JP3595091B2 - Solid oxide fuel cell - Google Patents

Solid oxide fuel cell Download PDF

Info

Publication number
JP3595091B2
JP3595091B2 JP34635596A JP34635596A JP3595091B2 JP 3595091 B2 JP3595091 B2 JP 3595091B2 JP 34635596 A JP34635596 A JP 34635596A JP 34635596 A JP34635596 A JP 34635596A JP 3595091 B2 JP3595091 B2 JP 3595091B2
Authority
JP
Japan
Prior art keywords
cell
fuel
current collector
fuel cell
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34635596A
Other languages
Japanese (ja)
Other versions
JPH10189019A (en
Inventor
隆 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP34635596A priority Critical patent/JP3595091B2/en
Publication of JPH10189019A publication Critical patent/JPH10189019A/en
Application granted granted Critical
Publication of JP3595091B2 publication Critical patent/JP3595091B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【0001】
【発明の属する技術分野】
本発明は固体電解質型燃料電池セルに関するものである。
【0002】
【従来の技術】
従来より、固体電解質型燃料電池はその作動温度が900〜1050℃と高温であるため発電効率が高く、第3世代の発電システムとして期待されている。
【0003】
一般に、固体電解質型燃料電池セルには、円筒型と平板型が知られている。平板型燃料電池セルは、発電の単位体積当り出力密度が高いという特長を有するが、実用化に関してはガスシール不完全性やセル内の温度分布の不均一性などの問題がある。それに対して、円筒型燃料電池セルでは、出力密度は低いものの、セルの機械的強度が高く、またセル内の温度の均一性が保てるという特長がある。
【0004】
両形状の固体電解質型燃料電池セルとも、それぞれの特長を生かして積極的に研究開発が進められている。
【0005】
円筒型燃料電池の単セルは、図6に示したように開気孔率40%程度のCaO安定化ZrOを支持管1とし、その上にLaMnO系材料からなる多孔性の空気極2を形成し、その表面にY安定化ZrOからなる固体電解質3を形成し、さらにこの固体電解質3の表面に多孔性のNi−ジルコニアの燃料極4が設けられている。固体電解質3の外面には、固体電解質3の内面の空気極2に電気的に接続されたLaCrO系の集電体(インターコネクタ)5が外面に露出して形成されている。
【0006】
そして、燃料電池は、長さ50cm〜2m程度の固体電解質型燃料電池セルを複数並行に配置し、集電体5と、隣接する固体電解質型燃料電池セルの燃料極とをNiフェルト等の導電部材により電気的に接続して構成されている。発電は、支持管1内部に空気(酸素)6を、外部に燃料(水素)7を流し、900〜1050℃の温度で行なわれる。このような燃料電池に外部配線を接続し、発生した電力が取り出される。
【0007】
【発明が解決しようとする課題】
しかしながら、上記燃料電池では、発電時の出力電圧が低く、電流が大きくなり、電力を取り出す際に外部配線に大電流が流れ、外部配線の発熱が大きくなり、外部配線での出力のロスや、外部配線の劣化を招きやすいという問題があった。
【0008】
【課題を解決するための手段】
本発明の固体電解質型燃料電池セルは、円筒状の固体電解質の片面に空気極、他面に燃料極を形成し、前記空気極または前記燃料極に電気的に接続され、かつ外面に露出する集電体を具備する円筒状のセル本体を、前記集電体が交互に逆方向に露出するように接続部材により長さ方向に複数接続するとともに、前記集電体と、隣接する前記セル本体の外面に露出した燃料極または空気極とを導電部材により接続してなるものである。
【0009】
【作用】
従来の固体電解質型燃料電池セルを複数個並行に配置して作製した燃料電池では、セル全体を電流が通過するため電流が大きくなり、燃料電池を構成した場合に外部へ取り出す電圧は低く、電流量は多くなる。その結果、外部配線に多くの電流が流れ発熱し、電力のロスが多くなる。また、大電流が流れる際の発熱により外部配線の劣化が生じる。
【0010】
本発明者は、上記問題について鋭意考察した結果、短いセル本体を長さ方向に、かつ集電体が交互に逆方向を向くように複数接続し、隣り合うセル本体の燃料極と集電体とを導電部材で接続して燃料電池セルを構成することにより、従来よりも取り出す電流を小さくできることを見い出し、本発明に至ったのである。
【0011】
即ち、例えば、3本のセル本体を長さ方向に接続して燃料電池セルを構成した場合には、セル1本当たりの電圧は3倍になるものの、電流は従来の場合と比較して1/3にすることができ、燃料電池から電力を取り出す外部配線に流れる電流を1/3とすることができ、外部配線の発熱を抑制し、外部配線での出力のロスを少なくでき、電力の低減を最小限に抑制することができる。
【0012】
【発明の実施の形態】
本発明の固体電解質型燃料電池セルのセル本体は、例えば、図6に示したように支持管1の表面に多孔性の空気極2が形成され、その表面に固体電解質3が形成され、さらにこの固体電解質3の表面に多孔性の燃料極4が設けられ、固体電解質3の内面の空気極2に電気的に接続された集電体(インターコネクタ)5が外部に露出して形成されている。尚、本発明においては、支持管1をなくして、空気極自体を支持管として用いても良いし、また、固体電解質の内面に燃料極を、外面に空気極を形成しても良い。本発明においては、セル本体の構成は特に限定されるものではない。
【0013】
そして、図1に示すように、複数のセル本体8a、8b、8cが、接続治具13により長さ方向に複数接続されるとともに、集電体5a、5b、5cが交互に逆方向に露出するように接続され、集電体5a、5b、5cと、隣接するセル本体8a、8b、8cの外面に露出した燃料極4a、4b、4cとが導電部材9a、9bにより電気的に接続され、本発明の燃料電池セル8が構成されている。尚、図2に図1の斜視図を記載する。
【0014】
セル本体8aと8b、8bと8cを接続する接続部材13はセラミックスにより構成されており、ガスがこの部分から漏出しないように構成されている。また、導電部材9a、9bは、金属、金属繊維からなるフェルトや網、導電性セラミックス等が用いられるもので、導電性であれば良い。
【0015】
本発明の燃料電池セルでは、電流の流れを図1で説明すると、電流は、セル本体8aの燃料極4aより入り、集電体5aを通り、導電部材9aを介してセル本体8bの燃料極4bに入り、集電体5bを通り、導電部材9bを介してセル本体8cの燃料極4cに入り、集電体5cから出ることになる。
【0016】
以上のように構成された固体電解質型燃料電池セルでは、3本のセル本体8a、8b、8cを長さ方向に接続して燃料電池セル8を構成しているため、セル1本当たりの電圧は3倍になるものの、電流量は、従来の燃料電池セルの場合と比較して1/3にすることができ、燃料電池を構成した場合、電力を取り出す外部配線に流れる電流を1/3とすることができ、外部配線の発熱を抑制し、外部配線での出力のロスを少なくでき、電力の低減を最小限に抑制することができる。
【0017】
本発明の燃料電池セルを用いた燃料電池を図3および図4に示す。この燃料電池では、燃料電池セルが4本並行に配置されており、これらの燃料電池セルはそれぞれ図1に示した構造とされている。
【0018】
即ち、4本のセル8、38、48、58が並行に配置されており、セル8、38、48、58は上記図1に示したような構造となっている。そして、セル8の集電体5cとセル38の燃料極34cの間、セル38の集電体35aとセル48の燃料極44aとの間、セル48の集電体45cとセル58の燃料極54cの間には、導電部材30が配置され、セル8、38、48、58同士が電気的に直列に接続されている。また、セル8の燃料極4aおよびセル58の集電体55aには、導電部材31を介して、電力を外部へ取り出すための金属からなる導電性板32が配置されている。
【0019】
このような燃料電池では、電流は、導電性板32から入り、セル本体8aの燃料極4a−集電体5a−導電部材9a−セル本体8bの燃料極4b−集電体5b−導電部材9b−セル本体8cの燃料極4c−集電体5cからでる。
【0020】
この電流は、導電部材30を介して、セル本体38cの燃料極34c−集電体35c−導電部材39b−セル本体38bの燃料極34b−集電体35b−導電部材39a−セル本体38aの燃料極34a−集電体35aにでる。
【0021】
この電流が導電部材30を介して、セル本体48aの燃料極44a−集電体45a−導電部材49a−セル本体48bの燃料極44b−集電体45b−導電部材49b−セル本体48cの燃料極44c−集電体45cからでる。
【0022】
この電流が導電部材30を介して、セル本体58cの燃料極54c−集電体55c−導電部材59b−セル本体58bの燃料極54b−集電体55b−導電部材59a−セル本体58aの燃料極54a−集電体55aにでる。そして、この電流が導電性板32を介して外部配線からでる。
【0023】
このような燃料電池では、従来の燃料電池と比較して電圧は3倍になるものの、電流は1/3となり、外部配線に流れる電流を低減できる。
【0024】
本発明の燃料電池セルを用いた他の燃料電池を図5に示す。この燃料電池では、燃料電池セルが2本並行に配置されており、これらの燃料電池セルはそれぞれ図1に示した構造とされている。
【0025】
即ち、2本のセル68、78が並行に配置されており、セル68、78は4本のセル本体を接続している点を除いて上記図1に示したような構造となっている。そして、このような燃料電池では、電流は、導電性板32から入り、セル本体68aの燃料極64a−集電体65a−導電部材69a−セル本体68bの燃料極64b−集電体65b−導電部材69b−セル本体68cの燃料極64c−集電体65c−導電部材69c−セル本体68dの燃料極64d−集電体65d−導電性板32からでる。
【0026】
また、電流が、導電性板32から入り、セル本体78aの燃料極74a−集電体75a−導電部材69a−セル本体78bの燃料極74b−集電体75b−導電部材69d−セル本体78cの燃料極74c−集電体75c−導電部材69c−セル本体78dの燃料極74d−集電体75d−導電性板32からでる。
【0027】
このような燃料電池では、従来の燃料電池と比較して電圧は4倍になるものの、電流は1/4となり、外部配線に流れる電流を低減できる。
【0028】
【発明の効果】
本発明の固体電解質型燃料電池セルは、短いセル本体を長さ方向に、かつ、集電体が交互に逆方向を向くように複数接続し、隣り合うセル本体の燃料極と集電体とを導電部材で接続して燃料電池セルを構成することにより、電圧は従来よりも大きくなるものの、従来よりも取り出す電流量を小さくでき、燃料電池から電力を取り出す外部配線に流れる電流を低減することができ、外部配線の発熱を抑制し、外部配線での出力のロスを少なくでき、電力の低減を最小限に抑制することができる。
【図面の簡単な説明】
【図1】本発明の固体電解質型燃料電池セルの断面図である。
【図2】図1の斜視図である。
【図3】本発明の固体電解質型燃料電池セルを4本用いてスタックを構成した場合の断面図である。
【図4】図3の斜視図である。
【図5】本発明の固体電解質型燃料電池セルを2本用いて他のスタックを構成した場合の断面図である。
【図6】固体電解質型燃料電池セルを示す斜視図である。
【符号の説明】
1・・・空気極支持管
2・・・空気極
3・・・固体電解質
4・・・燃料極
5・・・集電体
8・・・セル本体
9・・・導電部材
13・・・接続部材
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a solid oxide fuel cell.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a solid oxide fuel cell has a high power generation efficiency because its operating temperature is as high as 900 to 1050 ° C., and is expected as a third generation power generation system.
[0003]
In general, a solid oxide fuel cell is known to be a cylindrical type or a flat type. The flat-plate fuel cell has the feature that the power density per unit volume of power generation is high, but there are problems such as imperfect gas sealing and non-uniformity of the temperature distribution in the cell in practical use. On the other hand, the cylindrical fuel cell has the features that the output density is low, but the mechanical strength of the cell is high, and the temperature uniformity in the cell can be maintained.
[0004]
Both types of solid oxide fuel cells are being actively researched and developed utilizing their respective features.
[0005]
As shown in FIG. 6, a single cell of a cylindrical fuel cell has a support tube 1 made of CaO-stabilized ZrO 2 having an open porosity of about 40%, and a porous air electrode 2 made of a LaMnO 3 material on which a porous air electrode 2 is formed. The solid electrolyte 3 made of Y 2 O 3 stabilized ZrO 2 is formed on the surface thereof, and a porous Ni-zirconia fuel electrode 4 is provided on the surface of the solid electrolyte 3. On the outer surface of the solid electrolyte 3, a LaCrO 3 -based current collector (interconnector) 5 electrically connected to the air electrode 2 on the inner surface of the solid electrolyte 3 is formed so as to be exposed to the outer surface.
[0006]
In the fuel cell, a plurality of solid oxide fuel cells having a length of about 50 cm to 2 m are arranged in parallel, and a current collector 5 and a fuel electrode of an adjacent solid oxide fuel cell are electrically conductive with each other such as Ni felt. They are electrically connected by members. Power generation is performed at a temperature of 900 to 1050 ° C. by flowing air (oxygen) 6 inside the support tube 1 and fuel (hydrogen) 7 outside. External power is connected to such a fuel cell, and the generated power is taken out.
[0007]
[Problems to be solved by the invention]
However, in the above fuel cell, the output voltage at the time of power generation is low, the current is large, a large current flows through the external wiring when power is taken out, the heat generation of the external wiring increases, and the output loss at the external wiring, There is a problem that the external wiring is likely to deteriorate.
[0008]
[Means for Solving the Problems]
The solid oxide fuel cell of the present invention forms an air electrode on one side and a fuel electrode on the other side of a cylindrical solid electrolyte, is electrically connected to the air electrode or the fuel electrode, and is exposed on the outer surface. A plurality of cylindrical cell bodies each including a current collector are connected in the length direction by a connecting member so that the current collectors are alternately exposed in the opposite direction, and the current collector and the adjacent cell body are connected to each other. Are connected to the fuel electrode or the air electrode exposed on the outer surface by a conductive member.
[0009]
[Action]
In a conventional fuel cell manufactured by arranging a plurality of solid oxide fuel cells in parallel, the current flows through the entire cell, so that the current becomes large. The amount will increase. As a result, a large amount of current flows through the external wiring to generate heat, thereby increasing power loss. In addition, heat generated when a large current flows causes deterioration of the external wiring.
[0010]
The inventor of the present invention has conducted intensive studies on the above problem, and as a result, connected a plurality of short cell bodies in the length direction and the current collectors alternately in opposite directions, and connected the fuel electrode and the current collector of the adjacent cell bodies. The present inventors have found that by connecting a and a member with a conductive member to form a fuel cell, the current taken out can be made smaller than in the prior art, and the present invention has been accomplished.
[0011]
That is, for example, when a fuel cell is constructed by connecting three cell bodies in the longitudinal direction, the voltage per cell is tripled, but the current is one time as compared with the conventional case. / 3, the current flowing through the external wiring for extracting power from the fuel cell can be reduced to 1 /, the heat generation of the external wiring can be suppressed, the output loss in the external wiring can be reduced, and the power consumption can be reduced. Reduction can be minimized.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
In the cell body of the solid oxide fuel cell according to the present invention, for example, as shown in FIG. 6, a porous air electrode 2 is formed on the surface of a support tube 1 and a solid electrolyte 3 is formed on the surface thereof. A porous fuel electrode 4 is provided on the surface of the solid electrolyte 3, and a current collector (interconnector) 5 electrically connected to the air electrode 2 on the inner surface of the solid electrolyte 3 is formed so as to be exposed to the outside. I have. In the present invention, the air electrode itself may be used as the support tube without the support tube 1, or the fuel electrode may be formed on the inner surface of the solid electrolyte and the air electrode may be formed on the outer surface. In the present invention, the configuration of the cell body is not particularly limited.
[0013]
As shown in FIG. 1, the plurality of cell bodies 8a, 8b, 8c are connected in the length direction by the connection jig 13, and the current collectors 5a, 5b, 5c are alternately exposed in the opposite directions. Current collectors 5a, 5b, 5c and fuel electrodes 4a, 4b, 4c exposed on the outer surfaces of adjacent cell bodies 8a, 8b, 8c are electrically connected by conductive members 9a, 9b. The fuel cell 8 of the present invention is constituted. FIG. 2 shows a perspective view of FIG.
[0014]
The connection member 13 for connecting the cell bodies 8a and 8b, 8b and 8c is made of ceramics, and is configured to prevent gas from leaking from this portion. The conductive members 9a and 9b are made of metal, felt or net made of metal fiber, conductive ceramic, or the like, and may be conductive.
[0015]
In the fuel cell according to the present invention, the flow of current will be described with reference to FIG. 1. The current enters from the fuel electrode 4a of the cell body 8a, passes through the current collector 5a, and passes through the conductive member 9a to the fuel electrode of the cell body 8b. 4b, passes through the current collector 5b, enters the fuel electrode 4c of the cell body 8c via the conductive member 9b, and exits from the current collector 5c.
[0016]
In the solid oxide fuel cell configured as described above, the fuel cell 8 is formed by connecting the three cell bodies 8a, 8b, and 8c in the length direction, so that the voltage per cell is set. Is tripled, but the amount of current can be reduced to 1/3 of that of the conventional fuel cell. When a fuel cell is configured, the current flowing through the external wiring for extracting power is reduced to 1/3. The heat generation of the external wiring can be suppressed, the loss of output in the external wiring can be reduced, and the reduction in power can be suppressed to a minimum.
[0017]
3 and 4 show a fuel cell using the fuel cell of the present invention. In this fuel cell, four fuel cells are arranged in parallel, and each of these fuel cells has the structure shown in FIG.
[0018]
That is, the four cells 8, 38, 48, 58 are arranged in parallel, and the cells 8, 38, 48, 58 have the structure as shown in FIG. Then, between the current collector 5c of the cell 8 and the fuel electrode 34c of the cell 38, between the current collector 35a of the cell 38 and the fuel electrode 44a of the cell 48, and between the current collector 45c of the cell 48 and the fuel electrode of the cell 58. The conductive member 30 is arranged between 54c, and the cells 8, 38, 48, and 58 are electrically connected in series. In addition, a conductive plate 32 made of metal for extracting electric power to the outside is disposed on the fuel electrode 4 a of the cell 8 and the current collector 55 a of the cell 58 via the conductive member 31.
[0019]
In such a fuel cell, current flows from the conductive plate 32, and the fuel electrode 4a of the cell body 8a-current collector 5a-conductive member 9a-fuel electrode 4b of cell body 8b-current collector 5b-conductive member 9b -The fuel electrode 4c of the cell body 8c-it comes out of the current collector 5c.
[0020]
This current is supplied to the fuel electrode 34c of the cell body 38c, the current collector 35c, the conductive member 39b, the fuel electrode 34b of the cell body 38b, the current collector 35b, the conductive member 39a, and the fuel of the cell body 38a via the conductive member 30. The pole 34a-the current collector 35a.
[0021]
This current is applied to the fuel electrode 44a of the cell body 48a, the current collector 45a, the conductive member 49a, the fuel electrode 44b of the cell body 48b, the current collector 45b, the conductive member 49b, and the fuel electrode of the cell body 48c via the conductive member 30. 44c-exits from current collector 45c.
[0022]
This current is applied to the fuel electrode 54c of the cell body 58c, the current collector 55c, the conductive member 59b, the fuel electrode 54b of the cell body 58b, the current collector 55b, the conductive member 59a, and the fuel electrode of the cell body 58a via the conductive member 30. 54a-go to current collector 55a. Then, this current flows from the external wiring via the conductive plate 32.
[0023]
In such a fuel cell, although the voltage is tripled as compared with the conventional fuel cell, the current is reduced to 1/3, and the current flowing to the external wiring can be reduced.
[0024]
FIG. 5 shows another fuel cell using the fuel cell of the present invention. In this fuel cell, two fuel cells are arranged in parallel, and each of these fuel cells has the structure shown in FIG.
[0025]
That is, two cells 68 and 78 are arranged in parallel, and the cells 68 and 78 have the structure shown in FIG. 1 except that four cell bodies are connected. In such a fuel cell, current flows from the conductive plate 32, and the fuel electrode 64a of the cell body 68a-current collector 65a-conductive member 69a-fuel electrode 64b of the cell body 68b-current collector 65b-conductive The member 69b, the fuel electrode 64c of the cell body 68c, the current collector 65c, the conductive member 69c, the fuel electrode 64d of the cell body 68d, the current collector 65d, and the conductive plate 32.
[0026]
Also, current flows from the conductive plate 32, and the fuel electrode 74a of the cell body 78a-the current collector 75a-the conductive member 69a-the fuel electrode 74b of the cell body 78b-the current collector 75b-the conductive member 69d-the cell body 78c. The fuel electrode 74c, the current collector 75c, the conductive member 69c, the fuel electrode 74d of the cell body 78d, the current collector 75d, and the conductive plate 32 exit.
[0027]
In such a fuel cell, although the voltage is quadrupled as compared with the conventional fuel cell, the current is reduced to 1/4, and the current flowing to the external wiring can be reduced.
[0028]
【The invention's effect】
The solid oxide fuel cell of the present invention, the short cell body in the length direction, and, a plurality of collectors are connected so that the current collector alternately faces the opposite direction, the fuel electrode and the current collector of the adjacent cell body Although the voltage is higher than in the past, the amount of current taken out can be made smaller than in the past, and the current flowing through the external wiring that takes out power from the fuel cell can be reduced by configuring the fuel cell by connecting Therefore, heat generation of the external wiring can be suppressed, output loss in the external wiring can be reduced, and power reduction can be suppressed to a minimum.
[Brief description of the drawings]
FIG. 1 is a sectional view of a solid oxide fuel cell according to the present invention.
FIG. 2 is a perspective view of FIG.
FIG. 3 is a cross-sectional view when a stack is formed using four solid oxide fuel cells of the present invention.
FIG. 4 is a perspective view of FIG. 3;
FIG. 5 is a cross-sectional view when another stack is formed using two solid oxide fuel cells of the present invention.
FIG. 6 is a perspective view showing a solid oxide fuel cell.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Air electrode support tube 2 ... Air electrode 3 ... Solid electrolyte 4 ... Fuel electrode 5 ... Current collector 8 ... Cell body 9 ... Conductive member 13 ... Connection Element

Claims (1)

円筒状の固体電解質の片面に空気極、他面に燃料極を形成し、前記空気極または前記燃料極に電気的に接続され、かつ外面に露出する集電体を具備する円筒状のセル本体を、前記集電体が交互に逆方向に露出するように接続部材により長さ方向に複数接続するとともに、前記集電体と、隣接する前記セル本体の外面に露出した燃料極または空気極とを導電部材により接続してなることを特徴とする固体電解質型燃料電池セル。A cylindrical cell body having an air electrode on one surface and a fuel electrode on the other surface of a cylindrical solid electrolyte, electrically connected to the air electrode or the fuel electrode, and having a current collector exposed on the outer surface. Along with connecting a plurality of in the length direction by a connecting member so that the current collector is alternately exposed in the opposite direction, the current collector, and a fuel electrode or an air electrode exposed on the outer surface of the adjacent cell body. Are connected by a conductive member.
JP34635596A 1996-12-25 1996-12-25 Solid oxide fuel cell Expired - Fee Related JP3595091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34635596A JP3595091B2 (en) 1996-12-25 1996-12-25 Solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34635596A JP3595091B2 (en) 1996-12-25 1996-12-25 Solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JPH10189019A JPH10189019A (en) 1998-07-21
JP3595091B2 true JP3595091B2 (en) 2004-12-02

Family

ID=18382856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34635596A Expired - Fee Related JP3595091B2 (en) 1996-12-25 1996-12-25 Solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP3595091B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5234554B2 (en) * 2001-03-22 2013-07-10 独立行政法人産業技術総合研究所 Solid oxide fuel cell stack structure
JP2003317790A (en) * 2002-04-26 2003-11-07 Nec Corp Cell for fuel cell, fuel cell system and its manufacturing method
JP4960593B2 (en) * 2002-05-07 2012-06-27 ザ・リージェンツ・オブ・ザ・ユニバーシティ・オブ・カリフォルニア Electrochemical battery stack assembly
JP4942334B2 (en) * 2005-11-30 2012-05-30 京セラ株式会社 Current collecting structure in fuel cell stack
JP5192723B2 (en) * 2007-05-10 2013-05-08 京セラ株式会社 Horizontally-striped fuel cell and fuel cell
JP4942854B2 (en) * 2011-11-02 2012-05-30 京セラ株式会社 Current collecting structure in fuel cell stack
JP6072104B2 (en) * 2015-02-06 2017-02-01 三菱重工業株式会社 Cell stack A fuel cell module having this and a cell stack manufacturing method
JP6522359B2 (en) * 2015-02-16 2019-05-29 三菱日立パワーシステムズ株式会社 Fuel cell module and fuel cell system having the same

Also Published As

Publication number Publication date
JPH10189019A (en) 1998-07-21

Similar Documents

Publication Publication Date Title
JP2947557B2 (en) High temperature solid electrolyte fuel cell power generator
US4888254A (en) Low circumferential voltage gradient self supporting electrode for solid oxide fuel cells
JP3595091B2 (en) Solid oxide fuel cell
EP0285727B1 (en) Self supporting electrodes for solid oxide fuel cells
JP2009533819A (en) High power density sealless tubular solid oxide fuel cell with wide interconnects
US7622212B2 (en) Compact electrochemical converter
JP5791854B1 (en) Cell stack device, module and module housing device
JP2009224299A (en) Cell stack device, and fuel battery module
JP4942335B2 (en) Fuel cell stack and fuel cell
JP6749051B2 (en) Cell stack device, fuel cell module, and fuel cell device
JPH10134829A (en) Solid electrolyte fuel cell, solid electrolyte fuel cell assembly, manufacture of solid electrolyte fuel cell, and manufacture of solid electrolyte fuel cell assembly unit
JPH03238760A (en) Fuel cell of solid electrolyte type
JPH05266914A (en) Solid oxide fuel cell power generating device
JP2000058102A (en) Cylindrical cell type solid electrolyte fuel cell
JP2816477B2 (en) Solid electrolyte fuel cell
JPH11149934A (en) Electrolytic cell
JP3048689B2 (en) Structure of solid oxide fuel cell module
JP2000058089A (en) Cylindrical cell type solid electrolyte fuel cell
JP2799877B2 (en) Cylindrical solid electrolyte fuel cell
JP5164630B2 (en) Cell stack and fuel cell module
JP2799880B2 (en) Fuel cell connector and fuel cell structure
JPH05174861A (en) Structure for solid electrolyte type fuel cell module
WO2003023885A1 (en) Solid state electrolytic fuel cell
JP2816471B2 (en) Solid oxide fuel cell module
JP2843994B2 (en) Structure of solid oxide fuel cell

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040902

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070910

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120910

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees