JP3595637B2 - Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus - Google Patents

Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus Download PDF

Info

Publication number
JP3595637B2
JP3595637B2 JP33363096A JP33363096A JP3595637B2 JP 3595637 B2 JP3595637 B2 JP 3595637B2 JP 33363096 A JP33363096 A JP 33363096A JP 33363096 A JP33363096 A JP 33363096A JP 3595637 B2 JP3595637 B2 JP 3595637B2
Authority
JP
Japan
Prior art keywords
substituted
group
electrophotographic
unsubstituted
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33363096A
Other languages
Japanese (ja)
Other versions
JPH10171138A (en
Inventor
浩一 中田
哲郎 金丸
孝和 田中
憲裕 菊地
光弘 國枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP33363096A priority Critical patent/JP3595637B2/en
Publication of JPH10171138A publication Critical patent/JPH10171138A/en
Application granted granted Critical
Publication of JP3595637B2 publication Critical patent/JP3595637B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電子写真感光体、プロセスカートリッジ及び電子写真装置に関し、詳しくは改善された電子写真特性を与える低分子の有機光導電性化合物を有する電子写真感光体、及び該電子写真感光体を有するプロセスカートリッジ及び電子写真装置に関するものである。
【0002】
【従来の技術】
従来、電子写真感光体としてはセレン、酸化亜鉛及びカドミウム等を主成分とする感光層を有する無機感光体が広く用いられてきた。これらはある程度の基礎特性は備えてはいるが、成膜が困難である、可塑性が悪い、及び製造コストが高い等の問題がある。更に、無機光導電性材料は一般的に毒性が強く、製造上並びに取り扱い上にも大きな制約があった。
【0003】
一方、有機光導電性化合物を主成分とする有機感光体は、無機感光体の上記欠点を補う等多くの利点を有し近年注目を集めており、これまで数多くの提案がされいくつかは実用化されてきている。
【0004】
このような有機感光体としては、ポリ−N−ビニルカルバゾールに代表される光導電性ポリマー等と、2,4,7−トリニトロ−9−フルオレノン等のルイス酸とから形成される電荷移動錯体を主成分とする電子写真感光体が提案されている。これらの有機光導電性ポリマーは、無機光導電性ポリマーに比べ軽量性及び成膜性等の点では優れているが、感度、耐久性、及び環境変化による安定性等の面で無機光導電性材料に比べて劣っており、必ずしも満足できるものではない。
【0005】
一方、電荷発生機能と電荷輸送機能とをそれぞれ別々の物質に分担させた機能分離型電子写真感光体が、従来の有機感光体の欠点とされていた感度や耐久性に著しい改善をもたらした。このような機能分離型感光体は、電荷発生物質と電荷輸送物質の各々の材料選択範囲が広く、任意の特性を有する電子写真感光体を比較的容易に作成できるという利点を有している。
【0006】
電荷発生物質としては、種々のフタロシアニン顔料、アゾ顔料、多環キノン顔料、シアニン色素、スクエアリック酸染料及びピリリウム塩系色素等が知られている。特に近年、その中でもフタロシアニン顔料は耐光性が強い、電荷発生能力が大きい、及び材料合成が容易等の点から多くの構造と結晶形が提唱されている。
【0007】
一方、電荷輸送物質としては、例えば特公昭52−4188号公報のピラゾリン化合物、特公昭55−42380号公報及び特開昭55−52063号公報のヒドラゾン化合物、特公昭58−32372号公報及び特開昭61−132955号公報及び特開平3−114058号公報のトリフェニルアミン化合物、及び特開昭54−151955号公報及び特開昭58−198043号公報のスチルベン化合物等が知られている。
【0008】
また、電子写真感光体に含有されるスチリルケトン化合物としては、特開昭60−131539,特開昭62−283344,特開昭63−24261,特開昭63−108341,特開昭63−158561,特開昭63−163362,特開昭63−163364,特開平2−111959,特開平2−259652,特開平2−271361,特開平3−12657,特開平4−81859,特開平4−27956及び特開平4−240858号等の公報に先行技術が知られている。
【0009】
これらの電子写真感光体に要求されることは、(1)光及び熱に対して安定であること(2)コロナ放電により発生するオゾン、NOx及び硝酸等に対して安定であること(3)高い電子写真感度を有すること(4)有機溶剤及び結着剤との相溶性が高いこと(5)製造が容易で安価であること等が挙げられる。
【0010】
また、近年の更なる高耐久化に伴い、耐久性向上のために感光層上に保護層を設けたり、複写機やレーザービームプリンター等で感光体を長期保存すること等により、電荷輸送層にクラックが生じたり、電荷輸送物質が結晶化、また相分離するという現象が生じ画像欠陥となることがある。
【0011】
また、近年のデジタル化に対応した反転現像系では、一次帯電と転写帯電が逆極性なため、転写の有無により帯電性が異なるいわゆる転写メモリーが生じ、画像上濃度むらとして非常に現れ易くなっている。
【0012】
また、近年の高感度化された電子写真感光体においては、外部からのモレ光等により明部と暗部の帯電性が異なる、いわゆるフォトメモリーが発生し、これも画像上に濃度むらとして非常に現れ易くなっている。
【0013】
【発明が解決しようとする課題】
しかし、従来の電子写真感光体では、上記の問題点や要求を一部は満足するが全てを高いレベルで満足するものは未だない。
【0014】
本発明の目的は、先に述べた電子写真感光体に要求される特性を十分満足した有機導電性化合物を提供することにより従来の感光体の持つ種々の欠点を解消することである。
【0015】
即ち、第一に大きな感度を有し、しかも繰り返し使用時の電位が安定に維持できる電子写真感光体を提供することにある。
【0016】
第二に感光層上に保護層を設けたり、複写機やレーザービームプリンター等で感光体を長期保存しても電荷輸送層にクラックが生じたり、電荷輸送物質の結晶化等が生じない電子写真感光体を提供することにある。
【0017】
第三に反転現像系でも転写メモリーが生じにくい電子写真感光体を提供することにある。
【0018】
第四に耐光性があり、フォトメモリーが生じにくい電子写真感光体を提供することにある。
【0019】
第五に上記該電子写真感光体を有するプロセスカートリッジ及び電子写真装置を提供することにある。
【0020】
【課題を解決するための手段】
本発明者らは、前述の目的を達成するために、種々の組み合せについて検討を重ねた結果、特定の構造を有する電荷発生物質と特定の構造を有する化合物を組み合せた場合にこれらの諸問題を解決することができることを見い出した。
【0021】
即ち、本発明は、導電性支持体上に電荷発生層と電荷輸送層を有する電子写真感光体において、該電荷発生層がオキシチタニウムフタロシアニンを含有し、該電荷輸送層が下記一般式[2]で表され、かつ分子中に置換アミノ基を有するスチリルケトン化合物を少なくとも一種類含有することを特徴とする電子写真感光体である。
【0022】
一般式[2]
【0023】
【化

Figure 0003595637
(式中、Arは置換もしくは無置換のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換のアリール基または置換もしくは無置換のアラルキル基を示し、R8は水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換のアリール基または置換もしくは無置換のアラルキル基を示し、またR8とArは共同して環を形成してもよい。R9からR13は水素原子、ハロゲン原子、ニトロ基、水酸基、シアノ基、置換アミノ基、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基または置換もしくは無置換のアラルキル基を示し、またR9とR10、R10とR11、R11とR12及びR12とR13は共同で環を形成してもよい。
【0024】
また、本発明は、上記電子写真感光体、帯電手段、現像手段及びクリーニング手段からなる群より選ばれた少なくともひとつの手段を一体に支持し、電子写真装置本体に着脱自在であることを特徴とするプロセスカートリッジである。
【0025】
また、本発明は、上記電子写真感光体、帯電手段、像露光手段、現像手段及び転写手段を有することを特徴とする電子写真装置である。
【0026】
【発明の実施の形態】
一般式[2]において、ハロゲン原子としてはフッ素、塩素、臭素及びヨウ素等の原子、アルキル基としては、メチル、エチル、プロピル及びブチル等の基が挙げられ、シクロアルキル基としては、シクロペンチル及びシクロヘキシル等の基が挙げられ、アリール基としてはフェニル、ジフェニル、ナフチル、アンスリル及びピレニル等の基が挙げられ、アラルキル基としては、ベンジル及びフェネチル等の基が挙げられ、置換アミノ基としては、ジエチルアミノ及びジフェニルアミノ等の基が挙げられる。
【0027】
置換基としては、例えばメチル、エチル及びプロピル等のアルキル基、メトキシ、エトキシ及びプロポキシ等のアルコキシ基、フェニル、ジフェニル、ナフチル、アンスリル及びピレニル等のアリール基、ベンジル及びフェネチル等のアラルキル基、フッ素原子、塩素原子、臭素原子及びヨウ素原子等のハロゲン原子、またはニトロ基、水酸基、シアノ基、及びジエチルアミノ及びジフェニルアミノ等の置換アミノ基等が挙げられる。
【0028】
以下にスチリルケトン化合物の具体例を挙げる。以下の化合物No.(21)〜(30)及びNo.(32)〜(38)が前記一般式[2]に含まれる例示化合物である。ただし、これらの具体例に限定されるものではない。
なお、以下の化合物No.(1)、(2)、(4)〜(20)及びNo.(31)は前記一般式[2]に含まれない参考化合物である。
【0029】
例示化合物
【0030】
【化3】
Figure 0003595637
【0031】
【化
Figure 0003595637
【0032】
【化5】
Figure 0003595637
【0033】
【化
Figure 0003595637
【0034】
【化
Figure 0003595637
【0035】
【化
Figure 0003595637
【0036】
【化
Figure 0003595637
【0037】
【化10
Figure 0003595637
【0038】
【化11
Figure 0003595637
【0039】
【化12】
Figure 0003595637
【0040】
発明の電子写真感光体の感光層の構成としては、以下の形態が挙げられる。
(1)電荷発生層/電荷輸送層(下層/上層)
(2)電荷発生層/電荷輸送層(下層/上層)
発明の一般式[]で示されるスチリルケトン構造を持つ化合物は、電荷輸送層に対して添加することにより様々な問題点を改良する効果を有するため、上記形態の電荷輸送層における添加材として用いることができる。また、このスチリルケトン化合物は正孔に対し高い輸送能力を有するため、上記形態の電荷輸送層における問題点を改良する効果と電荷輸送物質としての効果を合わせ持つ材料として用いることができる。感光層の形態が、
(1)の場合、一次帯電の極性は負、(2)の場合は正であることが好ましい
【0041】
更に、本発明の電子写真感光体は、耐久性や接着性の向上あるいは電荷注入の制御のために、感光層の表面に保護層を設けたり感光層と導電性支持体の間に下引層を設けてもよい。なお、本発明の感光体の構成は上記の基本構成に限定されるものではない。
【0042】
本発明においては上記の構成のうち特に(1)の形態が好ましく、以下に更に詳細に説明する。
【0043】
本発明における導電性支持体としては、例えば以下のものを挙げることができる。
(1)アルミニウム、アルミニウム合金、ステンレス及び銅等の金属や合金を板形状またはドラム形状にしたもの。
(2)ガラス、樹脂及び紙等の非導電性支持体や前記(1)の導電性支持体上にアルミニウム、アルミニウム合金、パラジウム、ロジウム、金及び白金等の金属や合金を蒸着もしくはラミネートすることにより薄層を形成したもの。
(3)ガラス、樹脂及び紙等の非導電性支持体や前記(1)の導電性支持体上に導電性高分子、酸化スズ及び酸化インジウム等の導電性化合物を含有する層を蒸着あるいは塗布することにより形成したもの。
【0044】
本発明に用いることのできる電荷発生物質としては、少なくともオキシチタニウムフタロシアニンを含有し、更にその結晶形として、CuKαのX線回折におけるブラッグ角2θ±0.2°が9.0°、14.2°、23.9°及び27.1°に強いピークを有する結晶形のオキシチタニウムフタロシアニンと組み合せたときが最も効果的である。更に、以下に示すような物質を2種類以上組み合せて使用してもよい。
(1)モノアゾ、ビスアゾ及びトリスアゾ等のアゾ系顔料(2)インジゴ及びチオインジゴ等のインジゴ系顔料(3)ペリレン酸無水物及びペリレン酸イミド等のペリレン系顔料(4)アンスラキノン及びピレンキノン等の多環キノン系顔料(5)スクワリリウム色素(6)ピリリウム塩及びチオピリリウム塩類(7)トリフェニルメタン系色素(8)セレン及び非晶質シリコン等の無機物質電荷発生物質を含有する層、即ち電荷発生層は前記のような電荷発生物質を適当な結着剤に分散し、これを導電性支持体上に塗工することにより形成することができる。また、本発明のスチリルケトン化合物を電荷発生層に含有してもよい。また、導電性支持体上に蒸着、スパッタあるいはCVD等の乾式法で薄膜を形成することによっても形成することができる。
【0045】
上記結着剤としては広範囲な結着性樹脂から選択でき、例えば、ポリカーボネート樹脂、ポリエステル樹脂、ポリアリレート樹脂、ブチラール樹脂、ポリスチレン樹脂、ポリビニルアセタール樹脂、ジアリルフタレート樹脂、アクリル樹脂、メタクリル樹脂、酢酸ビニル樹脂、フェノール樹脂、シリコン樹脂、ポリスルホン樹脂、スチレン−ブタジエン共重合体樹脂、アルキッド樹脂、エポキシ樹脂、尿素樹脂及び塩化ビニル−酢酸ビニル共重合体樹脂等が挙げられるが、これらに限定されるものではない。これらは単独、混合あるいは共重合体ポリマーとして1種または2種以上用いることができる。
【0046】
電荷発生層中の樹脂の割合は、層の全重量に対して80重量%以下であることが好ましく、特には40重量%以下であることが好ましい。また電荷発生層の膜厚は5μm以下であることが好ましく、特には0.01〜2μmであることが好ましい。
【0047】
また、電荷発生層には種々の増感剤及び劣化防止剤等の添加剤を添加してもよい。
【0048】
電荷輸送物質を含有する層、即ち電荷輸送層は、公知の電荷輸送物質と本発明のスチリルケトン化合物と適当な結着性樹脂とを組み合わせて形成することができる。
【0049】
電荷輸送物質としては電子輸送性物質と正孔輸送性物質があり、電子輸送性物質としては、例えば2,4,7−トリニトロフルオレノン、2,4,5,7−テトラニトロフルオレノン、クロラニル及びテトラシアノキノジメタン等の電子吸引性物質やこれら電子吸引性物質を高分子化したもの等が挙げられる。正孔輸送性物質としてはピレン及びアントラセン等の多環芳香族化合物;カルバゾール系、インドール系、イミダゾール系、オキサゾール系、チアゾール系、オキサジアゾール系、ピラゾール系、ピラゾリン系、チアジアゾール系及びトリアゾール系化合物等の複素環化合物;p−ジエチルアミノベンズアルデヒド−N,N−ジフェニルヒドラゾン及びN,N−ジフェニルヒドラジノ−3−メチリデン−9−エチルカルバゾール等のヒドラゾン系化合物;トリ−p−トリルアミン、4−(ジ−p−トリルアミノ)−ビフェニル、2−(ジ−p−トリル)−アミノ−9,9′−ジメチルフルオレン及び1−ジ−p−トリル−アミノピレン等のトリアリールアミン系化合物;α−フェニル−4′−N,N−ジフェニルアミノスチルベン及び5−[4−(ジ−p−トリルアミノ)ベンジリデン]−5H−ジベンゾ[a,d]シクロヘプテン等のスチリル系化合物;ベンジジン系化合物;トリアリールメタン系化合物;トリフェニルアミン、あるいはこれらの化合物から成る基を主鎖または側鎖に有するポリマー(例えばポリ−N−ビニルカルバゾール及びポリビニルアントラセン等)が挙げられる。これらの有機電荷輸送物質の他にセレン、セレン−テルル、アモルファスシリコン及び硫化カドミウム等の無機材料も用いることができる。また、これらの電荷輸送物質は1種または2種以上組合せて用いることができる。
【0050】
電荷輸送層に用いられる結着性樹脂としては、前記電荷発生層に用いられているものに加え、ポリビニルカルバゾール及びポリビニルアントラセン等の光導電性高分子が挙げられる。
【0051】
これらの結着性樹脂と電荷輸送物質との配合割合は、結着性樹脂100重量部あたり電荷輸送物質を10〜500重量部であることが好ましく、特には50〜200重量部であることが好ましい。
【0052】
また、電荷輸送物質と本発明のスチリルケトン化合物を混合して用いる場合の配合割合は、電荷輸送物質100重量部あたり、本発明の化合物を0.01〜400重量部であることが好ましく、特には0.1〜100重量部であることが好ましい。
【0053】
電荷輸送層は、上述の電荷発生層と電気的に接続されており、電界の存在下で電荷発生層で発生した電荷キャリアを受け取るとともに、電荷キャリアを感光体の表面まで輸送できる機能を有している。この電荷輸送層は電荷キャリアを輸送できる限界があるので、必要以上に膜厚を厚くすることができないが、5〜40μmであることが好ましく、特には10〜30μmであることが好ましい。
【0054】
更に、電荷輸送層中に本発明のスチリルケトン化合物とは別に酸化防止剤、紫外線吸収剤、可塑剤等を必要に応じ添加することもできる。
【0055】
上述した各種層を塗布により形成する際の塗布方法としては、適当な有機溶媒を用い、浸漬コーティング法、スプレーコーティング法、スピンナーコーティング法、ローラーコーティング法、マイヤーバーコーティング法及びプレードコーティング法等のコーティング法を挙げることができる。
【0056】
図1に本発明の電子写真感光体を有するプロセスカートリッジを有する電子写真装置の概略構成を示す。
【0057】
図において、1はドラム状の本発明の電子写真感光体であり、軸2を中心に矢印方向に所定の周速度で回転駆動される。感光体1は、回転過程において、一次帯電手段3によりその周面に正または負の所定電位の均一帯電を受け、次いで、スリット露光やレーザービーム走査露光等の像露光手段(不図示)からの画像露光光4を受ける。こうして感光体1の周面に静電潜像が順次形成されていく。
【0058】
形成された静電潜像は、次いで現像手段5によりトナー現像され、現像されたトナー現像像は、不図示の給紙部から感光体1と転写手段6との間に感光体1の回転と同期取り出されて給紙された転写材7に、転写手段6により順次転写されていく。
【0059】
像転写を受けた転写材7は、感光体面から分離されて像定着手段8へ導入されて像定着を受けることにより複写物(コピー)として装置外へプリントアウトされる。
【0060】
像転写後の感光体1の表面は、クリーニング手段9によって転写残りトナーの除去を受けて清浄面化され、更に前露光手段(不図示)からの前露光光10により除電処理された後、繰り返し像形成に使用される。なお、一次帯電手段3が帯電ローラー等を用いた接触帯電手段である場合は、前露光は必ずしも必要ではない。
【0061】
本発明においては、上述の電子写真感光体1、一次帯電手段3、現像手段5及びクリーニング手段9等の構成要素のうち、複数のものをプロセスカートリッジとして一体に結合して構成し、このプロセスカートリッジを複写機やレーザービームプリンター等の電子写真装置本体に対して着脱可能に構成してもよい。例えば、一次帯電手段3、現像手段5及びクリーニング手段9の少なくともひとつを感光体1と共に一体に支持してカートリッジ化して、装置本体のレール12等の案内手段を用いて装置本体に着脱可能なプロセスカートリッジ11とすることができる。
【0062】
また、画像露光光4は、電子写真装置が複写機やプリンターである場合には、原稿からの反射光や透過光、あるいは、センサーで原稿を読取り、信号化し、この信号に従って行われるレーザービームの走査、LEDアレイの駆動及び液晶シャッターアレイの駆動等により照射される光である。
【0063】
本発明の電子写真感光体は電子写真複写機に利用するのみならず、レーザービームプリンター、CRTプリンター、LEDプリンター、液晶プリンター及びレーザー製版等電子写真応用分野にも広く用いることができる。
【0064】
以下、本発明を実施例に従って説明する。
実施例(1)
アルミシート上にN−メトキシメチル化6ナイロン樹脂(重量平均分子量30,000)4.5gとアルコール可溶性共重合ナイロン樹脂(重量平均分子量25,000)9.5gをメタノール90gに溶解した液をマイヤーバーで塗布し乾燥後の膜厚が0.5μmの下引層を設けた。
【0065】
次に、CuKαのX線回折におけるブラッグ角2θ±0.2°が9.0°、14.2°、23.9°及び27.1°に強いピークを有する結晶形のオキシチタニウムフタロシアニン顔料4gとポリビニルブチラール樹脂2gをシクロヘキサノン100gに添加し、1mmφのガラスビーズを用いたサンドミルで1時間分散し、これに50gの酢酸エチルを加えて希釈し、塗工液を調製した。
【0066】
この塗工液を先に製造した下引層の上に、乾燥後の膜厚が0.22μmとなるようにマイヤーバーで塗布し電荷発生層を作成した。
【0067】
次に、下記構造式で示される電荷輸送物質10gと前記例示化合物No.(25)1gとポリカーボネート樹脂(重量平均分子量20,000)10gをモノクロロベンゼン70gに溶解し、この液を先の電荷発生層上にマイヤーバーで塗布し、乾燥膜厚が20μmの電荷輸送層を設け、3層の電子写真感光体を作成した。
【0068】
【化13
Figure 0003595637
このようにして作成した電子写真感光体を川口電気(株)製静電複写紙試験装置Model−SP−428を用いてスタチック方式で−5kVでコロナ帯電し、暗所で1秒間保持した後、光照射し帯電特性を調べた。
【0069】
帯電特性としては、表面電位(V0)と1秒間暗減衰させたときの電位(V1)を1/5に減衰するのに必要な露光量(E1/5)を測定した。この際、光源としてガリウム/アルミニウム/ヒ素の三元系半導体レーザー(出力5mW;発振波長780nm)を用いた。
【0070】
更に、実機で繰返し使用したときの電位特性を評価するために、アルミニウムシートの代わりにアルミニウムシリンダー(φ30mm×260.5mm)を用い、塗布方法を浸漬コーティング法とした以外は先と同様にして作成した電子写真感光体を、上記と同様の半導体レーザーを備えた反転現像方式のレーザービームプリンター(LBP−SXの改造機、キヤノン(株)製)に装着し、繰返し使用したときの電位特性を評価した。条件は以下の通りである。VD:−700V、VL:−150V(露光量0.7μJ/cm2)、転写電位:+700V、現像極性:負極性、プロセススピード:50mm/sec、現像バイアス:−450V、像露光後スキャン方式:イメージスキャン、一次帯電前露光:40Lux・secの赤色全面露光。
【0071】
また、感光層のクラックの促進試験として、前記のように作成した電子写真感光体の表面に指油を付着させ、常温常圧下で8時間放置し感光層にクラックが生じているか否かを観察した。
【0072】
また、電荷輸送物質の結晶化の促進試験として前記のようにして作成した電子写真感光体の表面に指油を付着させ、75℃で1週間放置し電荷輸送物質の結晶化が生じているか否かを観察した。
【0073】
また、白色光に対するフォトメモリーの測定として前記のように作成した電子写真感光体を光照射前に前記と同様のプリンターで−700Vに帯電したときの初期表面電位(Vd)と全面像露光後の電位(Vl)を測定し、次にこの感光体に明部と暗部ができるようにマスキングし、蛍光灯下で3000Lux、20分間光照射した後、5分間放置し、初期電位の変化(ΔVd)と(ΔVl)を測定した。
【0074】
実施例(2)〜(、参考例(1)〜(6)、比較例(1)〜(7)
この実施例、参考例及び比較例においては、前記実施例(1)で用いた前記例示化合物No.(25)の代わりに、実施例及び参考例においては以下の表2に示した化合物を同様に添加し、また、実施例()及び()においては、実施例(1)の結晶形のオキシチタニウムフタロシアニンの代わりに、()においてはCuKαのX線回折におけるブラッグ角2θ±0.2°が9.6°と27.2°にピークを持つオキシチタニウムフタロシアニンと、()においてはβ型オキシチタニウムフタロシアニンを用いて実施例(1)と同様の方法によって電子写真感光体を形成した。比較例においては下記の表1に示す感光体の構成にしたほか、実施例(1)と同様の方法によって電子写真感光体を形成した。そして各感光体の電子写真特性、感光層のクラック、電荷輸送物質の結晶化、及びフォトメモリーの評価を実施例(1)と同様の方法によって評価した。
【0075】
上記実施例(1)〜(、参考例(1)〜(6)の結果を以下の表2に、比較例(1)〜(7)の結果を以下の表3にそれぞれ示す。
【0076】
【表1】
Figure 0003595637
【0077】
【表2】
Figure 0003595637
【0078】
【表3】
Figure 0003595637
【0079】
【化14
Figure 0003595637
【0080】
【化15
Figure 0003595637
【0081】
実施例(
アルミシート上にN−メトキシメチル化6ナイロン樹脂(重量平均分子量35,000)5.5gとアルコール可溶性共重合ナイロン樹脂(重量平均分子量30,000)10.5gをメタノール60gとイソプロピルアルコール20gの混合溶媒に溶解した液をマイヤーバーで塗布し乾燥後の膜厚が1.0μmの下引層を設けた。
【0082】
次に、CuKαのX線回折におけるブラッグ角2θ±0.2°が9.0°、14.2°、23.9°及び27.1°に強いピークを有する結晶形のオキシチタニウムフタロシアニン顔料4.2gとポリビニルブチラール樹脂2gをシクロヘキサノン110gに添加し1mmφのガラスビーズを用いたサンドミルで3時間分散し、これに20gの酢酸エチルを加えて希釈し、塗工液を調製した。
【0083】
この塗工液を先に製造した下引層の上に、乾燥後の膜厚が0.2μmとなるようにマイヤーバーで塗布し電荷発生層を作成した。
【0084】
次に、下記構造式で示される電荷輸送物質9gと前記例示化合物No.(24)1.2gとポリカーボネートZ型樹脂(重量平均分子量60,000)10gをモノクロロベンゼン68gに溶解し、この液を先の電荷発生層上にブレードコーティング法により塗布し、乾燥膜厚が23μmの電荷輸送層を設け、3層の電子写真感光体を作成した。
【0085】
【化16
Figure 0003595637
このようにして作成した電子写真感光体に−5kVのコロナ放電を行い、このときの表面電位(初期電位V0)を測定した。更に、この感光体を1秒間暗所で放置した後の表面電位を測定した。感度は暗減衰した後の電位を1/6に減衰するのに必要な露光量(E1/6:μJ/cm2)を測定することによって評価した。この際、光源としてガリウム/アルミニウム/ヒ素の三元系半導体レーザー(出力5mW;発振波長780nm)を用いた。
【0086】
次に、同上の半導体レーザーを備えた反転現像方式の電子写真方式プリンターであるレーザービームプリンター(キヤノン製LBP−SXの改造機)に上記感光体をアルミニウムシリンダー(φ30mm×260.5mm)に貼り付けてそのシリンダーをプリンターに装着し、転写電流OFF時の一次帯電電圧をVd1、転写電流ON時の一次帯電電圧をVd2として、いわゆる転写メモリー(Vd1−Vd2)を測定し、その後画像形成テストを行った。条件は以下の通りである。一次帯電後の表面電位:−700V、像露光後の表面電位:−150V(露光量1.0μJ/cm2)、転写電位+700V、現像極性:負極性、プロセススピード:47mm/sec、現像条件(現像バイアス):−450V、像露光後スキャン方式:イメージスキャン、一次帯電前露光:8.0Lux・secの赤色全面露光、画像形成はレーザービームを文字信号及び画像信号に従ってラインスキャンして行ったが、文字、画像ともに良好なプリントが得られた。
【0087】
また、上記と同様にして作成した感光体の、感光層のクラック、電荷輸送物質の結晶化、及び感光体のフォトメモリーの評価を実施例(1)と同様の方法によって評価した。その結果を表5に示す。
【0088】
実施例()〜(10、参考例(7)〜(10
上記実施例()で用いた前記例示化合物No.(24)の代わりに下記の表5に示した化合物を用い、また、実施例()及び(10)においては、実施例()の結晶形のオキシチタニウムフタロシアニンの代わりに、()においてはCuKαのX線回折におけるブラッグ角2θ±0.2°が9.6°と27.2°にピークを持つオキシチタニウムフタロシアニンと、(10)においてはβ型オキシチタニウムフタロシアニンを用いて実施例()と同様の方法によって電子写真感光体を形成した。
【0089】
そして、各感光体の電子写真特性、転写メモリー、感光層のクラック、電荷輸送物質の結晶化、及びフォトメモリーの評価を実施例()と同様の方法によって評価した。その結果を以下の表5に示す。
【0090】
比較例(8)〜(14)
比較例(8)〜(14)は上記実施例()において作成した感光体に代えて、本発明のスチリルケトン化合物を無添加にするか、あるいは電荷発生物質と電荷輸送層に添加した化合物を下記の表4に示す化合物に代えて感光体を構成にした他は、実施例()と同様に感光体を作成した。
【0091】
そして、各感光体の電子写真特性、転写メモリー、感光層のクラック、電荷輸送物質の結晶化、及びフォトメモリーを実施例()と同様の方法によって評価した。その結果を以下の表6に示す。
【0092】
【表4】
Figure 0003595637
【0093】
【表5】
Figure 0003595637
【0094】
【表6】
Figure 0003595637
【0095】
【化17
Figure 0003595637
【0096】
【化18
Figure 0003595637
【0097】
実施例(11
アルミシート上にアルコール可溶性ナイロン(6−66−610−12四元ナイロン共重合体;重量平均分子量30,000)の30%メタノール溶液をマイヤーバーで塗布し乾燥後の膜厚が0.95μmの下引層を設けた。
【0098】
次に、CuKαのX線回折におけるブラッグ角2θ±0.2°が9.0°、14.2°、23.9°及び27.1°に強いピークを有する結晶形のオキシチタニウムフタロシアニン顔料6gと下記構造式で示されるアゾ顔料1gとポリビニルブチラール樹脂5gをシクロヘキサノン100gに添加し1mmφのガラスビーズを用いたサンドミルで1時間分散し、これに4,4′−チオビス(6−tert−ブチル−m−クレゾール)を1g添加し、30gの酢酸エチルを加えて希釈し、塗工液を調製した。
【0099】
【化19
Figure 0003595637
この塗工液を先に製造した下引層の上に、乾燥後の膜厚が0.25μmとなるようにマイヤーバーで塗布し電荷発生層を作成した。
【0100】
次に、下記構造式で示される電荷輸送物質(1)5.2gと電荷輸送物質(2)3.6gと前記例示化合物No.(28)1.2gとポリカーボネート樹脂(重量平均分子量20,000)11.5gをモノクロロベンゼン70gに溶解し、この液を先の電荷発生層上にマイヤーバーで塗布し、乾燥膜厚が25μmの電荷輸送層を設け、3層の電子写真感光体を作成した。
【0101】
【化20
Figure 0003595637
このようにして作成された感光体の初期特性を実施例(1)と同様な方法で測定した。
【0102】
0=−700(V) V1=−695(V)
1/5=0.50(Lux・sec)
フォトメモリーの値は、ΔVd=8(V),ΔVl=4(V)であった。
【0103】
また、実施例(1)と同様に感光体のクラック及び結晶化の促進試験を同様に行ったところ、クラックに関しては8時間後でも全く認められず、また結晶化に関しても1週間後でも全く認められなかった。
【0104】
実施例(12
アルミシート上にアルコール可溶性ナイロン(6−66−610−12四元ナイロン共重合体;重量平均分子量30,000)の35%メタノール溶液をマイヤーバーで塗布し乾燥後の膜厚が1.1μmの下引層を設けた。
【0105】
次に、CuKαのX線回折におけるブラッグ角2θ±0.2°が9.0°、14.2°、23.9°及び27.1°に強いピークを有する結晶形のオキシチタニウムフタロシアニン顔料6.3gと下記構造式で示されるアゾ顔料1gとポリビニルブチラール樹脂4.9gをシクロヘキサノン90gに添加し1mmφのガラスビーズを用いたサンドミルで2時間分散し、これに2,2′−メチレンビス(4−メチル−6−tert−ブチルフェノール)を1g添加し、30gの酢酸エチルを加えて希釈し、塗工液を調製した。
【0106】
【化21
Figure 0003595637
この塗工液を先に製造した下引層の上に、乾燥後の膜厚が0.2μmとなるようにマイヤーバーで塗布し電荷発生層を作成した。
【0107】
次に、本実施例においては前記例示化合物No.(35)を電荷輸送物質として用い、8.6gをポリカーボネート樹脂(重量平均分子量40,000)11.5gと混合し、モノクロロベンゼン70gに溶解し、この液を先の電荷発生層上にマイヤーバーで塗布し、乾燥膜厚が22μmの電荷輸送層を設け、3層の電子写真感光体を作成した。
【0108】
このようにして作成された感光体の初期特性を実施例(1)と同様な方法で測定した。
【0109】
0=−695(V) V1=−690(V)
1/5=0.59(Lux・sec)
フォトメモリーの値は、ΔVd=5(V),ΔVl=3(V)であった。
【0110】
また、実施例(1)と同様に感光体のクラック及び結晶化の促進試験を同様に行ったところ、クラックに関しては8時間後でも全く認められず、また結晶化に関しても1週間後でも全く認められなかった。
【0111】
実施例(13
アルミ支持体上にN−メトキシメチル化6ナイロン樹脂(重量平均分子量25,000)6.2gとアルコール可溶性共重合ナイロン樹脂(重量平均分子量20,000)9.5gをメタノール60gとブタノール20gの混合溶媒に溶解した液をマイヤーバーで塗布し乾燥後の膜厚が0.75μmの下引層を設けた。
【0112】
次に、CuKαのX線回折におけるブラッグ角2θ±0.2°が9.0°、14.2°、23.9°及び27.1°に強いピークを有する結晶形のオキシチタニウムフタロシアニン顔料5.8gと下記構造式で示されるアゾ顔料2gとポリビニルブチラール樹脂5gをシクロヘキサノン95gに添加し1mmφのガラスビーズを用いたサンドミルで1時間分散し、これに4,4′−ブチリデンビス(6−tert−ブチル−m−クレゾール)を1g添加し、30gの酢酸エチルを加えて希釈し、塗工液を調製した。
【0113】
【化22
Figure 0003595637
この塗工液を先に製造した下引層の上に、乾燥後の膜厚が0.25μmとなるようにマイヤーバーで塗布し電荷発生層を作成した。
【0114】
次に、下記構造式で示される電荷輸送物質6.0gと前記参考化合物No.(19)1.5gと前記例示化合物No.(37)1.5gとポリカーボネート樹脂(重量平均分子量20,000)11.5gをモノクロロベンゼン74gに溶解し、この液を先の電荷発生層上にマイヤーバーで塗布し、乾燥膜厚が22μmの電荷輸送層を設け、3層の電子写真感光体を作成した。
【0115】
【化23
Figure 0003595637
このようにして作成された感光体の初期特性を実施例(1)と同様な方法で測定した。
【0116】
0=−705(V) V1=−700(V)
1/5=0.55(Lux・sec)
フォトメモリーの値は、ΔVd=6(V),ΔVl=3(V)であった。
【0117】
また、実施例(1)と同様に感光体のクラック及び結晶化の促進試験を同様に行ったところ、クラックに関しては8時間後でも全く認められず、また結晶化に関しても1週間後でも全く認められなかった。
【0118】
実施例(14
アルミシート上に、アルコール可溶性ナイロン(6−66−610−12四元ナイロン共重合体;重量平均分子量18,000)の38%メタノール溶液をマイヤーバーで塗布し乾燥後の膜厚が0.5μmの下引層を設けた。
【0119】
次に、CuKαのX線回折におけるブラッグ角2θ±0.2°が9.0°、14.2°、23.9°及び27.1°に強いピークを有する結晶形のオキシチタニウムフタロシアニン顔料7.7gとポリビニルブチラール樹脂5.2gをシクロヘキサノン110gに添加し、ボールミルで3時間分散し、28gの酢酸エチルを加えて希釈し、塗工液を調製した。
【0120】
この塗工液を先に作成した下引層の上に、乾燥後の膜厚が0.15μmとなるようにマイヤーバーで塗布し電荷発生層を形成した。
【0121】
次に、電荷輸送物質として前記例示化合物No.(22)7.5gとポリカーボネート樹脂(重量平均分子量80,000)10gをモノクロロベンゼン50gとジクロロメタン20gの混合溶媒に溶解し、この液を先の電荷発生層の上にブレードコーティング法で塗布し、乾燥後の膜厚が18μmの電荷輸送層を設け、3層の電子写真感光体を作成した。
【0122】
このようにして作成された感光体の初期特性を実施例(1)と同様な方法で測定した。
【0123】
0=−695(V) V1=−680(V)
1/5=0.51(Lux・sec)
フォトメモリーの値は、ΔVd=7(V),ΔVl=2(V)であった。
【0124】
また、実施例(1)と同様の方法で感光体のクラック及び結晶化の促進試験を同様に行ったところ、クラックに関しては8時間後でも全く認められず、結晶化に関しても1週間後でも全く認められなかった。
【0125】
実施例(15
アルミシート上にアルコール可溶性ナイロン(6−66−610−12四元ナイロン共重合体;重量平均分子量30,000)の35%メタノール溶液をマイヤーバーで塗布し、乾燥後の膜厚が1.9μmの下引層を設けた。
【0126】
次に、下記構造式で示される電荷輸送物質8.2gと前記例示化合物(34)0.8gとビスフェノールAポリカーボネート樹脂(重量平均分子量:28,000)10gをモノクロロベンゼン(60重量部)−ジクロロメタン(20重量部)混合溶媒75gに溶解し、先に作成した下引層の上にマイヤーバーで塗布し、乾燥後の膜厚が20μmの電荷輸送層を作成した。
【0127】
【化24
Figure 0003595637
更に、CuKαのX線回折におけるブラッグ角2θ±0.2°が9.0°、14.2°、23.9°及び27.1°に強いピークを有する結晶形のオキシチタニウムフタロシアニン顔料4.2gとブチラール樹脂(ブチラール化度55mol%)2.2gをシクロヘキサノン65g中サンドミルで1時間分散した。
【0128】
この分散液を先に作成した電荷輸送層の上に乾燥後の膜厚が1.2μmになるようにマイヤーバーで塗布し乾燥した。
【0129】
このように作成した感光体の電子写真特性を実施例(1)と同様な方法で測定した(但し帯電はプラス帯電)。この結果を以下に示す。
【0130】
0=+700(V) V1=+690(V)
1/5=1.54(Lux・sec)
フォトメモリーの値は、ΔVd=16(V),ΔVl=7(V)であった。
【0131】
実施例(16
ガラス支持体上に、N−メトキシメチル化6ナイロン樹脂(重量平均分子量20,000)5.2gとアルコール可溶性共重合ナイロン樹脂(重量平均分子量28,000)8.8gをメタノール34g、ブタノール65gの混合溶媒に溶解した液を浸漬コーティング法し、乾燥後の膜厚が1μmの下引層を設けた。
【0132】
次に、下記に示す構造の電荷輸送物質7gと前記例示化合物No.(30)3gとビスフェノールA型ポリカーボネート樹脂(重量平均分子量30,000)10gをモノクロロベンゼン70gに溶解し、先に作成した下引層の上にマイヤーバーで塗布し、乾燥後の膜厚が18μmの電荷輸送層を作成した。
【0133】
次に、下記の構造式のアクリル系モノマー60g、分散前の平均粒子径が400Åの酸化スズ超微粒子40g、光開始剤として2−メチルチオキサントン3g、及びメチルセルソルブ280gをサンドミルにて72時間分散を行った。
【0134】
【化25
Figure 0003595637
この分散液を用いて、先の感光層の上にビームコーティング法により膜を形成し乾燥した後、高圧水銀灯にて8mW/cm2の光強度で30秒間光硬化を行い2.1μmの保護層を設けた。このようにして得られたサンプルに対し、15°の角度で裏面より光を当てながら透過型顕微鏡にて観察したが、クラック及び電荷輸送物質の結晶化は起こっていなかった。
【0135】
比較例(15)
上記実施例(12)において作成した電荷輸送層について、前記例示化合物No.(35)を用いずに作成した他は、実施例(12)と同様にサンプルを作成し、同様の方法で透過型顕微鏡にて観察したところ、電荷輸送層のクラックが見られた。
【0136】
【発明の効果】
以上説明したように、本発明のスチリルケトン化合物を含有する電子写真感光体は、繰返し帯電、露光による連続画像形成に際して、明部電位と暗部電位の変動が小さく耐久性に優れている。その上更に、反転現像系においても転写メモリーが極めて小さく、かつ画像欠陥を生む感光層のクラックや電荷輸送物質の結晶化が極めて起こりにくく、フォトメモリーを生じにくい電子写真感光体、及び該電子写真感光体を有するプロセスカートリッジ及び電子写真装置を提供することも同時に達成できる。
【図面の簡単な説明】
【図1】本発明の電子写真感光体を有するプロセスカートリッジを有する電子写真装置の概略構成の例を示す図である。
【図2】CuKαのX線回折におけるブラッグ角2θ±0.2°が9.0°、14.2°、23.9°及び27.1°に強いピークを有する結晶形のオキシチタニウムフタロシアニン顔料のX線回折図である。
【符号の説明】
1 本発明の電子写真感光体
2 軸
3 一次帯電手段
4 画像露光光
5 現像手段
6 転写手段
7 転写材
8 像定着手段
9 クリーニング手段
10 前露光光
11 プロセスカートリッジ
12 レール[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electrophotographic photoreceptor, a process cartridge and an electrophotographic apparatus, and more particularly, to an electrophotographic photoreceptor having a low molecular weight organic photoconductive compound which provides improved electrophotographic properties, and a process having the electrophotographic photoreceptor. The present invention relates to a cartridge and an electrophotographic apparatus.
[0002]
[Prior art]
Conventionally, as an electrophotographic photosensitive member, an inorganic photosensitive member having a photosensitive layer containing selenium, zinc oxide, cadmium, or the like as a main component has been widely used. Although these have some basic properties, they have problems such as difficulty in film formation, poor plasticity, and high production cost. Furthermore, inorganic photoconductive materials are generally highly toxic, and have great restrictions on production and handling.
[0003]
On the other hand, an organic photoreceptor containing an organic photoconductive compound as a main component has attracted attention in recent years because it has many advantages such as compensating for the above-mentioned disadvantages of the inorganic photoreceptor. It is becoming.
[0004]
As such an organic photoreceptor, a charge transfer complex formed from a photoconductive polymer represented by poly-N-vinylcarbazole and a Lewis acid such as 2,4,7-trinitro-9-fluorenone is used. Electrophotographic photoreceptors having a main component have been proposed. These organic photoconductive polymers are superior to inorganic photoconductive polymers in terms of lightness and film formability, but they are more sensitive to inorganic photoconductive polymers in terms of sensitivity, durability, and stability due to environmental changes. It is inferior to the material and is not always satisfactory.
[0005]
On the other hand, a function-separated type electrophotographic photoreceptor in which a charge generation function and a charge transport function are respectively assigned to different substances has brought remarkable improvements in sensitivity and durability, which have been regarded as disadvantages of conventional organic photoreceptors. Such a function-separated type photoreceptor has an advantage that a material selection range of a charge generating substance and a charge transporting substance is wide, and an electrophotographic photoreceptor having arbitrary characteristics can be relatively easily prepared.
[0006]
As the charge generating substance, various phthalocyanine pigments, azo pigments, polycyclic quinone pigments, cyanine dyes, squaric acid dyes, and pyrylium salt dyes are known. In particular, in recent years, among them, many structures and crystal forms of phthalocyanine pigments have been proposed from the viewpoints of high light resistance, high charge generation ability, and easy material synthesis.
[0007]
On the other hand, examples of the charge transport material include pyrazoline compounds disclosed in JP-B-52-4188, hydrazone compounds disclosed in JP-B-55-42380 and JP-A-55-52063, JP-B-58-32372 and JP-A-58-32372. There are known triphenylamine compounds disclosed in JP-A-61-132555 and JP-A-3-114058, and stilbene compounds disclosed in JP-A-54-151955 and JP-A-58-198043.
[0008]
Examples of the styryl ketone compound contained in the electrophotographic photoreceptor include JP-A-60-131439, JP-A-62-283344, JP-A-63-24261, JP-A-63-108341, and JP-A-63-158561. JP-A-63-163362, JP-A-63-163364, JP-A-2-111959, JP-A-2-259652, JP-A-2-271361, JP-A-3-12657, JP-A-4-81859, JP-A-4-27956 Prior art is known in Japanese Patent Application Laid-Open No. Hei 4-240858 and the like.
[0009]
These electrophotographic photoreceptors are required to (1) be stable against light and heat (2) be stable against ozone, NOx, nitric acid, etc. generated by corona discharge (3) High electrophotographic sensitivity; (4) high compatibility with organic solvents and binders; and (5) easy and inexpensive production.
[0010]
In addition, with the recent increase in durability, a protective layer is provided on the photosensitive layer to improve durability, and the photoreceptor is stored for a long time by a copying machine, laser beam printer, etc. Cracks may occur, or the charge transport material may be crystallized or phase-separated, resulting in image defects.
[0011]
In addition, in the reversal development system corresponding to recent digitization, since primary charging and transfer charging have opposite polarities, a so-called transfer memory having different charging properties depending on the presence or absence of transfer occurs, and it becomes very easy to appear as density unevenness on an image. I have.
[0012]
Further, in recent years, electrophotographic photoreceptors with high sensitivity generate a so-called photo memory in which the chargeability of the bright part and the dark part is different due to external leakage light or the like, which is also very uneven as density unevenness on an image. It is easy to appear.
[0013]
[Problems to be solved by the invention]
However, the conventional electrophotographic photoreceptor partially satisfies the above-mentioned problems and requirements, but does not yet satisfy all of them at a high level.
[0014]
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the various disadvantages of the conventional photoreceptor by providing an organic conductive compound which sufficiently satisfies the characteristics required for the electrophotographic photoreceptor described above.
[0015]
That is, an object of the present invention is to provide an electrophotographic photoreceptor having high sensitivity and capable of stably maintaining a potential upon repeated use.
[0016]
Second, electrophotography that does not cause cracks in the charge transport layer or crystallization of the charge transport material even when a protective layer is provided on the photosensitive layer, or when the photoreceptor is stored for a long time in a copier, laser beam printer, etc. It is to provide a photoreceptor.
[0017]
Third, it is an object of the present invention to provide an electrophotographic photoreceptor in which transfer memory hardly occurs even in a reversal developing system.
[0018]
Fourth, it is an object of the present invention to provide an electrophotographic photoreceptor which has light resistance and hardly generates a photo memory.
[0019]
Fifth, it is to provide a process cartridge and an electrophotographic apparatus having the electrophotographic photosensitive member.
[0020]
[Means for Solving the Problems]
The present inventors have studied various combinations in order to achieve the above-mentioned object, and as a result, when a charge generating substance having a specific structure and a compound having a specific structure are combined, these problems are solved. I found something that could be solved.
[0021]
That isThe present invention provides an electrophotographic photosensitive member having a charge generation layer and a charge transport layer on a conductive support, wherein the charge generation layer contains oxytitanium phthalocyanine, and the charge transport layer is represented by the following general formula [2]: Represented, And having a substituted amino group in the moleculeAn electrophotographic photosensitive member comprising at least one styryl ketone compound.
[0022]
General formula [2]
[0023]
[Change2]
Figure 0003595637
(In the formula, Ar represents a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted aralkyl group;8Represents a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted aralkyl group;8And Ar may form a ring together. R9To R13Represents a hydrogen atom, a halogen atom, a nitro group, a hydroxyl group, a cyano group, a substituted amino group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group or a substituted or unsubstituted aralkyl group;9And RTen, RTenAnd R11, R11And R12And R12And R13And may form a ring together.)
[0024]
Further, the present invention provides the above electrophotographic photoreceptorWhenAt least one unit selected from the group consisting of a charging unit, a developing unit and a cleaning unitWhenA process cartridge which integrally supports and is detachably attached to the electrophotographic apparatus main body.
[0025]
Further, the present invention is an electrophotographic apparatus comprising the above electrophotographic photoreceptor, charging means, image exposure means, developing means and transfer means.
[0026]
BEST MODE FOR CARRYING OUT THE INVENTION
Generalformula[In 2], examples of the halogen atom include atoms such as fluorine, chlorine, bromine and iodine, examples of the alkyl group include groups such as methyl, ethyl, propyl and butyl, and examples of the cycloalkyl group include groups such as cyclopentyl and cyclohexyl. Examples of the aryl group include groups such as phenyl, diphenyl, naphthyl, anthryl, and pyrenyl.Examples of the aralkyl group include groups such as benzyl and phenethyl.The substituted amino group includes diethylamino and diphenylamino. The group of is mentioned.
[0027]
Examples of the substituent include an alkyl group such as methyl, ethyl and propyl, an alkoxy group such as methoxy, ethoxy and propoxy, an aryl group such as phenyl, diphenyl, naphthyl, anthryl and pyrenyl, an aralkyl group such as benzyl and phenethyl, and a fluorine atom. And a halogen atom such as a chlorine atom, a bromine atom and an iodine atom, or a substituted amino group such as a nitro group, a hydroxyl group, a cyano group, and diethylamino and diphenylamino.
[0028]
Less thanNisuSpecific examples of the tyryl ketone compound will be given.The following compound No. (21) to (30) and No. (32) to (38) are exemplary compounds included in the general formula [2].However, it is not limited to these specific examples.
In addition, the following compound No. (1), (2), (4) to (20) and (31) is a reference compound not included in the general formula [2].
[0029]
ExampleCompound
[0030]
Embedded image
Figure 0003595637
[0031]
[Change4]
Figure 0003595637
[0032]
Embedded image
Figure 0003595637
[0033]
[Change6]
Figure 0003595637
[0034]
[Change7]
Figure 0003595637
[0035]
[Change8]
Figure 0003595637
[0036]
[Change9]
Figure 0003595637
[0037]
[Change10]
Figure 0003595637
[0038]
[Change11]
Figure 0003595637
[0039]
Embedded image
Figure 0003595637
[0040]
BookThe constitution of the photosensitive layer of the electrophotographic photosensitive member of the present invention includes the following forms.
(1) Charge generationRaw layer/ Charge transferTransmission(Lower / upper)
(2) Charge generationRaw layer/ Charge transferTransmission(Lower / upper)
BookThe general formula of the invention [2The compound having a styryl ketone structure represented byCharge transportBy adding to the layer, it has the effect of improving various problems.Charge transportIt can be used as an additive in a layer. AlsoThisSince the styryl ketone compound has a high ability to transport holes,Charge transportIt can be used as a material having both the effect of improving the problem in the layer and the effect as a charge transport material. The form of the photosensitive layer is
In the case of (1), the polarity of the primary charge is preferably negative, and in the case of (2), the polarity is preferably positive.New.
[0041]
Further, the electrophotographic photoreceptor of the present invention may be provided with a protective layer on the surface of the photosensitive layer or an undercoat layer between the photosensitive layer and the conductive support for the purpose of improving durability and adhesion or controlling charge injection. May be provided. The configuration of the photoconductor of the present invention is not limited to the above basic configuration.
[0042]
In the present invention, the configuration (1) is particularly preferable among the above configurations, and will be described in more detail below.
[0043]
Examples of the conductive support in the present invention include the following.
(1) Plates or drums of metals and alloys such as aluminum, aluminum alloys, stainless steel and copper.
(2) Depositing or laminating a metal or alloy such as aluminum, aluminum alloy, palladium, rhodium, gold and platinum on a non-conductive support such as glass, resin and paper or the conductive support of (1). A thin layer formed by
(3) A layer containing a conductive polymer, a conductive compound such as tin oxide and indium oxide is deposited or coated on a non-conductive support such as glass, resin and paper or the conductive support of the above (1). What was formed by doing.
[0044]
The charge generating substance that can be used in the present invention contains at least oxytitanium phthalocyanine, and its crystal form has a Bragg angle 2θ ± 0.2 ° in X-ray diffraction of CuKα of 9.0 ° and 14.2 °. It is most effective when combined with a crystalline form of oxytitanium phthalocyanine with strong peaks at °, 23.9 ° and 27.1 °. Further, two or more of the following substances may be used in combination.
(1) Azo pigments such as monoazo, bisazo and trisazo (2) Indigo pigments such as indigo and thioindigo (3) Perylene pigments such as perylene anhydride and perylene imide (4) Many pigments such as anthraquinone and pyrenequinone Cyclic quinone pigments (5) squarylium pigments (6) pyrylium salts and thiopyrylium salts (7) triphenylmethane pigments (8) a layer containing an inorganic charge generation material such as selenium and amorphous silicon, ie, a charge generation layer Can be formed by dispersing the above-described charge generating substance in a suitable binder and applying the resultant onto a conductive support. Further, the styryl ketone compound of the present invention may be contained in the charge generation layer. Further, it can also be formed by forming a thin film on a conductive support by a dry method such as evaporation, sputtering or CVD.
[0045]
The binder can be selected from a wide range of binder resins, for example, polycarbonate resin, polyester resin, polyarylate resin, butyral resin, polystyrene resin, polyvinyl acetal resin, diallyl phthalate resin, acrylic resin, methacrylic resin, vinyl acetate Resins, phenolic resins, silicone resins, polysulfone resins, styrene-butadiene copolymer resins, alkyd resins, epoxy resins, urea resins and vinyl chloride-vinyl acetate copolymer resins, but are not limited thereto. Absent. These can be used alone, as a mixture or as one or more of them as a copolymer polymer.
[0046]
The proportion of the resin in the charge generation layer is preferably not more than 80% by weight, particularly preferably not more than 40% by weight, based on the total weight of the layer. The thickness of the charge generation layer is preferably 5 μm or less, and particularly preferably 0.01 to 2 μm.
[0047]
Further, various additives such as a sensitizer and a deterioration inhibitor may be added to the charge generation layer.
[0048]
The layer containing the charge transporting substance, that is, the charge transporting layer, can be formed by combining a known charge transporting substance, the styryl ketone compound of the present invention, and a suitable binder resin.
[0049]
The charge transporting substance includes an electron transporting substance and a hole transporting substance. Examples of the electron transporting substance include 2,4,7-trinitrofluorenone, 2,4,5,7-tetranitrofluorenone, chloranil and Examples thereof include electron withdrawing substances such as tetracyanoquinodimethane, and those obtained by polymerizing these electron withdrawing substances. Polycyclic aromatic compounds such as pyrene and anthracene as hole-transporting substances; carbazole-based, indole-based, imidazole-based, oxazole-based, thiazole-based, oxadiazole-based, pyrazole-based, pyrazoline-based, thiadiazole-based and triazole-based compounds Heterocyclic compounds such as p-diethylaminobenzaldehyde-N, N-diphenylhydrazone and N, N-diphenylhydrazino-3-methylidene-9-ethylcarbazole; tri-p-tolylamine; Triarylamine compounds such as -p-tolylamino) -biphenyl, 2- (di-p-tolyl) -amino-9,9'-dimethylfluorene and 1-di-p-tolyl-aminopyrene; α-phenyl-4 '-N, N-diphenylaminostilbene and 5- [ Styryl compounds such as-(di-p-tolylamino) benzylidene] -5H-dibenzo [a, d] cycloheptene; benzidine compounds; triarylmethane compounds; triphenylamine, or a main chain composed of these compounds. Alternatively, a polymer having a side chain (for example, poly-N-vinylcarbazole, polyvinylanthracene, or the like) may be used. In addition to these organic charge transport materials, inorganic materials such as selenium, selenium-tellurium, amorphous silicon, and cadmium sulfide can be used. These charge transport materials can be used alone or in combination of two or more.
[0050]
Examples of the binder resin used for the charge transport layer include photoconductive polymers such as polyvinyl carbazole and polyvinyl anthracene in addition to those used for the charge generation layer.
[0051]
The compounding ratio of the binder resin and the charge transport material is preferably 10 to 500 parts by weight, more preferably 50 to 200 parts by weight of the charge transport material per 100 parts by weight of the binder resin. preferable.
[0052]
When the charge transport material and the styryl ketone compound of the present invention are mixed and used, the compounding ratio of the compound of the present invention is preferably 0.01 to 400 parts by weight per 100 parts by weight of the charge transport material. Is preferably 0.1 to 100 parts by weight.
[0053]
The charge transport layer is electrically connected to the above-described charge generation layer, has a function of receiving charge carriers generated in the charge generation layer in the presence of an electric field, and transporting the charge carriers to the surface of the photoreceptor. ing. Since the charge transport layer has a limit for transporting charge carriers, it is not possible to increase the film thickness more than necessary. However, the thickness is preferably 5 to 40 μm, and particularly preferably 10 to 30 μm.
[0054]
Further, in addition to the styryl ketone compound of the present invention, an antioxidant, an ultraviolet absorber, a plasticizer, and the like can be added to the charge transport layer as needed.
[0055]
As a coating method for forming the above-mentioned various layers by coating, using an appropriate organic solvent, coating such as dip coating, spray coating, spinner coating, roller coating, Meyer bar coating and blade coating, etc. Law.
[0056]
FIG. 1 shows a schematic configuration of an electrophotographic apparatus having a process cartridge having the electrophotographic photosensitive member of the present invention.
[0057]
In FIG. 1, reference numeral 1 denotes a drum-shaped electrophotographic photosensitive member of the present invention, which is driven to rotate around a shaft 2 at a predetermined peripheral speed in a direction indicated by an arrow. The photoreceptor 1 receives a uniform charge of a predetermined positive or negative potential on the peripheral surface thereof by the primary charging means 3 during the rotation process, and then receives a charge from an image exposure means (not shown) such as slit exposure or laser beam scanning exposure. It receives image exposure light 4. Thus, an electrostatic latent image is sequentially formed on the peripheral surface of the photoconductor 1.
[0058]
The formed electrostatic latent image is then subjected to toner development by the developing unit 5, and the developed toner developed image is transferred between the photoconductor 1 and the transfer unit 6 from a paper feeding unit (not shown) by rotation of the photoconductor 1. The image is sequentially transferred by the transfer unit 6 to the transfer material 7 which is taken out and fed in synchronization.
[0059]
The transfer material 7 that has undergone the image transfer is separated from the photoreceptor surface, introduced into the image fixing means 8 and subjected to image fixing, thereby being printed out of the apparatus as a copy.
[0060]
The surface of the photoreceptor 1 after the image transfer is cleaned and cleaned by removing the untransferred toner by a cleaning unit 9, and further subjected to a static elimination process by a pre-exposure light 10 from a pre-exposure unit (not shown). Used for imaging. When the primary charging unit 3 is a contact charging unit using a charging roller or the like, pre-exposure is not necessarily required.
[0061]
In the present invention, among the above-described components such as the electrophotographic photosensitive member 1, the primary charging unit 3, the developing unit 5, and the cleaning unit 9, a plurality of components are integrally connected as a process cartridge. May be configured to be detachable from a main body of an electrophotographic apparatus such as a copying machine or a laser beam printer. For example, a process in which at least one of the primary charging unit 3, the developing unit 5 and the cleaning unit 9 is integrally supported together with the photoreceptor 1 to form a cartridge, and which can be attached to and detached from the apparatus main body using guide means such as the rail 12 of the apparatus main body. The cartridge 11 can be used.
[0062]
When the electrophotographic apparatus is a copier or a printer, the image exposure light 4 is reflected light or transmitted light from the original, or the original is read by a sensor and converted into a signal, and a laser beam is emitted according to the signal. Light emitted by scanning, driving of an LED array, driving of a liquid crystal shutter array, and the like.
[0063]
The electrophotographic photoreceptor of the present invention can be widely used not only for electrophotographic copying machines but also for electrophotographic applications such as laser beam printers, CRT printers, LED printers, liquid crystal printers, and laser plate making.
[0064]
Hereinafter, the present invention will be described with reference to examples.
Example (1)
A solution prepared by dissolving 4.5 g of N-methoxymethylated 6 nylon resin (weight average molecular weight 30,000) and 9.5 g of alcohol-soluble copolymerized nylon resin (weight average molecular weight 25,000) in 90 g of methanol on an aluminum sheet was used. An undercoat layer having a thickness of 0.5 μm after coating with a bar and drying was provided.
[0065]
Next, 4 g of a crystalline oxytitanium phthalocyanine pigment having a Bragg angle 2θ ± 0.2 ° in X-ray diffraction of CuKα having strong peaks at 9.0 °, 14.2 °, 23.9 ° and 27.1 °. And 2 g of polyvinyl butyral resin were added to 100 g of cyclohexanone, dispersed by a sand mill using 1 mmφ glass beads for 1 hour, and diluted with 50 g of ethyl acetate to prepare a coating solution.
[0066]
This coating solution was applied on a previously prepared undercoat layer with a Meyer bar so that the film thickness after drying was 0.22 μm, to form a charge generation layer.
[0067]
Next, 10 g of the charge transporting material represented by the following structural formula and the above-mentioned exemplified compound No. (25) 1 g and 10 g of a polycarbonate resin (weight-average molecular weight: 20,000) are dissolved in 70 g of monochlorobenzene, and this solution is applied on the above-mentioned charge generation layer with a Meyer bar to form a charge transport layer having a dry film thickness of 20 μm. And a three-layer electrophotographic photosensitive member was prepared.
[0068]
[ChangeThirteen]
Figure 0003595637
The electrophotographic photoreceptor thus prepared was corona-charged at −5 kV in a static manner using an electrostatic copying paper tester Model-SP-428 manufactured by Kawaguchi Electric Co., Ltd., and held for 1 second in a dark place. Light irradiation was performed to examine the charging characteristics.
[0069]
Charging characteristics include surface potential (V0) And the potential (V1) Is reduced to 1/5.1/5) Was measured. At this time, a gallium / aluminum / arsenic ternary semiconductor laser (output: 5 mW; oscillation wavelength: 780 nm) was used as a light source.
[0070]
Furthermore, in order to evaluate the potential characteristics when repeatedly used in the actual machine, an aluminum cylinder (φ30 mm × 260.5 mm) was used instead of the aluminum sheet, and the coating method was the same as above except that the coating method was a dip coating method. The obtained electrophotographic photoreceptor is mounted on a laser beam printer of a reversal development system equipped with a semiconductor laser similar to that described above (a modified machine of LBP-SX, manufactured by Canon Inc.), and the potential characteristics when repeatedly used are evaluated. did. The conditions are as follows. VD: -700V, VL: -150V (exposure 0.7 μJ / cmTwo), Transfer potential: +700 V, development polarity: negative polarity, process speed: 50 mm / sec, development bias: -450 V, scan method after image exposure: image scan, exposure before primary charging: 40 Lux · sec, full red exposure.
[0071]
In addition, as a test for accelerating the cracking of the photosensitive layer, finger oil was adhered to the surface of the electrophotographic photosensitive member prepared as described above, and left under normal temperature and normal pressure for 8 hours to observe whether or not cracks occurred in the photosensitive layer. did.
[0072]
In addition, as a test for accelerating the crystallization of the charge transport material, finger oil was adhered to the surface of the electrophotographic photoreceptor prepared as described above, and left at 75 ° C. for 1 week to determine whether the charge transport material had crystallized. Was observed.
[0073]
Further, as a measurement of photo memory for white light, the initial surface potential (V) when the electrophotographic photosensitive member prepared as described above was charged to -700 V by the same printer as above before irradiation with light.d) And the potential (Vl) Is measured, and then the photoreceptor is masked so that a bright portion and a dark portion are formed. The photosensitive member is irradiated with light under a fluorescent lamp at 3000 Lux for 20 minutes, and then left for 5 minutes to change the initial potential (ΔV).d) And (ΔVl) Was measured.
[0074]
Examples (2) to (5), Reference Examples (1) to (6), Comparative Examples (1) to (7)
This example, Reference exampleIn Comparative Examples and Comparative Examples, the exemplified compound No. used in Example (1) was used. Example instead of (25)And reference examplesIn the above, the compounds shown in Table 2 below were added in the same manner.4)as well as(5In ()), instead of the crystalline form of oxytitanium phthalocyanine of Example (1), (4In ()), oxytitanium phthalocyanine having Bragg angles 2θ ± 0.2 ° in X-ray diffraction of CuKα having peaks at 9.6 ° and 27.2 °, and (5In (3), an electrophotographic photosensitive member was formed in the same manner as in Example (1) using β-type oxytitanium phthalocyanine. In Comparative Examples, the electrophotographic photoreceptors were formed in the same manner as in Example (1), in addition to the constitutions of the photoreceptors shown in Table 1 below. The electrophotographic properties of each photoreceptor, the cracks in the photosensitive layer, the crystallization of the charge transport material, and the evaluation of the photo memory were evaluated in the same manner as in Example (1).
[0075]
Examples (1) to (5), Reference Examples (1) to (6)Are shown in Table 2 below, and the results of Comparative Examples (1) to (7) are shown in Table 3 below.
[0076]
[Table 1]
Figure 0003595637
[0077]
[Table 2]
Figure 0003595637
[0078]
[Table 3]
Figure 0003595637
[0079]
[Change14]
Figure 0003595637
[0080]
[ChangeFifteen]
Figure 0003595637
[0081]
Example(6)
5.5 g of N-methoxymethylated 6 nylon resin (weight average molecular weight 35,000) and 10.5 g of alcohol-soluble copolymerized nylon resin (weight average molecular weight 30,000) are mixed on an aluminum sheet by mixing 60 g of methanol and 20 g of isopropyl alcohol. A solution dissolved in a solvent was applied with a Meyer bar, and a subbing layer having a thickness of 1.0 μm after drying was provided.
[0082]
Next, a crystalline oxytitanium phthalocyanine pigment 4 having a Bragg angle 2θ ± 0.2 ° in X-ray diffraction of CuKα having strong peaks at 9.0 °, 14.2 °, 23.9 ° and 27.1 °. 0.2 g and 2 g of polyvinyl butyral resin were added to 110 g of cyclohexanone, dispersed by a sand mill using 1 mmφ glass beads for 3 hours, and diluted with 20 g of ethyl acetate to prepare a coating solution.
[0083]
This coating liquid was applied on a previously prepared undercoat layer using a Meyer bar so that the film thickness after drying was 0.2 μm, to form a charge generation layer.
[0084]
Next, 9 g of the charge transporting material represented by the following structural formula and the above-mentioned exemplified compound No. 1 (24) 1.2 g and 10 g of a polycarbonate Z-type resin (weight average molecular weight: 60,000) were dissolved in 68 g of monochlorobenzene, and this solution was applied on the previous charge generation layer by a blade coating method, and the dry film thickness was 23 μm. And a three-layer electrophotographic photosensitive member was prepared.
[0085]
[Change16]
Figure 0003595637
A corona discharge of -5 kV is applied to the electrophotographic photoreceptor thus prepared, and the surface potential (initial potential V0) Was measured. Further, the surface potential of this photoconductor after leaving it in a dark place for 1 second was measured. The sensitivity is the exposure amount (E) required to attenuate the potential after dark decay to 1/6.1/6: ΜJ / cmTwo) Was measured. At this time, a gallium / aluminum / arsenic ternary semiconductor laser (output: 5 mW; oscillation wavelength: 780 nm) was used as a light source.
[0086]
Next, the above photoconductor was attached to an aluminum cylinder (φ30 mm × 260.5 mm) on a laser beam printer (remodeled LBP-SX made by Canon), which is an electrophotographic printer of a reversal development type equipped with a semiconductor laser as described above. The cylinder is mounted on the printer and the primary charging voltage when the transfer current is OFF is Vd1The primary charge voltage when the transfer current is ON is Vd2, and a so-called transfer memory (Vd1-Vd2) Was measured, and then an image forming test was performed. The conditions are as follows. Surface potential after primary charging: -700 V, surface potential after image exposure: -150 V (exposure amount: 1.0 μJ / cm)Two), Transfer potential +700 V, developing polarity: negative polarity, process speed: 47 mm / sec, developing conditions (developing bias): -450 V, scan after image exposure: image scan, exposure before primary charging: 8.0 Lux · sec red The entire surface exposure and image formation were performed by line scanning with a laser beam in accordance with a character signal and an image signal. Good prints were obtained for both characters and images.
[0087]
The photoreceptor prepared in the same manner as above was evaluated for cracks in the photoconductive layer, crystallization of the charge transport material, and photo memory of the photoreceptor by the same method as in Example (1). Table 5 shows the results.
[0088]
Example(7) ~ (10)Reference Examples (7) to (10))
The above embodiment (6The above-mentioned exemplified compound Nos. The compounds shown in Table 5 below were used in place of (24).9)as well as(10), The embodiment (6Instead of the crystalline form of oxytitanium phthalocyanine,9In ()), oxytitanium phthalocyanine having Bragg angles 2θ ± 0.2 ° in X-ray diffraction of CuKα having peaks at 9.6 ° and 27.2 °, and (10In ()), examples using β-type oxytitanium phthalocyanine were used.6The electrophotographic photoreceptor was formed in the same manner as in (1).
[0089]
Then, the evaluation of the electrophotographic characteristics of each photoreceptor, the transfer memory, the crack of the photosensitive layer, the crystallization of the charge transport material, and the evaluation of the photo memory were performed in Examples (6) Was evaluated in the same manner as in (1). The results are shown in Table 5 below.
[0090]
Comparative Examples (8) to (14)
Comparative Examples (8) to (14) correspond to the above-described Example (6)), The styryl ketone compound of the present invention is not added, or the charge generating substance and the compound added to the charge transport layer are replaced with the compounds shown in Table 4 below to constitute the photoconductor. Other than the above,6A photosensitive member was prepared in the same manner as in (1).
[0091]
Then, the electrophotographic characteristics of each photoreceptor, the transfer memory, the crack of the photosensitive layer, the crystallization of the charge transport material, and the photo memory are described in Examples (6) Was evaluated in the same manner as in (1). The results are shown in Table 6 below.
[0092]
[Table 4]
Figure 0003595637
[0093]
[Table 5]
Figure 0003595637
[0094]
[Table 6]
Figure 0003595637
[0095]
[Change17]
Figure 0003595637
[0096]
[Change18]
Figure 0003595637
[0097]
Example(11)
A 30% methanol solution of alcohol-soluble nylon (6-66-610-12 quaternary nylon copolymer; weight-average molecular weight 30,000) is applied on an aluminum sheet using a Meyer bar, and the film thickness after drying is 0.95 μm. An undercoat layer was provided.
[0098]
Next, 6 g of a crystalline oxytitanium phthalocyanine pigment having strong Bragg angles 2θ ± 0.2 ° at 9.0 °, 14.2 °, 23.9 ° and 27.1 ° in X-ray diffraction of CuKα. And 1 g of an azo pigment represented by the following structural formula and 5 g of a polyvinyl butyral resin were added to 100 g of cyclohexanone, and dispersed for 1 hour by a sand mill using 1 mmφ glass beads, and 4,4′-thiobis (6-tert-butyl-) was added thereto. m-cresol) was added, and 30 g of ethyl acetate was added for dilution to prepare a coating solution.
[0099]
[Change19]
Figure 0003595637
This coating liquid was applied on a previously prepared undercoat layer with a Meyer bar so that the film thickness after drying was 0.25 μm, to form a charge generation layer.
[0100]
Next, 5.2 g of the charge-transporting substance (1) and 3.6 g of the charge-transporting substance (2) represented by the following structural formulas, (28) 1.2 g and 11.5 g of a polycarbonate resin (weight average molecular weight: 20,000) were dissolved in 70 g of monochlorobenzene, and this solution was applied on the previous charge generation layer by a Meyer bar, and the dry film thickness was 25 μm. A charge transport layer was provided, and a three-layer electrophotographic photosensitive member was prepared.
[0101]
[Change20]
Figure 0003595637
The initial characteristics of the photoreceptor thus prepared were measured in the same manner as in Example (1).
[0102]
V0= -700 (V) V1= -695 (V)
E1/5= 0.50 (Lux · sec)
The value of the photo memory is ΔVd= 8 (V), ΔVl= 4 (V).
[0103]
In addition, when a test for accelerating cracking and crystallization of the photoreceptor was performed in the same manner as in Example (1), no cracking was observed even after 8 hours, and no crystallization was observed even after one week. I couldn't.
[0104]
Example(12)
A 35% methanol solution of alcohol-soluble nylon (6-66-610-12 quaternary nylon copolymer; weight-average molecular weight 30,000) was applied on an aluminum sheet with a Meyer bar, and the film thickness after drying was 1.1 μm. An undercoat layer was provided.
[0105]
Next, a crystalline oxytitanium phthalocyanine pigment 6 having a Bragg angle 2θ ± 0.2 ° in X-ray diffraction of CuKα having strong peaks at 9.0 °, 14.2 °, 23.9 ° and 27.1 °. 0.3 g, 1 g of an azo pigment represented by the following structural formula, and 4.9 g of a polyvinyl butyral resin were added to 90 g of cyclohexanone, dispersed by a sand mill using 1 mmφ glass beads for 2 hours, and added with 2,2′-methylenebis (4- 1 g of methyl-6-tert-butylphenol) was added, and 30 g of ethyl acetate was added for dilution to prepare a coating solution.
[0106]
[Change21]
Figure 0003595637
This coating liquid was applied on a previously prepared undercoat layer using a Meyer bar so that the film thickness after drying was 0.2 μm, to form a charge generation layer.
[0107]
Next, in this example, the exemplified compound No. Using (35) as a charge transport material, 8.6 g was mixed with 11.5 g of a polycarbonate resin (weight average molecular weight of 40,000) and dissolved in 70 g of monochlorobenzene. And a charge transport layer having a dry film thickness of 22 μm was provided to form a three-layer electrophotographic photosensitive member.
[0108]
The initial characteristics of the photoreceptor thus prepared were measured in the same manner as in Example (1).
[0109]
V0= -695 (V) V1= -690 (V)
E1/5= 0.59 (Lux · sec)
The value of the photo memory is ΔVd= 5 (V), ΔVl= 3 (V).
[0110]
In addition, when a test for accelerating cracking and crystallization of the photoreceptor was performed in the same manner as in Example (1), no cracking was observed even after 8 hours, and no crystallization was observed even after one week. I couldn't.
[0111]
Example(Thirteen)
6.2 g of N-methoxymethylated 6 nylon resin (weight average molecular weight: 25,000) and 9.5 g of alcohol-soluble copolymerized nylon resin (weight average molecular weight: 20,000) are mixed on an aluminum support by mixing 60 g of methanol and 20 g of butanol. A solution dissolved in a solvent was applied with a Meyer bar, and a subbing layer having a thickness of 0.75 μm after drying was provided.
[0112]
Next, a crystalline oxytitanium phthalocyanine pigment 5 having a strong peak at 9.0 °, 14.2 °, 23.9 ° and 27.1 ° in Bragg angle 2θ ± 0.2 ° in X-ray diffraction of CuKα 5 0.8 g, 2 g of an azo pigment represented by the following structural formula, and 5 g of polyvinyl butyral resin were added to 95 g of cyclohexanone, dispersed by a sand mill using glass beads of 1 mmφ for 1 hour, and 4,4′-butylidenebis (6-tert- 1 g of butyl-m-cresol) was added, and 30 g of ethyl acetate was added for dilution to prepare a coating solution.
[0113]
[Change22]
Figure 0003595637
This coating liquid was applied on a previously prepared undercoat layer with a Meyer bar so that the film thickness after drying was 0.25 μm, to form a charge generation layer.
[0114]
Next, 6.0 g of the charge transporting material represented by the following structural formula and the abovereferenceCompound No. (19) 1.5 g of the exemplified compound No. (37) 1.5 g and 11.5 g of a polycarbonate resin (weight average molecular weight: 20,000) were dissolved in 74 g of monochlorobenzene, and this solution was applied on the previous charge generation layer with a Meyer bar to obtain a dry film having a thickness of 22 μm. A charge transport layer was provided, and a three-layer electrophotographic photosensitive member was prepared.
[0115]
[Change23]
Figure 0003595637
The initial characteristics of the photoreceptor thus prepared were measured in the same manner as in Example (1).
[0116]
V0= -705 (V) V1= -700 (V)
E1/5= 0.55 (Lux · sec)
The value of the photo memory is ΔVd= 6 (V), ΔVl= 3 (V).
[0117]
In addition, when a test for accelerating cracking and crystallization of the photoreceptor was performed in the same manner as in Example (1), no cracking was observed even after 8 hours, and no crystallization was observed even after one week. I couldn't.
[0118]
Example(14)
A 38% methanol solution of alcohol-soluble nylon (6-66-610-12 quaternary nylon copolymer; weight-average molecular weight 18,000) was applied on an aluminum sheet with a Meyer bar, and the film thickness after drying was 0.5 μm. Was provided.
[0119]
Next, a crystalline oxytitanium phthalocyanine pigment 7 having strong peaks at Bragg angles 2θ ± 0.2 ° of 9.0 °, 14.2 °, 23.9 ° and 27.1 ° in X-ray diffraction of CuKα 7 0.7 g and 5.2 g of polyvinyl butyral resin were added to 110 g of cyclohexanone, dispersed by a ball mill for 3 hours, and diluted by adding 28 g of ethyl acetate to prepare a coating liquid.
[0120]
This coating liquid was applied on a previously prepared undercoat layer using a Meyer bar so that the film thickness after drying was 0.15 μm, to form a charge generation layer.
[0121]
Next, as the charge transporting substance, the above-mentioned Compound No. (22) 7.5 g and 10 g of a polycarbonate resin (weight average molecular weight: 80,000) are dissolved in a mixed solvent of 50 g of monochlorobenzene and 20 g of dichloromethane, and this solution is applied on the previous charge generation layer by a blade coating method. A charge transport layer having a thickness of 18 μm after drying was provided to form a three-layer electrophotographic photosensitive member.
[0122]
The initial characteristics of the photoreceptor thus prepared were measured in the same manner as in Example (1).
[0123]
V0= -695 (V) V1= -680 (V)
E1/5= 0.51 (Lux · sec)
The value of the photo memory is ΔVd= 7 (V), ΔVl= 2 (V).
[0124]
Further, the same test as in Example (1) was carried out for the accelerated test of cracking and crystallization of the photoreceptor. No cracking was observed even after 8 hours, and no crystallization was observed even after 1 week. I was not able to admit.
[0125]
Example(Fifteen)
A 35% methanol solution of alcohol-soluble nylon (6-66-610-12 quaternary nylon copolymer; weight-average molecular weight 30,000) was applied on an aluminum sheet with a Meyer bar, and the film thickness after drying was 1.9 μm. Was provided.
[0126]
Next, 8.2 g of the charge transporting material represented by the following structural formula, 0.8 g of the exemplified compound (34), and 10 g of bisphenol A polycarbonate resin (weight average molecular weight: 28,000) were mixed with monochlorobenzene (60 parts by weight) -dichloromethane. (20 parts by weight) The resultant was dissolved in 75 g of a mixed solvent, and applied by a Meyer bar onto the undercoat layer prepared above to form a charge transport layer having a dried film thickness of 20 μm.
[0127]
[Change24]
Figure 0003595637
Further, a crystalline oxytitanium phthalocyanine pigment having a strong peak at 9.0 °, 14.2 °, 23.9 ° and 27.1 ° at Bragg angles 2θ ± 0.2 ° in X-ray diffraction of CuKα4. 2 g and 2.2 g of butyral resin (butyralization degree: 55 mol%) were dispersed in 65 g of cyclohexanone with a sand mill for 1 hour.
[0128]
This dispersion was applied on a previously prepared charge transport layer with a Meyer bar so that the film thickness after drying was 1.2 μm, and dried.
[0129]
The electrophotographic characteristics of the photoreceptor thus prepared were measured in the same manner as in Example (1) (however, the charge was positive). The results are shown below.
[0130]
V0= + 700 (V) V1= + 690 (V)
E1/5= 1.54 (Lux · sec)
The value of the photo memory is ΔVd= 16 (V), ΔVl= 7 (V).
[0131]
Example(16)
On a glass support, 5.2 g of N-methoxymethylated 6 nylon resin (weight average molecular weight: 20,000) and 8.8 g of alcohol-soluble copolymerized nylon resin (weight average molecular weight: 28,000) were added to 34 g of methanol and 65 g of butanol. The solution dissolved in the mixed solvent was subjected to a dip coating method, and an undercoat layer having a thickness of 1 μm after drying was provided.
[0132]
Next, 7 g of the charge transporting substance having the structure shown below and the exemplified compound No. 1 were prepared. (30) 3 g and 10 g of a bisphenol A type polycarbonate resin (weight average molecular weight 30,000) were dissolved in 70 g of monochlorobenzene, and applied on a previously prepared undercoat layer using a Meyer bar, and the film thickness after drying was 18 μm. Was formed.
[0133]
Next, 60 g of an acrylic monomer having the following structural formula, 40 g of tin oxide ultrafine particles having an average particle diameter of 400 ° before dispersion, 3 g of 2-methylthioxanthone as a photoinitiator, and 280 g of methylcellosolve were dispersed in a sand mill for 72 hours. Was done.
[0134]
[Change25]
Figure 0003595637
Using this dispersion, a film was formed on the previous photosensitive layer by a beam coating method and dried, and then 8 mW / cm using a high-pressure mercury lamp.TwoAt a light intensity of 30 seconds to provide a protective layer of 2.1 μm. The sample obtained in this manner was observed with a transmission microscope while irradiating light from the back surface at an angle of 15 °, but no cracks and no crystallization of the charge transporting material occurred.
[0135]
Comparative example (15)
The above embodiment (12With respect to the charge transport layer prepared in the above Example Compound No. Except that it was created without using (35),12A sample was prepared in the same manner as in (1) and observed with a transmission microscope under the same method. As a result, cracks in the charge transport layer were observed.
[0136]
【The invention's effect】
As described above, the electrophotographic photoreceptor containing the styryl ketone compound of the present invention has small fluctuations in the light portion potential and the dark portion potential during continuous image formation by repeated charging and exposure, and has excellent durability. Furthermore, even in a reversal development system, the transfer memory is extremely small, and cracks in the photosensitive layer that cause image defects and crystallization of the charge transport material are extremely unlikely to occur, and an electrophotographic photosensitive member that does not easily cause photo memory, and the electrophotography. Providing a process cartridge having a photoreceptor and an electrophotographic apparatus can also be achieved at the same time.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of a schematic configuration of an electrophotographic apparatus having a process cartridge having an electrophotographic photosensitive member of the present invention.
FIG. 2 shows a crystalline oxytitanium phthalocyanine pigment having strong peaks at Bragg angles 2θ ± 0.2 ° of 9.0 °, 14.2 °, 23.9 ° and 27.1 ° in X-ray diffraction of CuKα. FIG.
[Explanation of symbols]
1. Electrophotographic photoreceptor of the present invention
2 axes
3 Primary charging means
4 Image exposure light
5 Developing means
6 transfer means
7 Transfer material
8 Image fixing means
9 Cleaning means
10 Pre-exposure light
11 Process cartridge
12 rails

Claims (3)

導電性支持体上に電荷発生層と電荷輸送層を有する電子写真感光体において、該電荷発生層がオキシチタニウムフタロシアニンを含有し、該電荷輸送層が下記一般式[2]で表され、かつ分子中に置換アミノ基を有するスチリルケトン化合物を少なくとも一種類含有することを特徴とする電子写真感光体。
一般式[2]
Figure 0003595637
(式中、Arは置換もしくは無置換のアリール基または置換もしくは無置換のスチリル基を示し、R8は水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換のアリール基または置換もしくは無置換のアラルキル基を示し、またR8とArは共同して環を形成してもよい。R9からR13は水素原子、ハロゲン原子、ニトロ基、水酸基、シアノ基、置換アミノ基、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基または置換もしくは無置換のアラルキル基を示し、またR9とR10、R10とR11、R11とR12及びR12とR13は共同で環を形成してもよい。)
An electrophotographic photosensitive member on a conductive support having a charge transport layer and the charge generation layer, the charge generation layer contains oxytitanium phthalocyanine, the charge transport layer is represented by the following general formula [2], and molecular an electrophotographic photosensitive member, characterized by at least one contains a styryl compound that having a substituted amino group in the.
General formula [2]
Figure 0003595637
(In the formula, Ar represents a substituted or unsubstituted aryl group or a substituted or unsubstituted styryl group , R 8 represents a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted R 8 represents a substituted aryl group or a substituted or unsubstituted aralkyl group, and R 8 and Ar may form a ring together R 9 to R 13 represent a hydrogen atom, a halogen atom, a nitro group, a hydroxyl group, a cyano group, A substituted amino group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group or a substituted or unsubstituted aralkyl group, and R 9 and R 10 , R 10 and R 11 , R 11 and R 12 And R 12 and R 13 may together form a ring.)
請求項1記載の電子写真感光体と、帯電手段、現像手段及びクリーニング手段からなる群より選ばれた少なくともひとつの手段を一体に支持し、電子写真装置本体に着脱自在であることを特徴とするプロセスカートリッジ。Wherein an electrophotographic photosensitive member according, charging means, that at least one means selected from the group consisting of the developing means and cleaning means integrally supported, is detachable to the main body of the electrophotographic apparatus in claim 1 And process cartridge. 請求項1記載の電子写真感光体、帯電手段、像露光手段、現像手段及び転写手段を有することを特徴とする電子写真装置。An electrophotographic apparatus comprising the electrophotographic photosensitive member according to claim 1, a charging unit, an image exposing unit, a developing unit, and a transfer unit.
JP33363096A 1996-12-13 1996-12-13 Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus Expired - Fee Related JP3595637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33363096A JP3595637B2 (en) 1996-12-13 1996-12-13 Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33363096A JP3595637B2 (en) 1996-12-13 1996-12-13 Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus

Publications (2)

Publication Number Publication Date
JPH10171138A JPH10171138A (en) 1998-06-26
JP3595637B2 true JP3595637B2 (en) 2004-12-02

Family

ID=18268202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33363096A Expired - Fee Related JP3595637B2 (en) 1996-12-13 1996-12-13 Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus

Country Status (1)

Country Link
JP (1) JP3595637B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105693608A (en) * 2016-03-24 2016-06-22 中国科学院理化技术研究所 2, 2-dimethyl-1, 3-indandione derivatives and organic electroluminescence device based on same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006267277A (en) * 2005-03-22 2006-10-05 Mitsubishi Paper Mills Ltd Pigment dispersion liquid for manufacturing electrophotographic photoreceptor and electrophotographic photoreceptor using the dispersion liquid
CN114516809A (en) * 2022-02-25 2022-05-20 西华师范大学 AIE fluorescent probe based on dibenzylidene acetone and preparation method and application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105693608A (en) * 2016-03-24 2016-06-22 中国科学院理化技术研究所 2, 2-dimethyl-1, 3-indandione derivatives and organic electroluminescence device based on same

Also Published As

Publication number Publication date
JPH10171138A (en) 1998-06-26

Similar Documents

Publication Publication Date Title
EP0466094B1 (en) Electrophotographic photosensitive member
EP0977087A1 (en) Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus
JP2805376B2 (en) Organic electronic materials
JP2000105475A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic device
JP2000056490A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic device
JPH05303221A (en) Electrophotographic sensitive body, electrophotographic device and facsimile with the same
JP3595637B2 (en) Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JPH10104861A (en) Electrophotographic photoreceptor, process cartridge with the same and electrophotographic device
JP2000221713A (en) Electrophotographic photoreceptor and process cartridge and electrophotographic apparatus each having same
JP3228657B2 (en) Electrophotographic photoreceptor, process cartridge having the electrophotographic photoreceptor, and electrophotographic apparatus
JP4143224B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP4164201B2 (en) Electrophotographic equipment
JP3313980B2 (en) Electrophotographic photoreceptor, electrophotographic apparatus and process cartridge equipped with the electrophotographic photoreceptor
JP3027481B2 (en) Electrophotographic photoreceptor and electrophotographic apparatus provided with the electrophotographic photoreceptor
JPH10111577A (en) Electrophotographic photoreceptor, process cartridge with same and electrophotographic device
JP2981348B2 (en) Electrophotographic photoreceptor, electrophotographic apparatus provided with the electrophotographic photoreceptor, and facsimile
JPH11184108A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JPH1048856A (en) Electrophotographic photoreceptor, process cartridge with same and electrophotographic device
JP3197117B2 (en) Electrophotographic photoreceptor, apparatus unit having the same, and electrophotographic apparatus
JP3248627B2 (en) Electrophotographic photoreceptor, electrophotographic apparatus and apparatus unit having the same
JP3789046B2 (en) Electrophotographic photosensitive member, process cartridge having the electrophotographic photosensitive member, and electrophotographic apparatus
JP2879372B2 (en) Electrophotographic photoreceptor, electrophotographic apparatus provided with the electrophotographic photoreceptor, and facsimile
JPH0611868A (en) Electrophotographic sensitive body, electrophotographic device and device unit having the same
JP3140892B2 (en) Electrophotographic photoreceptor and electrophotographic apparatus provided with the electrophotographic photoreceptor
JP3295305B2 (en) Electrophotographic photoreceptor, process cartridge having the electrophotographic photoreceptor, and electrophotographic apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070910

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120910

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120910

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees