JP3598828B2 - Method for manufacturing oxide semiconductor electrode - Google Patents

Method for manufacturing oxide semiconductor electrode Download PDF

Info

Publication number
JP3598828B2
JP3598828B2 JP18922498A JP18922498A JP3598828B2 JP 3598828 B2 JP3598828 B2 JP 3598828B2 JP 18922498 A JP18922498 A JP 18922498A JP 18922498 A JP18922498 A JP 18922498A JP 3598828 B2 JP3598828 B2 JP 3598828B2
Authority
JP
Japan
Prior art keywords
oxide semiconductor
electrode
electrode substrate
dye
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18922498A
Other languages
Japanese (ja)
Other versions
JP2000021461A (en
Inventor
和夫 樋口
博昭 若山
伸二 稲垣
喜章 福嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP18922498A priority Critical patent/JP3598828B2/en
Priority to US09/297,051 priority patent/US6194650B1/en
Priority to PCT/JP1998/003822 priority patent/WO1999010167A1/en
Priority to EP98940586A priority patent/EP0934819A4/en
Publication of JP2000021461A publication Critical patent/JP2000021461A/en
Application granted granted Critical
Publication of JP3598828B2 publication Critical patent/JP3598828B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Description

【0001】
【技術分野】
本発明は,酸化物半導体電極,より具体的には,色素増感型の太陽電池等に用いる酸化物半導体電極の製造方法に関する。
【0002】
【従来技術】
従来より,後述する図1に示すごとく,色素増感型太陽電池1が知られている。色素増感型太陽電池1は,透明電極5と,受光面20が透明電極5に当接するように配設した酸化物半導体電極2と,これに対向する対向電極3とを有していると共に,スペーサ81により電極間に設けた間隙に電解液4を満たして構成してある。
【0003】
この従来の色素増感型太陽電池1は,上記透明電極5を透過して酸化物半導体電極2に照射される光99によって,酸化物半導体電極2内において電子を発生させる。そして,酸化物半導体電極2内の電子は,透明電極5に集められ,この透明電極5から取出される。
【0004】
上記酸化物半導体電極2は,後述する図2に示すごとく,TiO等の酸化物半導体微粒子を部分的に焼結して構成した多孔質の電極基体21と,その表面に形成した修飾層22と,さらにその上に配置したルテニウム錯体等の色素23よりなる。
上記修飾層22は,太陽電池のエネルギー変換効率向上を目的として設けられたものであり,TiO等の酸化物により構成される。この修飾層22の形成は,電極基体21上に四塩化チタン等の水溶液を塗布し,その後熱処理することにより行う。
【0005】
【解決しようとする課題】
しかしながら,上記従来の酸化物半導体電極2においては,次の問題がある。
即ち,従来の酸化物半導体電極2における上記修飾層22は,電極基体21上に均一に形成することが困難である。即ち,上記四塩化チタン等の水溶液を電極基体21上に塗布した場合に,水溶液の拡散性や粘度の影響によって,その水溶液が電極基体21の細孔等を閉塞し奥深い内部にまで浸入しない。そのため,熱処理後に得られる修飾層22も電極基体21の細孔等の内部には形成されず,不均一な状態となってしまう。それ故,修飾層22によるエネルギー変換効率向上効果は十分ではなかった。
【0006】
本発明は,かかる従来の問題点に鑑みてなされたもので,電極基体の細孔等の内部まで修飾層を形成することができ,エネルギー変換効率に優れた,酸化物半導体電極を提供しようとするものである。
【0007】
【課題の解決手段】
請求項1に記載の発明は,多孔質の酸化物半導体よりなる電極基体の表面に,修飾層の前駆体を溶解した超臨界流体を接触させ,次いで,上記前駆体を酸化物として析出させて上記電極基体表面の少なくとも一部に修飾層を形成することを特徴とする酸化物半導体電極の製造方法にある。
【0008】
また,請求項2に記載の発明は,多孔質の酸化物半導体よりなる電極基体の表面に,修飾層の前駆体を溶解した超臨界流体を接触させ,次いで,上記前駆体を酸化物として析出させて上記電極基体表面の少なくとも一部に修飾層を形成し,その後該修飾層の上に色素を配置させることにより,電極基体と修飾層と色素とからなる酸化物半導体電極を得ることを特徴とする太陽電池用酸化物半導体電極の製造方法にある。
【0009】
上記発明において最も注目すべきことは,上記修飾層の形成を,上記前駆体を溶解させた超臨界流体を用いて行うことである。
【0010】
上記超臨界流体とは,通常,物質の臨界点以上の温度および圧力下におかれた液体を示す。しかし,本発明における超臨界流体とは,少なくとも臨界点以上の温度を有する流体であり,圧力は上記の定義の範囲である必要はない。この状態の流体は,液体と同等の溶解能力と,気体に近い拡散性,粘性を有する性質がある。そのため,微細孔内まで容易かつ迅速に多量の前駆体を運ぶことができる。上記溶解能力は,温度,圧力,エントレーナー(添加物)等により調整できる。
【0011】
上記超臨界流体としては,例えば,メタン,エタン,プロパン,ブタン,エチレン,プロピレン等の炭化水素,メタノール,エタノール,プロパノール,iso−プロパノール,ブタノール,iso−ブタノール,sec−ブタノール,tert−ブタノール等のアルコール,アセトン,メチルエチルケトン等のケトン類,二酸化炭素,水,アンモニア,塩素,クロロホルム,フレオン類等を用いることができる。
【0012】
また,上記前駆体の超臨界流体への溶解度を調整するために,メタノール,エタノール,プロパノール等のアルコール,アセトン,エチルメチルケトン等のケトン類,ベンゼン,トルエン,キシレン等の芳香族炭化水素等をエントレーナとして用いることができる。
【0013】
上記前駆体としては,金属または/および半金属のアルコキシド,金属または/および半金属のアセチルアセテート,金属または/および半金属の有機酸塩,金属または/および半金属の硝酸塩,金属または/および半金属のオキシ塩化物,金属または/および半金属の塩化物等の単独又は2種以上よりなる混合物を用いることができる。
【0014】
具体的には,例えばTiOの前駆体として,チタンn−ブトキシド(Titanium n−butoxide:Ti[O(CHCH),チタンイソプロポキシド(Titanium isopropoxide:Ti[OCH(CH),チタンエトキシド(Titanium ethoxide:Ti(OC)等を用いることができる。
【0015】
また,上記電極基体としては,例えば酸化物半導体の微粒子を部分的に焼結させるなどして多孔質状にしたものを適用することができる。
具体的な材質としては,酸化チタン(TiO),酸化スズ(SnO),酸化亜鉛(ZnO),酸化ニオブ(Nb),酸化インジウム(In),酸化ジルコニウム(ZrO),酸化ランタン(La),酸化タンタル(Ta),チタン酸ストロンチウム(SrTiO),チタン酸バリウム(BaTiO)等を用いることができる。
【0016】
上記修飾層とは,酸化物半導体電極の機能を向上させるために酸化物半導体電極(第1の酸化物半導体)よりなる電極基体の表面に第2の酸化物半導体として設けるものである。
この修飾層には,例えば,酸化チタン(TiO),酸化スズ(SnO),酸化亜鉛(ZnO),酸化ニオブ(Nb),酸化インジウム(In),酸化ジルコニウム(ZrO),酸化ランタン(La),酸化タンタル(Ta),チタン酸ストロンチウム(SrTiO),チタン酸バリウム(BaTiO)等を適用することができ,上記電極基体と同一ないしは異なる組み合わせをとることができる。
【0017】
上記修飾層は,比表面積が大きいため,後述するごとく色素を配置する場合には,その色素の付着量を向上できる。また,電極基体に比べて不純物が少ないため,色素から電極基体あるいは電極内での電子が移動しやすい。また,電極基体の粒子間の接触面積を増大させるため,電子が移動しやすい。
【0018】
また,上記太陽電池用酸化物半導体電極の場合(請求項2)には,上記のごとく,修飾層の表面に色素を配置する。
上記色素としては,例えば,ルテニウム錯体,特にルテニウムビピリジン錯体,フタロシアニン,シアニン,メロシアニン,ポルフィリン,クロロフィル,ピレン,メチレンブルー,チオニン,キサンテン,クマリン,ローダミン等の金属錯体ないしは有機色素ならびにそれらの誘導体を用いることができる。
【0019】
また,上記前駆体の酸化物としての析出は,例えば,上記電極基体へ超臨界流体を接触させた後に,超臨界流体を除去して乾燥し,必要ならば熱処理等することにより行うことができる。
【0020】
また,上記修飾層上への色素の配置は,例えば次のように行うことができる。
例えばルテニウム錯体等の色素をエタノール等のアルコールやアセトニトリル等の有機溶媒に溶解した溶液に,上記酸化物半導体を浸漬させることにより該色素を吸着させることができる。この際に色素の吸着性能を調整するために溶液を加熱することもできる。
【0021】
次に,上記発明の作用効果につき説明する。
本発明においては,上記前駆体を溶解させた超臨界流体を上記電極基体に接触させる。このとき,超臨界流体は,上記のごとく非常に優れた拡散性および粘性を有しているので,多孔質の電極基体における微細孔の内部まで十分に浸入する。また,超臨界流体は,上記のごとく溶解能力にも優れているので,多量の前駆体を溶解した状態で上記微細孔の内部まで浸入する。
【0022】
そのため,上記超臨界流体中の前駆体を酸化物として析出させた際には,その酸化物が上記微細孔内も含めて均一に析出する。それ故,電極基体の表面には,非常に均一な状態で修飾層を形成することができる。
【0023】
そして,さらに太陽電池用酸化物半導体電極(請求項2)の場合には,このような均一な修飾層の上に更に色素を配置することによって,非常に優れた太陽電池用酸化物半導体電極を得ることができる。
即ち,均一な修飾層の存在によって,上記色素の吸着量を増大させると共に電極全体の電気抵抗値を低減することができる。そのため,電流値の増大,リーク電流の低下等による電圧増大という効果が得られ,高レート特性や,エネルギー変換効率を従来よりも大幅に向上させることができる。
また,修飾層に導電性の高い酸化物や開放電圧を高くできる酸化物等を適用することにより,太陽電池の特性を向上させることもできる。
【0024】
また,上記酸化物半導体電極(請求項1)は,上記太陽電池用酸化物半導体電極(請求項2)の他に,通常の電池,エレクトロクロミック素子や水の光分解用の電極等としても利用することができる。
【0025】
このように,本発明によれば,電極基体の表面の少なくとも一部において,電極基体の細孔等の内部に修飾層を形成することができ,エネルギー変換効率に優れた,酸化物半導体電極の製造方法を提供することができる。
【0026】
【発明の実施の形態】
実施形態例
本発明の実施形態例にかかる太陽電池用酸化物半導体電極の製造方法につき,図1〜図6を用いて説明する。
本例においては,本発明に係る2種類の製造方法(実施例E1,実施例E2)と,比較のための従来の2種類の製造方法(比較例C1,C2)により,それぞれ太陽電池用の酸化物半導体電極を製造した。そして,得られた酸化物半導体電極を用いて色素増感型の太陽電池を構成し,その特性を比較した。
以下,各実施例E1,E2および比較例C1,C2につき詳説する。
【0027】
(実施例E1)
本例は,図2に示すごとく,多孔質の酸化物半導体よりなる電極基体21の表面に,前駆体を溶解した超臨界流体を接触させ,次いで,上記前駆体を酸化物として析出させて上記電極基体表面に修飾層22を形成し,その後,修飾層22の上に色素23を配置させることにより,電極基体21と修飾層22と色素23とからなる,太陽電池用の酸化物半導体電極2を製造した。
【0028】
上記電極基体21を作製するに当たっては,まず,TiO粒子(日本アエロジル製P25)を準備し,これをイオン交換水:アセチルアセトン:界面活性剤(ポリエチレングリコールモノ−4−オクチルフェニルエーテル)=100:2:1(体積比)の溶媒に37.5重量%混ぜてTiO含有溶液を作製した。
【0029】
次いで,透明電極5としてのフッ素ドープSnOコートガラス(旭硝子製)を準備し,その表面の10mm×10mmの面積に上記TiO含有溶液を塗布した。次いで,室温で10時間乾燥した後,温度450℃の空気気流下において30分間熱処理を施した。これにより,フッ素ドープSnOコートガラス上に,多孔質の酸化物半導体よりなる電極基体21(TiO)が形成された。
【0030】
次に,電極基体21の存在下において,前駆体としてのチタンイソプロポキシド{Ti(iso−PrO)}を3.5mol/l溶解させたイソプロパノール溶液を超臨界二酸化炭素(150℃,374atm)に溶解させた。この状態で3時間保持した。
【0031】
これにより,上記前駆体を含有した超臨界二酸化炭素は,多孔質の電極基体21の表面に非常に均一に付着した。
その後,超臨界二酸化炭素を減圧・除去した。次いで,室温で10時間乾燥後,温度450℃の空気気流下において30分間熱処理を施した。これにより,電極基体21上には,TiOよりなる修飾層22が均一に形成された。
【0032】
次に,上記TiOよりなる修飾層22上に次のように色素23を配置した。
まず,マグネシウムエトキシドで脱水した無水エタノールに,ルテニウム錯体(cis−Di(thiocyanato)−N,N’−bis(2,2’−bipyridyl−4,4’dicarboxylic acid)−ruthenium(II))を2.85×10−4mol/lの濃度で溶解させた溶液を調製した。次いで,この溶液に,先述の修飾層22を形成した電極基体21を24時間浸漬し,色素22としてのルテニウム錯体を吸着させた。これにより,太陽電池用の酸化物半導体電極2が得られた。
【0033】
(実施例E2)
実施例E2は,上記実施例E1における,修飾層22形成時の超臨界コート方法における前駆体を変更した例である。
即ち,上記と同様の電極基体21を作製し,その存在下において,チタンn−ブトキシド{Ti(n−BuO)}の溶解したn−ブタノール溶液{2.9mol/l}を超臨界二酸化炭素(150℃,371atm)に溶解させた。この状態で3時間保持した。
【0034】
その後,超臨界二酸化炭素を減圧・除去した後に,室温で10時間乾燥した。次いで,温度450℃の空気気流下において30分間熱処理を施し,電極基体21上に修飾層22を形成した。
その他は,実施例E1と同様にして酸化物半導体電極2を作製した。
【0035】
(比較例C1)
本比較例C1は,実施例E1における,修飾層22の形成方法を超臨界コート方法ではなく,従来の四塩化チタン水溶液を用いた表面処理方法によって行った例である。
即ち,電極基体21は上記と同様に作製した。次いで,修飾層22の形成に当たっては,上記電極基体21の上に濃度0.2mol/lの四塩化チタン水溶液を50μl滴下し,密閉容器中室温で10時間静置して部分的に加水分解させた。その後,未反応の四塩化チタンをイオン交換水で水洗除去した。さらに,温度450℃の空気気流下において30分間熱処理を施して,TiO2よりなる修飾層22を形成した。
その他は,実施例E1と同様にして酸化物半導体電極を作製した。
【0036】
(比較例C2)
本比較例C2は,実施例E1における修飾層22の形成を省略した例である。
即ち,上記と同様に作製した電極基体21の上に,直接,上記と同様にして色素23を配置した。
その他は,実施例E1と同様にして酸化物半導体電極を作製した。
【0037】
次に,上記各製造方法(実施例E1,E2,比較例C1,C2)により作製した酸化物半導体電極を用いて,色素増感型の太陽電池1を構成した。
図1に示すごとく,透明電極5を外方にして酸化物半導体電極2と別途準備した白金を50Å蒸着させたフッ素ドープSnOコートガラスよりなる対向電極3(10mm×20mm)とを対向させる。また,これらの間には,スペーサ81を介在させて間隙を形成する。そして,この間隙に電解液4をしみこませることにより,色素増感型の太陽電池1を得た。
なお,電解液4は,炭酸エチレン21.14gとアセトニトリル4.0mlの混合溶液にヨウ化テトラn−プロピルアンモニウム(Tetra−n−propylammonium Iodide)3.13gとヨウ素0.18gを溶解したものである。
【0038】
次に,本例においては,上記各酸化物半導体電極により構成した色素増感型の太陽電池1の特性を比較した。具体的には,各色素増感型太陽電池1に対して,ソーラーシュミレータ(ワコム電創製WXS−85)を用いて,730W/mの疑似太陽光を照射し,ポテンショスタットで電圧を掃引した際の電圧と電流の関係を測定した。
【0039】
測定結果を図3〜図6に示す。これらの図は,横軸に電圧(V)を,縦軸に電流(mA)をとったものである。また,図3は実施例E1,図4は実施例E2,図5は比較例C1,図6は比較例C2,の結果をそれぞれ示す。
【0040】
また,上記測定結果から,エネルギー変換効率および曲線因子を求めた。エネルギー変換効率は,(最大出力×100)/(入射光エネルギー)により表される。また,曲線因子は,最大出力/(短絡電流×開放電圧)により表される。なお,短絡電流は符号S1,開放電圧は符号S2として図3〜図6に示してある。
また,上記曲線因子は,エネルギー変換効率と同様に,太陽電気の性能を示す指標であってこの値が大きい方が望ましい。
各色素増感型太陽電池のエネルギー変換効率および曲線因子を表1に示す。
【0041】
【表1】

Figure 0003598828
【0042】
図3〜図6,および表1より知られるごとく,修飾層を有しない比較例C2は,最もエネルギー変換効率が低い結果となった。また,実施例E1,E2と比較例C1との比較から,単に修飾層を形成するだけでなく,上記の超臨界コート法による修飾層の形成が,エネルギー変換効率や曲線因子を増大させることができ太陽電池の性能向上に非常に有効であることが分かる。
【0043】
【発明の効果】
上述のごとく,本発明によれば,電極基体の細孔等の内部まで修飾層を形成することができ,エネルギー変換効率に優れた,酸化物半導体電極の製造方法を提供することができる。
【図面の簡単な説明】
【図1】実施形態例における,色素増感型太陽電池の構成を示す説明図。
【図2】実施形態例における,酸化物半導体電極の構造を示す説明図。
【図3】実施形態例における,実施例E1の電圧と電流との関係を示す説明図。
【図4】実施形態例における,実施例E2の電圧と電流との関係を示す説明図。
【図5】実施形態例における,比較例C1の電圧と電流との関係を示す説明図。
【図6】実施形態例における,比較例C2の電圧と電流との関係を示す説明図。
【符号の説明】
1...色素増感型太陽電池,
2...酸化物半導体電極,
21...電極基体,
22...修飾層,
23...色素,
3...対向電極,
4...電解液,
5...透明電極,[0001]
【Technical field】
The present invention relates to a method for manufacturing an oxide semiconductor electrode, more specifically, a method for manufacturing an oxide semiconductor electrode used for a dye-sensitized solar cell or the like.
[0002]
[Prior art]
Conventionally, as shown in FIG. 1 described later, a dye-sensitized solar cell 1 is known. The dye-sensitized solar cell 1 has a transparent electrode 5, an oxide semiconductor electrode 2 disposed such that a light receiving surface 20 is in contact with the transparent electrode 5, and a counter electrode 3 facing the same. The gap between the electrodes is filled with the electrolyte 4 by the spacer 81.
[0003]
In the conventional dye-sensitized solar cell 1, electrons are generated in the oxide semiconductor electrode 2 by the light 99 that passes through the transparent electrode 5 and irradiates the oxide semiconductor electrode 2. Then, electrons in the oxide semiconductor electrode 2 are collected by the transparent electrode 5 and extracted from the transparent electrode 5.
[0004]
As shown in FIG. 2 to be described later, the oxide semiconductor electrode 2 includes a porous electrode base 21 formed by partially sintering oxide semiconductor fine particles such as TiO 2 and a modified layer 22 formed on the surface thereof. And a dye 23 such as a ruthenium complex disposed thereon.
The modification layer 22 is provided for the purpose of improving the energy conversion efficiency of the solar cell, and is made of an oxide such as TiO 2 . The formation of the modification layer 22 is performed by applying an aqueous solution such as titanium tetrachloride on the electrode substrate 21 and then performing a heat treatment.
[0005]
[Problem to be solved]
However, the conventional oxide semiconductor electrode 2 has the following problem.
That is, it is difficult to uniformly form the modification layer 22 in the conventional oxide semiconductor electrode 2 on the electrode substrate 21. That is, when the aqueous solution of titanium tetrachloride or the like is applied onto the electrode substrate 21, the aqueous solution closes pores and the like of the electrode substrate 21 and does not penetrate deep into the interior due to the diffusivity and viscosity of the aqueous solution. Therefore, the modified layer 22 obtained after the heat treatment is not formed inside the pores or the like of the electrode substrate 21, resulting in an uneven state. Therefore, the effect of improving the energy conversion efficiency by the modified layer 22 was not sufficient.
[0006]
The present invention has been made in view of such conventional problems, and an object of the present invention is to provide an oxide semiconductor electrode in which a modified layer can be formed even inside pores or the like of an electrode substrate, and which has excellent energy conversion efficiency. To do.
[0007]
[Means for solving the problem]
According to the first aspect of the present invention, a supercritical fluid in which a precursor of a modification layer is dissolved is brought into contact with the surface of an electrode substrate made of a porous oxide semiconductor, and then the precursor is precipitated as an oxide. A method for manufacturing an oxide semiconductor electrode, comprising forming a modification layer on at least a part of the surface of the electrode substrate.
[0008]
According to a second aspect of the present invention, a supercritical fluid in which a precursor of a modification layer is dissolved is brought into contact with the surface of an electrode substrate made of a porous oxide semiconductor, and then the precursor is deposited as an oxide. Forming a modified layer on at least a part of the surface of the electrode substrate, and then disposing a dye on the modified layer to obtain an oxide semiconductor electrode including the electrode substrate, the modified layer, and the dye. The method for producing an oxide semiconductor electrode for a solar cell described above.
[0009]
The most remarkable point in the invention is that the formation of the modified layer is performed using a supercritical fluid in which the precursor is dissolved.
[0010]
The supercritical fluid generally refers to a liquid placed at a temperature and pressure above the critical point of a substance. However, the supercritical fluid in the present invention is a fluid having a temperature of at least the critical point, and the pressure does not need to be in the above-defined range. The fluid in this state has the same dissolving power as a liquid, and has the property of diffusivity and viscosity close to that of a gas. Therefore, a large amount of precursor can be easily and quickly transported into the micropores. The above dissolving ability can be adjusted by temperature, pressure, entrainer (additive) and the like.
[0011]
Examples of the supercritical fluid include hydrocarbons such as methane, ethane, propane, butane, ethylene and propylene, methanol, ethanol, propanol, iso-propanol, butanol, iso-butanol, sec-butanol, tert-butanol and the like. Ketones such as alcohol, acetone and methyl ethyl ketone, carbon dioxide, water, ammonia, chlorine, chloroform, freons and the like can be used.
[0012]
In order to adjust the solubility of the precursor in a supercritical fluid, alcohols such as methanol, ethanol and propanol, ketones such as acetone and ethyl methyl ketone, and aromatic hydrocarbons such as benzene, toluene and xylene are used. It can be used as an entrainer.
[0013]
Examples of the precursor include a metal or metalloid alkoxide, a metal or metalloid acetyl acetate, a metal or metalloid organic acid salt, a metal or metalloid nitrate, and a metal or metalloid. A metal oxychloride, a metal or / and a semimetal chloride, or a mixture of two or more of them can be used.
[0014]
Specifically, for example, as precursors of TiO 2 , titanium n-butoxide (Titanium n-butoxide: Ti [O (CH 2 ) 3 CH 3 ] 4 ) and titanium isopropoxide (Titanium isopropoxide: Ti [OCH (CH 3 ) 2 ] 4 ), titanium ethoxide (Titanium ethoxide: Ti (OC 2 H 5 ) 4 ) or the like can be used.
[0015]
Further, as the electrode substrate, for example, a porous material obtained by partially sintering fine particles of an oxide semiconductor can be used.
Specific materials include titanium oxide (TiO 2 ), tin oxide (SnO 2 ), zinc oxide (ZnO), niobium oxide (Nb 2 O 5 ), indium oxide (In 2 O 3 ), and zirconium oxide (ZrO 2 ). ), Lanthanum oxide (La 2 O 3 ), tantalum oxide (Ta 2 O 5 ), strontium titanate (SrTiO 3 ), barium titanate (BaTiO 3 ), or the like can be used.
[0016]
The above-mentioned modified layer is provided as a second oxide semiconductor on the surface of an electrode substrate formed of an oxide semiconductor electrode (first oxide semiconductor) in order to improve the function of the oxide semiconductor electrode.
The modified layer includes, for example, titanium oxide (TiO 2 ), tin oxide (SnO 2 ), zinc oxide (ZnO), niobium oxide (Nb 2 O 5 ), indium oxide (In 2 O 3 ), and zirconium oxide (ZrO 2 ). 2 ), lanthanum oxide (La 2 O 3 ), tantalum oxide (Ta 2 O 5 ), strontium titanate (SrTiO 3 ), barium titanate (BaTiO 3 ), or the like can be used. Different combinations can be taken.
[0017]
Since the modification layer has a large specific surface area, when a dye is disposed as described later, the amount of the dye attached can be improved. Further, since the impurities are smaller than those of the electrode substrate, electrons easily move from the dye in the electrode substrate or the electrode. In addition, since the contact area between the particles on the electrode substrate is increased, the electrons can easily move.
[0018]
Further, in the case of the oxide semiconductor electrode for a solar cell (claim 2), a dye is disposed on the surface of the modification layer as described above.
As the dye, for example, metal complexes or organic dyes such as ruthenium complexes, particularly ruthenium bipyridine complexes, phthalocyanine, cyanine, merocyanine, porphyrin, chlorophyll, pyrene, methylene blue, thionin, xanthene, coumarin, and rhodamine, and derivatives thereof are used. Can be.
[0019]
Further, the deposition of the precursor as an oxide can be performed, for example, by bringing a supercritical fluid into contact with the electrode substrate, removing the supercritical fluid, drying, and, if necessary, performing a heat treatment or the like. .
[0020]
The dye can be arranged on the modified layer, for example, as follows.
For example, the dye can be adsorbed by immersing the oxide semiconductor in a solution in which a dye such as a ruthenium complex is dissolved in an alcohol such as ethanol or an organic solvent such as acetonitrile. At this time, the solution can be heated to adjust the dye adsorption performance.
[0021]
Next, the operation and effect of the above invention will be described.
In the present invention, a supercritical fluid in which the precursor is dissolved is brought into contact with the electrode substrate. At this time, since the supercritical fluid has extremely excellent diffusivity and viscosity as described above, it sufficiently penetrates into the fine pores in the porous electrode substrate. Further, since the supercritical fluid has excellent dissolving ability as described above, the supercritical fluid penetrates into the inside of the micropores in a state in which a large amount of the precursor is dissolved.
[0022]
Therefore, when the precursor in the supercritical fluid is precipitated as an oxide, the oxide is uniformly deposited including the inside of the micropores. Therefore, the modification layer can be formed on the surface of the electrode substrate in a very uniform state.
[0023]
In the case of an oxide semiconductor electrode for a solar cell (claim 2), an extremely excellent oxide semiconductor electrode for a solar cell can be obtained by further disposing a dye on such a uniform modification layer. Obtainable.
That is, the presence of the uniform modification layer can increase the amount of the dye adsorbed and reduce the electric resistance of the entire electrode. Therefore, an effect of increasing the voltage due to an increase in the current value, a decrease in the leak current, and the like can be obtained, and the high rate characteristics and the energy conversion efficiency can be greatly improved as compared with the related art.
In addition, by applying an oxide having high conductivity or an oxide capable of increasing the open-circuit voltage to the modification layer, the characteristics of the solar cell can be improved.
[0024]
The oxide semiconductor electrode (Claim 1) is used as an ordinary battery, an electrochromic device, an electrode for photolysis of water, and the like, in addition to the oxide semiconductor electrode for a solar cell (Claim 2). can do.
[0025]
As described above, according to the present invention, at least a part of the surface of the electrode substrate, the modification layer can be formed inside the pores or the like of the electrode substrate, and the oxide semiconductor electrode has excellent energy conversion efficiency. A manufacturing method can be provided.
[0026]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment Example A method of manufacturing an oxide semiconductor electrode for a solar cell according to an embodiment of the present invention will be described with reference to FIGS.
In this example, two types of manufacturing methods (Examples E1 and E2) according to the present invention and two conventional types of manufacturing methods (Comparative Examples C1 and C2) for comparison are respectively used for solar cells. An oxide semiconductor electrode was manufactured. Then, a dye-sensitized solar cell was constructed using the obtained oxide semiconductor electrode, and its characteristics were compared.
Hereinafter, each of Examples E1 and E2 and Comparative Examples C1 and C2 will be described in detail.
[0027]
(Example E1)
In this embodiment, as shown in FIG. 2, a supercritical fluid in which a precursor is dissolved is brought into contact with the surface of an electrode substrate 21 made of a porous oxide semiconductor, and then the precursor is deposited as an oxide to form the oxide. A modified layer 22 is formed on the surface of the electrode substrate, and then a dye 23 is disposed on the modified layer 22, so that the oxide semiconductor electrode 2 for a solar cell comprising the electrode substrate 21, the modified layer 22, and the dye 23 is formed. Was manufactured.
[0028]
The In the electrode substrate 21 is manufactured, first, TiO 2 particles were prepared (manufactured by Japan Aerosil P25), which ion-exchanged water: acetylacetone: surfactants (polyethylene glycol mono-4-octylphenyl ether) = 100: 37.5% by weight was mixed with a 2: 1 (volume ratio) solvent to prepare a TiO 2 -containing solution.
[0029]
Next, a fluorine-doped SnO 2 -coated glass (made by Asahi Glass) as a transparent electrode 5 was prepared, and the TiO 2 -containing solution was applied to an area of 10 mm × 10 mm on the surface thereof. Next, after drying at room temperature for 10 hours, heat treatment was performed for 30 minutes in an air stream at a temperature of 450 ° C. Thus, the electrode substrate 21 (TiO 2 ) made of a porous oxide semiconductor was formed on the fluorine-doped SnO 2 coated glass.
[0030]
Next, in the presence of the electrode substrate 21, an isopropanol solution in which 3.5 mol / l of titanium isopropoxide {Ti (iso-PrO) 4 } as a precursor is dissolved is supercritical carbon dioxide (150 ° C., 374 atm). Was dissolved. This state was maintained for 3 hours.
[0031]
As a result, the supercritical carbon dioxide containing the precursor adhered to the surface of the porous electrode substrate 21 very uniformly.
Thereafter, the supercritical carbon dioxide was decompressed and removed. Next, after drying at room temperature for 10 hours, a heat treatment was performed for 30 minutes in an air stream at a temperature of 450 ° C. As a result, the modification layer 22 made of TiO 2 was uniformly formed on the electrode substrate 21.
[0032]
Next, a dye 23 was arranged on the modified layer 22 made of TiO 2 as follows.
First, a ruthenium complex (cis-Di (thiocyanato) -N, N'-bis (2,2'-bipyridyl-4,4'dicarboxylic acid) -ruthenium (II)) was added to anhydrous ethanol dehydrated with magnesium ethoxide. A solution dissolved at a concentration of 2.85 × 10 −4 mol / l was prepared. Next, the electrode substrate 21 on which the aforementioned modified layer 22 was formed was immersed in this solution for 24 hours to adsorb the ruthenium complex as the dye 22. As a result, an oxide semiconductor electrode 2 for a solar cell was obtained.
[0033]
(Example E2)
Example E2 is an example in which the precursor in the supercritical coating method at the time of forming the modification layer 22 in Example E1 was changed.
That is, an electrode substrate 21 similar to the above was prepared, and in the presence thereof, a solution of titanium n-butoxide {Ti (n-BuO) 4 } in n-butanol {2.9 mol / l} was supercritical carbon dioxide. (150 ° C., 371 atm). This state was maintained for 3 hours.
[0034]
Thereafter, the supercritical carbon dioxide was removed under reduced pressure and dried at room temperature for 10 hours. Next, heat treatment was performed for 30 minutes in an air stream at a temperature of 450 ° C. to form a modification layer 22 on the electrode substrate 21.
Otherwise, the oxide semiconductor electrode 2 was manufactured in the same manner as in Example E1.
[0035]
(Comparative Example C1)
Comparative Example C1 is an example in which the forming method of the modified layer 22 in Example E1 was not a supercritical coating method but a surface treatment method using a conventional titanium tetrachloride aqueous solution.
That is, the electrode substrate 21 was produced in the same manner as described above. Next, in forming the modified layer 22, 50 μl of a 0.2 mol / l aqueous solution of titanium tetrachloride is dropped on the electrode substrate 21 and left at room temperature for 10 hours in a closed vessel to partially hydrolyze. Was. Thereafter, unreacted titanium tetrachloride was washed off with deionized water. Further, a heat treatment was performed for 30 minutes in an air stream at a temperature of 450 ° C. to form a modified layer 22 made of TiO 2.
Otherwise, an oxide semiconductor electrode was manufactured in the same manner as in Example E1.
[0036]
(Comparative Example C2)
Comparative Example C2 is an example in which the formation of the modification layer 22 in Example E1 was omitted.
That is, the dye 23 was directly disposed on the electrode substrate 21 manufactured in the same manner as described above.
Otherwise, an oxide semiconductor electrode was manufactured in the same manner as in Example E1.
[0037]
Next, a dye-sensitized solar cell 1 was formed using the oxide semiconductor electrodes manufactured by the above-described respective manufacturing methods (Examples E1, E2, Comparative Examples C1, C2).
As shown in FIG. 1, with the transparent electrode 5 facing outward, the oxide semiconductor electrode 2 and a counter electrode 3 (10 mm × 20 mm) made of a fluorine-doped SnO 2 coated glass on which platinum prepared separately is deposited at 50 ° are opposed to each other. In addition, a gap is formed between them with a spacer 81 interposed therebetween. Then, the electrolyte solution 4 was impregnated into the gap to obtain a dye-sensitized solar cell 1.
The electrolytic solution 4 is obtained by dissolving 3.13 g of tetra-n-propylammonium iodide (0.13 g) and 0.18 g of iodine in a mixed solution of 21.14 g of ethylene carbonate and 4.0 ml of acetonitrile. .
[0038]
Next, in this example, the characteristics of the dye-sensitized solar cell 1 constituted by each of the above oxide semiconductor electrodes were compared. Specifically, each of the dye-sensitized solar cells 1 was irradiated with 730 W / m 2 pseudo sunlight using a solar simulator (WXS-85 manufactured by Wacom Denso), and the voltage was swept by a potentiostat. The relationship between the voltage and current at that time was measured.
[0039]
The measurement results are shown in FIGS. In these figures, the voltage (V) is plotted on the horizontal axis and the current (mA) is plotted on the vertical axis. 3 shows the results of Example E1, FIG. 4 shows the results of Example E2, FIG. 5 shows the results of Comparative Example C1, and FIG. 6 shows the results of Comparative Example C2.
[0040]
In addition, the energy conversion efficiency and the fill factor were determined from the above measurement results. The energy conversion efficiency is represented by (maximum output × 100) / (incident light energy). The fill factor is represented by the maximum output / (short circuit current × open voltage). The short-circuit current is shown as S1 and the open-circuit voltage is shown as S2 in FIGS.
In addition, the above-mentioned fill factor is an index indicating the performance of solar electricity similarly to the energy conversion efficiency, and it is desirable that this value be larger.
Table 1 shows the energy conversion efficiency and fill factor of each dye-sensitized solar cell.
[0041]
[Table 1]
Figure 0003598828
[0042]
As can be seen from FIGS. 3 to 6 and Table 1, Comparative Example C2 having no modified layer resulted in the lowest energy conversion efficiency. Also, from the comparison between Examples E1 and E2 and Comparative Example C1, not only the formation of the modified layer but also the formation of the modified layer by the above-mentioned supercritical coating method increases the energy conversion efficiency and the fill factor. It can be seen that it is very effective in improving the performance of the solar cell.
[0043]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a method for manufacturing an oxide semiconductor electrode in which a modification layer can be formed inside pores and the like of an electrode substrate and which has excellent energy conversion efficiency.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a configuration of a dye-sensitized solar cell according to an embodiment.
FIG. 2 is an explanatory diagram illustrating a structure of an oxide semiconductor electrode in the embodiment.
FIG. 3 is an explanatory diagram showing the relationship between the voltage and the current of Example E1 in the embodiment.
FIG. 4 is an explanatory diagram showing a relationship between a voltage and a current of Example E2 in the embodiment.
FIG. 5 is an explanatory diagram showing a relationship between a voltage and a current of a comparative example C1 in the embodiment.
FIG. 6 is an explanatory diagram showing a relationship between a voltage and a current of a comparative example C2 in the embodiment.
[Explanation of symbols]
1. . . Dye-sensitized solar cells,
2. . . Oxide semiconductor electrode,
21. . . Electrode substrate,
22. . . Decoration layer,
23. . . Pigment,
3. . . Counter electrode,
4. . . Electrolyte,
5. . . Transparent electrode,

Claims (2)

多孔質の酸化物半導体よりなる電極基体の表面に,修飾層の前駆体を溶解した超臨界流体を接触させ,次いで,上記前駆体を酸化物として析出させて上記電極基体表面の少なくとも一部に修飾層を形成することを特徴とする酸化物半導体電極の製造方法。A supercritical fluid in which a precursor of a modification layer is dissolved is brought into contact with the surface of an electrode substrate made of a porous oxide semiconductor, and then the precursor is precipitated as an oxide to form at least a part of the surface of the electrode substrate. A method for manufacturing an oxide semiconductor electrode, comprising forming a modification layer. 多孔質の酸化物半導体よりなる電極基体の表面に,修飾層の前駆体を溶解した超臨界流体を接触させ,次いで,上記前駆体を酸化物として析出させて上記電極基体表面の少なくとも一部に修飾層を形成し,その後該修飾層の上に色素を配置させることにより,電極基体と修飾層と色素とからなる酸化物半導体電極を得ることを特徴とする太陽電池用酸化物半導体電極の製造方法。A supercritical fluid in which a precursor of a modification layer is dissolved is brought into contact with the surface of an electrode substrate made of a porous oxide semiconductor, and then the precursor is precipitated as an oxide to form at least a part of the surface of the electrode substrate. A method of manufacturing an oxide semiconductor electrode for a solar cell, comprising: forming a modified layer, and thereafter disposing a dye on the modified layer to obtain an oxide semiconductor electrode including an electrode substrate, the modified layer, and the dye. Method.
JP18922498A 1997-08-27 1998-07-03 Method for manufacturing oxide semiconductor electrode Expired - Fee Related JP3598828B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP18922498A JP3598828B2 (en) 1998-07-03 1998-07-03 Method for manufacturing oxide semiconductor electrode
US09/297,051 US6194650B1 (en) 1997-08-27 1998-08-26 Coated object and process for producing the same
PCT/JP1998/003822 WO1999010167A1 (en) 1997-08-27 1998-08-26 Coated object and process for producing the same
EP98940586A EP0934819A4 (en) 1997-08-27 1998-08-26 Coated object and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18922498A JP3598828B2 (en) 1998-07-03 1998-07-03 Method for manufacturing oxide semiconductor electrode

Publications (2)

Publication Number Publication Date
JP2000021461A JP2000021461A (en) 2000-01-21
JP3598828B2 true JP3598828B2 (en) 2004-12-08

Family

ID=16237665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18922498A Expired - Fee Related JP3598828B2 (en) 1997-08-27 1998-07-03 Method for manufacturing oxide semiconductor electrode

Country Status (1)

Country Link
JP (1) JP3598828B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4187984B2 (en) * 2002-03-12 2008-11-26 独立行政法人科学技術振興機構 Complete solid dye-sensitized solar cell
US20060005877A1 (en) * 2004-07-06 2006-01-12 General Electric Company Passivated, dye-sensitized oxide semiconductor electrode, solar cell using same, and method
US7763795B2 (en) 2005-03-03 2010-07-27 National University Corporation Kyushu Institute Of Technology Photoelectric conversion device and method for manufacturing the same

Also Published As

Publication number Publication date
JP2000021461A (en) 2000-01-21

Similar Documents

Publication Publication Date Title
Tennakone et al. A dye-sensitized nano-porous solid-state photovoltaic cell
Palomares et al. Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers
Tang et al. A microporous platinum counter electrode used in dye-sensitized solar cells
Kashiwa et al. All-metal-electrode-type dye sensitized solar cells (transparent conductive oxide-less dye sensitized solar cell) consisting of thick and porous Ti electrode with straight pores
Tekerek et al. Dye-sensitized solar cells fabricated with black raspberry, black carrot and rosella juice
Li et al. Fabrication of long TiO 2 nanotube arrays in a short time using a hybrid anodic method for highly efficient dye-sensitized solar cells
Li et al. Enhancement of power conversion efficiency of dye sensitized solar cells by modifying mesoporous TiO2 photoanode with Al-doped TiO2 layer
EP1873862A1 (en) Electrolyte composition for photoelectric converter and photoelectric converter using same
Chang et al. Fabrication of multilayer TiO2 thin films for dye-sensitized solar cells with high conversion efficiency by electrophoresis deposition
KR20060085465A (en) Continuous semiconductive electrode, process for preparing the same and solar cells using the same
Hu et al. Intrinsic defect based homojunction: A novel quantum dots photoanode with enhanced charge transfer kinetics
KR101045849B1 (en) High Efficiency Flexible Dye-Sensitized Solar Cell and Manufacturing Method Thereof
Stergiopoulos et al. Dye-sensitized solar cells incorporating novel Co (II/III) based-redox electrolytes solidified by silica nanoparticles
Hernández-Martínez et al. Dye-sensitized solar cells from extracted bracts bougainvillea betalain pigments
JP2003249275A (en) Dye sensitized solar cell and its manufacturing method
Bharwal et al. Tuning bimodal porosity in TiO2 photoanodes towards efficient solid-state dye-sensitized solar cells comprising polysiloxane-based polymer electrolyte
Trifiletti et al. Dye-sensitized solar cells containing plasma jet deposited hierarchically nanostructured TiO 2 thin photoanodes
Zhao et al. Enhanced photoelectrical performance of TiO 2 electrodes integrated with microtube-network structures
Choi et al. Doubly open-ended TiO 2 nanotube arrays decorated with a few nm-sized TiO 2 nanoparticles for highly efficient dye-sensitized solar cells
JP3598829B2 (en) Method for manufacturing oxide semiconductor electrode
JP2000021460A (en) Pigment sensitizing solar battery
Pydzińska-Białek et al. Impact of improvements in mesoporous titania layers on ultrafast electron transfer dynamics in perovskite and dye-sensitized solar cells
Park et al. Fabrication of hole-patterned TiO2 photoelectrodes for solid-state dye-sensitized solar cells
JP2000319018A (en) Porous titanium oxide thin film md photoelectric convertor using the film
JP3598828B2 (en) Method for manufacturing oxide semiconductor electrode

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040906

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070924

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees