JP4165523B2 - Contactless power supply - Google Patents

Contactless power supply Download PDF

Info

Publication number
JP4165523B2
JP4165523B2 JP2005139885A JP2005139885A JP4165523B2 JP 4165523 B2 JP4165523 B2 JP 4165523B2 JP 2005139885 A JP2005139885 A JP 2005139885A JP 2005139885 A JP2005139885 A JP 2005139885A JP 4165523 B2 JP4165523 B2 JP 4165523B2
Authority
JP
Japan
Prior art keywords
power supply
core
coil
supply line
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005139885A
Other languages
Japanese (ja)
Other versions
JP2005261200A (en
Inventor
彰 畑井
勇冶 西澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2000039445A priority Critical patent/JP3740930B2/en
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005139885A priority patent/JP4165523B2/en
Publication of JP2005261200A publication Critical patent/JP2005261200A/en
Application granted granted Critical
Publication of JP4165523B2 publication Critical patent/JP4165523B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Description

この発明は、案内レールに沿って架線された給電線を流れる交流から電磁誘導作用により電力を取り込むための給電部を備えた非接触給電装置の改良に関するものである。   The present invention relates to an improvement in a non-contact power supply apparatus including a power supply unit for taking in electric power from an alternating current flowing through a power supply line installed along a guide rail by electromagnetic induction.

従来、天井に架設された案内レールに沿って走行し、工場あるいは倉庫内のステーション間において荷の搬送作業をするモノレール式の搬送装置(移動体)が提案されている。この種の搬送装置の給電方法として、特許文献1に記載のように案内レールに配線された給電線に対向させた状態にピックアップユニットを移動体に取り付け、このピックアップユニットを用い、給電線を流れる交流(高周波電流)から電磁誘導作用を利用して電力を取り込む非接触給電装置が知られている。   2. Description of the Related Art Conventionally, a monorail transport device (moving body) that travels along a guide rail installed on a ceiling and transports a load between stations in a factory or a warehouse has been proposed. As a power feeding method for this type of transport apparatus, a pickup unit is attached to a moving body so as to face a power feeding line wired on a guide rail as described in Patent Document 1, and this pickup unit is used to flow through the power feeding line. A non-contact power feeding device that takes in electric power from an alternating current (high frequency current) using an electromagnetic induction action is known.

この非接触給電装置では、図4に示すように給電部1は、移動体が走行する走行路に沿うと共に、相互に平行な往復経路をとって、所定の弛みを有するように架線した交流電流を流す二本の給電線3と、給電線3を覆うように対向配置されると共に、移動体に固定されたピックアップユニット2とを備え、ピックアップユニット2には、E型形状のコア5と、その中央脚部5aに巻回されると共に、負荷(図示せず)が接続された受電用の二次コイル7とを備えている。   In this non-contact power feeding device, as shown in FIG. 4, the power feeding unit 1 is arranged along the traveling path along which the moving body travels, and takes a reciprocating path parallel to each other, and the AC current is wired so as to have a predetermined slack. 2 and a pickup unit 2 that is disposed so as to cover the power supply line 3 and fixed to the moving body. The pickup unit 2 includes an E-shaped core 5, A secondary coil 7 for power reception is provided which is wound around the central leg 5a and connected to a load (not shown).

ここで、給電部1における給電線3とコア5との間に形成された隙間gは、ピックアップユニット2が移動する時に、コア5のX方向の位置が変動しても給電線3とコア5とが接触しないようにするために設けられている。かかる給電部1は、給電線3を流れる高周波電流によりコア5には同図に矢印で示すような磁束の向きの磁気回路が形成され、この磁気回路に基づき二次コイル7に電流が誘起されて負荷(図示せず)に電力を給電線3から無接触により給電するものである。   Here, the gap g formed between the power supply line 3 and the core 5 in the power supply unit 1 is not limited even when the position of the core 5 in the X direction varies when the pickup unit 2 moves. Is provided to prevent contact with the In the power feeding unit 1, a magnetic circuit having a magnetic flux direction as indicated by an arrow in the figure is formed in the core 5 by a high-frequency current flowing through the power feeding line 3, and a current is induced in the secondary coil 7 based on the magnetic circuit. Then, electric power is supplied to the load (not shown) from the power supply line 3 without contact.

特開平05−207606号公報Japanese Patent Laid-Open No. 05-207606

しかしながら、上記のように構成された非接触給電装置はピックアップユニット2の移動に伴い、給電線3の弛みなどのために、図4に示すY方向に給電線3とコア5との相対位置がa〜bの範囲で変動し、例えば、該位置変動は最大50mmとなる(実測値)。給電線3と二次コイル7との相互インダクタンスMは、二次コイル7の巻回数を9回として電線直径を4mm、二次コイル7の長さLを36mmとすると、位置aで30μHから位置bで18μHと60%に減少する(実測値)。なお、給電線3の直径は9mm、隙間gは20mmである。一方、二次コイル7の自己インダクタンスL2は一定値である。従って、二次側の負荷への供給電力が相互インダクタンスMの2乗に比例して約36%変動するので、一定の電力を負荷に供給できないという問題点があった。   However, in the non-contact power feeding device configured as described above, the relative position of the power feeding line 3 and the core 5 in the Y direction shown in FIG. It fluctuates in the range of a to b, for example, the position fluctuation is 50 mm at the maximum (actual measurement value). The mutual inductance M between the feeder 3 and the secondary coil 7 is a position from 30 μH at position a, assuming that the number of turns of the secondary coil 7 is 9, the wire diameter is 4 mm, and the length L of the secondary coil 7 is 36 mm. b decreases to 18 μH and 60% (actual value). The diameter of the feeder 3 is 9 mm, and the gap g is 20 mm. On the other hand, the self-inductance L2 of the secondary coil 7 is a constant value. Therefore, since the power supplied to the secondary load fluctuates by about 36% in proportion to the square of the mutual inductance M, there is a problem that a constant power cannot be supplied to the load.

かかる課題を解決するのに、給電線3と二次コイル7との電磁的な結合度が変化しないように、コア5の中央部5aに二次コイル7を形成する電線を多数巻回する手段がある。しかしながら、二次コイル7を多数巻回し過ぎると、二次コイル7の自己インダクタンスL2が巻数の2乗に比例して増加し、二次側負荷電流は二次コイル7の巻数に反比例すると共に、自己インダクタンスL2に反比例して減少する。よって、二次コイル7の巻回数を増加し過ぎると、負荷への供給電力が低下するので、適切でない。これを数式により示せば下記となる。   In order to solve this problem, means for winding a number of wires forming the secondary coil 7 around the central portion 5a of the core 5 so that the electromagnetic coupling degree between the feeder 3 and the secondary coil 7 does not change. There is. However, if the secondary coil 7 is wound too many times, the self-inductance L2 of the secondary coil 7 increases in proportion to the square of the number of turns, and the secondary side load current is inversely proportional to the number of turns of the secondary coil 7. It decreases in inverse proportion to the self-inductance L2. Therefore, if the number of turns of the secondary coil 7 is increased too much, the power supplied to the load is lowered, which is not appropriate. This can be shown by the following mathematical formula.

即ち、非接触給電装置の等価回路を図5に示し、この等価回路より下記の回路方程式を得る。
SM(i1−i2)= S(L2−M)i2+Vc1・・・・・(1)
Vc1=(i2−i3)/SC1= i3×R・・・・・・・(2)
1=i0/n・・・・・・・・(3)
ここに、S:ラプラス演算子、 i0:一次側電流(A)、i1:二次側換算の一次側電流(A)、i2:二次側電流値(A)、i3:二次側負荷電流値(A)、 R:負荷の抵抗値(Ω)、n:巻数比、C1:共振コンデンサの静電容量(F)、Vc1:コンデンサ電圧(V)。
上記(1),(2)式より、
SMi1= SL22+ i3×R・・・・・・・・(4)
上記(2)式より、
2=(1+SC1R) i3・・・・・・・・(5)
(5)式を(4)式に代入してまとめると、
i3/ i1= SM/(S21RL2+ SL2+ R)・・(6)
ここで、二次側回路のL2とC1とが共振状態であると、
S212+1=0・・・・(7)
ここで、(7)式を(6)式に代入すると、二次側負荷電流i3は下式となる。
3=(M× i1)/ L2=(M× i0)/( L2×n)・・・・(8)
よって、負荷Rの負荷電力Wは下式となる。
W= i3 2×R・・・・(9)
That is, an equivalent circuit of the non-contact power feeding apparatus is shown in FIG. 5, and the following circuit equation is obtained from this equivalent circuit.
SM (i 1 -i 2) = S (L 2 -M) i 2 + Vc1 ····· (1)
Vc1 = (i 2 -i 3) / SC 1 = i 3 × R ······· (2)
i 1 = i 0 / n (3)
Here, S: Laplace operator, i 0 : primary side current (A), i 1 : secondary side converted primary side current (A), i 2 : secondary side current value (A), i 3 : two Secondary load current value (A), R: resistance value (Ω) of load, n: turn ratio, C 1 : capacitance of resonant capacitor (F), Vc1: capacitor voltage (V).
From the above formulas (1) and (2),
SMi 1 = SL 2 i 2 + i 3 × R (4)
From the above equation (2),
i 2 = (1 + SC 1 R) i 3 (5)
Substituting equation (5) into equation (4)
i3 / i1 = SM / (S 2 C 1 RL 2 + SL 2 + R) ·· (6)
Here, when L 2 and C 1 of the secondary side circuit are in a resonance state,
S 2 C 1 L 2 + 1 = 0 ···· (7)
Here, when the equation (7) is substituted into the equation (6), the secondary side load current i 3 becomes the following equation.
i 3 = (M × i 1 ) / L 2 = (M × i 0 ) / (L 2 × n) (8)
Therefore, the load power W of the load R is represented by the following formula.
W = i 3 2 × R (9)

負荷電力Wは上記(8),(9)式より二次コイル7の巻回数、相互インダクタンス等により変化する。これを前記条件(給電線3の直径9mm,隙間gを20mm,二次コイル7の電線直径4mm)にて、二次コイル7の巻回数と出力電力比との比を実験により確認すると、図6に示す曲線を得る。図6から明らかのように巻数を巻回しすぎると、負荷に供給される電力が低下する。   The load power W varies depending on the number of turns of the secondary coil 7, the mutual inductance, and the like from the above equations (8) and (9). When the ratio between the number of turns of the secondary coil 7 and the output power ratio is confirmed by experiment under the above conditions (the diameter of the feeder 3 is 9 mm, the gap g is 20 mm, and the diameter of the secondary coil 7 is 4 mm), The curve shown in 6 is obtained. As is apparent from FIG. 6, when the number of turns is excessive, the power supplied to the load decreases.

また、図7(a)に示すように二次側の供給電力の増加を図るために、複数のピックアップユニット2を用いて給電部10を構成する場合、限られたスペースに設置するために、ピックアップユニット2どおしを近接して配置するのが一般である。かかる構成において、二次コイル7に電流が図7(b)の方向に流れる
と、反時計回りの磁束φ1と、時計回りの磁束φ2が発生し、二つのコア5間に給電線3の中央部3aに磁束φ1、φ2が加算するように鎖交する。該磁束φ1、φ2により給電線3の中央部3aに渦電流が流れて鉄損が生じ、該中央部3aの温度を上昇が高くなり、給電線3の抵抗値が増加して二次側負荷電力が低下するという問題点があった。
In addition, in order to increase the supply power on the secondary side as shown in FIG. 7A, when the power feeding unit 10 is configured using a plurality of pickup units 2, in order to install in a limited space, Generally, the pickup units 2 are arranged close to each other. In such a configuration, when a current flows through the secondary coil 7 in the direction of FIG. 7B, a counterclockwise magnetic flux φ1 and a clockwise magnetic flux φ2 are generated, and the center of the feeder 3 is between the two cores 5. The parts 3a are linked so that magnetic fluxes φ1 and φ2 are added. The magnetic fluxes φ1 and φ2 cause eddy currents to flow through the central portion 3a of the power supply line 3, causing iron loss, increasing the temperature of the central portion 3a, increasing the resistance value of the power supply line 3, and increasing the load on the secondary side. There was a problem that electric power decreased.

この発明は、上記課題を解決するためになされたもので、二次側の供給電力を効率良く抽出し得る非接触給電装置を提供するものである。   This invention was made in order to solve the said subject, and provides the non-contact electric power feeder which can extract the power supply of a secondary side efficiently.

第1の発明に係る非接触給電装置は、移動体が走行する走行路に沿うと共に、所定の弛みを有するように架線した交流電流を流す給電線と、上記移動体には、上記給電線から電磁誘導作用を生じるためのコア及びコイルを有すると共に、上記給電線に対して並設して負荷に電力を供給する少なくとも第1及び第2のピックアップユニットと、を備え、
上記コアは、側面部付近に、上記コイルを巻回するのに用いる少なくとも二つの溝状の切り欠き部を有し、上記コアの側面部を上記ピックアップユニットの磁気遮蔽として使用するようにしたものである。
A non-contact power supply device according to a first aspect of the present invention includes a power supply line that passes an alternating current that is along a traveling path along which the mobile body travels and has a predetermined slack, and the mobile body from the power supply line. Including a core and a coil for generating an electromagnetic induction effect, and at least first and second pickup units that are arranged in parallel to the power supply line and supply power to a load ,
The core is in the vicinity of the side surface portion which has at least two groove-like notches used to wind the coil, and the side portion of the core so as to use as a magnetic shield of the pickup unit It is.

の発明に係る非接触給電装置は、移動体が走行する走行路に沿うと共に、所定の弛みを有するように架線した交流電流を流す給電線と、上記移動体には、上記給電線から電磁誘導作用を生じるためのコア及びコイルを有すると共に、上記給電線に対して並設して負荷に電力を供給する少なくとも第1及び第2のピックアップユニットと、上記第1のピックアップユニットと上記第2のピックアップユニットとの対向側の上記コイル端部に設けられると共に、上記コイルに電流が流れて発生する磁束が上記コアを介して通過する磁性体部材と、を備えたものである。 A non-contact power feeding device according to a second aspect of the present invention includes a power feeding line that passes an alternating current that is along a traveling path along which the mobile body travels and has a predetermined slack, and the mobile body from the power feeding line. At least first and second pickup units that have a core and a coil for generating an electromagnetic induction effect and supply power to a load in parallel with the feeder line, the first pickup unit, and the first together provided the coil end portion of the opposite side of the second pickup unit, the magnetic flux generated by current flowing in the coil is that and a magnetic member which passes through the core.

第1の発明によれば、コアは、側面部付近に、コイルを巻回するのに用いる少なくとも二つの溝状の切り欠き部を有し、コアの側面部をピックアップユニットの磁気遮蔽として使用するようにしたので、給電線とコイルと鎖交する磁束が減少して給電線に生ずる温度上昇を抑え、給電効率を向上できるという効果がある。 According to the first invention, the core has at least two groove-shaped notches used for winding the coil near the side surface, and the side surface of the core is used as a magnetic shield for the pickup unit. since the way, reduce the temperature rise occurring feed line feed line and coil magnetic flux interlinking decreases, there is an effect that can be improved feed efficiency.

の発明によれば、第1のピックアップユニットと第2のピックアップユニットとの対向側のコイル端部に設けられると共に、コイルに電流が流れて発生する磁束がコアを介して通過する磁性体部材を設けたので、給電線とコイルと鎖交する磁束が減少して給電線に生ずる温度上昇を抑え、給電効率を向上できるという効果がある。 According to the second invention, the magnetic body is provided at the coil end portion on the opposite side of the first pickup unit and the second pickup unit, and the magnetic flux generated by the current flowing through the coil passes through the core. Since the member is provided, there is an effect that the magnetic flux interlinking with the power supply line and the coil can be reduced to suppress the temperature rise generated in the power supply line and to improve the power supply efficiency.

実施の形態1.
この発明の実施の形態1を図1によって説明する。図1は、この発明の実施の形態1によるコアの中央部に二次コイルを巻回した断面図、図2は図1に示す二次コイルを有するピックアップユニットを二つ近接配置した側面図である。図1及び図2において、給電部300を構成するピックアップユニット202は、略E型形状のコア105を有しており、コア105の中央部105aには、二つの溝状の切り欠き105eを設け、この切り欠き105eに電線が9回巻回されて二次コイル7が形成されており、中央部105aの側面部105cがピックアップユニット202の磁気遮蔽として作用するように形成されている。ここで、切り欠き105eの幅と深さは、二次コイル7を挿入できる空間があれば足り、特に、幅ができるだけ短い方が磁気遮蔽としての作用をより奏する。
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described with reference to FIG. 1 is a cross-sectional view in which a secondary coil is wound around the center of a core according to Embodiment 1 of the present invention, and FIG. 2 is a side view in which two pickup units each having the secondary coil shown in FIG. is there. 1 and 2, the pickup unit 202 constituting the power feeding unit 300 has a substantially E-shaped core 105, and two groove-shaped notches 105e are provided in the central portion 105a of the core 105. The secondary coil 7 is formed by winding the electric wire around the notch 105e nine times, and the side surface portion 105c of the central portion 105a is formed to act as a magnetic shield for the pickup unit 202. Here, the width and the depth of the notch 105e are sufficient if there is a space in which the secondary coil 7 can be inserted, and in particular, the one having the smallest possible width provides more magnetic shielding.

上記のように構成された非接触給電装置の給電部300の動作を図1及び図2によって説明する。
いま、二つのピックアップユニット202を併設した状態において、二次コイル107に電流が図2に示す方向に流れると、矢印のようにコア105の側面部105cに磁束Φ1と磁束Φ2とが流れるが、磁束Φ1は、ピックアップユニット202のコア105の側面部105c→中央部105a→切り欠き105eの経路で流れる。一方、磁束Φ2は、同様にピックアップユニット212のコア105の側面部105c→中央部105a→切り欠き105eの経路で流れる。よって、磁束Φ1,Φ2は、各ピックアップユニット202のコア105内を流れて、給電線3の中央部3aにほとんど鎖交しなくなるので、給電線3の中央部3aに渦電流が流れにくくなり鉄損が減少する。従って、複数のピックアップユニット202が近接配置されても、給電線3の中央部3aの磁束Φ1,Φ2による温度上昇を抑えることができる。これを実験により確認すると、ピックアップユニット202どうしの間隔を30mmにして、給電線3に周波数15Kzの80Aの電流を流して二次コイル107の負荷に30Aを流して、給電線3の中央部3aの表面における飽和温度を測定すると、従来、151℃上昇していたものが、上記ピックアップユニット202の構成によれば、49℃の温度上昇に留まることが確認できたのである。
The operation of the power feeding unit 300 of the non-contact power feeding device configured as described above will be described with reference to FIGS. 1 and 2.
Now, when two pickup units 202 are provided side by side, when a current flows through the secondary coil 107 in the direction shown in FIG. 2, magnetic fluxes Φ1 and Φ2 flow through the side surface portion 105c of the core 105 as indicated by arrows. The magnetic flux Φ1 flows along the path of the side surface portion 105c → the central portion 105a → the notch 105e of the core 105 of the pickup unit 202. On the other hand, the magnetic flux Φ2 similarly flows through the path of the side surface portion 105c → the central portion 105a → the notch 105e of the core 105 of the pickup unit 212. Therefore, since the magnetic fluxes Φ1 and Φ2 flow in the core 105 of each pickup unit 202 and hardly interlink with the central portion 3a of the feeder line 3, eddy currents hardly flow through the central portion 3a of the feeder line 3 and iron. Loss is reduced. Therefore, even if the plurality of pickup units 202 are arranged close to each other, the temperature rise due to the magnetic fluxes Φ1 and Φ2 in the central portion 3a of the feeder line 3 can be suppressed. When this is confirmed by an experiment, the interval between the pickup units 202 is set to 30 mm, a current of 80 A having a frequency of 15 Kz is supplied to the power supply line 3, and 30 A is supplied to the load of the secondary coil 107. As a result of measuring the saturation temperature on the surface, it has been confirmed that the conventional rise in temperature of 151 ° C., however, is only 49 ° C. according to the configuration of the pickup unit 202.

なお、二次コイル7を予め非磁性体の筒型ボビンに巻き、これを図1に示すコア105の切り欠き105eに係合させて、コア105の中央部105aに固定してもほぼ同様の作用を奏する。   It should be noted that the secondary coil 7 is wound around a non-magnetic cylindrical bobbin in advance and engaged with the notch 105e of the core 105 shown in FIG. Has an effect.

また、図3に示すように二つのピックアップユニット2の内側側面部に磁性体から成る二枚の遮蔽板301を、各二次コイル7と当接して配置することにより、各二次コイル7に発生する磁束φ1、φ2は図3(b)に示すように遮蔽板301の内部を通るので、二つのピックアップユニット2を接近させても給電線3の
発生損失を抑えて温度上昇を抑制することができる。また、上記実施の形態によるE型コアには、U型コアを二つ用いてE型形状にしても良い。
Also, as shown in FIG. 3, two shield plates 301 made of a magnetic material are disposed in contact with the secondary coils 7 on the inner side surface portions of the two pickup units 2, so that Since the generated magnetic fluxes φ1 and φ2 pass through the inside of the shielding plate 301 as shown in FIG. 3B, even if the two pickup units 2 are brought close to each other, the generated loss of the feeder 3 is suppressed and the temperature rise is suppressed. Can do. Further, the E-shaped core according to the above embodiment may be formed into an E-shaped shape by using two U-shaped cores.

以上のように、この発明の非接触給電装置は二次側の供給電力を効率良く抽出し得るので、天井に架設された案内レールに沿って走行し、工場あるいは倉庫内のステーション間において荷の搬送作業をするモノレール式の搬送装置(移動体)として有用である。   As described above, the non-contact power feeding device of the present invention can efficiently extract the power supplied on the secondary side, so that it travels along the guide rail installed on the ceiling and loads between the stations in the factory or warehouse. It is useful as a monorail transport device (moving body) that performs transport work.

この発明の実施の形態1によるコアの中央部にコイルを巻き回した断面図である。It is sectional drawing which wound the coil around the center part of the core by Embodiment 1 of this invention. 図2に示すピックアップユニットを二つ近接配置した側面図である。FIG. 3 is a side view in which two pickup units shown in FIG. 2 are arranged close to each other. コイルの側面に磁性体板を設けた断面図(a)、コイルの磁束の流れを示す磁気回路の説明図(b)である。It is sectional drawing (a) which provided the magnetic body board in the side surface of a coil, and explanatory drawing (b) of the magnetic circuit which shows the flow of the magnetic flux of a coil. 従来の給電部の正面図である。It is a front view of the conventional electric power feeding part. 非接触給電装置の等価回路図である。It is an equivalent circuit diagram of a non-contact power feeding device. ピックアップユニットにおけるコイルの巻数と負荷に供給される出力電力比の曲線である。It is a curve of the number of turns of the coil in a pickup unit, and the output power ratio supplied to load. 図4に示すピックアップユニットを二つ近接配置した斜視図(a)、コイルの磁束の流れを示す磁気回路の説明図(b)である。FIG. 5A is a perspective view in which two pickup units shown in FIG. 4 are arranged close to each other, and FIG. 5B is an explanatory diagram of a magnetic circuit showing the flow of magnetic flux in a coil.

符号の説明Explanation of symbols

2,202 ピックアップユニット、 3 給電線、 5,105 コア、 5a,105a 中央部、 5c,105c 側面部、 7,107 二次コイル(コイル)、 105e 切り欠き、 301 磁性体部材。   2,202 pickup unit, 3 feeder line, 5,105 core, 5a, 105a central part, 5c, 105c side face part, 7,107 secondary coil (coil), 105e notch, 301 magnetic body member.

Claims (2)

移動体が走行する走行路に沿うと共に、所定の弛みを有するように架線した交流電流を流す給電線と、
上記移動体には、上記給電線から電磁誘導作用を生じるためのコア及びコイルを有すると共に、上記給電線に対して並設して負荷に電力を供給する少なくとも第1及び第2のピックアップユニットと、を備え、
上記コアは、側面部付近に、上記コイルを巻回するのに用いる少なくとも二つの溝状の切り欠き部を有し、上記コアの側面部を上記ピックアップユニットの磁気遮蔽として使用するようにしたことを特徴とする非接触給電装置。
A power supply line for passing an alternating current along a traveling path along which the mobile body travels and having a predetermined slack,
The moving body has a core and a coil for generating an electromagnetic induction action from the power supply line, and at least first and second pickup units that are arranged in parallel to the power supply line and supply power to a load. , equipped with a,
The core has at least two groove-shaped notches used for winding the coil near the side surface, and the side surface of the core is used as a magnetic shield for the pickup unit. The non-contact electric power feeder characterized by this.
移動体が走行する走行路に沿うと共に、所定の弛みを有するように架線した交流電流を流す給電線と、A power supply line for passing an alternating current along a traveling path along which the mobile body travels and having a predetermined slack,
上記移動体には、上記給電線から電磁誘導作用を生じるためのコア及びコイルを有すると共に、上記給電線に対して並設して負荷に電力を供給する少なくとも第1及び第2のピックアップユニットと、The moving body has a core and a coil for generating an electromagnetic induction action from the power supply line, and at least first and second pickup units that are arranged in parallel to the power supply line and supply power to a load. ,
上記第1のピックアップユニットと上記第2のピックアップユニットとの対向側の上記コイル端部に設けられると共に、上記コイルに電流が流れて発生する磁束が上記コアを介して通過する磁性体部材と、A magnetic member that is provided at the coil end on the opposite side of the first pickup unit and the second pickup unit, and through which the magnetic flux generated by the current flowing through the coil passes through the core;
を備えたことを特徴とする非接触給電装置。A non-contact power feeding device comprising:
JP2005139885A 2000-02-17 2005-05-12 Contactless power supply Expired - Fee Related JP4165523B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000039445A JP3740930B2 (en) 2000-02-17 2000-02-17 Non-contact power feeding device
JP2005139885A JP4165523B2 (en) 2000-02-17 2005-05-12 Contactless power supply

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000039445A JP3740930B2 (en) 2000-02-17 2000-02-17 Non-contact power feeding device
JP2005139885A JP4165523B2 (en) 2000-02-17 2005-05-12 Contactless power supply

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000039445A Division JP3740930B2 (en) 2000-02-17 2000-02-17 Non-contact power feeding device

Publications (2)

Publication Number Publication Date
JP2005261200A JP2005261200A (en) 2005-09-22
JP4165523B2 true JP4165523B2 (en) 2008-10-15

Family

ID=50779163

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2000039445A Expired - Fee Related JP3740930B2 (en) 2000-02-17 2000-02-17 Non-contact power feeding device
JP2005139885A Expired - Fee Related JP4165523B2 (en) 2000-02-17 2005-05-12 Contactless power supply

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2000039445A Expired - Fee Related JP3740930B2 (en) 2000-02-17 2000-02-17 Non-contact power feeding device

Country Status (1)

Country Link
JP (2) JP3740930B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102076518B (en) 2008-07-04 2013-06-26 村田机械株式会社 Traveling vehicle system
KR101332792B1 (en) * 2011-05-23 2013-11-25 한국과학기술원 Power Supply Method, Apparatus and Power Transmission Apparatus by Segmentation of Feeding Line
JP5857204B2 (en) * 2011-11-24 2016-02-10 パナソニックIpマネジメント株式会社 Non-contact power feeding device
WO2016048008A1 (en) * 2014-09-25 2016-03-31 한국과학기술원 Wide area omni-directional wireless power transmission device

Also Published As

Publication number Publication date
JP2005261200A (en) 2005-09-22
JP2001225675A (en) 2001-08-21
JP3740930B2 (en) 2006-02-01

Similar Documents

Publication Publication Date Title
CA2215291C (en) Arrangement for contactless inductive transmission of electrical power
KR100372174B1 (en) Direct type contactless feeding device
KR20170080497A (en) Device for the Contact-Free Transfer of Electrical Energy into a Moving System of a Shifting Device
JP6726159B2 (en) Mobile power coupling and robot with mobile power coupling
JP2008539584A (en) Inductively coupled power transfer system
JP5646688B2 (en) Contactless power supply system
EP0901136B1 (en) Inductance device with gap
JP4165523B2 (en) Contactless power supply
US10068695B2 (en) Transformer
JP2022137082A (en) Magnetic component, resonant electrical circuit, electrical converter, and electrical system
JP2001268823A (en) Non-contact feeder system
US11749439B2 (en) Common mode choke coil
JP5255881B2 (en) Non-contact power feeding device
JP5857204B2 (en) Non-contact power feeding device
US10381151B2 (en) Transformer using coupling coil
US2359102A (en) Wound core reactor
EP3572846B1 (en) High power transformer and transmitter for geophysical measurements
JP2017092071A (en) Inductance element and evaluation method for inductance element
JPS5823723B2 (en) Contactless power supply device
JP2022513865A (en) Method for forming a conductor arrangement for inductive power transmission, an inductive power transmission device, and a conductor arrangement for inductive power transmission.
CN112313764B (en) Common mode choke coil
US20230170130A1 (en) Inductor and a method of providing an inductor
CN107452480B (en) A kind of adjustable transformer
SU1714700A1 (en) Biased three-phase transformer
JP2002067746A (en) Feeder system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080721

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees