JP3598715B2 - Non-contact power supply - Google Patents

Non-contact power supply Download PDF

Info

Publication number
JP3598715B2
JP3598715B2 JP5205897A JP5205897A JP3598715B2 JP 3598715 B2 JP3598715 B2 JP 3598715B2 JP 5205897 A JP5205897 A JP 5205897A JP 5205897 A JP5205897 A JP 5205897A JP 3598715 B2 JP3598715 B2 JP 3598715B2
Authority
JP
Japan
Prior art keywords
power supply
secondary winding
primary
supply device
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5205897A
Other languages
Japanese (ja)
Other versions
JPH10248108A (en
Inventor
光義 黒田
正徳 津田
Original Assignee
神鋼電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 神鋼電機株式会社 filed Critical 神鋼電機株式会社
Priority to JP5205897A priority Critical patent/JP3598715B2/en
Publication of JPH10248108A publication Critical patent/JPH10248108A/en
Application granted granted Critical
Publication of JP3598715B2 publication Critical patent/JP3598715B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Ac-Ac Conversion (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、構内等で使用される搬送装置など移動する物体に対して非接触で電力を供給する非接触給電装置に関する。
【0002】
【従来の技術】
従来の技術による非接触給電装置について、図4から図6を参照して説明する。
図4は、従来の技術による非接触給電装置の構成を示す図であり、一対の1次給電線1a、1bに高周波電流を流すことによって発生する磁界により、磁性体コア2を介して磁気的に結合された2次側巻線3に電圧が誘起され、1次給電線から2次側巻線に非接触で電力を伝送する。
【0003】
また、6は1次給電線1a、1bを所定位置に保持する1次給電線支持器であり側壁7に固定され、前記磁性体コア2および2次側巻線3により構成され、電力を受け取るピックアップは搬送装置等の側方に取り付けられ、前記1次給電線の延長方向に移動が自在である。
【0004】
図5は、従来の技術による非接触給電装置の別の構成を示す図であり、前記図4との相違点は、前記ピックアップの図における上下方向の物理的移動裕度を大きくとるために、2次側巻線を図示のように3aおよび3bとした点にある。
【0005】
【発明が解決しようとする課題】
ところが上述の図5によるピックアップの構成では、2次側巻線の長さは、巻数を同一としたとき、図4の2次側巻線の長さと比較して約2倍の長さとなるため、2次側巻線の自己インダクタンスも約2倍の値となり、2次側巻線に伝送される電力の減少の原因となる。
【0006】
本発明はこのような背景の下になされたもので、2次側巻線の自己インダクタンスを減少させ、電力伝送効率を高くすることができる非接触給電装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
請求項1に記載の発明は、1次給電線に高周波電流を流すことにより発生する磁界により、磁性体コアを介して磁気的に結合された2次巻線に電圧が誘起され、前記1次給電線から2次巻線に非接触で電力を伝送する非接触給電装置において、
前記1次給電線が発生する磁界と鎖交せず、前記2次巻線が発生する磁界と鎖交する所定位置に板状の非磁性良導体を配設し、前記2次巻線が発生する磁界により前記板状の非磁性良導体に渦電流を流すことを特徴とする非接触給電装置を提供する。
【0008】
請求項2に記載の発明は、前記板状の非磁性良導体を配設する所定位置が、
前記2次巻線の外側であり、前記磁性体コアに関し1次給電線と反対側の位置であることを特徴とする請求項1に記載の非接触給電装置を提供する。
【0009】
請求項3に記載の発明は、前記板状の非磁性良導体を配設する所定位置が、
前記2次巻線の内側であり、前記磁性体コアに関し1次給電線と反対側の位置であることを特徴とする請求項1に記載の非接触給電装置を提供する。
【0010】
請求項4に記載の発明は、前記板状の非磁性良導体を配設する所定位置が、
前記2次巻線の外側および内側であり、前記磁性体コアに関し1次給電線と反対側の位置であることを特徴とする請求項1に記載の非接触給電装置を提供する。
【0011】
【発明の実施の形態】
以下、この発明の実施形態を図を参照しながら説明する。図1はこの発明の第1の実施形態による非接触給電装置の構成を示す図である。
この図において、高周波電流を流す一対の1次給電線(往復線路)1a、1bは、絶縁物で構成される1次給電線支持器6を介して側壁7に固定され、給電部を構成している。
【0012】
一方、図示していない搬送車などの側方に取り付けられ、前記1次給電線と接触することなく、この給電線に自在に接近または離反することができ、この給電線の発生する磁界の磁路を形成する構造のE字型開口部を持った磁性体コア2と、この磁性体コアに巻かれて前記磁界と鎖交する、直列に接続された2次側巻線3aおよび3bと、この2次側巻線に隣接し、前記1次給電線と反対側の位置に置かれたアルミニウム等の材質による板状の非磁性良導体4とから、電力を受け取るピックアップが構成され、前記搬送装置が前記1次給電線1a、1bに沿って移動しながら、この給電線から前記ピックアップに電力を伝送する。
【0013】
このような構成の非接触給電装置において、前記一対の1次給電線1a、1bに高周波インバータなどによる周波数10kHz程度の高周波電流を流し、この電流によって発生する磁界により、磁性体コア2を介して磁気的に結合された、前記直列接続の2次側巻線3aおよび3bに電圧が誘起され、前記1次給電線から前記2次側巻線に電力を伝送する。
【0014】
1次給電線1a、1bに流れる1次電流をI1、1次給電線1a、1bの自己インダクタンスをL1、1次給電線1a、1bと2次側巻線3a、3b間の相互インダクタンスをM、2次側巻線3a、3bの自己インダクタンスをL2、回路を共振状態にするための共振用コンデンサをC、負荷抵抗をRとすると、この発明による非接触給電装置の等価回路は図2に示すようになる。
【0015】
この図において、前記共振用コンデンサCにより、回路を前記1次給電線から供給される高周波電流の周波数に共振させた状態とすると、磁性体コア2の鉄損と2次側巻線3a、3bの巻線抵抗を無視すれば、負荷抵抗Rに伝送される電力Pは、
P=(M/L2)×R×I1
となり、1次給電線1a、1bから2次側巻線3a、3bへの伝送電力を増大させるためには、2次側巻線3a、3bの自己インダクタンスL2を減少させることが必要となる。
【0016】
さて、図1に示す板状の非磁性良導体4は2次側巻線3a、3bの外側に隣接し、1次給電線1a、1bと反対側の位置に配設され、前記2次側巻線に流れる電流により発生する高周波磁束と鎖交して前記板状の非磁性良導体4に高周波渦電流が流れ、前記鎖交する高周波磁束を減少させる方向の磁束を生成する。
また、1次給電線1a、1bから発生する高周波磁界は、磁性体コア2の内部を通るため、前記板状の非磁性良導体4による影響はなく、前記1次給電線と前記2次側巻線との間の相互インダクタンスMは、前記板状の非磁性良導体4の取り付けの有無による変化はない。
従って、2次側巻線3a、3bに電流が流れることにより発生する磁界の磁路の断面積が減少した場合と等価となり、前記2次巻線の自己インダクタンスL2が減少し、上述の伝送電力Pが増大する。
【0017】
次に、この発明の第2の実施形態について、図3を参照して説明する。
この実施形態は、図1の構成に加えて、2次側巻線3a、3bの内側に位置し、磁性体コア2に隣接して1次給電線1a、1bと反対側の位置に板状の非磁性良導体5を追加配設したことを特徴とする。
前記板状の非磁性良導体5は2次側巻線3a、3bが発生する磁界と鎖交して渦電流を流し、1次給電線1a、1bの発生する磁界とは鎖交しないので、上述の第1の実施形態よりも更に2次側巻線3a、3bの自己インダクタンスを小さくすることができ、1次給電線から2次側巻線への電力伝送効率を第1の実施形態よりも更に向上させることができる。
【0018】
なお、上述の第1および第2の実施形態とも、誘導障害等の問題が解決されれば、1次給電線は往復する一対の給電線でなく、1本の給電線であっても良い。以上、本発明の一実施形態の動作を図面を参照して詳述してきたが、本発明はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等があっても本発明に含まれる。
【0019】
【発明の効果】
これまでに説明したように、この発明によれば、1次給電線に高周波電流を流すことによって発生する磁界により、磁性体コアを介して磁気的に結合された2次側巻線に電圧が誘起され、1次給電線から2次側巻線に非接触で電力を伝送する非接触給電装置において、2次側巻線が発生する磁界により渦電流を流す板状の非磁性良導体を配設したので、前記2次巻線の自己インダクタンスを小さくすることができ、1次給電線から2次側巻線への電力伝送効率を高くすることができるという効果が得られる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態による非接触給電装置の構成を示す図である。
【図2】本発明による非接触給電装置の等価回路図である。
【図3】本発明の第2の実施形態による非接触給電装置の構成を示す図である。
【図4】従来の非接触給電装置の構成を示す図である。
【図5】従来の非接触給電装置の別の構成を示す図である。
【図6】図5の構成による従来の非接触給電装置の斜視図である。
【符号の説明】
1a、1b 1次給電線
2 磁性体コア
3、3a、3b 2次側巻線
4、5 板状の非磁性良導体
6 1次給電線支持器
7 側壁
I1 1次電流
L1 1次給電線の自己インダクタンス
L2 2次側巻線の自己インダクタンス
M 1次給電線と2次側巻線間の相互インダクタンス
C 共振用コンデンサ
R 負荷抵抗
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a non-contact power supply device for supplying power to a moving object such as a transport device used in a premises or the like in a non-contact manner.
[0002]
[Prior art]
A non-contact power supply device according to the related art will be described with reference to FIGS.
FIG. 4 is a diagram showing a configuration of a non-contact power supply device according to the related art. The magnetic field generated by flowing a high-frequency current through a pair of primary power supply lines 1a and 1b causes a magnetic field to be generated via a magnetic core 2. A voltage is induced in the secondary winding 3 coupled to the secondary winding, and power is transmitted from the primary feeder line to the secondary winding in a non-contact manner.
[0003]
Reference numeral 6 denotes a primary feeder support for holding the primary feeders 1a and 1b at predetermined positions, fixed to the side wall 7, and constituted by the magnetic core 2 and the secondary winding 3, and receiving power. The pickup is attached to a side of a transport device or the like, and is movable in an extending direction of the primary power supply line.
[0004]
FIG. 5 is a diagram showing another configuration of the non-contact power supply device according to the related art. The difference from FIG. 4 is that in order to increase the physical movement allowance of the pickup in the vertical direction in the drawing, The point is that the secondary winding is 3a and 3b as shown in the figure.
[0005]
[Problems to be solved by the invention]
However, in the configuration of the pickup according to FIG. 5 described above, the length of the secondary winding is about twice as long as the length of the secondary winding in FIG. 4 when the number of turns is the same. Also, the self-inductance of the secondary winding also becomes about twice the value, which causes a decrease in power transmitted to the secondary winding.
[0006]
The present invention has been made under such a background, and an object of the present invention is to provide a non-contact power supply device capable of reducing self-inductance of a secondary winding and increasing power transmission efficiency.
[0007]
[Means for Solving the Problems]
According to the first aspect of the present invention, a voltage is induced in a secondary winding magnetically coupled via a magnetic core by a magnetic field generated by flowing a high-frequency current through a primary feeder, In a non-contact power supply device for transmitting power from a power supply line to a secondary winding in a non-contact manner,
A plate-like non-magnetic good conductor is disposed at a predetermined position where the magnetic field does not interlink with the magnetic field generated by the primary power supply line but intersects with the magnetic field generated by the secondary winding, and the secondary winding is generated. A non-contact power supply device characterized in that an eddy current is caused to flow through the plate-shaped non-magnetic good conductor by a magnetic field.
[0008]
In the invention according to claim 2, the predetermined position at which the plate-shaped non-magnetic good conductor is disposed is:
The wireless power supply device according to claim 1, wherein the wireless power supply device is provided outside the secondary winding and at a position opposite to the primary power supply line with respect to the magnetic core.
[0009]
In the invention according to claim 3, the predetermined position at which the plate-shaped non-magnetic good conductor is provided is:
The non-contact power supply device according to claim 1, wherein the non-contact power supply device is provided inside the secondary winding and at a position opposite to the primary power supply line with respect to the magnetic core.
[0010]
In the invention according to claim 4, the predetermined position where the plate-shaped non-magnetic good conductor is disposed is:
2. The wireless power supply device according to claim 1, wherein the wireless power supply device is located outside and inside the secondary winding and at a position opposite to the primary power supply line with respect to the magnetic core. 3.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a configuration of a wireless power supply device according to a first embodiment of the present invention.
In this figure, a pair of primary power supply lines (reciprocating lines) 1a and 1b through which a high-frequency current flows are fixed to a side wall 7 via a primary power supply line support 6 made of an insulating material, and constitute a power supply unit. ing.
[0012]
On the other hand, it is attached to the side of a carrier (not shown) or the like, and can freely approach or move away from the primary power supply line without coming into contact with the primary power supply line. A magnetic core 2 having an E-shaped opening having a structure to form a path, and serially connected secondary windings 3a and 3b wound around the magnetic core and interlinking the magnetic field; A pick-up for receiving electric power is constituted by a plate-shaped non-magnetic good conductor 4 made of a material such as aluminum which is disposed adjacent to the secondary winding and at a position opposite to the primary power supply line, and Moves along the primary feeder lines 1a and 1b while transmitting power from the feeder line to the pickup.
[0013]
In the contactless power supply device having such a configuration, a high-frequency current having a frequency of about 10 kHz by a high-frequency inverter or the like is caused to flow through the pair of primary power supply lines 1a and 1b. A voltage is induced in the magnetically coupled secondary windings 3a and 3b connected in series to transfer power from the primary feeder to the secondary windings.
[0014]
The primary current flowing through the primary feed lines 1a and 1b is represented by I1, the self-inductance of the primary feed lines 1a and 1b is represented by L1, and the mutual inductance between the primary feed lines 1a and 1b and the secondary windings 3a and 3b is represented by M. When the self-inductance of the secondary windings 3a and 3b is L2, the resonance capacitor for bringing the circuit into a resonance state is C, and the load resistance is R, an equivalent circuit of the contactless power supply device according to the present invention is shown in FIG. As shown.
[0015]
In this figure, when the resonance capacitor C causes the circuit to resonate at the frequency of the high-frequency current supplied from the primary feed line, the core loss of the magnetic core 2 and the secondary windings 3a, 3b Is ignored, the power P transmitted to the load resistor R is
P = (M / L2) 2 × R × I1 2
In order to increase the transmission power from the primary feeder lines 1a and 1b to the secondary windings 3a and 3b, it is necessary to reduce the self-inductance L2 of the secondary windings 3a and 3b.
[0016]
The plate-shaped non-magnetic good conductor 4 shown in FIG. 1 is disposed adjacent to the outside of the secondary windings 3a and 3b and opposite to the primary feeders 1a and 1b. A high-frequency eddy current flows through the plate-shaped non-magnetic good conductor 4 by interlinking with a high-frequency magnetic flux generated by a current flowing through the wire, and generates a magnetic flux in a direction to reduce the interlinked high-frequency magnetic flux.
Further, since the high-frequency magnetic field generated from the primary feed lines 1a and 1b passes through the inside of the magnetic core 2, there is no influence by the plate-shaped non-magnetic good conductor 4, and the primary feed line and the secondary winding are not affected. The mutual inductance M between the wire and the wire does not change depending on whether or not the plate-shaped non-magnetic good conductor 4 is attached.
Therefore, this is equivalent to the case where the cross-sectional area of the magnetic path of the magnetic field generated by the current flowing through the secondary windings 3a and 3b is reduced, the self-inductance L2 of the secondary winding is reduced, and the transmission power described above is reduced. P increases.
[0017]
Next, a second embodiment of the present invention will be described with reference to FIG.
In this embodiment, in addition to the configuration shown in FIG. 1, a plate-like member is located inside the secondary windings 3a and 3b, adjacent to the magnetic core 2 and opposite to the primary feeder lines 1a and 1b. The non-magnetic good conductor 5 is additionally provided.
The plate-shaped non-magnetic good conductor 5 is linked with the magnetic field generated by the secondary windings 3a and 3b to flow eddy current and does not link with the magnetic field generated by the primary feeder lines 1a and 1b. The self-inductance of the secondary windings 3a and 3b can be further reduced as compared with the first embodiment, and the power transmission efficiency from the primary feeder line to the secondary winding can be reduced as compared with the first embodiment. It can be further improved.
[0018]
In both the first and second embodiments described above, the primary power supply line may be a single power supply line instead of a pair of reciprocating power supply lines as long as the problem of guidance failure or the like is solved. The operation of one embodiment of the present invention has been described above in detail with reference to the drawings. However, the present invention is not limited to this embodiment, and there are design changes and the like that do not depart from the gist of the present invention. Are also included in the present invention.
[0019]
【The invention's effect】
As described above, according to the present invention, a voltage is applied to a secondary winding magnetically coupled via a magnetic core by a magnetic field generated by flowing a high-frequency current through a primary feeder line. In a non-contact power supply device that is induced and transmits electric power from a primary power supply line to a secondary winding in a non-contact manner, a plate-shaped non-magnetic good conductor that flows an eddy current by a magnetic field generated by the secondary winding is disposed. Therefore, the self-inductance of the secondary winding can be reduced, and the effect of increasing the power transmission efficiency from the primary feeder line to the secondary winding can be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a wireless power supply device according to a first embodiment of the present invention.
FIG. 2 is an equivalent circuit diagram of the wireless power supply device according to the present invention.
FIG. 3 is a diagram illustrating a configuration of a wireless power supply device according to a second embodiment of the present invention.
FIG. 4 is a diagram showing a configuration of a conventional contactless power supply device.
FIG. 5 is a diagram showing another configuration of a conventional non-contact power feeding device.
FIG. 6 is a perspective view of a conventional wireless power supply device having the configuration of FIG.
[Explanation of symbols]
1a, 1b Primary feed line 2 Magnetic cores 3, 3a, 3b Secondary windings 4, 5 Plate-like non-magnetic good conductor 6 Primary feed line support 7 Side wall I1 Primary current L1 Primary feed line self Inductance L2 Self-inductance M of secondary winding M Mutual inductance C between primary feeder and secondary winding C Resonant capacitor R Load resistance

Claims (4)

1次給電線に高周波電流を流すことにより発生する磁界により、磁性体コアを介して磁気的に結合された2次巻線に電圧が誘起され、前記1次給電線から2次巻線に非接触で電力を伝送する非接触給電装置において、
前記1次給電線が発生する磁界と鎖交せず、前記2次巻線が発生する磁界と鎖交する所定位置に、前記鎖交により渦電流が流れる板状の非磁性良導体を配設したことを特徴とする非接触給電装置。
A magnetic field generated by flowing a high-frequency current through the primary feed line induces a voltage in a secondary winding magnetically coupled via a magnetic core, and a voltage is induced from the primary feed line to the secondary winding. In a wireless power transfer device that transmits power by contact,
A plate-shaped non-magnetic good conductor through which an eddy current flows due to the linkage is disposed at a predetermined position where the eddy current flows without being linked to the magnetic field generated by the primary feeder line and linked to the magnetic field generated by the secondary winding. A non-contact power supply device characterized by the above-mentioned.
前記板状の非磁性良導体を配設する所定位置は、
前記2次巻線の外側であり、前記磁性体コアに関し1次給電線と反対側の位置であることを特徴とする請求項1に記載の非接触給電装置。
The predetermined position at which the plate-shaped non-magnetic good conductor is disposed,
2. The non-contact power supply device according to claim 1, wherein the non-contact power supply device is located outside the secondary winding and on a side opposite to the primary power supply line with respect to the magnetic core. 3.
前記板状の非磁性良導体を配設する所定位置は、
前記2次巻線の内側であり、前記磁性体コアに関し1次給電線と反対側の位置であることを特徴とする請求項1に記載の非接触給電装置。
The predetermined position at which the plate-shaped non-magnetic good conductor is disposed,
2. The non-contact power supply device according to claim 1, wherein the non-contact power supply device is located inside the secondary winding and at a position opposite to the primary power supply line with respect to the magnetic core. 3.
前記板状の非磁性良導体を配設する所定位置は、
前記2次巻線の外側および内側であり、前記磁性体コアに関し1次給電線と反対側の位置であることを特徴とする請求項1に記載の非接触給電装置。
The predetermined position at which the plate-shaped non-magnetic good conductor is disposed,
2. The non-contact power supply device according to claim 1, wherein the non-contact power supply device is located outside and inside the secondary winding and at a position opposite to the primary power supply line with respect to the magnetic core. 3.
JP5205897A 1997-03-06 1997-03-06 Non-contact power supply Expired - Fee Related JP3598715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5205897A JP3598715B2 (en) 1997-03-06 1997-03-06 Non-contact power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5205897A JP3598715B2 (en) 1997-03-06 1997-03-06 Non-contact power supply

Publications (2)

Publication Number Publication Date
JPH10248108A JPH10248108A (en) 1998-09-14
JP3598715B2 true JP3598715B2 (en) 2004-12-08

Family

ID=12904224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5205897A Expired - Fee Related JP3598715B2 (en) 1997-03-06 1997-03-06 Non-contact power supply

Country Status (1)

Country Link
JP (1) JP3598715B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5384195B2 (en) * 2009-05-20 2014-01-08 株式会社ヘッズ Non-contact power supply device
EP2833533B1 (en) 2012-03-27 2017-09-27 Hitachi Metals, Ltd. Frequency conversion device

Also Published As

Publication number Publication date
JPH10248108A (en) 1998-09-14

Similar Documents

Publication Publication Date Title
KR100372174B1 (en) Direct type contactless feeding device
US8125208B2 (en) Transformer device utilizing an air gap for non-contact energy transmission from the primary side to the secondary side
EP1176616B1 (en) Non-contact electric power transmission apparatus
US20030201862A1 (en) Inductive power transmission and distribution apparatus using a coaxial transformer
JP2008539584A (en) Inductively coupled power transfer system
JP2004501540A (en) Device for contactless transmission of electrical signals or energy
WO2013176752A2 (en) Wireless power supply system
JP5646688B2 (en) Contactless power supply system
JP4059828B2 (en) Non-contact power feeding device
CN112467888A (en) Energy signal simultaneous transmission structure and dynamic wireless energy transmission system
JP3598715B2 (en) Non-contact power supply
JPH07322535A (en) Noncontact power supply for direct motion mechanism
JP4051878B2 (en) Non-contact power feeding device
JP4165523B2 (en) Contactless power supply
KR101172592B1 (en) Power receiving module for non-contact power supply apparatus
JP5250867B2 (en) Induction power receiving circuit
JP2000184625A (en) Non-contact feeding method for transport cars in transporting system
JP2000358301A (en) Noncontact load-dispatching equipment
JPH10285836A (en) Receiving device of electromagnetic induction power supply unit
JP3909550B2 (en) Non-contact power supply equipment
JP3837834B2 (en) Non-contact power feeding device
JPH1070856A (en) Constant voltage induction feeding device
JPH1154349A (en) Non-contact feeding device
JPH1051982A (en) Non-contacting feeding device
JP4461537B2 (en) Power line carrier communication equipment

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees