A priority Critical patent/JP3599148B2/en
Publication of JPH1064698A publication Critical patent/JPH1064698A/en
Application granted granted Critical
Publication of JP3599148B2 publication Critical patent/JP3599148B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はプラズマ発生方法,プラズマ発生装置およびプラズマ発生素子に関する。
【0002】
【従来の技術】
従来,排気ガス処理において,プラズマを利用することが知られている(例えば,特開平5−237337号公報,同6−178914号公報参照)。
【0003】
【発明が解決しようとする課題】
しかしながら従来法によると比較的煩雑なプラズマ発生装置を必要とし,この点改良が望まれていた。
【0004】
【課題を解決するための手段】
本発明は簡単な手段により容易にプラズマを発生させることが可能な前記プラズマ発生方法を提供することを目的とする。
【0005】
前記目的を達成するため本発明によれば,単分極処理した強誘電体およびその強誘電体の表面に相対向するように密着させた一対の電極を有し,且つ前記強誘電体は通電方向と交差する分極軸を持つプラズマ発生素子を用い,前記両電極間に交流電圧を印加して前記強誘電体に,通電方向と交差する方向の共振波を生起させることにより,前記両電極の前記強誘電体との境界にプラズマを発生させるプラズマ発生方法が提供される。
【0006】
前記方法によれば,簡単な構造を有するプラズマ発生素子を用いて,簡単な操作を行うことにより容易にプラズマを発生させることができる。このようにして得られるプラズマは,排気ガスの処理,殺菌や消毒に用いられるオゾンの合成,各種有機および無機化合物の合成,発光体等に利用される。
【0007】
また本発明は簡単な構造を備えた前記プラズマ発生装置を提供することを目的とする。
【0008】
前記目的を達成するため本発明によれば,単分極処理した強誘電体およびその強誘電体の表面に相対向するように密着させた一対の電極を有し,且つ前記強誘電体は通電方向と交差する分極軸を持つプラズマ発生素子と,前記強誘電体に,通電方向と交差する方向の共振波を生起させるべく,前記両電極間に交流電圧を印加する電源とより構成されるプラズマ発生装置が提供される。
【0009】
この装置を用いることによって前記プラズマ発生方法を容易に実施することが可能である。またプラズマ発生素子を小型で,且つハンディなプラズマトーチ型に構成することが可能であるから,例えば任意の場所に在る任意の箇所をエッチングしたり,排気ガスの処理やオゾン合成による消毒を行う場合等に便利である。
【0010】
【発明の実施の形態】
図1,2において,プラズマ発生素子1は,単分極処理(ポーリング)した強誘電体2と,その強誘電体2の表面に相対向するように密着させた一対の電極3,4とを有する。図示例では,強誘電体2は長方形の板状をなし,両電極3,4は板状強誘電体2の両平面(表面)5,6に,それら平面5,6の一部を露出させてそれぞれ密着している。この場合,両平面5,6の全周縁に亘るように枠状露出面7,8が形成されている。この枠状露出面7,8はプラズマ発生のために必要であり,また両電極3,4間の短絡を回避する作用もなす。
【0011】
強誘電体2の分極軸aは通電方向,図示例では強誘電体2の厚さ方向bと交差している。この場合,図3に示すように分極軸aと厚さ方向bとの交角θはθ<90°,またはθ=90°である。
【0012】
強誘電体2の構成材料としては,自発分極が大きく,またキュリー温度が高く,さらに電気機械結合定数の大きい結晶が望ましい。この種の構成材料には,(a)ニオブ酸リチウム型化合物,例えばニオブ酸リチウム(LiNbO),タンタル酸リチウム(LiTaO)等;(b)ペロブスカイト型化合物,例えばチタン酸バリウム(BaTiO),チタンジルコン酸鉛〔Pb(Ti,Zr)O〕およびその鉛とアルカリ土類金属の置換体,亜鉛ニオブ酸鉛〔Pb(Zn,Nb)O〕等;(c)タングステン・ブロンズ型化合物(例えばバリウムニオブ酸ナトリウム(NaBaNb15),リチウムニオブ酸カリウム(KLiNb15)等が該当する。これらは単結晶体,焼結体等として用いられる。
【0013】
単結晶体の場合,強誘電体2の切出し方によって,その分極軸aの方向を交角θがθ<90°,またはθ=90°となるように設定することができるが,焼結体の場合は焼結後の単分極処理により分極軸aの方向を定めるので,その方向は交角θ=90°となる方向に限定される。
【0014】
各電極3,4の構成材料としては電気伝導度の高い金属,例えばAl,Cu等が用いられる。またプラズマ発生素子を有機化合物等の合成に利用する場合には両電極3,4の少なくとも一方は触媒作用を有する金属,例えば,Pt,Pd等より構成される。排気ガス中の窒素酸化物(NOx)の処理において,その窒素酸化物分解用触媒であるPdを電極用構成材料として用いると好結果が得られる。各電極3,4の厚さは50〜1000nmが適当である。強誘電体2に対する電極3,4の密着手段としては真空蒸着法,スパッタリング等の気相メッキ法,スクリーン印刷等が適用される。
【0015】
図4にも示すように両電極3,4にはリード線9,10が銀ペースト等の導電性接着剤11を介して取付けられる。一方のリード線9は電源12に,他方のリード線10は接地13される。電源12は,低周波数の交流電圧(サイン波)を発生し得る信号発生器(ファンクションジェネレータ)14と,その低周波数の交流電圧を増幅する増幅器15とよりなる。これらプラズマ発生素子1および電源12はプラズマ発生装置16を構成する。
【0016】
プラズマを発生させるためには,例えば大気圧下において,信号発生器14より低周波数の交流電圧を発生させ,それを増幅器15により増幅して,室温下のプラズマ発生素子1の両電極3,4間に印加する。そして図5に示すように,強誘電体2における長さ方向cの共振周波数の印加交流電圧において,その印加交流電圧を徐々に上昇させると,強誘電体2に,その長さ方向cにおいて,厚さ方向b(図1,2も参照)と交差する方向の共振波が生起され,これにより両電極3,4の長さ方向c(便宜上,強誘電体2の長さ方向と同一符号を用いる。)において,強誘電体2との境界にプラズマpが相対向するように発生する。
【0017】
一方,図6に示すように,強誘電体2における幅方向dの共振周波数の印加電圧において,その印加電圧を徐々に上昇させると,今度は強誘電体2に,その幅方向dにおいて,厚さ方向bと交差する方向の共振波が生起され,これにより両電極3,4の幅方向d(便宜上,強誘電体2の幅方向と同一符号を用いる。)において,強誘電体2との境界にプラズマpが相対向するように発生する。
【0018】
このように,前記プラズマ発生装置16によれば,大気圧下にてプラズマを発生させることができる。ただし,プラズマの発生効率を高めるためには減圧下の方が良い。
〔実施例〕
次のようなプラズマ発生素子1の例1を製作し,これをプラズマ発生装置16に組込んだ。
【0019】
図1,5において,強誘電体2:幅dが14mm,長さcが44mm,厚さbが0.5mmで,且つ分極軸aが厚さ方向bと交差した128°回転YカットLiNbO単結晶板(交角θ<90°);両電極3,4:幅dが10mm,長さcが40mmのPdよりなる真空蒸着膜で,厚さは100nm;枠状露出面7,8:強誘電体2の長さ方向cにおける幅dが2mm,その幅方向dにおける幅dが2mm.
大気圧下において,両電極3,4間に周波数66kHzの交流電圧を印加したところ,室温下の強誘電体2に,その長さ方向cにおいて,厚さ方向bと交差する方向の共振波が生起され,これにより図5に示すようなプラズマpが発生した。また大気圧下において,両電極3,4間に周波数180kHzの交流電圧を印加したところ,室温下の強誘電体2に,その幅方向dにおいて,厚さ方向bと交差する方向の共振波が生起され,これにより図6に示すようなプラズマpが発生した。これら周波数66kHzおよび180kHzの場合における交流電圧は60〜80V,また交流電流は150〜250mAである。
【0020】
プラズマ発生素子1の例1をチャンバ内に設置し,ガスとしてのHe,CO,O,H,NO,COH等をチャンバ内に導入して前記同様の操作を行ったところ,各ガスについて前記同様にプラズマpの発生が認められた。これは,前記ガスの2以上の混合ガスについても同様であった。
【0021】
また各ガス(大気を含む)の圧力を減圧状態に設定して前記同様のプラズマpを発生させたところ,ガス圧1Torr以上においてプラズマpの発生が認められた。これにより,ガス圧1〜760(1気圧)Torrにおいてプラズマpが発生し,また大気圧下よりも減圧状態の方がプラズマpの発生効率が高いことが確認された。
【0022】
図1,5において,強誘電体2の幅dが5mmであり,また両電極3,4の幅dが3mmである,ということ以外は前記例1と同一であるプラズマ発生素子1を用いる場合,大気圧下において図5のように長さ方向cのプラズマpを発生させるためには両電極3,4への印加電圧の周波数は66kHzに設定される。一方,大気圧下において図6のように幅方向dのプラズマpを発生させるためには,前記周波数は537kHzに設定される。これら周波数66kHzおよび537kHzの場合における交流電圧は60〜80V,また交流電流は100〜160mAである。
【0023】
前記強誘電体2において,その縦,横の長さが14mm(つまり正方形)であり,また枠状露出面7,8の幅d,dがその全周に亘ってd,d≒2mmである,ということ以外は前記例1と同一であるプラズマ発生素子1の例2を用い,大気圧下にて前記同様のプラズマ発生操作を行ったところ,両電極3,4間の印加電圧の周波数が186kHzのとき両電極3,4の縦および横方向における強誘電体2との境界,つまり両電極3,4の四辺にプラズマpの発生が認められた。この場合,交流電圧は60〜80V,また交流電流は100〜160mAである。
【0024】
前記のように,共振周波数は,強誘電体2の寸法に大きく依存するので,プラズマpを発生させるためには,その強誘電体2の寸法に見合った共振周波数が選定される。
【0025】
以下,プラズマ発生装置16を窒素酸化物であるNOガスの分解に用いた応用例について説明する。このNOガスは,例えば自動車の排気ガス中に含まれる。〔応用例1〕
図7に示すように,前記プラズマ発生素子1の例1を,閉鎖循環反応装置17のチャンバ18内に収容して,その例1を図示しない支持部材により支持し,またNOガスを入口19からチャンバ18内を経て出口20に至るように循環させた。そして,NOガス循環開始から1時間経過後(この条件は後述する他の応用例において同じである)において,プラズマ発生素子1の例1およびNOガスの温度:100℃;NOガス圧(チャンバ18内圧力):5Torr;交流電圧の周波数:66kHz;交流電流:81mA;交流電圧:60Vの条件で,プラズマpを発生させると共に両電極3,4,つまりPdを触媒として使用し,これによりNOの分解状況を調べた。このテスト中において,強誘電体2の温度は132℃に上昇し,その温度で一定となった。
【0026】
表1および図8は前記テスト結果を示す。なお,NOガス量,Nガス量およびOガス量の測定はそれぞれガスクロマトグラフィにより行われた。これは後述する他の応用例において同じである。
【0027】
【表1】

Figure 0003599148
【0028】
表1,図8から明らかなように,生成ガスにおけるNガスとOガスの化学量論比は1対1であり,これにより供給NOガスの略全体が分解されていることが判明した。これは,強誘電体2における共振波の発生によりPdが活性化され,また発生プラズマpがNOガス分解作用を発揮したことに起因する。
〔応用例2〕
両電極3,4の材質および交流電流値を変えた,ということ以外は応用例1と同一条件にてNOガスの分解を行ったところ,表2の結果を得た。
【0029】
【表2】
Figure 0003599148
【0030】
表2より,両電極3,4をCu,Alより構成すると,比較的良好な結果が得られることが判る。Agの場合は活性が低い。
〔応用例3〕
前記プラズマ発生素子1の例2を用い,また交流電圧の周波数を186kHzに,また交流電流を113mAに,NOガスの供給量を305μmolにそれぞれ設定した,ということ以外は応用例1と同一条件にてNOガスの分解を行ったところ,図9の結果を得た。このテスト中において,強誘電体2の温度は最初176℃に上昇したが,次いで146℃に下降し,その後136℃まで下降してその温度で一定となった。
【0031】
図9から明らかなように,この例においても応用例1と同様の結果が得られることが判る。
〔応用例4〕
触媒を用いる窒素酸化物(NOx,主としてNOガス)の分解においては,Oガスが存在すると触媒の活性が消失することが知られている。そこで,OガスによるNOガス分解に対する阻害効果を調べるため,NOガスにOガスを予め混在させた状態でNOガスの分解を行った。
【0032】
テスト条件は,プラズマ発生素子1の例2の温度:100℃;NOガス圧:5Torr;Oガス圧:10Torr;交流電圧の周波数:186kHz;交流電流:197mA;交流電圧:60Vに設定された。このテスト中において,強誘電体2の温度は最初191℃に上昇したが,次いで165℃に下降してその温度で一定となった。
【0033】
図10はテスト結果を示す。図10においてNOガス量が現出しないのは,NOガスはOガスの存在下で容易にNOガスに酸化され,そのNOガスの検出はガスクロマトグラフィでは困難であるからである。
【0034】
図10において,プラズマp発生後Nガス量およびOガス量が急激に上昇することから,NOガスの分解が略完全に行われていることが明らかである。
【0035】
【発明の効果】
請求項1記載の発明によれば,簡単な手段により容易にプラズマを発生させることが可能なプラズマ発生方法を提供することができる。
【0036】
また請求項2記載の発明によれば,簡単な構造を備えたプラズマ発生装置を提供することができる。
【0037】
さらに請求項3,4記載の発明によれば,プラズマ発生方法の実施に用いられ,またプラズマ発生装置の構成部品である構造簡単なプラズマ発生素子を提供することができる。
【図面の簡単な説明】
【図1】プラズマ発生素子の斜視図である。
【図2】プラズマ発生素子の側面図である。
【図3】厚さ方向と分極軸との関係を示す説明図である。
【図4】プラズマ発生装置の概略図である。
【図5】プラズマ発生状態の一例を示す説明図である。
【図6】プラズマ発生状態の他例を示す説明図である。
【図7】閉鎖循環反応装置とプラズマ発生装置を組合わせた場合の概略図である。
【図8】経過時間とNOガス量,Nガス量およびOガス量との関係の一例を示すグラフである。
【図9】経過時間とNOガス量,Nガス量およびOガス量との関係の他例を示すグラフである。
【図10】経過時間とNOガス量,Nガス量およびOガス量との関係のさらに他例を示すグラフである。
【符号の説明】
1 プラズマ発生素子
2 強誘電体
3,4 電極
5,6 平面(表面)
12 電源
a 分極軸
b 厚さ方向(通電方向)
c 長さ方向
d 幅方向
p プラズマ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a plasma generation method, a plasma generation device, and a plasma generation element.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, it is known to use plasma in exhaust gas processing (see, for example, Japanese Patent Application Laid-Open Nos. 5-237337 and 6-178914).
[0003]
[Problems to be solved by the invention]
However, the conventional method requires a relatively complicated plasma generator, and improvement in this respect has been desired.
[0004]
[Means for Solving the Problems]
SUMMARY OF THE INVENTION It is an object of the present invention to provide a plasma generation method capable of easily generating plasma by simple means.
[0005]
According to the present invention, there is provided a ferroelectric material subjected to monopolarization treatment and a pair of electrodes closely contacted with the surface of the ferroelectric material, wherein the ferroelectric material has A plasma generating element having a polarization axis intersecting with the electrode, and applying an AC voltage between the two electrodes to generate a resonance wave in the ferroelectric material in a direction intersecting the direction of current flow, thereby forming the two electrodes. A plasma generation method for generating plasma at a boundary with a ferroelectric is provided.
[0006]
According to the above method, plasma can be easily generated by performing a simple operation using a plasma generating element having a simple structure. The plasma obtained in this manner is used for processing exhaust gas, synthesizing ozone used for sterilization and disinfection, synthesizing various organic and inorganic compounds, and emitting light.
[0007]
Another object of the present invention is to provide the plasma generator having a simple structure.
[0008]
According to the present invention, there is provided a ferroelectric material subjected to monopolarization treatment and a pair of electrodes closely contacted with the surface of the ferroelectric material, wherein the ferroelectric material has A plasma generating element having a polarization axis intersecting with the electrode, and a power supply for applying an AC voltage between the two electrodes so as to generate a resonance wave in the ferroelectric in a direction intersecting the direction of current flow. An apparatus is provided.
[0009]
By using this apparatus, the above-described plasma generation method can be easily performed. In addition, since the plasma generating element can be configured in a small and handy plasma torch type, for example, an arbitrary location in an arbitrary location is etched, or an exhaust gas is treated or disinfected by ozone synthesis. It is convenient in cases.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
In FIGS. 1 and 2, the plasma generating element 1 has a ferroelectric substance 2 that has been subjected to a monopolarization treatment (poled), and a pair of electrodes 3 and 4 that are brought into close contact with the surface of the ferroelectric substance 2. . In the illustrated example, the ferroelectric substance 2 has a rectangular plate shape, and the electrodes 3 and 4 are exposed on both planes (surfaces) 5 and 6 of the plate-shaped ferroelectric substance 2 and a part of the planes 5 and 6 are exposed. Are in close contact with each other. In this case, the frame-shaped exposed surfaces 7 and 8 are formed so as to cover the entire peripheral edges of the two planes 5 and 6. The frame-shaped exposed surfaces 7 and 8 are necessary for plasma generation, and also have an action of avoiding a short circuit between the electrodes 3 and 4.
[0011]
The polarization axis a of the ferroelectric 2 intersects with the direction of conduction, in the illustrated example, the thickness direction b of the ferroelectric 2. In this case, as shown in FIG. 3, the intersection angle θ between the polarization axis a and the thickness direction b is θ <90 ° or θ = 90 °.
[0012]
As a constituent material of the ferroelectric 2, a crystal having a large spontaneous polarization, a high Curie temperature, and a large electromechanical coupling constant is desirable. Such constituent materials include (a) lithium niobate type compounds, such as lithium niobate (LiNbO 3 ) and lithium tantalate (LiTaO 3 ); and (b) perovskite type compounds, such as barium titanate (BaTiO 3 ). , Lead titanium zirconate [Pb (Ti, Zr) O 3 ] and its substitutes with lead and alkaline earth metals, lead zinc niobate [Pb (Zn, Nb) O 3 ], etc .; (c) tungsten bronze type Compounds (eg, sodium barium niobate (NaBa 2 Nb 5 O 15 ), potassium lithium niobate (K 3 Li 2 Nb 5 O 15 ), etc.) are used, and are used as single crystals, sintered bodies, and the like.
[0013]
In the case of a single crystal, the direction of the polarization axis a can be set so that the intersection angle θ is θ <90 ° or θ = 90 ° depending on the cutting method of the ferroelectric substance 2. In this case, the direction of the polarization axis a is determined by monopolarization after sintering, so that the direction is limited to the direction in which the intersection angle θ = 90 °.
[0014]
As a constituent material of each of the electrodes 3 and 4, a metal having high electric conductivity, such as Al or Cu, is used. When the plasma generating element is used for synthesizing an organic compound or the like, at least one of the electrodes 3 and 4 is made of a metal having a catalytic action, for example, Pt, Pd or the like. In the treatment of nitrogen oxides (NOx) in exhaust gas, good results can be obtained by using Pd, which is a catalyst for decomposing nitrogen oxides, as a constituent material for electrodes. The appropriate thickness of each of the electrodes 3 and 4 is 50 to 1000 nm. As a means for bringing the electrodes 3 and 4 into close contact with the ferroelectric 2, a vapor deposition method such as a vacuum evaporation method, a sputtering method, or screen printing is applied.
[0015]
As shown in FIG. 4, lead wires 9 and 10 are attached to both electrodes 3 and 4 via a conductive adhesive 11 such as silver paste. One lead wire 9 is connected to a power supply 12 and the other lead wire 10 is grounded 13. The power supply 12 includes a signal generator (function generator) 14 that can generate a low-frequency AC voltage (sine wave) and an amplifier 15 that amplifies the low-frequency AC voltage. The plasma generating element 1 and the power supply 12 constitute a plasma generator 16.
[0016]
In order to generate plasma, for example, an AC voltage having a low frequency is generated from the signal generator 14 under the atmospheric pressure, and the AC voltage is amplified by the amplifier 15 and both electrodes 3 and 4 of the plasma generating element 1 are kept at room temperature. Apply between. Then, as shown in FIG. 5, when the applied AC voltage is gradually increased at the applied AC voltage having the resonance frequency in the length direction c in the ferroelectric material 2, the A resonance wave is generated in a direction intersecting the thickness direction b (see also FIGS. 1 and 2), whereby the length direction c of the two electrodes 3 and 4 (for convenience, the same sign as the length direction of the ferroelectric 2 is used). Used), the plasma p is generated so as to face the boundary with the ferroelectric 2.
[0017]
On the other hand, as shown in FIG. 6, when the applied voltage is gradually increased at the applied voltage of the resonance frequency in the width direction d in the ferroelectric material 2, the thickness of the ferroelectric material 2 in the width direction d is increased. In the width direction d of the electrodes 3 and 4 (for convenience, the same sign as the width direction of the ferroelectric 2 is used), a resonance wave is generated in a direction intersecting with the ferroelectric 2. The plasma p is generated so as to face the boundary.
[0018]
As described above, according to the plasma generator 16, plasma can be generated under the atmospheric pressure. However, it is better to reduce the pressure in order to increase the plasma generation efficiency.
〔Example〕
The following Example 1 of the plasma generating element 1 was manufactured, and this was incorporated in the plasma generator 16.
[0019]
In Figure 1, 5, ferroelectric 2: width d 1 is 14 mm, length c 1 is 44 mm, a thickness b 1 is 0.5 mm, and the polarization axis a is the thickness direction b and crossed 128 ° rotated Y Cut LiNbO 3 single crystal plate (intersecting angle θ <90 °); both electrodes 3, 4: vacuum-deposited film made of Pd having a width d 2 of 10 mm and a length c 2 of 40 mm, a thickness of 100 nm; 7,8: ferroelectric width d 3 is 2mm in the second longitudinal direction c, the width d 4 is 2mm in the width direction d.
When an AC voltage having a frequency of 66 kHz is applied between the electrodes 3 and 4 under the atmospheric pressure, a resonance wave in a direction intersecting the thickness direction b in the length direction c is applied to the ferroelectric substance 2 at room temperature. As a result, a plasma p as shown in FIG. 5 was generated. Further, when an AC voltage having a frequency of 180 kHz is applied between the electrodes 3 and 4 under the atmospheric pressure, a resonance wave in a direction crossing the thickness direction b in the width direction d is applied to the ferroelectric substance 2 at room temperature. As a result, a plasma p as shown in FIG. 6 was generated. The AC voltage at these frequencies of 66 kHz and 180 kHz is 60 to 80 V, and the AC current is 150 to 250 mA.
[0020]
Example 1 of the plasma generating element 1 was placed in a chamber, and He, CO, O 2 , H 2 , NO, C 2 H 5 OH, etc. as gases were introduced into the chamber, and the same operation as above was performed. In each gas, generation of plasma p was observed in the same manner as described above. This was the same for the mixed gas of two or more of the above gases.
[0021]
When the pressure of each gas (including the atmosphere) was set to a reduced pressure and the same plasma p was generated as described above, the generation of the plasma p was observed at a gas pressure of 1 Torr or more. Thus, it was confirmed that the plasma p was generated at a gas pressure of 1 to 760 (1 atm) Torr, and that the generation efficiency of the plasma p was higher in a reduced pressure state than in an atmospheric pressure.
[0022]
In Figure 1, 5, the width d 1 of the ferroelectric 2 is 5 mm, the width d 2 of the two electrodes 3, 4 is 3 mm, the plasma generation device 1 is the same as the example 1 except that When used, the frequency of the voltage applied to both electrodes 3 and 4 is set to 66 kHz in order to generate plasma p in the length direction c as shown in FIG. 5 under atmospheric pressure. On the other hand, in order to generate the plasma p in the width direction d under the atmospheric pressure as shown in FIG. 6, the frequency is set to 537 kHz. The AC voltage at these frequencies of 66 kHz and 537 kHz is 60 to 80 V, and the AC current is 100 to 160 mA.
[0023]
In the ferroelectric 2, the vertical, horizontal length is 14 mm (i.e. squares), and the width d 3 of the frame-shaped exposed surface 7, 8, d 4 is d 3 over the entire circumference thereof, d 4 The same plasma generating operation as described above was performed under atmospheric pressure using Example 2 of the plasma generating element 1 which was the same as Example 1 except that the thickness was ≒ 2 mm. When the frequency of the voltage was 186 kHz, generation of plasma p was observed at the boundaries between the electrodes 3 and 4 in the vertical and horizontal directions with the ferroelectric substance 2, that is, at the four sides of the electrodes 3 and 4. In this case, the AC voltage is 60 to 80 V, and the AC current is 100 to 160 mA.
[0024]
As described above, the resonance frequency greatly depends on the size of the ferroelectric 2, so that the resonance frequency that matches the size of the ferroelectric 2 is selected in order to generate the plasma p.
[0025]
Hereinafter, an application example in which the plasma generator 16 is used to decompose NO gas, which is nitrogen oxide, will be described. This NO gas is contained, for example, in the exhaust gas of an automobile. [Application Example 1]
As shown in FIG. 7, the first example of the plasma generating element 1 is housed in a chamber 18 of a closed circulation reactor 17, the first example is supported by a support member (not shown), and NO gas is introduced from an inlet 19. Circulation was performed through the chamber 18 to reach the outlet 20. One hour after the start of circulation of the NO gas (this condition is the same in other application examples described later), the temperature of the NO gas and the NO. Under the conditions of 5 Torr; AC voltage frequency: 66 kHz; AC current: 81 mA; AC voltage: 60 V, plasma p is generated and both electrodes 3, 4, that is, Pd are used as a catalyst, whereby NO is reduced. The decomposition situation was examined. During this test, the temperature of the ferroelectric 2 rose to 132 ° C. and became constant at that temperature.
[0026]
Table 1 and FIG. 8 show the test results. The NO gas amount, N 2 gas amount and O 2 gas amount were measured by gas chromatography. This is the same in other application examples described later.
[0027]
[Table 1]
Figure 0003599148
[0028]
As is clear from Table 1 and FIG. 8, the stoichiometric ratio of the N 2 gas and the O 2 gas in the product gas was 1: 1, and it was found that almost the entire supplied NO gas was decomposed. . This is because Pd is activated by the generation of a resonance wave in the ferroelectric 2, and the generated plasma p exerts an NO gas decomposition action.
[Application Example 2]
When NO gas was decomposed under the same conditions as in Application Example 1 except that the materials and AC current values of both electrodes 3 and 4 were changed, the results shown in Table 2 were obtained.
[0029]
[Table 2]
Figure 0003599148
[0030]
From Table 2, it is understood that when the electrodes 3 and 4 are made of Cu and Al, relatively good results can be obtained. Ag has low activity.
[Application Example 3]
The same conditions as in Application Example 1 were used except that Example 2 of the plasma generating element 1 was used, the frequency of the AC voltage was set to 186 kHz, the AC current was set to 113 mA, and the supply amount of NO gas was set to 305 μmol. When the NO gas was decomposed in this way, the results shown in FIG. 9 were obtained. During this test, the temperature of the ferroelectric 2 first increased to 176 ° C., then decreased to 146 ° C., and then decreased to 136 ° C. and became constant at that temperature.
[0031]
As is clear from FIG. 9, it is understood that the same result as in the first application example can be obtained in this example.
[Application Example 4]
In the decomposition of nitrogen oxides (NOx, mainly NO gas) using a catalyst, it is known that the activity of the catalyst is lost when O 2 gas is present. In order to investigate the inhibitory effect on the NO gas decomposition by O 2 gas were degradation NO gas in a state of pre-mix O 2 gas to NO gas.
[0032]
The test conditions were set as follows: the temperature of Example 2 of the plasma generating element 1: 100 ° C .; NO gas pressure: 5 Torr; O 2 gas pressure: 10 Torr; AC voltage frequency: 186 kHz; AC current: 197 mA; . During this test, the temperature of the ferroelectric 2 first increased to 191 ° C., then decreased to 165 ° C., and became constant at that temperature.
[0033]
FIG. 10 shows the test results. The NO gas amount does not appear in FIG. 10 because NO gas is easily oxidized to NO 2 gas in the presence of O 2 gas, and the detection of the NO 2 gas is difficult by gas chromatography.
[0034]
In FIG. 10, since the N 2 gas amount and the O 2 gas amount sharply increase after the generation of the plasma p, it is clear that the decomposition of the NO 2 gas has been performed almost completely.
[0035]
【The invention's effect】
According to the first aspect of the present invention, it is possible to provide a plasma generation method capable of easily generating plasma by simple means.
[0036]
According to the second aspect of the present invention, a plasma generator having a simple structure can be provided.
[0037]
Further, according to the third and fourth aspects of the present invention, it is possible to provide a plasma generating element having a simple structure which is used for performing a plasma generating method and is a component of a plasma generating apparatus.
[Brief description of the drawings]
FIG. 1 is a perspective view of a plasma generating element.
FIG. 2 is a side view of the plasma generating element.
FIG. 3 is an explanatory diagram showing a relationship between a thickness direction and a polarization axis.
FIG. 4 is a schematic diagram of a plasma generator.
FIG. 5 is an explanatory diagram showing an example of a plasma generation state.
FIG. 6 is an explanatory diagram showing another example of a plasma generation state.
FIG. 7 is a schematic diagram when a closed circulation reactor and a plasma generator are combined.
FIG. 8 is a graph showing an example of the relationship between the elapsed time and the amounts of NO gas, N 2 gas, and O 2 gas.
FIG. 9 is a graph showing another example of the relationship between the elapsed time and the amounts of NO gas, N 2 gas, and O 2 gas.
FIG. 10 is a graph showing still another example of the relationship between the elapsed time and the NO gas amount, the N 2 gas amount, and the O 2 gas amount.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Plasma generation element 2 Ferroelectric 3, 4 Electrode 5, 6 Plane (surface)
12 Power supply a Polarization axis b Thickness direction (direction of conduction)
c Length direction d Width direction p Plasma

Claims (4)

単分極処理した強誘電体(2)およびその強誘電体(2)の表面(5,6)に相対向するように密着させた一対の電極(3,4)を有し,且つ前記強誘電体(2)は通電方向(b)と交差する分極軸(a)を持つプラズマ発生素子(1)を用い,前記両電極(3,4)間に交流電圧を印加して前記強誘電体(2)に,通電方向(b)と交差する方向(c,d)の共振波を生起させることにより,前記両電極(3,4)の前記強誘電体(2)との境界にプラズマ(p)を発生させることを特徴とするプラズマ発生方法。A ferroelectric substance (2) subjected to monopolarization treatment, and a pair of electrodes (3, 4) closely contacted with the surface (5, 6) of the ferroelectric substance (2) so as to face each other; The body (2) uses a plasma generating element (1) having a polarization axis (a) that intersects the direction of current (b), and applies an AC voltage between the two electrodes (3, 4) to apply the ferroelectric ( 2) By generating a resonance wave in the direction (c, d) intersecting with the direction of conduction (b), a plasma (p) is formed at the boundary between the two electrodes (3, 4) with the ferroelectric (2). A) generating a plasma. 単分極処理した強誘電体(2)およびその強誘電体(2)の表面(5,6)に相対向するように密着させた一対の電極(3,4)を有し,且つ前記強誘電体(2)は通電方向(b)と交差する分極軸(a)を持つプラズマ発生素子(1)と,前記強誘電体(2)に,通電方向(b)と交差する方向(c,d)の共振波を生起させるべく,前記両電極(3,4)間に交流電圧を印加する電源(12)とより構成されることを特徴とするプラズマ発生装置。A ferroelectric substance (2) subjected to monopolarization treatment, and a pair of electrodes (3, 4) closely contacted with the surface (5, 6) of the ferroelectric substance (2) so as to face each other; The body (2) includes a plasma generating element (1) having a polarization axis (a) intersecting with the energizing direction (b) and the ferroelectric body (2) in directions (c, d) intersecting with the energizing direction (b). A) a power source (12) for applying an AC voltage between the two electrodes (3, 4) to generate the resonance wave of (2). 単分極処理した強誘電体(2)と,その強誘電体(2)の表面(5,6)に相対向するように密着させた一対の電極(3,4)とを有し,前記強誘電体(2)は通電方向(b)と交差する分極軸(a)を持つことを特徴とするプラズマ発生素子。A ferroelectric substance (2) that has been subjected to a monopolarization treatment, and a pair of electrodes (3, 4) that are in close contact with the surface (5, 6) of the ferroelectric substance (2) so as to face each other; A plasma generating element, wherein the dielectric (2) has a polarization axis (a) intersecting the direction of current (b). 前記強誘電体(2)は板状をなし,前記両電極(3,4)は前記板状強誘電体(2)の両平面(5,6)に,それら平面(5,6)の一部を露出させてそれぞれ密着している,請求項3記載のプラズマ発生素子。The ferroelectric (2) has a plate-like shape, and the electrodes (3, 4) are arranged on both planes (5, 6) of the plate-like ferroelectric (2). 4. The plasma generating element according to claim 3, wherein the portions are exposed and are in close contact with each other.
JP21761896A 1996-08-19 1996-08-19 Plasma generating method, plasma generating apparatus and plasma generating element Expired - Lifetime JP3599148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21761896A JP3599148B2 (en) 1996-08-19 1996-08-19 Plasma generating method, plasma generating apparatus and plasma generating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21761896A JP3599148B2 (en) 1996-08-19 1996-08-19 Plasma generating method, plasma generating apparatus and plasma generating element

Publications (2)

Publication Number Publication Date
JPH1064698A JPH1064698A (en) 1998-03-06
JP3599148B2 true JP3599148B2 (en) 2004-12-08

Family

ID=16707122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21761896A Expired - Lifetime JP3599148B2 (en) 1996-08-19 1996-08-19 Plasma generating method, plasma generating apparatus and plasma generating element

Country Status (1)

Country Link
JP (1) JP3599148B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10027247C2 (en) * 2000-05-31 2003-09-25 Iut Inst Fuer Umwelttechnologi Plasma generator with dielectric barrier discharge
JP4494955B2 (en) * 2003-12-19 2010-06-30 日本碍子株式会社 Plasma generating electrode and plasma reactor
JP2007220488A (en) * 2006-02-16 2007-08-30 Tokyo Gas Co Ltd Plasma discharge device and exhaust gas treatment device
JP2008183025A (en) * 2007-01-26 2008-08-14 National Univ Corp Shizuoka Univ Method and device for sterilizing package
FR2918293B1 (en) * 2007-07-06 2009-09-25 Ecole Polytechnique Etablissem GAS TREATMENT BY SURFACE PLASMA
JP5942107B2 (en) * 2012-03-09 2016-06-29 旭化成株式会社 Method for producing carbon monoxide from carbon dioxide

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6092834A (en) * 1983-10-26 1985-05-24 Sankyo Dengiyou Kk Activating device
JPS60160661U (en) * 1984-04-02 1985-10-25 増田 閃一 electric field device
JPS61122105A (en) * 1984-11-19 1986-06-10 Inoue Japax Res Inc Ozone generator
JP2550625B2 (en) * 1987-12-08 1996-11-06 旭硝子株式会社 Ozone generator
JPH0251401A (en) * 1988-08-13 1990-02-21 Fuji Electric Co Ltd Mesh electrode ozonizer and its production
JPH02181384A (en) * 1989-01-05 1990-07-16 Noritake Co Ltd Ceramics ozonizer
JP3086956B2 (en) * 1990-08-29 2000-09-11 増田 佳子 Method and apparatus for gas phase synthesis of fine particles by creeping plasma CVD
JP2524942B2 (en) * 1992-07-27 1996-08-14 新日本製鐵株式会社 Plasma surface treatment equipment
JPH0822804A (en) * 1994-07-07 1996-01-23 Toshiba Lighting & Technol Corp Low-pressure discharge lamp and its lighting device

Also Published As

Publication number Publication date
JPH1064698A (en) 1998-03-06

Similar Documents

Publication Publication Date Title
KR100625425B1 (en) Discharge device and air purifier
EP1719735B1 (en) Ozone generator and ozone generating method
JP3599148B2 (en) Plasma generating method, plasma generating apparatus and plasma generating element
Xu et al. Adsorption and reaction of CH3COOH and CD3COOD on the MgO (100) surface: A Fourier transform infrared and temperature programmed desorption study
JP4543603B2 (en) Plasma gas purifier and streamer discharge circuit
KR101778120B1 (en) Plasma Discharge Source For Charging Particles
JP3580294B2 (en) Creeping discharge electrode, gas processing apparatus and gas processing method using the same
JP2019510722A (en) Method for producing ozone and apparatus for ozone generation
JP2002346334A (en) Gas cleaning apparatus by plasma
JP3337473B2 (en) Method and apparatus for generating negatively charged oxygen atoms
JP2004113704A (en) Deodorizing element
JPH0533816B2 (en)
Arai et al. Growth of KNbO3 films by electron-cyclotron-resonance-assisted pulsed laser deposition
JP2004164900A (en) Ion generating element, and ion generating device equipped with the same
KR100378345B1 (en) Dry etching method of platinum thin film
JP3418880B2 (en) Ozone generator
JP2000117247A (en) Water purification/sterilization device
Stekke et al. Preliminary evaluation of decontamination with a 10-voltsupplied plasma jet: made possible by piezoelectric generator
JPH11197221A (en) Speaker
KR101304326B1 (en) Vapor deposition apparatus for minute-structure and method therefor
JP2001187123A (en) Photocatalytic apparatus and photocatalytic cleaning method
JPH06204774A (en) Dust cleaner for piezoelectric resonator
JPS63260802A (en) Ozone-generation ceramic tube or plate having built-in heater
Zeng et al. Structural and electrical characteristics of oriented Pb (Zr0. 52Ti0. 48) O3 ferroelectric thin films deposited on diamond substrates by a simple sol–gel process
Rittenmyer et al. Analysis of electrically excited strain in relaxor ferroelectric ceramics

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040908

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070924

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140924

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term