JPH11149934A - Electrolytic cell - Google Patents

Electrolytic cell

Info

Publication number
JPH11149934A
JPH11149934A JP9316698A JP31669897A JPH11149934A JP H11149934 A JPH11149934 A JP H11149934A JP 9316698 A JP9316698 A JP 9316698A JP 31669897 A JP31669897 A JP 31669897A JP H11149934 A JPH11149934 A JP H11149934A
Authority
JP
Japan
Prior art keywords
single element
electrolyte
electrolytic
electrolytic cell
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9316698A
Other languages
Japanese (ja)
Other versions
JP3367881B2 (en
Inventor
Fumitoshi Sakata
文稔 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP31669897A priority Critical patent/JP3367881B2/en
Publication of JPH11149934A publication Critical patent/JPH11149934A/en
Application granted granted Critical
Publication of JP3367881B2 publication Critical patent/JP3367881B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent damage of a single element positioned in the downstream side along the electrolytic gas flow direction. SOLUTION: Single elements S10, S20, S30 constituting this electrolytic cell are mechanically connected in the axial direction by interconnectors 14, 24, 34 and electrically connected in series. The electrolytic gas G to be electrolyzed is supplied from the single element S10 side, flows through the electrolytic cell, and is discharged from the single element S30 side. Since the concentration of the electrolytic gas G is decreased as the electrolytic gas G is electrolyzed while flowing in the inside of the electrolytic cell, the voltage applied to the electrolytic cell becomes higher as the gas G flows in further downstream side. On the other hand, since the length of the electrolytes 11, 21, 31 in the axial direction is successively made longer in the further downstream side, the current density applied to the electrolyte 31 of the single element S30 in the lowest downstream side is lowered and consequently, damage of the electrolyte 31 in the lowest downstream side can be prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池に用いる
電解セルに関し、電解ガスの流れ方向に沿い下流側に位
置する単素子の損傷を防止するように工夫したものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolysis cell for use in a fuel cell and is designed to prevent damage to a single element located downstream in the flow direction of an electrolysis gas.

【0002】[0002]

【従来の技術】燃料電池に用いる電解セルのうち、円筒
型電解セルの従来の一例を、図2に示す。同図に示すよ
うに、この円筒型電解セルは、3個の円筒型の単素子S
1,S2,S3を軸方向に並べて接続した構成となって
いる。各単素子S1〜S3は、円筒状の電解質1の内周
面にカソード2を形成し、電解質1の外周面にアノード
3を形成している。そして、電子導電性を有するインタ
ーコネクター4を介して、各単素子S1〜S3が軸方向
に機械的に接続されると共に、各素子S1〜S3が電気
的に直列に接続される。
2. Description of the Related Art FIG. 2 shows a conventional example of a cylindrical electrolytic cell among electrolytic cells used for a fuel cell. As shown in the figure, this cylindrical electrolytic cell has three cylindrical single elements S.
1, S2, and S3 are arranged side by side in the axial direction and connected. In each of the single elements S1 to S3, the cathode 2 is formed on the inner peripheral surface of the cylindrical electrolyte 1, and the anode 3 is formed on the outer peripheral surface of the electrolyte 1. The individual elements S1 to S3 are mechanically connected in the axial direction via the interconnector 4 having electronic conductivity, and the elements S1 to S3 are electrically connected in series.

【0003】電気的に直列接続されている状態を更に詳
述すると、単素子S1のカソード2と単素子S2のアノ
ード3とがインターコネクター4により電気的に接続さ
れ、単素子S2のカソード2と単素子S3のアノード3
とがインターコネクター4により電気的に接続されてい
る。
The state of being electrically connected in series will be described in more detail. The cathode 2 of the single element S1 and the anode 3 of the single element S2 are electrically connected by an interconnector 4, and the cathode 2 of the single element S2 is connected to the cathode 2 of the single element S2. Anode 3 of single element S3
Are electrically connected by the interconnector 4.

【0004】そして、電解する電解ガスGが、上流側の
単素子S1側から供給されて、単素子S1〜S3の内部
を流通して、単素子S3側から排出される。つまり、電
解ガスGは、電解セルの内部を、その軸方向に沿い流通
する。
[0004] Electrolytic gas G to be electrolyzed is supplied from the upstream single element S1 side, flows inside the single elements S1 to S3, and is discharged from the single element S3 side. That is, the electrolytic gas G flows inside the electrolytic cell along the axial direction.

【0005】上述した従来の電解セルでは、上流側の単
素子S1と、中流の単素子S2と、下流側の単素子S3
の、各電解質1の軸方向長さ(電解ガスGの流れ方向に
沿う長さ)は、同一となっている。
In the conventional electrolytic cell described above, the upstream single element S1, the middle single element S2, and the downstream single element S3
The length of each electrolyte 1 in the axial direction (the length along the flow direction of the electrolytic gas G) is the same.

【0006】[0006]

【発明が解決しようとする課題】ところで、電解セルの
内部を流通する電解ガスGの濃度は、電解セルの内部を
流通して電解されていくことにより順次低下していき、
上流側の位置に比べて下流側の位置で低い。このため、
単素子S1〜S3のうち、電解ガスGの流れ方向に沿
い下流側に位置する単素子ほど、付加される電圧が増加
し(カソード2に付加される電圧が増加し)、その結
果、最下流側の単素子S3の電解質1に付加される電流
密度が高くなり、最下流側の単素子S3の電解質1に損
傷が生じる恐れがあった。
By the way, the concentration of the electrolytic gas G flowing through the inside of the electrolytic cell gradually decreases as it flows through the inside of the electrolytic cell and is electrolyzed.
It is lower at the downstream position than at the upstream position. For this reason,
Among the single elements S1 to S3, the single element located on the downstream side along the flow direction of the electrolytic gas G increases the applied voltage (the voltage applied to the cathode 2 increases). The current density applied to the electrolyte 1 of the single element S3 on the side becomes high, and the electrolyte 1 of the single element S3 on the most downstream side may be damaged.

【0007】本発明は、上記従来技術に鑑み、電解ガス
の流れ方向に沿う下流側に位置する単素子に付加される
全体の電圧の増加を抑え、下流側の単素子の電解質に付
加される電流密度を低くして、下流側の単素子の電解質
の損傷を防止することのできる電解セルを提供すること
を目的とする。
In view of the above prior art, the present invention suppresses an increase in the overall voltage applied to a single element located downstream in the flow direction of the electrolytic gas, and is added to the electrolyte of the single element downstream. It is an object of the present invention to provide an electrolytic cell capable of reducing the current density and preventing the electrolyte of the downstream single element from being damaged.

【0008】[0008]

【課題を解決するための手段】上記課題を解決する本発
明の構成は、電解質をアノードとカソードで挟んで形成
した単素子を、電解する電解ガスの流れ方向に沿い複数
個配列し且つ各単素子を電気的に直列に接続してなる電
解セルにおいて、電解ガスの流れ方向に沿う上流側の単
素子の電解質よりも、下流側の単素子の電解質の方が、
電解ガスの流れ方向に沿う長さが順次長く構成されてい
ることを特徴とする。
According to the structure of the present invention which solves the above-mentioned problems, a plurality of single elements formed by sandwiching an electrolyte between an anode and a cathode are arranged along the flow direction of the electrolytic gas to be electrolyzed, and In an electrolytic cell in which the elements are electrically connected in series, the electrolyte of the downstream single element is more than the electrolyte of the upstream single element along the flow direction of the electrolytic gas,
The length along the flow direction of the electrolytic gas is sequentially increased.

【0009】[0009]

【発明の実施の形態】以下に本発明の実施の形態を図面
に基づき詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0010】図1は、本発明の実施の形態にかかる円筒
型電解セルを示している。同図に示すように、この円筒
型電解セルは、3個の円筒型の単素子S10,S20,
S30を軸方向に並べて接続した構成となっている。各
単素子S10,S20,S30は、円筒状の電解質1
1,21,31の内周面にカソード12,22,32を
形成し、電解質11,21,31の外周面にアノード1
3,23,33を形成している。そして、電子導電性を
有するインターコネクター14,24,34を介して、
各単素子S10,S20,S30が軸方向に機械的に接
続されると共に、各素子S10,S20,S30が電気
的に直列に接続される。
FIG. 1 shows a cylindrical electrolytic cell according to an embodiment of the present invention. As shown in the figure, this cylindrical electrolytic cell has three cylindrical single elements S10, S20,
S30 is arranged in the axial direction and connected. Each single element S10, S20, S30 is a cylindrical electrolyte 1
The cathodes 12, 22, 32 are formed on the inner peripheral surfaces of the electrodes 1, 21, 31, and the anode 1 is formed on the outer peripheral surfaces of the electrolytes 11, 21, 31.
3, 23, 33 are formed. Then, via interconnectors 14, 24, 34 having electronic conductivity,
The individual elements S10, S20, S30 are mechanically connected in the axial direction, and the elements S10, S20, S30 are electrically connected in series.

【0011】電気的に直列接続されている状態を更に詳
述すると、単素子S10のカソード12と単素子S20
のアノード23とがインターコネクター14により電気
的に接続され、単素子S20のカソード22と単素子S
30のアノード33とがインターコネクター24により
電気的に接続されている。
The state of being electrically connected in series will be described in more detail. The cathode 12 of the single element S10 and the single element S20
Of the single element S20 and the single element S20 are electrically connected to each other by the interconnector 14.
The 30 anodes 33 are electrically connected by the interconnector 24.

【0012】そして、電解する電解ガスGが、上流側の
単素子S10側から供給されて、単素子S10,S2
0,S30の内部を流通して、単素子S30側から排出
される。つまり、電解ガスGは、電解セルの内部を、そ
の軸方向に沿い流通する。
Then, the electrolytic gas G to be electrolyzed is supplied from the upstream single element S10 side, and the single elements S10, S2
0 and S30, and are discharged from the single element S30 side. That is, the electrolytic gas G flows inside the electrolytic cell along the axial direction.

【0013】本実施の形態の電解セルでは、上流側の単
素子S10の電解質11と、中流の単素子S20の電解
質21と、下流側の単素子S30の電解質31の軸方向
長さ(電解ガスGの流れ方向に沿う長さ)は、下流側に
位置するものほど順次長くなるように構成されている。
つまり、電解ガスGの流れ方向に沿う長さは、電解質1
1よりも電解質21の方が長く、電解質21よりも電解
質31の方が長くなるように構成されている。
In the electrolytic cell of this embodiment, the axial lengths of the electrolyte 11 of the single element S10 on the upstream side, the electrolyte 21 of the single element S20 in the middle stream, and the electrolyte 31 of the single element S30 on the downstream side (electrolytic gas) The length along the flow direction of G) is configured to be gradually longer as the position is more downstream.
That is, the length along the flow direction of the electrolytic gas G is the length of the electrolyte 1.
The configuration is such that the electrolyte 21 is longer than 1 and the electrolyte 31 is longer than the electrolyte 21.

【0014】一方、電解セルの内部を流通する電解ガス
Gの濃度は、電解セルの内部を流通して電解されていく
ことにより順次低下していき、上流側の位置に比べて下
流側の位置で低い。しかし、本実施の形態では、電解ガ
スGの流れ方向に沿う長さは、電解質11よりも電解質
21の方が長く、電解質21よりも電解質31の方が長
くなるように構成されている。このため、最下流側の単
素子30の反応面積が増加し、電解質31に付加される
電流密度が低下し、単素子30に付加される全体の電圧
の増加を抑え、電解質31の損傷を防止することができ
る。
On the other hand, the concentration of the electrolytic gas G flowing through the inside of the electrolytic cell gradually decreases as the electrolytic gas G flows through the inside of the electrolytic cell and is electrolyzed. At low. However, in the present embodiment, the length along the flow direction of the electrolytic gas G is configured such that the electrolyte 21 is longer than the electrolyte 11 and the electrolyte 31 is longer than the electrolyte 21. For this reason, the reaction area of the single element 30 on the most downstream side increases, the current density applied to the electrolyte 31 decreases, the increase in the overall voltage applied to the single element 30 is suppressed, and damage to the electrolyte 31 is prevented. can do.

【0015】[0015]

【発明の効果】以上実施の形態と共に具体的に説明した
ように、本発明では、電解質をアノードとカソードで挟
んで形成した単素子を、電解する電解ガスの流れ方向に
沿い複数個配列し且つ各単素子を電気的に直列に接続し
てなる電解セルにおいて、電解ガスの流れ方向に沿う上
流側の単素子の電解質よりも、下流側の単素子の電解質
の方が、電解ガスの流れ方向に沿う長さが順次長く構成
されている。
As described above in detail with the embodiments, in the present invention, a plurality of single elements formed by sandwiching an electrolyte between an anode and a cathode are arranged along the flow direction of the electrolytic gas to be electrolyzed. In an electrolysis cell in which each single element is electrically connected in series, the electrolyte of the downstream single element is more in the flow direction of the electrolytic gas than the electrolyte of the upstream single element along the flow direction of the electrolysis gas. Are configured to be sequentially longer.

【0016】このため、最下流側の単素子の反応面積が
増加し、最下流側の電解質に付加される電流密度が低下
し、最下流側の電解質の損傷を防止することができる。
As a result, the reaction area of the single element on the most downstream side is increased, the current density applied to the electrolyte on the most downstream side is reduced, and the electrolyte on the most downstream side can be prevented from being damaged.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態にかかる電解セルを示す断
面図。
FIG. 1 is a cross-sectional view showing an electrolytic cell according to an embodiment of the present invention.

【図2】従来の電解セルを示す断面図。FIG. 2 is a sectional view showing a conventional electrolytic cell.

【符号の説明】[Explanation of symbols]

S1〜S3,S10〜S30 単素子 G 電解ガス 1,11,21,31 電解質 2,12,22,32 カソード 3,13,23,33 アノード 4,14,24,34 インターコネクター S1 to S3, S10 to S30 Single element G Electrolytic gas 1, 11, 21, 31 Electrolyte 2, 12, 22, 32 Cathode 3, 13, 23, 33 Anode 4, 14, 24, 34 Interconnector

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電解質をアノードとカソードで挟んで形
成した単素子を、電解する電解ガスの流れ方向に沿い複
数個配列し且つ各単素子を電気的に直列に接続してなる
電解セルにおいて、 電解ガスの流れ方向に沿う上流側の単素子の電解質より
も、下流側の単素子の電解質の方が、電解ガスの流れ方
向に沿う長さが順次長く構成されていることを特徴とす
る電解セル。
1. An electrolytic cell comprising: a plurality of single elements each having an electrolyte sandwiched between an anode and a cathode arranged in a flow direction of an electrolytic gas to be electrolyzed; and each of the single elements is electrically connected in series. Electrolysis characterized in that the length of the electrolyte of the downstream single element along the flow direction of the electrolytic gas is sequentially longer than the electrolyte of the upstream single element along the flow direction of the electrolytic gas. cell.
JP31669897A 1997-11-18 1997-11-18 Electrolysis cell Expired - Fee Related JP3367881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31669897A JP3367881B2 (en) 1997-11-18 1997-11-18 Electrolysis cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31669897A JP3367881B2 (en) 1997-11-18 1997-11-18 Electrolysis cell

Publications (2)

Publication Number Publication Date
JPH11149934A true JPH11149934A (en) 1999-06-02
JP3367881B2 JP3367881B2 (en) 2003-01-20

Family

ID=18079912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31669897A Expired - Fee Related JP3367881B2 (en) 1997-11-18 1997-11-18 Electrolysis cell

Country Status (1)

Country Link
JP (1) JP3367881B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004082058A1 (en) 2003-03-13 2004-09-23 Tokyo Gas Company Limited Solid-oxide shaped fuel cell module
JP2007188793A (en) * 2006-01-13 2007-07-26 Mitsubishi Heavy Ind Ltd Tubular and laterally striped fuel cell
JP2009187910A (en) * 2008-02-08 2009-08-20 National Institute Of Advanced Industrial & Technology Solid oxide fuel cell stack having channel cell accumulation structure, and its manufacturing method
JP2010257853A (en) * 2009-04-28 2010-11-11 Kikusui Chemical Industries Co Ltd Unit cell of fuel cell, unit cell assembly fuel cell, and method for manufacturing the same
JP2013175306A (en) * 2012-02-23 2013-09-05 Mitsubishi Heavy Ind Ltd Solid oxide fuel battery
JP2016507880A (en) * 2013-02-25 2016-03-10 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Cylindrical solid oxide battery
JP6267389B1 (en) * 2016-08-30 2018-01-24 日本碍子株式会社 Electrochemical cell stack

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4541296B2 (en) * 2003-03-13 2010-09-08 東京瓦斯株式会社 Solid oxide fuel cell module
EP1603183A1 (en) * 2003-03-13 2005-12-07 Tokyo Gas Company Limited Solid-oxide shaped fuel cell module
JPWO2004082058A1 (en) * 2003-03-13 2006-06-15 東京瓦斯株式会社 Solid oxide fuel cell module
WO2004082058A1 (en) 2003-03-13 2004-09-23 Tokyo Gas Company Limited Solid-oxide shaped fuel cell module
EP1603183A4 (en) * 2003-03-13 2008-03-12 Tokyo Gas Co Ltd Solid-oxide shaped fuel cell module
US7989113B2 (en) 2003-03-13 2011-08-02 Tokyo Gas Co., Ltd. Solid-oxide shaped fuel cell module
JP2007188793A (en) * 2006-01-13 2007-07-26 Mitsubishi Heavy Ind Ltd Tubular and laterally striped fuel cell
JP2009187910A (en) * 2008-02-08 2009-08-20 National Institute Of Advanced Industrial & Technology Solid oxide fuel cell stack having channel cell accumulation structure, and its manufacturing method
JP2010257853A (en) * 2009-04-28 2010-11-11 Kikusui Chemical Industries Co Ltd Unit cell of fuel cell, unit cell assembly fuel cell, and method for manufacturing the same
JP2013175306A (en) * 2012-02-23 2013-09-05 Mitsubishi Heavy Ind Ltd Solid oxide fuel battery
JP2016507880A (en) * 2013-02-25 2016-03-10 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Cylindrical solid oxide battery
JP6267389B1 (en) * 2016-08-30 2018-01-24 日本碍子株式会社 Electrochemical cell stack
JP2018037402A (en) * 2016-08-30 2018-03-08 日本碍子株式会社 Electrochemical cell stack

Also Published As

Publication number Publication date
JP3367881B2 (en) 2003-01-20

Similar Documents

Publication Publication Date Title
US6444340B1 (en) Electrical conductivity in a fuel cell assembly
US8389180B2 (en) Electrolytic/fuel cell bundles and systems including a current collector in communication with an electrode thereof
CA2456731C (en) Separator passage structure of fuel cell
US6551735B2 (en) Honeycomb electrode fuel cells
KR101198220B1 (en) Pem water electrolyser using 3-dimension mesh
US20070243445A1 (en) High power density seal-less tubular solid oxide fuel cell by means of a wide interconnection
RU2303839C2 (en) Fuel-cell module and fuel cell
JP3367881B2 (en) Electrolysis cell
JP3631467B2 (en) Electrolytic cell feeder and electrolytic cell
KR101277550B1 (en) Connecting structure for exteriorly connecting battery cells
US8455151B2 (en) Fuel cell with electrolyte strengthening substrate having a penetration portion
JPH09129258A (en) Cylindrical electrolyte cell
JP2004137581A (en) Electrochemical device and method for manufacturing the same
JPH0644981A (en) Flat plate-shaped solid electrolyte fuel cell
JPH0633284A (en) Water electrolytic cell
JP2004303651A (en) Planar laminated layer type fuel battery
JPH05174861A (en) Structure for solid electrolyte type fuel cell module
JPH0722060A (en) Connection structure of solid electrolyte fuel cell
JP2972925B2 (en) Water electrolyzer using solid polymer electrolyte membrane
JP2003263997A (en) Solid oxide fuel cell
JP2003109651A (en) Repair method for solid electrolyte fuel cell
JPH0521085A (en) Structure of solid electrolytic fuel cell module
JP2002231276A (en) Fuel cell
JP2005347119A (en) Manufacturing method of separator for fuel battery single cell, separator for fuel battery single cell, and screen board for manufacture of fuel battery single cell separator
JP3117341B2 (en) Cell structure

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021008

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081108

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees