JP3595601B2 - 画像通信方法及びその装置 - Google Patents

画像通信方法及びその装置 Download PDF

Info

Publication number
JP3595601B2
JP3595601B2 JP8277495A JP8277495A JP3595601B2 JP 3595601 B2 JP3595601 B2 JP 3595601B2 JP 8277495 A JP8277495 A JP 8277495A JP 8277495 A JP8277495 A JP 8277495A JP 3595601 B2 JP3595601 B2 JP 3595601B2
Authority
JP
Japan
Prior art keywords
pixel
data
image data
black
color image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8277495A
Other languages
English (en)
Other versions
JPH08279913A (ja
Inventor
浩 梶原
充 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP8277495A priority Critical patent/JP3595601B2/ja
Publication of JPH08279913A publication Critical patent/JPH08279913A/ja
Application granted granted Critical
Publication of JP3595601B2 publication Critical patent/JP3595601B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compression Of Band Width Or Redundancy In Fax (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Image Processing (AREA)
  • Color Television Systems (AREA)
  • Color Image Communication Systems (AREA)

Description

【0001】
【産業上の利用分野】
本発明は画像通信方法及び装置に関し、特に、例えばJPEG方式などの、直交変換符号化方式を用いた画像通信方法及びその装置に関するものである。
【0002】
【従来の技術】
従来、自然画像の符号化手法として、その国際標準方式であるJPEG符号化方式に直交変換符号化の一手法であるADCTが採用されるなど、直交変換符号化が主として用いられている。
【0003】
JPEG方式は画像を複数の画素からなるブロックに分割して離散コサイン変換(DCT)を施し、得られた変換係数を量子化し、量子化係数を符号化する方式である。JPEG方式は写真等の自然画のようにエッジが少ない画像データには適した符号化として知られている。この方式に関する詳細は「マルチメディア符号化の国際標準」(安田編著、丸善株式会社)等に記載されているので説明は省略する。
図25はJPEG方式を適用した従来の画像通信装置の構成を示す図である。図25において、1001〜1004が送信側装置の構成要素であり、1005が通信回線であり、1006〜1009が受信側装置の構成要素である。まず送信側装置において、1001は原稿を読みとり、画像データを生成するカラースキャナ、1002は読みとったカラー画像データをJPEG方式に従って符号化し、コードデータを生成するJPEG符号化器、1003はコードデータを一時的に格納するバッファ、1004はコードデータを送信する通信インタフェース(I/F)である。一方、受信側装置において、1006はコードデータを受信する通信インタフェース(I/F)、1007は受信したコードデータを一時的に格納するバッファ、1008は受信したコードデータをJPEG方式に従って復号化し、画像データを生成するJPEG復号化器、1009はカラープリンタである。
【0004】
次に、画像データの符号化、送信、受信、及び、復号化について概説する。
【0005】
カラースキャナ1001で読み込まれた画像データはJPEG符号化器1002に入力される。JPEG符号化器1002は入力した画像データをブロックに分割し、DCTを施した後、DCT係数を量子化して符号化する。生成されたコードデータはバッファ1003に格納される。送信側装置は符号化データの送信に先立ち、画像の特性や符号化パラメータが記述されたヘッダを送信する。バッファ1003に格納されたコードデータは通信回線1005の通信速度に合わせて通信インタフェース1004から送信される。
【0006】
一方、受信側装置では通信回線1005を介して送信されたコードデータを通信インタフェース1006を介して受信し、その受信コードデータをバッファ1007に格納する。次に、バッファ1007内のコードデータは読み出されてJPEG復号化器1008で復号化される。この復号化によって、符号化された量子化係数が再生され、逆量子化が行われ、逆DCTを施され、復号画像データが生成される。復号化された画像データはカラープリンタ1009によって出力される。
【0007】
【発明が解決しようとする課題】
しかしながら上記従来例では、画像符号化における符号化効率を向上させるために、画像の高周波成分を粗く量子化する。即ち、DCT変換係数の高周波成分に対して量子化の幅を大きくすることで画像情報量の削減を行っているので、高周波成分の再現性が損なわれる。例えば、文字のエッジ部等の輝度変化や色変化の大きな部分では、そのエッジ部分が鮮明に再現されず、ボケ・色ずれ等の画質劣化を生じるという様な欠点があった。特に、文字のエッジの周辺で、直交変換符号化に特有な折り返し歪(一般にモスキートノイズと呼ばれる)が生じ、画質が劣化する。さらにまた、特に高品位が求められる黒で表現する文字画像について、ボケが生じたり、周囲の他色の滲みによって黒らしさが損なわれたりすると、画像の品位低下はさらに著しいものになってしまう。
【0008】
画像通信の場合、一般的にはその画像原稿には文字情報が多く含まれていることを考慮したとき、このような画質劣化は大きな問題といえる。
【0009】
また、画像出力装置がYMCK二値カラープリンタ等である場合には、コードデータの復号化後に、ディザ法や誤差拡散法等を用いて二値化するので、直交変換によりボケや二値化閾値の影響により、文字エッジ部分等で凹凸を生じるという様な問題があった。
【0010】
本発明は上記従来例に鑑みてなされたもので、特に文字画像の再現性を高め、高品位な画像出力が可能な画像通信方法及びその装置を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記目的を達成するために本発明の画像通信方法は、以下の様な工程からなる。
【0012】
即ち、カラー画像データを非可逆符号化方式を用いて符号化する第1の符号化工程と、カラー画像データ各画素が黒画素であるかどうかを判別する判別工程と、前記判別工程で判別された黒画素の情報を可逆符号化方式を用いて符号化する第2の符号化工程と、前記第1及び第2の符号化工程で符号化された符号化データを送信する送信工程と、前記送信工程で送信された符号化データを受信する受信工程と、前記受信された符号化データの内、前記第1の符号化工程によって符号化されたカラー画像データを復号化する第1の復号化工程と、前記受信された符号化データの内、前記第2の符号化工程によって符号化された黒画素の情報を復号化する第2の復号化工程と、前記復号化された黒画素の情報と前記復号化されたカラー画像データとに従って、前記復号化されたカラー画像データの値を、黒を表す値で置換する補正処理を行なう補正工程と、前記補正工程によって処理されたカラー画像データを出力する出力工程とを有し、前記補正工程は、前記復号化された黒画素の情報、又は前記復号化されたカラー画像データにより黒と判定された場合に実行されることを特徴とする画像通信方法を備える。
【0013】
また他の発明によれば、カラー画像データを非可逆符号化方式を用いて符号化する第1の符号化手段と、カラー画像データ各画素が黒画素であるかどうかを判別する判別手段と、前記判別手段で判別された黒画素の情報を可逆符号化方式を用いて符号化する第2の符号化手段と、前記第1及び第2の符号化手段で符号化された符号化データを送信する送信手段と、前記送信手段で送信された符号化データを受信する受信手段と、前記受信された符号化データの内、前記第1の符号化手段によって符号化されたカラー画像データを復号化する第1の復号化手段と、前記受信された符号化データの内、前記第2の符号化手段によって符号化された黒画素の情報を復号化する第2の復号化手段と、前記復号化された黒画素の情報と前記復号化されたカラー画像データとに従って、前記復号化されたカラー画像データの値を、黒を表す値で置換する補正処理を行なう補正手段と、前記補正手段によって処理されたカラー画像データを出力する出力手段とを有し、前記補正手段は、前記復号化された黒画素の情報、又は前記復号化されたカラー画像データにより黒と判定された場合に実行されることを特徴とする画像通信装置を備える。
【0014】
【作用】
以上の構成により、可逆符号化方式を用いて符号化されたカラー画像データの黒画素の情報と、非可逆符号化方式を用いて符号化されたカラー画像データとを受信し、復号化された黒画素の情報と復号化されたカラー画像データに従って、復号化されたカラー画像データの値を、その値が黒画素の情報、又は復号化されたカラー画像データにより黒と判定された場合に、黒を表わす値で置換する補正処理を行ない、その補正されたカラー画像データを出力するよう動作する。
【0016】
【実施例】
以下添付図面を参照して本発明の好適な実施例を詳細に説明する。
【0017】
[第1実施例]
図1は本発明の第1実施例に従う画像通信装置の構成を示すブロック図であり、図1(a)が送信側装置の構成を、図1(b)が受信側装置の構成を示す。しかしながら、1つの装置が図1(a)と(b)の両方の構成を備えた送受信可能な装置であっても良いことは言うまでもない。また、図25で示した従来例と同じ構成要素には同じ装置参照番号を付し、ここでの説明は省略する。
【0018】
図1(a)に於いて、101は伝送対象となるRGB画像データを格納するバッファ、103はバッファ101内の画像データから黒位置情報を作成する黒判定器、104は黒判定器103で生成された黒位置情報に対しMMR符号化を行うMMR符号化器、105はMMR符号化データを蓄積するためのバッファ、106はJPEG符号化器1002からの出力とバッファ105に格納された符号化データを切り替えて出力するセレクタである。
【0019】
また、図1(b)に於いて、109は受信した符号化データの出力先を切り替えるセレクタ、111はJPEG復号器1008で復号されたRGB画像データを蓄積するバッファ、112はMMR符号化データを復号するMMR復号器、113はMMR復号器112で復号された黒情報によりバッファ111のRGB画像データを補正する黒処理器である。
【0020】
以上の構成の装置における画像通信動作に関し、まず、データ送信側の動作について説明する。
【0021】
バッファ101に蓄積されたRGB画像データがJPEG符号化器1002により符号化され、その符号化データがセレクタ106を介して通信インタフェース107によって伝送される。これに並行して黒判定器103は、バッファ101に蓄積された画像データを画素毎に黒であるかどうかを判定し、黒ならば“1”、そうでなければ“0”で表す二値の黒情報を生成する。
【0022】
図2は黒判定器103の構成を示すブロック図である。図2において、201は3つの入力(RGBデータ)の最大値を選択し出力するセレクタ、202は3つの入力(RGBデータ)の最小値を選択し出力するセレクタ、203はセレクタ201の出力からセレクタ202の出力を減算する減算器、204はセレクタ201の出力と閾値(Th1)との比較を行なう比較器、205は減算器203からの出力と閾値(Th2)との比較を行う比較器、206は比較器204、205の出力の論理積を求めるAND回路である。
【0023】
黒判定器103の動作概要は以下のとおりである。
【0024】
バッファ101から取り出された各画素のR、G、Bの各値はセレクタ201とセレクタ202に入力される。セレクタ201は入力RGBの最大値(MAX)を、一方、セレクタ202は入力RGBの最小値(MIN)を出力する。減算器203において、最大値(MAX)−最小値(MIN)の減算が行われる。
【0025】
次に、比較器204では、セレクタ201から出力(MAX)を閾値(Th1)と比較し、MAX<Th1である場合、比較器204は“1”を、MAX≧Th1である場合、“0”を出力する。一方、比較器205は減算器203の減算結果(MAX−MIN)と閾値(Th2)とを比較し、(MAX−MIN)<Th2である場合、比較器205は“1”を、(MAX−MIN)≧Th2である場合、“0”を出力する。最後に、AND回路206は比較器204、205の出力に対し論理積演算を行う。
【0026】
このように黒判定器103では、R,G,Bの最大値が閾値(Th1)よりも小さく、かつ、最大値と最小値の差が閾値(Th2)より小さい場合を黒と判定し、そうでない場合には黒ではないと判定し、その判定結果(以下、これを黒情報という)を出力している。黒情報の値が“1”である場合には、その画素が黒であることを、一方、“0”である場合には、その画素が黒ではないことを意味する。そして、MMR符号化器104はこの黒情報をMMR符号化し、バッファ105に蓄積する。
【0027】
セレクタ106はJPEG符号化データのエンドマーカ(以下、これをEOIマーカという)であるEOI(End of Image)の通過を検出すると、入力をバッファ105側に切り替え、バッファ105に蓄えられているMMR符号化データを通信インタフェース107へと送り、その符号化データを通信回線1005に送出する。
【0028】
次にデータ受信側の動作について説明する。
【0029】
まず、通信インタフェース1006は通信回線1005より符号化データを受信し、セレクタ109にこれを転送する。セレクタ109は、EOIマーカを検出するまでの受信データをJPEG復号器1008に入力し、EOIマーカの後のデータをMMR復号器112に入力する。JPEG復号器1008は入力されたデータを復号し、バッファ111に蓄積する。MMR復号器112も入力されたデータを複合し、復号された黒情報を黒処理器113に転送する。黒処理器113は画素毎に黒情報の値が“1”であるかどうかを調べ、“1”であればバッファ111内の対応する画素位置のデータを補正する。
【0030】
図3は黒処理器113の構成を示すブロック図である。図3において、301〜303は各々、黒情報を制御信号として出力を切り替える2入力1出力のセレクタである。セレクタ301〜303は各々、その制御信号の値が“0”であればR,G,Bを出力し、制御信号の値が“1”であれば“0”を出力する。このようにして、黒処理器113のセレクタ301〜303は、バッファ111から着目画素のRGBデータを入力するとともに、MMR復号器112からの黒情報に従って、その黒情報の値が“0”であれば入力RGBデータをそのまま出力し、一方、黒情報の値が“1”であればRGB成分のすべての値を“0”に置換して出力する。黒処理器113の出力はプリンタ1009に入力されて、記録用紙に受信画像が出力される。
【0031】
従って本実施例に従えば、画像送信側において送信画像データの各画素についてその画素が黒画素であるかどうかを判定しその判定結果をMMR符号化してJPEG方式に従って符号化されたデータとともに送出する。一方、画像受信側ではJPEG方式に従って復号化されたRGBデータの各画素が、黒画素であるかどうかをMMR方式に従って復号化されたデータに基づいて判定し、黒画素である場合にはその画素のRGB成分すべてを“0”で置換してプリント出力を行なうので、黒画素の再現性に優れた画像送信及び受信をすることができる。
【0032】
[第2実施例]
図4は本発明の第2実施例に従う画像通信装置、特に、受信側装置の構成を示すブロック図である。本実施例における送信側装置は第1実施例のそれと同様である。また本実施例でも、1つの装置が送信側と受信側の両方の構成を備えた送受信可能な装置であっても良いことは言うまでもない。また、従来例や第1実施例と同じ構成要素には同じ装置参照番号を付し、ここでの説明は省略する。
【0033】
図4において、404はRGB画像データをプリンタ特性に適合したYMC画像データへと変換する色変換器、405は入力YMC画像データの二値化を行う二値化処理器、406は二値化処理器405で二値化された画像データを蓄積するバッファ、408はMMR復号器407で復号された黒情報によりバッファ406の二値画像データを補正し黒画素データ(K)を生成する黒処理器、409はYMCK2値カラープリンタである。
【0034】
図5は黒処理器408の構成を示すブロック図である。図5において、501〜503は各々、Y、M、Cを一方の入力とし以下に示すNOT回路からの出力をもう一方の入力としこれらの論理積を求めるAND回路、504はYMC画像データを入力してこれらの論理積を求めるAND回路、505は黒情報とAND回路504の出力との論理和を求めるOR回路、506はNOT回路である。従って、黒処理器408は、入力YMCデータ(2値)の値がすべて“1”のとき、或いは、黒情報の値が“1”であるときは、その画素を黒画素とみなし出力YMCデータ(2値)をすべて“0”とし、黒画素データ(K)の値を“1”として出力する。
【0035】
次に、以上の構成の装置の動作について説明する。
【0036】
まず、第1実施例と同様の動作により、送信側装置ではJPEG符号化データとMMR符号化された黒情報が生成され送信される。図4に示す構成の受信側装置では、通信インタフェース1006が送信された符号化データを受信し、その受信データをセレクタ109へと転送する。セレクタ109は受信データの内EOIマーカまでのデータをJPEG復号器1008へ、EOIマーカ以降をMMR復号器112へと転送する。
【0037】
JPEG復号器1008へ転送されたデータはJPEG方式に従って復号化され、さらに色変換器404により復号RGBデータからYMCデータに変換される。このYMCデータは、二値化処理器405で二値化され、バッファ406に蓄積される。二値化処理器405はY,M,C各々について誤差拡散法により二値化処理を行う。一方、MMR復号器407へ送られたデータはMMR方式に従って復号化され、その復号化された黒情報は黒処理器408へ送られる。黒処理器408は画素毎に、二値化されたYMCデータと復号化された黒情報とに基づいて、上述のように2値のYMCKデータを生成し、二値カラープリンタ409へ出力する。二値カラープリンタ409は入力されたYMCK画像データに基づいて画像出力を行う。
【0038】
従って本実施例に従えば、第1実施例に従って生成された符号化データを受信し、JPEG方式に従って復号化されたRGBデータをYMCデータに変換し、さらにこれを2値化する。さらに、MMR方式に従って復号化された黒情報と2値化されたYMCデータに基づいて、各画素が黒画素であるかどうかを判定し、黒画素である場合にはその画素のYMC成分すべてを“0”で置換するとともにK成分データの値を“1”として出力しプリント出力を行なうので、黒画素の再現性に優れた画像出力をすることができる。
【0039】
[第3実施例]
図6は本発明の第3実施例に従う画像通信装置の構成を示すブロック図であり、図6(a)が送信側装置の構成を、図6(b)が受信側装置の構成を示す。しかしながら、1つの装置が図6(a)と(b)の両方の構成を備えた送受信可能な装置であっても良いことは言うまでもない。また、従来例や第1実施例と同じ構成要素には同じ装置参照番号を付し、ここでの説明は省略する。
【0040】
図6(a)に於いて、603は画像のエッジ部分を検出するエッジ検出器、604はJBIG方式に従って画像を符号化するJBIG符号化器である。また、図6(b)に於いて、612はJBIG符号化方式に従って受信データを復号するJBIG復号器、613はJBIG復号器612で復号されたエッジ情報に基づいてバッファ111に格納されているRGB画像データを補正するエッジ強調器である。
【0041】
以上の構成の装置における画像通信動作に関し、まず、データ送信側の動作について説明する。
【0042】
第1実施例と同様にしてバッファ101に蓄積されたRGB画像データがJPEG方式に従って符号化され、その符号化データが通信回線1005に送出される。これに並行してエッジ検出器603は、バッファ101に蓄積された画像データを画素毎にこれがエッジであるかどうかを判定し、エッジと判定されたならば“1”、そうでなければ“0”で表す二値のエッジ情報を生成する。
【0043】
図7はエッジ判定器603の構成を示すブロック図である。図7において、701は3×3画素のマトリクスを生成するマトリクス生成器、702〜704は各々、マトリクス生成器701で生成されたマトリクスに対しフィルタ処理を行うフィルタ処理器、705〜707は各々、フィルタ処理器702〜704の出力と閾値(Th3)とを比較する比較器、708は比較器705〜707の出力の論理和を求めるOR回路である。
【0044】
マトリクス生成器701は、バッファ101から必要なデータを取り出すことにより、R,G,B各々について各着目画素を中心とする3×3画素の画素値マトリクスを生成する。RGB各成分についての合計3つの生成されたマトリクスは各々、フィルタ処理器702〜704に入力される。フィルタ処理器702〜704は入力マトリクスに関し、図8に示す様な重み付けフィルタによりフィルタ処理を施し、その絶対値をエッジ量(EDi:i=1,3)として出力する。比較器705〜707は各々、エッジ量(EDi:i=1,3)を閾値(Th3)と比較し、EDi>Th3である場合には“1”を、EDi≦Th3である場合には“0”を出力する。OR回路708は、比較器705〜707の出力の論理和を求め、その結果をエッジ検出器603の検出結果として出力する。
【0045】
JBIG符号化器604はこれを入力してJBIG方式に従って符号化し、バッファ105に蓄積する。セレクタ106は第1実施例と同様にJPEG方式に従った符号化データのエンドマーカであるEOIの通過を検出すると、入力先をバッファ105に切り替え、バッファ105に蓄積された符号化データが通信インタフェース1004を経て通信回線1005に送出される。
【0046】
次にデータ受信側の動作について説明する。
【0047】
まず、第1実施例と同様に通信インタフェース1006は通信回線1005より符号化データを受信し、これをセレクタ109に入力すると、EOIマーカを検出するまでの受信データはJPEG復号器1008に転送されてJPEG方式に従って復号され、その復号化データがバッファ111に格納される。一方、EOIマーカの後のデータはJBIG復号器612に転送される。
【0048】
JBIG復号器612はその転送されたデータを復号し、復号化されたエッジ情報をエッジ強調器613に転送する。エッジ強調器613は画素毎にエッジ情報の値が“1”であるかどうかを調べ、その値が“1”であればバッファ111内の対応する画素位置のデータに対しエッジ強調処理を施す。
【0049】
図9はエッジ強調器613の構成を示すブロック図である。図9において、901は3×3画素のマトリクスを生成するマトリクス生成器、902〜904はマトリクス生成器901で生成されたマトリクスに対しフィルタ処理を行うフィルタ処理器、905〜907はエッジ情報を制御信号としてフィルタ処理器902〜904の出力、或いは、復号されたRGBのいづれかを選択し出力するセレクタである。
【0050】
マトリクス生成器901はバッファ111から必要なデータを取り出すことにより、復号されたR,G,B各々について着目画素を中心とする3×3の画素値マトリクスを生成する。RGB各成分について生成された合計3つのマトリクスは各々、フィルタ処理器902〜904に送られる。フィルタ処理器902〜904はそれぞれ、入力マトリクスに関し、図10に示す様な重み付けフィルタによりフィルタ処理を施し、その結果をセレクタ905〜907に出力する。セレクタ905〜907はエッジ情報を制御信号とし、エッジ情報の値が“1”の場合にはフィルタ処理器902〜904からのデータを選択して出力し、そうでない場合には着目画素のR,G,Bの画素値をそのまま出力する。
【0051】
従って本実施例に従えば、画像送信側において送信画像データの各画素についてその画素がエッジであるかどうかを判定しその判定結果をJBIG方式に従って符号化してJPEG方式に従って符号化されたデータとともに送出する。一方、画像受信側ではJPEG方式に従って復号化されたRGBデータの各画素が、エッジであるかどうかをJBIG方式に従って復号化されたエッジ情報に基づいて判定し、その画素がエッジである場合にはその画素の周辺画素(3×3画素)の値を考慮して重み付けがなされた値でRGB成分を置換してプリント出力を行なうので、エッジの再現性に優れた画像送信及び受信をすることができる。
【0052】
なお第1〜3実施例では、黒画素判定やエッジ判定情報の符号化方式として、MMR符号化とJBIG符号化を例に取ったが、本発明はこれに限定されるものではない。例えば、MH符号やチェーン符号など他の符号化方式に従うものであっても勿論かまわない。同様に、黒画素判定の方法やエッジ判定の方法についても第1〜3実施例で説明されたものに本発明が限定されるものではないことは言うまでもない。例えば、エッジ判定において、周囲の画素の状態によって補正を加える手段、例えば、孤立点除去やかすれ補正を処理を施す手段を付け加えることも容易に考え得る。
【0053】
また、黒画素判定情報やエッジ判定情報の伝送は符号化データの伝送後に行っているが、本発明はこのようなデータの伝送順序に限定されるものではなく、例えば、上記の情報を符号化データの送出前に送信しても良いし、ある分割単位で符号化データと交互に送信しても良い。
【0054】
[第4実施例]
図11〜図12は本発明の第4実施例に従う画像通信装置の構成を示すブロック図である。図11が送信側装置の構成を、図12が受信側装置の構成を示す。しかしながら、1つの装置が図11と図12の両方の構成を備えた送受信可能な装置であっても良いことは言うまでもない。また、従来例や前述の実施例と同じ構成要素には同じ装置参照番号を付し、ここでの説明は省略する。
【0055】
図11に於いて、1102はカラー原稿から黒エッジの位置を抽出する黒エッジ抽出部、1103は抽出された黒エッジの位置を符号化して、黒エッジ情報のコードデータを生成する黒エッジ情報符号化器、1106は黒エッジ情報に基づいて黒エッジ情報を除去する黒エッジ除去部、1108はJPEG符号化器1002から出力されるカラー画像コードデータを一時的に格納するバッファ、1116は符号化画像データや符号化黒エッジ情報に関するヘッダ情報を生成するヘッダ生成器である。
【0056】
また図12において、1118は符号化画像データや黒エッジ情報に関するヘッダ情報を解析するヘッダ解析器、1119は受信コードデータを一時的に格納するバッファ、1120は復号化された黒エッジ情報を格納しておくバッファ、1121〜1123は入力された多値の画像データを誤差拡散法に従って2値化データに変換する二値化器、1124〜1126は生成された2値化データを格納しておくバッファ、1127〜1129は各々、バッファ1124〜1126各々からの出力とバッファ1120からの出力の論理和をとるOR回路である。
【0057】
以上の構成の装置における画像通信動作に関し、まず、データ送信側の動作について説明する。なお、JPEG方式ではブロックサイズは8×8画素であるため、カラースキャナ1001はラスタ順に画素データを読み込み、8ライン分のデータを単位として出力するものとし、以下、この8ライン分のデータを1ストライプと呼ぶことにする。また、黒エッジ情報は、前述の実施例で説明した黒情報やエッジ情報と同じように、各画素について1ビットで表現し、黒エッジと判定された画素に対応するビットの値を“1”、そうでない画素に対応するビットの値を“0”とする。そして、読み込む画像原稿1枚に関する黒エッジ情報をビットプレーンで表現することにする。
【0058】
まず、カラースキャナ1001で読み込まれた1ストライプ分のカラー画像データはバッファ101と黒エッジ抽出部1102に入力される。黒エッジ抽出部1102では入力RGBカラー画像データから輝度データを生成し、輝度データから黒エッジ情報を抽出する。
【0059】
図13は黒エッジ抽出部1102の構成を示すブロック図である。図13において、1130はRGBカラー画像データを輝度データ(Y)に変換する輝度生成器である。変換は、
Y=0.272×R+0.500×G+0.119×B …(1)
の式で表せる。
【0060】
また、1131〜1133は1ライン分輝度データを格納するFIFOメモリ、1134〜1142は1画素分の輝度データを格納するラッチ、1143はラッチ1134〜1142の出力の平均値(AVE)を求める平均器、1144はラッチ1138からの出力データ(CTR)と平均器1143の出力(AVE)とを比較する比較器、1145はラッチ1138の出力データ(CTR)と平均器1143の出力(AVE)との絶対値差分(ADF)を求める絶対値差分器、1146は絶対値差分器1145の出力と閾値(Th4)と比較する比較器、1147はラッチ1138の出力データ(CTR)と閾値(Th5)とを比較する比較器、1148は比較器1144,1146,1147の出力の論理積をとるAND回路である。
【0061】
ここで、比較器1144の出力値は、CTR>AVEであれば“1”、CTR≦AVEであれば“0”となり、比較器1146の出力値は、ADF>Th4であれば“1”、ADF≦Th4であれば“0”となり、比較器1147の出力値は、CTR<Th5であれば“1”、CTR≧Th5であれば“0”となる。
【0062】
さて、以上の構成の輝度生成器1102において、画素ごとに入力されたRGB画像データは式(1)に従って輝度データ(Y)に変換される。変換された輝度データ(Y)はFIFOメモリ1131に入力される。FIFOメモリ1131の出力はFIFOメモリ1132とラッチ1134に入力される。FIFOメモリ1132の出力はFIFOメモリ1133とラッチ1135に入力される。FIFOメモリ1133の出力はラッチ1136に入力される。画素クロックによってラッチ1134〜1136の輝度データ(Y)はラッチ1137〜1139にシフトされる。同様にして、ラッチ1137〜1139の輝度データ(Y)はラッチ1140〜1142にシフトされる。
【0063】
FIFOメモリ1131〜1133、ラッチ1134〜1142によって輝度データ(Y)の3×3画素ウィンドウが形成される。注目画素はその中心であり、ラッチ1138が注目画素のデータを格納している。平均器1143は3×3画素ウィンドウの輝度データ(Y)の平均値(AVE)を各注目画素ごとに求める。ラッチ1138の注目画素のデータ(CTR)は比較器1144でウィンドウ内の平均値(AVE)と比較される。同時に、絶対値差分器1145で平均値(AVE)との絶対値差分(ADF)を求め、比較器1146で絶対値差分(ADF)と閾値(Th4)とが比較される。また、比較器1147で注目画素のデータ(CTR)と閾値(Th5)とが比較される。そして、これら3つの比較器の出力値すべてが“1”となった時、注目画素が黒エッジ画素であるとみなされて、AND回路1148から黒エッジ情報の値として“1”が出力され、黒エッジ除去部1106、MMR符号化器104に入力される。
【0064】
黒エッジ情報はMMR符号化器104でMMR符号化方式に従って符号化され、得られた黒エッジ情報コードデータはバッファ105に格納される。
【0065】
一方、バッファ101に蓄えられたRGBカラー画像データは黒エッジ除去部1106に入力され、黒エッジ情報に基づいて、RGBカラー画像データから黒エッジの画素のデータを除去し、黒エッジの画素の周囲の画素の情報からそのデータ値を補完して黒エッジの画素値を置き換える。
【0066】
図14は黒エッジ除去部1106の構成を示すブロック図である。図14において、1150〜1152はカラー画像データの各画素のR,G,Bのデータを格納するラッチ、1153〜1155は1ライン分のデータを格納するFIFOメモリ、1156〜1158は2つの入力の和をとり2で割って平均値を求める平均器、1159〜1161は入力される黒エッジ情報に従って、その値が“1”であれば、ラッチ1150〜1152の出力を、“0”であれば平均器1156〜1158の出力を選択するセレクタ、1162〜1164は各々、セレクタ1159〜1161各々の出力を格納するラッチである。
【0067】
まず、RGBカラー画像データのうち、R成分についての処理を述べる。
【0068】
バッファ101から入力されたR成分画像データは、ラッチ1150でラッチされ、ラッチ1150の出力はセレクタ1159に入力され、セレクタ1159の出力はラッチ1162でラッチされる。ラッチ1162の出力はFIFOメモリ1153に入力される。ここで、ラッチ1150の画素データを注目画素とすると、ラッチ1162には同ラインの1画素前の画素データが格納されているので、FIFOメモリ1153の出力は1ライン前の同じ位置の画素データである。従って、平均器1156ではこれら2つの出力(注目画素と同ラインの1画素前の画素と、注目画素の1ライン前のラインで注目画素と同じ位置の画素)の平均値が求められる。
【0069】
セレクタ1159は、注目画素が黒エッジ画素であった場合、即ち、黒エッジ情報の値が“1”である場合、平均器1156の出力が選択され、ラッチ1162に格納される。これに対して、黒エッジ情報の値が“0”であればラッチ1150の画素データを選択して、その出力をラッチ1162に格納する。その後、その出力はJPEG符号化器1002に出力される。このようにして、黒エッジ画素の値が周囲の画素値で補間されて出力される。
【0070】
G成分画像データについてはラッチ1151、セレクタ1160、ラッチ1163、FIFOメモリ1154、平均器1157によって、B成分画像データについてはラッチ1152、セレクタ1161、ラッチ1164、FIFOメモリ1155、平均器1158によって、同様に処理される。
【0071】
以上のようにして黒エッジ除去部1106で処理された画像データは、JPEG符号化器1002に入力され、その入力画像データをブロックに分割し、DCTを施した後、DCT係数を量子化して符号化する。符号化されたカラー画像データはバッファ1108に格納される。
【0072】
さて、ヘッダ生成器1116は、符号化されたデータの送信に先立ち、ヘッダデータを生成する。
【0073】
図15は送信符号化データの構成を示すブロック図である。図15(a)に示すようにJPEG方式に従う符号化データとMMR方式に従う符号化データとが混在する場合、ヘッダ部は、符号化データの先頭を一義的に表すスタートコードと、符号化データがJPEG方式に従う符号化データとMMR方式に従う符号化データとが混在する旨を表すフラグと、MMR方式に従う符号化データのストライプの幅を表すストライプ幅(走査ラインのライン数に対応する)とを含み、JPEG方式で定義されるJPEGヘッダがこれに続く。ここで、スタートコードは、続く符号化データに含まれない一義的な符号である。また、フラグは続く符号化データがJPEG方式とMMR方式との混在データであるか、或いは、JPEG方式に従う符号化データであるかを表し、混在データである時にその値は“1”、JPEG方式に従う符号化データの時にその値は“0”となる。ストライプ幅は、1ストライプを構成するライン数を整数を表す。ここで、ストライプ幅は、例えば、受信側のプリンタが所定のバンド幅で印字を行うタイプのものであれば、そのバンド幅の整数倍とする。JPEGヘッダに関しては、従来例で示した参考文献に詳細が記載されているので、ここではその説明は省略する。
【0074】
一方、図15(b)は、JPEG方式に従う符号化データのみで送信符号化データが構成される場合のデータ構成を示す図である。この場合、ヘッダ部にはストライプ幅は含まれず、フラグの値は“0”となる。このようなデータ構成は、黒エッジ抽出部1102、黒エッジ除去部1106の動作を停止させ、セレクタ106の入力をバッファ1108の出力側に固定することで得られる。
【0075】
以上の構成をもつヘッダデータが、ヘッダ生成器1116で生成されると、符号化データを送信し始める前に、通信インタフェース1004を介して通信回線1005に出力される。
【0076】
さて、1ストライプ分の符号化されたカラー画像データがバッファ1108に、このカラー画像データに対応する符号化された黒エッジ情報がバッファ105に格納された後、セレクタ106は、最初に、バッファ1108の符号化されたカラー画像データをバッファ1108から入力して、通信インタフェース1004に出力する。1ストライプ分の符号化されたカラー画像データを通信インタフェース1004から送信し終えた後、セレクタ106はデータ入力先を切り替えてバッファ105から符号化された黒エッジ情報を入力して、通信インタフェース1004に出力する。このようにして、1ストライプ分の符号化データの通信インタフェース10からの送信を終了すると、セレクタ106は再びデータ入力先を切り替えてバッファ1106からの入力を選択する。そして、次のストライプの符号化されたカラー画像データを通信回線1005に送出すると、さらに続いて、セレクタ106は再びデータ入力先を切り替えてバッファ105から対応する符号化された黒エッジ情報を入力して通信インタフェース1004から送信する。
【0077】
このような処理を画像の最後まで繰り返し、1ストライプごとに符号化されたカラー画像データと符号化された黒エッジ情報とを交互に通信回線1005に送出する。
【0078】
次にデータ受信側の動作について説明する。
【0079】
まず、通信インタフェース1006は通信回線1005より符号化データを受信すると、最初の部分がヘッダ解析器1118に入力される。ヘッダ解析器1118は、まず、スタートコードを検出し、次に、スタートコードに続くフラグの内容を解析する。そのフラグの値が“1”の場合、以下装置各部の初期化を実施し、“0”の場合、MMR復号器112の動作を停止し、バッファ1120に“0”の値を格納するとともに、さらに、JPEGヘッダデータを解析し、復号化処理に必要な情報を得る。
【0080】
以下、フラグの値が“1”であった場合(受信データはJPEG符号化データとMMR符号化データとの混在)の復号化処理について述べる。
【0081】
この場合、ヘッダ解析器1118は続く符号化データであるストライプ幅を解析し、続くコードデータの復号化処理に利用する。
【0082】
さて、通信インタフェース1006を介して最初のストライプの符号化されたカラー画像データがバッファ1110を経てセレクタ109に入力されると、セレクタ109は出力先を選択する。データ編成が図15(a)に示すようなものである場合、セレクタ109はJPEG復号器1008を選択する。そして、符号化されたカラー画像データはセレクタ109を介してJPEG復号器1008に入力され、JPEG方式に従って復号化が実施され、RGBカラー画像データが再生される。再生されたRGBカラー画像データは色変換器404に入力されプリンタ特性に適合したYMCカラー画像データに変換される。その変換の結果得られたYMCカラー画像データは、各色成分ごとに2値化器1121〜1123に入力され、誤差拡散法を用いて2値化される。即ち、Y成分画像データは2値化器1121で、M成分画像データは2値化器1122で、C成分画像データは2値化器1123で2値化される。そして、2値化の結果得られたY成分2値化データはバッファ1124に、M成分2値化データはバッファ1125に、C成分2値化データはバッファ1126に格納される。
【0083】
受信した符号化データのヘッダ部にセットされているストライプ幅と比較して、JPEG復号器1008によって復号・再生した画像データが1ストライプ分に達したと判断されると、セレクタ109はデータ出力先をMMR復号器112に切り替え、符号化されたカラー画像データに続いて、符号化された黒エッジ情報をMMR復号器112に出力する。そして、MMR復号器112によって、黒エッジ情報が再生され、その再生黒エッジ情報はバッファ1120に格納される。
【0084】
受信した符号化データのヘッダ部にセットされているストライプ幅と比較して、MMR復号器112によって再生された黒エッジ情報が1ストライプ分に達したと判断されると、画素クロック(不図示)に従って、バッファ1124〜1126からYMC2値データとバッファ1120から黒エッジ情報が順に読み出され図12に示されているように、OR回路1127〜1129に入力され、黒エッジ情報とYMC2値データ各成分との論理和がとられる。この論理演算の結果は2値カラープリンタ409に出力され、プリント出力が行なわれる。
【0085】
次にフラグの値が“0”であった場合(受信データはJPEG符号化データのみ)の復号化処理について述べる。
【0086】
この場合、入力JPEG符号化データは通信インタフェース1006、バッファ1119、セレクタ109を経て、JPEG復号器1008に入力され、カラー画像データが再生される。その再生カラー画像データは色変換器404でYMCカラー画像データに変換され、さらに、2値化器1121〜1123で誤差拡散法を用いて2値化され、その出力がバッファ1124〜1126に格納される。このような場合、前述のようにバッファ1120には予め“0”がセットされているので、OR回路1127〜1129の一方の入力が常に“0”となり、バッファ1124〜1126のデータがそのまま2値カラープリンタ409に出力され、プリントされる。
【0087】
従って本実施例に従えば、第1〜第3実施例を組み合わせたように、送信側装置において、エッジ判定と黒画素判定とを行なって黒エッジの判定を行い、黒エッジと判定された画素位置の情報を符号化して送出し、受信側装置では色変換処理と2値化処理を行なって再生RGBカラー画像データから2値のYMCデータを生成するとともに、このデータに復号化された黒エッジ情報に基づく黒エッジ画素の修正処理を行なって2値カラープリンタに出力することができる。これによって、黒エッジの再現性に優れた画像送受信と画像出力をすることができる。
【0088】
[第5実施例]
図16〜図17は本発明の第5実施例に従う画像通信装置の構成を示すブロック図である。図16が送信側装置の構成を、図17が受信側装置の構成を示す。しかしながら、1つの装置が図16と図17の両方の構成を備えた送受信可能な装置であっても良いことは言うまでもない。また、従来例や前述の実施例と同じ構成要素には同じ装置参照番号を付し、ここでの説明は省略する。
【0089】
図16に於いて、1202は画像原稿1枚分のカラー画像データを格納するフレームメモリ、1203はカラー原稿から黒画素を抽出する黒画素抽出部、1204は画像原稿1枚分の黒画素データを格納するバッファ、1207は黒画素情報に基づいて黒画素情報を除去する黒画素除去部、1213は符号化画像データや黒画素情報に関するヘッダ情報を生成するヘッダ生成器である。
【0090】
また図17において、1255は再生されたカラー画像データを格納するフレームメモリ、1257は再生された黒画素情報を格納しておくフレームメモリ、1258はフレームメモリ1255,1257を制御し、同一位置の画素情報を読み出すことを可能にするアドレスカウンタ、1259はセレクタで構成された黒処理器、1260は多値カラー画像データをプリントするカラー多値プリンタ、1261は符号化画像データや黒画素に関するヘッダ情報を解析するヘッダ解析器である。
【0091】
以上の構成の装置における画像通信動作に関し、まず、データ送信側の動作について説明する。なお、黒画素情報は、前述の実施例で説明した黒情報と同じように、各画素について1ビットで表現し、黒画素と判定された画素に対応するビットの値を“1”、そうでない画素に対応するビットの値を“0”とする。そして、読み込む画像原稿1枚に関する黒画素情報を各画素位置に対応させてビットプレーンで表現することにする。
【0092】
カラースキャナ1001で読み込まれたカラー画像データはフレームメモリ1202に格納される。画像原稿1枚分のカラー画像が格納された後、これらのRGBカラー画像データはカラースキャナ1001の主走査方向順、副走査方向(ラスタ方向)順に、黒画素抽出部1203に入力され、その入力RGBカラー画像データから黒画素を抽出する。
【0093】
図18は本実施例に従う黒画素抽出部1203の構成を示すブロック図である。図18において、1220〜1222は各々、RGB各成分の内の2成分を入力してその絶対差分値(ABDF)を算出する絶対値差分器、1223は絶対値差分器1220〜1222からの3つの出力のうち最大値(MAX0)を求める最大値算出器、1224はRGB各成分の入力値のうち最大値(MAX1)を求める最大値算出器、1225は最大値算出器1223からの出力(MAX0)と閾値(Th6)とを比較する比較器、1226は最大値算出器1224からの出力(MAX1)と閾値(Th7)とを比較する比較器、1227は比較器1225と1226との論理積を求めるAND回路である。
【0094】
ここで、比較器1225の出力は、MAX0<Th6なら“1”となり、MAX0≧Th6なら“0”となる。また、比較器1226の出力は、MAX1<Th7なら“1”となり、MAX1≧Th7なら“0”となる。
【0095】
以上の構成の黒画素抽出部1203において、入力RGBカラー画像データの各成分は図18に示すように絶対差分器1220〜1222に入力される。即ち、絶対値差分器1220にはR成分画像データ(R)とG成分画像データ(G)が、絶対値差分器1221にはG成分画像データ(G)とB成分画像データ(B)が、絶対値差分器1222にはB成分画像データ(B)とR成分画像データ(R)が入力される。絶対値差分器1220〜1222の出力、即ち、|R−G|、|G−B|、|B−R|は、最大値算出器1223に入力され、その最大値(MAX0)が選択される。一方、RGBカラー画像データの各色成分は最大値算出器224に入力され、その最大値(MAX1)が出力される。
【0096】
そして、絶対値差分の最大値(MAX0)は比較器1225に入力され、閾値(Th6)と比較される。一方、画像データの最大値(MAX1)は比較器1226に入力され、閾値(Th7)と比較される。それぞれの比較結果はAND回路1227に入力されて、その論理積を求められ、その論理演算の結果(黒画素情報)はフレームメモリ1204に格納される。
【0097】
さて、画像原稿の全面にわたって黒画素抽出が終了すると、黒画素除去部1207で以下に示す処理を実行して黒画素除去を行う。
【0098】
フレームメモリ1202と1204から同期して、所定ブロックごとに主走査方向、及び、副走査方向に、画素の情報を読み出す。ここで、該当する画素が黒画素でなければ、フレームメモリ1202から読みだしたRGB画像データをそのままJPEG符号化器1002に出力する。これに対して、該当する画素が黒画素であった場合、周囲画素のRGBデータその画素の値を補間する。
【0099】
図19は黒画素とその周囲の画素との関係を示す図である。図19において、各枡目は1画素を示し、太枠で囲まれた領域内の画素が黒画素であり、その他が黒画素でないとし、画素Xを処理の対象画素とする。この補間処理は、以下のような手順で実行される。
(1)まず、画素Xから副走査方向に関し負の方向で最近距離の黒画素でない画素を探索する。図19の場合は画素Aである。画素Xと画素Aとの距離をa、画素Aの画素値をPaとする。
(2)同様にして画素Xから副走査走査に関しの正の方向で最近距離の黒画素でない画素を探索する。図19の場合は画素Bである。画素Xと画素Bとの距離をb、画素Bの画素値をPbとする。
(3)画素Xから主走査方向に関し負の方向で最近距離の黒画素でない画素を探索する。図19の場合は画素Cである。画素Xと画素Cとの距離をc、画素Cの画素値をPcとする。
(4)画素Xから主走査方向に関し正の方向で最近距離の黒画素でない画素を探索する。図19の場合は画素Dである。画素Xと画素Dとの距離をd、画素Dの画素値をPdとする。
(5)これらの探索された画素の画素値から黒画素を除去した場合の補間値を求める。図19の場合では、a=2(画素),b=3(画素),c=2(画素),d=3(画素)である。画素Xの出力画素値(Px)は次式で表せる。
【0100】
Px=(a×Pa+b×Pb+c×Pc+d×Pd)/(a+b+c+d)…(2)
このように注目画素が黒画素であれば出力画素値(Px)をRGB各画像データごとに算出して黒画素の値を出力画素値(Px)で置換して出力する。
【0101】
黒画素除去部1207で生成された画像データは、JPEG符号化器1002に入力され、ブロック分割され、DCTが施された後、そのDCT係数を量子化して符号化される。その符号化されたカラー画像データはバッファ1108に格納される。
【0102】
次に、全画素についてカラー画像データの符号化が終了すると、黒画素情報をフレームメモリ1204から読みだして、JBIG符号化器604でJBIG符号化方式に従って符号化する。その結果、得られた符号化された黒画素情報はバッファ105に格納される。
【0103】
以上のようにして符号化データが生成されると、その符号化データの送信に先立ち、ヘッダ生成器1116は図20に示す送信データ編成のヘッダ部のデータを生成する。そのデータの詳細は第4実施例で述べたとおりである。
【0104】
その生成されたヘッダ部データは符号化データを送信し始める前に通信インタフェース1004を介して通信回線1005に出力される。
【0105】
一方、符号化された黒画素情報データがバッファ105に格納された後、最初に、セレクタ106はデータ入力先としてバッファ1108を選択し、バッファ1108に格納されている符号化されたカラー画像データを通信インタフェース1004に出力する。JPEG符号化データでは画像原稿1枚分の符号化データの最後に一義的に定められるEOI(End Of Image)マーカコードが付加されている。従って、セレクタ106はEOIマーカコードを通信インタフェース1004が検出すると、即ち、画像原稿1枚分の符号化されたカラー画像データの送信を終了すると、データ入力先を切り替えて、バッファ105に格納されている符号化された黒画素情報データを通信インタフェース1004に出力する。このようにして画像原稿1枚分の符号化された黒画素データの送信を終了すると、すべての動作を終了する。
【0106】
なお以上のような送信動作において、黒画素抽出部1203、黒画素除去部1207の動作を停止させ、セレクタ106のデータ入力先をバッファ1108に固定して、前述の実施例で説明した図15(b)に示すようなデータ編成の符号化データを生成することもできる。
【0107】
次にデータ受信側の動作について説明する。
【0108】
まず、通信回線1005から通信インタフェース1006を介して、図20或いは図15(b)に示された符号化データが入力されると、最初のヘッダ部がヘッダ解析器1118に入力され、スタートコードの検出に続いてそのコードに続くフラグの解析を行なう。そのフラグの解析結果に基づく動作は、第4実施例とほぼ同様であり、そのフラグの値が“1”の場合、以下装置各部の初期化を実施し、“0”の場合、JBIG復号器612の動作を停止し、フレームメモリ1257に“0”の値を格納するとともに、さらに、JPEGヘッダデータを解析し、復号化処理に必要な情報を得る。
【0109】
以下、フラグの値が“1”であった場合(受信データはJPEG符号化データとJBIG符号化データとの混在)の復号化処理について述べる。
【0110】
通信インタフェース1006を介して、受信された符号化データはバッファ1119に入力される。セレクタ109はまずデータ出力先としてJPEG復号化器1008を選択し、符号化されたカラー画像データをJPEG復号化器1008に出力する。JPEG復号化器1008では、前述の実施例と同様にJPEG方式に従う復号化が実施され、RGBカラー画像データが再生される。再生されたRGBカラー画像データはフレームメモリ1255に格納される。
【0111】
JPEG復号化器1008が画像原稿1枚分のカラー画像を再生した後、即ち、EOIマーカコードをJPEG復号化器1008が検出すると、セレクタ109はデータ出力先としてJBIG復号化器612を選択し、JBIG復号化器612に符号化された黒画素情報を出力する。JBIG復号化器612では、JBIG方式に従って復号化が実行され、黒画素情報が再生される。再生された黒画素情報はフレームメモリ1257に格納される。
【0112】
このようにして黒画素情報が復号されると、画素クロック(不図示)に従い、また、アドレスカウンタ1258の指示に従って、フレームメモリ1255からRGBカラー画像データが、フレームメモリ1257から黒画素情報が順に読み出されて、黒処理部1259に入力される。黒処理部1259では黒画素情報の値が“0”であれば、入力RGBカラー画像データをそのまま、黒画素情報の値が“1”であれば、RGB各成分の値を“0”に置換してカラー多値プリンタ1260に出力する。カラー多値プリンタ1260ではこのデータに基づいてプリント処理が実行される。
【0113】
次にフラグの値が“0”であった場合(受信データはJPEG符号化データのみ)の復号化処理について述べる。
【0114】
この場合、入力JPEG符号化データは通信インタフェース1006、バッファ1119、セレクタ109を経て、JPEG復号器1008に入力され、カラー画像データが再生される。再生されたカラー画像データはフレームメモリ1255を介して黒処理器1259の内部処理をバイパスしてカラー多値プリンタ1260に入力されて、プリント出力される。
【0115】
従って本実施例に従えば、送信側装置において、黒画素判定を行なって黒画素の抽出を行い、黒画素と判定された画素値はその周辺の画素値で補間した後、JPEG方式に従って符号化して送出するととともに、黒画素の情報は別にJBIG方式に従って符号化して送出する。一方、受信側装置ではJPEG方式に従って符号化されたデータとJBIG方式に従って符号化されたデータとを別々に夫々の方式に従って復号化し、黒画素と判定された画素については再生RGBカラー画像データの各成分の値を“0”とし、これ以外の画素については再生RGBカラー画像データをそのまま多値カラープリンタに出力することができる。これによって、黒画素の再現性に優れた画像送受信と画像出力をすることができる。
【0116】
[第6実施例]
図21〜図22は本発明の第6実施例に従う画像通信装置の構成を示すブロック図である。図21が送信側装置の構成を、図22が受信側装置の構成を示す。しかしながら、1つの装置が図21と図22の両方の構成を備えた送受信可能な装置であっても良いことは言うまでもない。また、従来例や前述の実施例と同じ構成要素には同じ装置参照番号を付し、ここでの説明は省略する。
【0117】
図21に於いて、1300はカラー原稿から無彩色画素を抽出しその画素が無彩色画素かどうか判定情報と無彩色画素値とを出力する無彩色画素抽出部、1301は画像原稿1枚分の無彩色画素判定情報を格納するフレームメモリ、1302は画像原稿1枚分の無彩色画素値を格納するフレームメモリ、1303は抽出された無彩色画素判定情報と無彩色画素値とを符号化する無彩色画素情報符号化器、1304は無彩色画素判定情報に基づいて無彩色画素を除去し、その画素を周辺の画素値で補間する無彩色画素除去部である。
【0118】
また図22において、1350は無彩色画素判定情報と無彩色画素値を復号再生する無彩色画素情報復号化器、1352は再生された無彩色画素値を格納するフレームメモリ、1353は再生された無彩色画素判定を格納するフレームメモリ、1351はフレームメモリ1255,1352,1353を制御し、同一位置の画素情報を読み出すことを可能にするアドレスカウンタ、1354は再生されたRGB画像データの無彩色画素部分を再生された無彩色画素判定情報と無彩色画素値とに基づいて、その画素値を無彩色画素値で置換する無彩色画素処理器である。
【0119】
以上の構成の装置における画像通信動作に関し、まず、データ送信側の動作について説明する。なお、無彩色画素判定情報は、前述の実施例で説明した黒情報と同じように、各画素について1ビットで表現し、無彩色画素と判定された画素に対応するビットの値を“1”、そうでない画素に対応するビットの値を“0”とする。そして、読み込む画像原稿1枚に関する無彩色画素判定情報を各画素位置に対応させてビットプレーンで表現することにする。また、以下の説明では本実施例に特徴的な部分のみについて説明し、前述の実施例と同様の動作については省略する。
【0120】
まず、カラースキャナ1001によって読み込まれフレームメモリ1202に格納された画像原稿1枚分のRGBカラー画像データが無彩色画素抽出部1300に入力され、その入力RGBのカラー画像データから無彩色画素判定情報と無彩色画素値とが抽出される。
【0121】
図23は本実施例に従う無彩色画素抽出部1300の構成を示すブロック図である。図23において、1315は入力RGB各成分の値の平均値を求める平均器である。また、比較器1225は、最大値算出器1223の出力(MAX0)と閾値(Th8)とを比較し、MAX0<Th8であるなら“1”(無彩色)を、MAX0≧Th8であるなら“0”(有彩色)を出力する。
【0122】
以上のような構成の無彩色画素抽出部1300において、RGBカラー画像データは図23に示すように絶対差分器1220〜1222に入力され、絶対値差分器1220〜1222各々で、|R−G|,|G−B|,|B−R|の値が求められる。最大値算出器1223はこれらの値を入力して、その最大値(MAX0)を選択する。その値(MAX0)は比較器1225に入力され、閾値(Th8)と比較される。そして、この比較結果が無彩色画素判定情報としてフレームメモリ1301に出力される。一方、RGBカラー画像データの各色成分は平均器1315に入力され、その平均値が算出される。この平均値は無彩色画素値としてフレームメモリ1302に格納される。
【0123】
以上の処理が画像原稿の全面にわたって行なわれ無彩色画素抽出が終了すると、無彩色画素除去部1304で無彩色画素除去とその画素の値の補間処理を行う。この無彩色画素除去と補間処理の詳細はすでに第5実施例で述べたと同様の処理であるが、ここで要約すれば、フレームメモリ1202と1301から同期して、所定ブロックごとに主走査方向、副走査方向に画素データを読み出し、その画素が無彩色画素でなければ、フレームメモリ1202から読みだしたRGB画像データをJPEG符号化器1002に出力し、一方、その画素が無彩色画素であれば、その周囲の画素のRGB画素データでその無彩色画素の値を補間して補間値をJPEG符号化器1002に出力する。
【0124】
以上のようにして無彩色画素除去部1304で処理された画像データは、JPEG符号化器1002入力され、ブロック分割された後、DCTが施され、そのDCT係数を量子化して符号化される。符号化されたカラー画像データはバッファ1108に格納される。
【0125】
画像原稿の全画素についてカラー画像データの符号化が終了すると、無彩色画素判定情報をフレームメモリ1301から、無彩色画素値を1302から読みだし、無彩色画素情報符号化部1303で符号化する。
【0126】
図24は無彩色画素情報符号化部1303の構成を示すブロック図である。図24において、1330は無彩色画素判定情報の値“0”のラン長を計数するラン長カウンタ、1331はそのラン長をハフマン符号化するラン長符号化器、1332,1335は無彩色画素判定情報の値を選択信号として出力の可否を制御できるラッチ、1333はラッチ1332、1335からの入力の差分値を求める差分器、1334はJPEG符号化におけるDC成分の符号化と同様な符号化を実行して差分値の符号と値を符号化する差分値符号化器、1336はラン長符号化器1331と差分値符号化器1334から出力された符号データを合成して出力する合成器である。なお、動作初期化時には、ラン長カウンタ1330のラン長は“0”であり、ラッチ1332とラッチ1335には“0”がセットされる。
【0127】
以上の様な構成の無彩色画素情報符号化部1303において、画素クロック(不図示)に同期して無彩色画素判定情報と無彩色画素値とが入力される。ここで、無彩色画素判定情報の値が“0”(無彩色)であれば、ラン長カウンタ1330でラン長に“1”を加算するが、ラッチ1332、1335のデータは出力されず、差分器1333も動作しない。
【0128】
これに対して、その判定情報の値が“1”(無彩色)であったとき、ラン長カウンタ1330はカウントを停止し、ラン長をラン長符合化器1331に出力する。そして、ラン長符合化器1331はそのラン長をハフマン符号化し、その符号化データを合成器1336に出力する。符号化データの出力後、ラン長カウンタ1330のラン長は“0”にリセットされる。同時に、ラッチ1332、1335の値が差分器1333に出力されて差分値が算出される。その算出された差分値は差分値符号化器1334に入力され符号化される。その結果得られた符号化データは合成器1336に出力される。その符号化データの出力後、差分器1333の出力データはラッチ1335にセットされる。
【0129】
合成器1336で合成された符号化データはバッファ105に格納される。
【0130】
さて、符号化データの送信に先立ち、ヘッダ生成器1116は前述の実施例で説明したようにヘッダ部データを生成して通信インタフェース1004を介して通信回線1005に出力する。
【0131】
そして、符号化された無彩色画素情報がバッファ105に格納された後、セレクタ106はデータ入力先としてバッファ1108を選択し、最初に、符号化されたカラー画像データを通信インタフェース1004に出力して通信回線に送出する。この送信終了後、即ち、EOIマーカコードの検出後、セレクタ106はデータ入力先を切り替えてバッファ105から符号化された無彩色画素情報を入力して通信インタフェース1004に出力して通信回線に送出する。このようにして、画像原稿1枚分の符号化された無彩色画素情報の送信が終了すると、すべての動作を終了する。
【0132】
なお以上のような送信動作において、無彩色画素抽出部1300、無彩色画素除去部1304の動作を停止させ、セレクタ106のデータ入力先をバッファ1108に固定して、前述の実施例で説明した図15(b)に示すようなデータ編成の符号化データを生成することもできる。
【0133】
次にデータ受信側の動作について説明する。
【0134】
まず、通信回線1005から通信インタフェース1006を介して、図20或いは図15(b)に示された符号化データが入力されると、最初のヘッダ部がヘッダ解析器1118に入力され、スタートコードの検出に続いてそのコードに続くフラグの解析を行なう。そのフラグの解析結果に基づく動作は、第4実施例とほぼ同様であり、そのフラグの値が“1”の場合、以下装置各部の初期化を実施し、“0”の場合、無彩色画素復号器1350の動作を停止し、フレームメモリ1352と1353に“0”の値を格納するとともに、さらに、JPEGヘッダデータを解析し、復号化処理に必要な情報を得る。
【0135】
以下、フラグの値が“1”であった場合(受信データはJPEG符号化データと符号化された無彩色画素情報との混在)の復号化処理について述べる。
【0136】
通信インタフェース1006を介して受信された符号化データの内、RGB画像データは第5実施例と同様に、バッファ1119、セレクタ109を経てJPEG復号化器1008に入力されてJPEG方式に従う復号化が実施され、RGBカラー画像データが再生され、そのRGBカラー画像データがフレームメモリ1255に格納される。
【0137】
JPEG復号化器1008が画像原稿1枚分のカラー画像を再生した後、即ち、EOIマーカコードをJPEG復号化器1008が検出すると、セレクタ109はデータ出力先として無彩色画素情報復号化器1350を選択して、符号化された無彩色画素情報を無彩色画素情報復号化器1350に出力する。無彩色画素情報復号化器1350では、無彩色画素判定情報に対応するハフマン符号が復号され、有彩色画素のラン長が求められる。続いて、差分値が復号され、前の無彩色画素値と加算を行い、無彩色画素値を再生する。また、フレームメモリ1352の復号化されたラン長に従って求められたアドレスに、無彩色画素の判定情報をを記録する。同時に、フレームメモリ1353の対応アドレスには無彩色画素値が格納される。
【0138】
以上のようにして無彩色画素情報が復号されると、画素クロック(不図示)とアドレスカウンタ1351の指示に従って、フレームメモリ1255からRGBカラー画像データが、フレームメモリ1352から無彩色画素判定情報が、フレームメモリ1353から無彩色画素値が順に読み出され、無彩色画素処理器1354に入力される。無彩色画素処理器1354は無彩色画素判定情報の値が“0”であれば、入力RGBカラー画像データをそのまま、一方、無彩色画素判定情報が“1”であれば、その画素のRGBカラー画像データは無彩色画素値で置換さされて、カラー多値プリンタ1260に出力されてプリントされる。
【0139】
次にフラグの値が“0”であった場合(受信データはJPEG符号化データのみ)の復号化処理について述べる。
【0140】
この場合、入力JPEG符号化データは通信インタフェース1006、バッファ1119、セレクタ109を経て、JPEG復号器1008に入力され、カラー画像データが再生される。再生されたカラー画像データはフレームメモリ1255を介して無彩色処理器1354の内部処理をバイパスしてカラー多値プリンタ1260に入力されて、プリント出力される。
【0141】
従って本実施例に従えば、送信側装置において、無彩色画素判定によって無彩色画素と判定された画素値はその周辺の画素値で補間した後、JPEG方式に従って符号化して送出するととともに、無彩色画素情報(判定情報と無彩色画素値)は別にJPEG方式に準じた符号化が施して、その符号化データを送出する。一方、受信側装置では符号化されたカラー画像データと符号化された無彩色画素情報とを別々に符号化時と同じ方式に従って復号化し、無彩色画素と判定された画素については再生RGBカラー画像データの各成分の値を無彩色画素値で置換し、これ以外の画素については再生RGBカラー画像データをそのまま多値カラープリンタに出力することができる。これによって、無彩色画素の再現性に優れた画像送受信と画像出力をすることができる。
【0142】
なお、以上の実施例では、カラー画像の符号化方式としてJPEG方式を用いたが本発明はこれに限定されるものではない。例えば、アダマール変換を用いたり、符号化としてベクトル量子化を用いる方式であってもかまわない。同様に黒(無彩色)情報の符号化についても以上の実施例で説明したものには本発明は限定されるものではない。例えば、MH方式等を採用してもかまわないし、濃度情報についてはDPCM方式等を採用して得てもかまわない。
【0143】
また、黒(無彩色)情報としてエッジ情報や濃度情報を用いたが本発明はこれに限定されるものではない。例えば、エッジの抽出は5×5画素のラプラシアンを求める方法でもよい。さらに、黒画素の判定方法についても以上の実施例で説明したものに本発明は限定されるものではなく、例えば、YUV各成分を閾値と比較したり、或いは、黒らしさを評価する量を別に定義してこれを用いてもかまわない。さらにまた、黒(無彩色)画素除去の方法についても周囲の画素の参照して補間値を生成するという以上の実施例で説明したものに本発明は限定されるものではなく、例えば、直前の画素を単純に複写する簡易な方法でも良いし、或いは、背景色の代表値で置換するだけでも勿論かまわない。
【0144】
さらにまた以上の実施例で受信復号データの出力装置はプリンタとしたが本発明はこれによって限定されるものではなく、例えば、ハードディスクなどの記憶装置に蓄積したり、さらに別の装置に伝送したりしても勿論かまわない。同様にプリンタ装置についても、以上の実施例で言及したカラー多値プリンタ以外にも、2値化処理機能を有したカラー2値プリンタを用いても良いことは言うまでもない。
【0145】
なお、多値から2値への2値化変換処理を行なってカラー2値プリンタに画像データを出力する場合においては、黒(K)信号がその変換処理で得られた場合には、黒情報と黒(K)信号の論理和をとり、他のカラー画像データ(Y,M,C)については各色成分の値が“1”で黒情報が“0”の場合のみ、そのYMCの出力値が“1”となるように構成すれば良い。
また、可逆符号化の例としては、所謂、JBIG方式、MMR方式を用いたが、MH方式など他の可逆符号化方式であっても良い。また、非可逆符号化の例としては、所謂、JPEG方式を用いたが、直交変換を用いたベクトル量子化方式など他の非可逆符号化方式であっても良い。
さらに、可逆符号化を行う対象は黒色画像データに限らず、他の色のデータであっても良い。
【0146】
尚、本発明は、複数の機器から構成されるシステムに適用しても良いし、1つの機器から成る装置に適用しても良い。また、本発明は、システム或は装置にプログラムを供給することによって達成される場合にも適用できることはいうまでもない。
【0147】
【発明の効果】
以上説明したように本発明によれば、受信カラー画像データの黒画素について補正がなされ、再現性に優れた画像が得られるという効果がある。
【0148】
例えば、この特定画素の判別が黒画素の判別、エッジ画素の判別、黒エッジ画素の判別、無彩色画素の判別などであれば、これらの情報が符号化送信され受信側で復号再生されて、この情報に基づいて、復号再生されたカラー画像データを補正するので、黒画素、エッジ画素、黒エッジ画素、無彩色画素の再現性に優れた画像が得られることになる。これによって、特に、文字画像などの再現性が高まり画像通信における画像劣化が補正できる。
また、可逆符号化と非可逆符号化とを用いて効率の良い画像通信を行うことができる。
【図面の簡単な説明】
【図1】本発明の第1実施例に従う画像通信装置の構成を示すブロック図である。
【図2】黒判定器103の構成を示すブロック図である。
【図3】黒処理器113の構成を示すブロック図である。
【図4】本発明の第2実施例に従う画像通信装置の構成を示すブロック図である。
【図5】黒処理器408の構成を示すブロック図である。
【図6】本発明の第3実施例に従う画像通信装置の構成を示すブロック図である。
【図7】エッジ検出器603の構成を示すブロック図である。
【図8】エッジ検出器603で用いる重み付けフィルタマトリクスを示す図である。
【図9】エッジ強調器613の構成を示すブロック図である。
【図10】エッジ強調器613で用いる重み付けフィルタマトリクスを示す図である。
【図11】本発明の第4実施例に従う画像通信装置の送信側装置の構成を示すブロック図である。
【図12】本発明の第4実施例に従う画像通信装置の受信側装置の構成を示すブロック図である。
【図13】黒エッジ抽出部1102の構成を示すブロック図である。
【図14】黒エッジ除去部1106の構成を示すブロック図である。
【図15】送信符号データのデータ編成を示す図である。
【図16】本発明の第5実施例に従う画像通信装置の送信側装置の構成を示すブロック図である。
【図17】本発明の第5実施例に従う画像通信装置の受信側装置の構成を示すブロック図である。
【図18】黒画素抽出部1203の構成を示すブロック図である。
【図19】黒画素除去部1207で実行する補間処理の概念を示す図である。
【図20】送信符号データのデータ編成を示す図である。
【図21】本発明の第6実施例に従う画像通信装置の送信側装置の構成を示すブロック図である。
【図22】本発明の第6実施例に従う画像通信装置の受信側装置の構成を示すブロック図である。
【図23】無彩色画素抽出部1300の構成を示すブロック図である。
【図24】無彩色画素情報符号化器1303の構成を示すブロック図である。
【図25】JPEG方式を適用した従来の画像通信装置の構成を示す図である。
【符号の説明】
101,105,111,406,1003,1007,1108,1119,1120,1124〜1126 バッファ
1002 JPEG符号化器
103 黒判定器
104 MMR符号化器
106,109 セレクタ
112 MMR復号器
113,408,1259 黒処理器
404 色変換器
405 2値化処理器
409 二値カラープリンタ
604 JBIG符号化器
612 JBIG復号化器
1001 カラースキャナ
1004,1006 通信インタフェース
1005 通信回線
1008 JPEG復号器
1009 プリンタ
1116 ヘッダ生成器
1118 ヘッダ解析器
1121〜1123 2値化器
1127〜1129 OR回路
1202,1204,1255,1257,1301,1302,1352,1353 フレームメモリ
1203 黒画素抽出部
1207 黒画素除去部
1258,1351 アドレスカウンタ
1260 カラー多値プリンタ
1300 無彩色画素抽出部
1303 無彩色画素情報符号化器
1304 無彩色画素除去部
1350 無彩色情報復号化器
1354 無彩色処理器

Claims (6)

  1. カラー画像データを非可逆符号化方式を用いて符号化する第1の符号化工程と、
    カラー画像データ各画素が黒画素であるかどうかを判別する判別工程と、
    前記判別工程で判別された黒画素の情報を可逆符号化方式を用いて符号化する第2の符号化工程と、
    前記第1及び第2の符号化工程で符号化された符号化データを送信する送信工程と、
    前記送信工程で送信された符号化データを受信する受信工程と、
    前記受信された符号化データの内、前記第1の符号化工程によって符号化されたカラー画像データを復号化する第1の復号化工程と、
    前記受信された符号化データの内、前記第2の符号化工程によって符号化された黒画素の情報を復号化する第2の復号化工程と、
    前記復号化された黒画素の情報と前記復号化されたカラー画像データとに従って、前記復号化されたカラー画像データの値を、黒を表す値で置換する補正処理を行なう補正工程と、
    前記補正工程によって処理されたカラー画像データを出力する出力工程とを有し、
    前記補正工程は、前記復号化された黒画素の情報、又は前記復号化されたカラー画像データにより黒と判定された場合に実行されることを特徴とする画像通信方法。
  2. カラー画像データを非可逆符号化方式を用いて符号化する第1の符号化手段と、
    カラー画像データ各画素が黒画素であるかどうかを判別する判別手段と、
    前記判別手段で判別された黒画素の情報を可逆符号化方式を用いて符号化する第2の符号化手段と、
    前記第1及び第2の符号化手段で符号化された符号化データを送信する送信手段と、
    前記送信手段で送信された符号化データを受信する受信手段と、
    前記受信された符号化データの内、前記第1の符号化手段によって符号化されたカラー画像データを復号化する第1の復号化手段と、
    前記受信された符号化データの内、前記第2の符号化手段によって符号化された黒画素の情報を復号化する第2の復号化手段と、
    前記復号化された黒画素の情報と前記復号化されたカラー画像データとに従って、前記復号化されたカラー画像データの値を、黒を表す値で置換する補正処理を行なう補正手段と、
    前記補正手段によって処理されたカラー画像データを出力する出力手段とを有し、
    前記補正手段は、前記復号化された黒画素の情報、又は前記復号化されたカラー画像データにより黒と判定された場合に実行されることを特徴とする画像通信装置。
  3. 前記第1の符号化手段及び前記第1の復号化手段は各々、JPEG方式に従う符号化器、復号器を含むことを特徴とする請求項2に記載の画像通信装置。
  4. 前記第2の符号化手段及び前記第2の復号化手段は各々、JBIG或いはMMR方式に従う符号化器、復号器を含むことを特徴とする請求項2に記載の画像通信装置。
  5. カラー画像データを非可逆符号化方式を用いて符号化した符号化データと、前記カラー画像データ各画素が黒画素であるかどうかを判別した黒画素の情報を可逆符号化方式を用いて符号化した符号化データとを受信する受信工程と、
    前記受信された符号化データの内、符号化されたカラー画像データを復号化する第1の復号化工程と、
    前記受信された符号化データの内、符号化された黒画素の情報を復号化する第2の復号化工程と、
    前記復号化された黒画素の情報と前記復号化されたカラー画像データとに従って、前記復号化されたカラー画像データの値を、黒を表す値で置換する補正処理を行なう補正工程と、
    前記補正工程によって処理されたカラー画像データを出力する出力工程とを有し、
    前記補正工程は、前記復号化された黒画素の情報、又は前記復号化されたカラー画像データにより黒と判定された場合に実行されることを特徴とする画像通信方法。
  6. カラー画像データを非可逆符号化方式を用いて符号化した符号化データと、前記カラー画像データ各画素が黒画素であるかどうかを判別した黒画素の情報を可逆符号化方式を用いて符号化した符号化データとを受信する受信手段と、
    前記受信された符号化データの内、符号化されたカラー画像データを復号化する第1の復号化手段と、
    前記受信された符号化データの内、符号化された黒画素の情報を復号化する第2の復号化手段と、
    前記復号化された黒画素の情報と前記復号化されたカラー画像データとに従って、前記復号化されたカラー画像データの値を、黒を表す値で置換する補正処理を行なう補正手段と、
    前記補正手段によって処理されたカラー画像データを出力する出力手段とを有し、
    前記補正手段は、前記復号化された黒画素の情報、又は前記復号化されたカラー画像データにより黒と判定された場合に実行されることを特徴とする画像通信装置。
JP8277495A 1995-04-07 1995-04-07 画像通信方法及びその装置 Expired - Fee Related JP3595601B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8277495A JP3595601B2 (ja) 1995-04-07 1995-04-07 画像通信方法及びその装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8277495A JP3595601B2 (ja) 1995-04-07 1995-04-07 画像通信方法及びその装置

Publications (2)

Publication Number Publication Date
JPH08279913A JPH08279913A (ja) 1996-10-22
JP3595601B2 true JP3595601B2 (ja) 2004-12-02

Family

ID=13783784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8277495A Expired - Fee Related JP3595601B2 (ja) 1995-04-07 1995-04-07 画像通信方法及びその装置

Country Status (1)

Country Link
JP (1) JP3595601B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11122496A (ja) * 1997-10-14 1999-04-30 Matsushita Denso System Kk カラーファクシミリ装置
JP3596423B2 (ja) * 2000-04-28 2004-12-02 株式会社デンソー 画像圧縮方法及び装置、記録媒体
US6836564B2 (en) 2000-04-28 2004-12-28 Denso Corporation Image data compressing method and apparatus which compress image data separately by modifying color
JP4071701B2 (ja) 2003-11-11 2008-04-02 富士通株式会社 カラー画像の圧縮方法及びカラー画像圧縮装置

Also Published As

Publication number Publication date
JPH08279913A (ja) 1996-10-22

Similar Documents

Publication Publication Date Title
JP3072776B2 (ja) 画像処理装置
US6342950B1 (en) Method and apparatus for encoding image, image decoding apparatus and image forming apparatus
JP4728668B2 (ja) 画像処理装置
JP3176052B2 (ja) 画像処理装置
JP5132517B2 (ja) 画像処理装置および画像処理方法
JP3964042B2 (ja) カラー画像処理装置およびカラー画像処理方法
US5706368A (en) Image processing apparatus and method having detection of background color and encoding of color image data
JP5139786B2 (ja) 画像処理装置、画像処理方法、及び、画像処理プログラム
US6486981B1 (en) Color image processing method and apparatus thereof
JPS59223073A (ja) 画像処理装置
JP2004228811A (ja) 画像処理装置、画像処理方法、およびコンピュータが実行するためのプログラム
JP2003224731A (ja) 画像処理装置及び画像処理方法
JP3193086B2 (ja) カラー文書画像の適応符号化装置および復号化装置
JP3595601B2 (ja) 画像通信方法及びその装置
JP3929030B2 (ja) 画像処理装置
JP2004112695A (ja) 画像処理装置及びその処理方法
JP3101597B2 (ja) 画像格納方法及び装置
JPH06178122A (ja) カラー画像の適応符号化装置
JP2877448B2 (ja) 画像符号化装置
JP3327684B2 (ja) カラー画像処理方法及びその装置
JP4926128B2 (ja) 画像処理装置、画像読取装置、画像形成装置、コンピュータプログラム、記録媒体、及び画像処理方法
JP3842909B2 (ja) 画像処理装置
JP3200109B2 (ja) 画像送信方法
JP4116193B2 (ja) カラー画像処理装置及びカラー画像処理方法
JPH07274017A (ja) 画像処理装置

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040212

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040217

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070910

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120910

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120910

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees