JP3593644B2 - Bridge telescopic device - Google Patents

Bridge telescopic device Download PDF

Info

Publication number
JP3593644B2
JP3593644B2 JP26509498A JP26509498A JP3593644B2 JP 3593644 B2 JP3593644 B2 JP 3593644B2 JP 26509498 A JP26509498 A JP 26509498A JP 26509498 A JP26509498 A JP 26509498A JP 3593644 B2 JP3593644 B2 JP 3593644B2
Authority
JP
Japan
Prior art keywords
bridge
relative displacement
bridge axis
telescopic device
finger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26509498A
Other languages
Japanese (ja)
Other versions
JP2000096504A (en
Inventor
俊成 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitta Corp
Original Assignee
Nitta Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitta Corp filed Critical Nitta Corp
Priority to JP26509498A priority Critical patent/JP3593644B2/en
Publication of JP2000096504A publication Critical patent/JP2000096504A/en
Application granted granted Critical
Publication of JP3593644B2 publication Critical patent/JP3593644B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Road Paving Structures (AREA)

Description

【発明の属する技術分野】
【0001】
この発明は橋梁用伸縮装置に関するものである。
【従来の技術】
【0002】
従来より、橋梁用伸縮装置が知られている。
【0003】
図13乃至図15に示すように、この橋梁用伸縮装置31は、対向する櫛形のフィンガー部32が橋桁33や橋台などの遊間34をはさんで相互に噛み合わさるように配設され、走行車両の輪荷重を支持する。この橋梁用伸縮装置31は、温度変化等による橋桁33の橋軸(走路)方向Xの伸縮を吸収できるという利点を有する。
【0004】
しかし、車両走行の安全上の見地から橋軸直角(横断)方向Yの隙間はタイヤが嵌まり込み好ましくなくこの方向にはあまり大きな隙間は取れないので、橋軸直角(横断)方向Yの相対変位は殆ど許容できないという問題があった。
【0005】
よって、地震などにより橋梁に遊間をはさんで橋軸直角(横断)方向Yに大きな相対変位が生じても、この方向の相対変位は殆ど不能である。従って、揺れながら震動を吸収する免震設計の橋梁の場合でも折角の免震機能が発揮できず、橋梁の破壊や倒壊を招くおそれがあった。
【発明が解決しようとする課題】
【0006】
そこでこの発明は、地震などによる橋軸直角方向の大きな相対変位を許容できる橋梁用伸縮装置を提供しようとするものである。
【課題を解決するための手段】
【0007】
前記課題を解決するためこの発明では次のような技術的手段を講じている。
(1)この発明の橋梁用伸縮装置は、櫛形のフィンガー部が遊間をはさんで対向して配設され、走行車両の輪荷重を支持し、温度変化等による橋軸方向の伸縮を吸収する橋梁用伸縮装置であって、前記フィンガー部は根本側の変形可能部分と先端側の剛性部分とを有していて橋軸直角方向の相対変位に際して追随可能であると共に、前記フィンガー部は輪荷重に対し荷重支持部材により支持されるようにしており、前記変形可能部分は弾性部材により形成されていることを特徴とする。
【0008】
この橋梁用伸縮装置によると、地震などにより橋軸直角(横断)方向に大きな相対変位が生じても、フィンガー部の根本側は変形可能部分としており橋軸直角方向の相対変位に際して追随できる。またフィンガー部は先端側に剛性部分を有し、輪荷重に対し荷重支持部材により支持されるようにしているので、変形可能部分を有しているにも関わらず車重に耐えることができる。なお円弧状の橋梁(カーブしている)の場合には、温度変化に起因する橋軸直角方向の相対変位にも対処することができる。
【0009】
また、フィンガー部は弾性部材によって変形後に元の形状に弾性復帰することができる。なお前記弾性部材として例えばゴム等を採用することができる。
【0010】
(2)この発明の橋梁用伸縮装置は、櫛形のフィンガー部が遊間をはさんで対向して配設され、走行車両の輪荷重を支持し、温度変化等による橋軸方向の伸縮を吸収する橋梁用伸縮装置であって、前記フィンガー部は根本側の変形可能部分と先端側の剛性部分とを有していて橋軸直角方向の相対変位に際して追随可能であると共に、前記フィンガー部は輪荷重に対し荷重支持部材により支持されるようにしており、前記変形可能部分は弾発部材により形成されていることを特徴とする。
【0011】
この橋梁用伸縮装置によると、地震などにより橋軸直角(横断)方向に大きな相対変位が生じても、フィンガー部の根本側は変形可能部分としており橋軸直角方向の相対変位に際して追随できる。またフィンガー部は先端側に剛性部分を有し、輪荷重に対し荷重支持部材により支持されるようにしているので、変形可能部分を有しているにも関わらず車重に耐えることができる。なお円弧状の橋梁(カーブしている)の場合には、温度変化に起因する橋軸直角方向の相対変位にも対処することができる。
【0012】
また、フィンガー部は弾発部材によって変形後に元の形状に弾性復帰することができる。なお前記弾発部材として例えばスプリングや板バネを採用することができる。
【0013】
(3)さらに、前記対向するフィンガー部の少なくとも一方側が橋軸直角方向の相対変位に際して回動可能であることとしてもよく、前記フィンガー部の下側に荷重支持部材が配設されていることとしてもよい。
【発明の実施の形態】
【0014】
以下、この発明の実施の形態を図面を参照して説明する。
(実施形態1)
図1乃至図6に示すように、この実施形態の橋梁用伸縮装置は、櫛形のフィンガー部1が橋桁や橋台などの遊間2をはさんで対向して配設され、走行車両の輪荷重を支持し、温度変化等による橋軸(走路)方向Xの伸縮を吸収する。具体的には図3に示すように、免震装置3を介して橋脚4により支持された橋桁5相互間の遊間2に配設している。
【0015】
鋼製としたフィンガー部1は、根本側の変形可能部分1aと先端側の剛性部分1bとを有していて、変形可能部分1aは弾性部材たるゴムにより橋軸直角(横断)方向Yの相対変位に際して追随可能としている。
【0016】
図6に示すように、外周の鋼製のフィンガー部1の円筒状の枠部7と中心の鋼製のピン8との間にゴムが充填埋設されており、相対変位に際してはフィンガー部1が回動して前記ゴムが捩じれるように円周方向に回動して変形する。また前記ゴムの弾性作用により、地震等が収まり変位が収束すると元の状態に復元して戻る。なおフィンガー部1の周囲に、衝撃緩和用の薄いゴム層(図示せず)を形成しておいてもよい。
【0017】
遊間2をはさんで対向する前記フィンガー部1は、その一方側が橋軸直角(横断)方向Yの相対変位に際して円周方向に回動可能とした。他方側のフィンガー部1は基部9と共に鋼製として一体的に形成しており変形はしないが、この固定のフィンガー部1が相対変位して対向するフィンガー部1を回動させる。回動可能なフィンガー部1の下側には、鋼製の荷重支持部材10を配設している。回動可能なフィンガー部1は輪荷重に対し荷重支持部材10により支持されるようにしている。
【0018】
次に、この実施形態の橋梁用伸縮装置の使用状態を説明する。
【0019】
この橋梁用伸縮装置は、地震などにより橋軸直角(横断)方向Yに大きな相対変位が生じても、一方側のフィンガー部1がゴムの弾性作用によって円周方向に変形して相対変位を吸収する。すなわちフィンガー部1が橋軸直角(横断)方向Yの相対変位に際して追随でき、地震などによる橋軸直角(横断)方向Yの大きな相対変位を許容できる。
【0020】
したがって免震装置3を備える橋梁の場合、揺れながら震動を吸収して免震機能を有効に発揮することができるので、橋梁の破壊や倒壊を効果的に抑制することができるという利点がある。また、前記フィンガー部1は変形することにより破損しないので、地震収束後の緊急車両の遊間の通過も可能である。その上前記フィンガー部1は弾性部材たるゴムにより変形可能としており、ゴムによってフィンガー部1は変形後に元の形状・位置に弾性復帰することができる。
【0021】
ところで、円弧状の橋梁(カーブしている)の場合には、温度変化に起因する橋軸直角(横断)方向Yの相対変位にも対処することができる。
【0022】
(実施形態2)
次に、実施形態2を実施形態1との相違点を中心に説明する。
【0023】
実施形態1では対向するフィンガー部1の一方側が橋軸直角(横断)方向Yの相対変位に際して回動可能であるようにしたのに対し、図7に示すように、対向するフィンガー部1の両側が橋軸直角(横断)方向Yの相対変位に際して回動可能とした。したがって、地震等に起因する橋軸直角(横断)方向Yの相対変位に対してより円滑に対処することができる。
【0024】
(実施形態3)
次に、実施形態3を上記実施形態1との相違点を中心に説明する。
【0025】
図8に示すように、鋼製のフィンガー部1は、根本側の変形可能部分1aと先端側の剛性部分1bとを有していて、橋軸直角方向の相対変位に際して追随可能であるようにしている。具体的には基部9と先端側の剛性部分1bとの間に変形可能部分1a(弾性部材たるゴム製)を介在させ、橋軸直角(横断)方向Yの相対変位に際して変形可能としている。
【0026】
(実施形態4)
次に、実施形態4を実施形態3との相違点を中心に説明する。
【0027】
図9に示すように、鋼製のフィンガー部1の基部9と先端側の剛性部分1bとの間に介在させた変形可能部分1a(弾性部材たるゴム)に両側から交互に切れ込みを入れることにより橋軸直角(横断)方向Yの相対変位に際してより円滑に変形可能とした。
【0028】
また対向するフィンガー部1の両側が、橋軸直角(横断)方向Yの相対変位に際して回動可能としている。なおこの弾性部材は、遊間の橋軸(走路)方向Xの伸縮にも変形して対処できる(薄幅の切れ込みが交互に入ったゴムにより、効率的に圧縮変形し得る)という大きな利点がある。
【0029】
(実施形態5)
次に、実施形態5を実施形態4との相違点を中心に説明する。
【0030】
図10に示すように、フィンガー部1の先端側の剛性部分1b(鋼製)に対し、基部9と根本側の変形可能部分1aとを一体的に弾性部材たるゴムで形成すると共に、前記ゴムに両側から切れ込みを交互に入れることにより橋軸直角(横断)方向Yの相対変位に際して円滑に変形可能とした。
【0031】
また対向するフィンガー部1の両側が、橋軸直角(横断)方向Yの相対変位に際して回動可能としている。なおこの弾性部材も、遊間の橋軸(走路)方向Xの伸縮にも変形して対処できるという大きな利点がある。
【0032】
(実施形態6)
次に、実施形態6を上記実施形態との相違点を中心に説明する。
【0033】
図11に示すように、フィンガー部1の先端側の剛性部分1b(鋼製)と基部9との間に変形可能部分1a(弾発部材たるスプリング)を介在させることにより橋軸直角(横断)方向Yの相対変位に際して変形可能とした。なおこの弾発部材は、遊間の橋軸(走路)方向Xの伸縮にも変形して対処できるという大きな利点がある。
【0034】
(実施形態7)
次に、実施形態7を上記実施形態との相違点を中心に説明する。
【0035】
図12に示すように、フィンガー部1の先端側の剛性部分1b(鋼製)と基部9との間に変形可能部分1a(弾発部材たる板バネ)を介在させることにより橋軸直角(横断)方向Yの相対変位に際して変形可能とした。
【発明の効果】
【0036】
この発明は上述のような構成であり、次の効果を有する。
【0037】
フィンガー部が橋軸直角方向の相対変位に際して追随できるので、地震などによる橋軸直角方向の大きな相対変位を許容できる橋梁用伸縮装置を提供することができる。
【図面の簡単な説明】
【0038】
【図1】この発明の橋梁用伸縮装置の実施形態1を説明する一部破断斜視図。
【図2】図1の橋梁用伸縮装置の要部拡大断面図。
【図3】図1の橋梁用伸縮装置の全体断面図。
【図4】図1の橋梁用伸縮装置の要部拡大平面図。
【図5】図1の橋梁用伸縮装置のフィンガー部が変形した状態の要部拡大平面図。
【図6】図1の橋梁用伸縮装置のフィンガー部の構造の拡大平面図。
【図7】この発明の橋梁用伸縮装置の実施形態2を説明する一部破断斜視図。
【図8】この発明の橋梁用伸縮装置の実施形態3を説明する要部平面図。
【図9】この発明の橋梁用伸縮装置の実施形態4を説明する一部破断斜視図。
【図10】この発明の橋梁用伸縮装置の実施形態5を説明する一部破断斜視図。
【図11】この発明の橋梁用伸縮装置の実施形態6を説明する要部平面図。
【図12】この発明の橋梁用伸縮装置の実施形態7を説明する要部平面図。
【図13】従来の橋梁用伸縮装置を説明する一部破断斜視図。
【図14】従来の橋梁用伸縮装置の断面図。
【図15】従来の橋梁用伸縮装置の要部平面図。
【符号の説明】
【0039】
1 フィンガー部
1a 変形可能部分
1b 剛性部分
2 遊間
4 橋脚
5 橋桁
10 荷重支持部材
TECHNICAL FIELD OF THE INVENTION
[0001]
The present invention relates to a telescopic device for a bridge.
[Prior art]
[0002]
2. Description of the Related Art Conventionally, a telescopic device for a bridge has been known.
[0003]
As shown in FIGS. 13 to 15, this bridge extender / contractor 31 is arranged such that opposing comb-shaped finger portions 32 mesh with each other across a play space 34 such as a bridge girder 33 or an abutment. To support the wheel load. The bridge expansion and contraction device 31 has an advantage that expansion and contraction of the bridge girder 33 in the bridge axis (runway) direction X due to a temperature change or the like can be absorbed.
[0004]
However, from the viewpoint of vehicle traveling safety, the gap in the bridge axis perpendicular (transverse) direction Y is not preferable because the tire is fitted and the gap is not so large in this direction. There has been a problem that displacement is almost unacceptable.
[0005]
Therefore, even when a large relative displacement occurs in the direction Y perpendicular to the bridge axis (transverse) across the bridge due to an earthquake or the like, the relative displacement in this direction is almost impossible. Therefore, even in the case of a bridge having a seismic isolation design that absorbs vibrations while shaking, the seismic isolation function at an angle cannot be exhibited, and there is a possibility that the bridge may be destroyed or collapsed.
[Problems to be solved by the invention]
[0006]
Accordingly, an object of the present invention is to provide a telescopic device for a bridge that can tolerate a large relative displacement in a direction perpendicular to the bridge axis due to an earthquake or the like.
[Means for Solving the Problems]
[0007]
In order to solve the above problems, the present invention employs the following technical means.
(1) In the bridge expansion and contraction device of the present invention, comb-shaped finger portions are arranged to face each other with a play space therebetween to support the wheel load of the traveling vehicle and absorb expansion and contraction in the bridge axis direction due to a temperature change or the like. An extension device for a bridge, wherein the finger portion has a deformable portion on a root side and a rigid portion on a tip side, and can follow a relative displacement in a direction perpendicular to a bridge axis, and the finger portion has a wheel load. , And is supported by a load supporting member, and the deformable portion is formed of an elastic member.
[0008]
According to this bridge expansion / contraction device, even if a large relative displacement occurs in the direction perpendicular to the bridge axis (transverse direction) due to an earthquake or the like, the root side of the finger portion is a deformable portion and can follow the relative displacement in the direction perpendicular to the bridge axis. Further, since the finger portion has a rigid portion on the tip side and is supported by the load supporting member against wheel loads, it can withstand the vehicle weight despite having a deformable portion. In the case of an arc-shaped bridge (curved), it is possible to cope with a relative displacement in a direction perpendicular to the bridge axis due to a temperature change.
[0009]
Further, the finger portion can be elastically returned to the original shape after being deformed by the elastic member. In addition, rubber | gum etc. can be employ | adopted as said elastic member, for example.
[0010]
(2) In the bridge telescopic device according to the present invention, the comb-shaped finger portions are disposed to face each other across the play space, support the wheel load of the traveling vehicle, and absorb the expansion and contraction in the bridge axis direction due to a temperature change or the like. An extension device for a bridge, wherein the finger portion has a deformable portion on a root side and a rigid portion on a tip side, and can follow a relative displacement in a direction perpendicular to a bridge axis, and the finger portion has a wheel load. , And is supported by a load supporting member, and the deformable portion is formed by a resilient member.
[0011]
According to this bridge expansion / contraction device, even if a large relative displacement occurs in the direction perpendicular to the bridge axis (transverse direction) due to an earthquake or the like, the root side of the finger portion is a deformable portion and can follow the relative displacement in the direction perpendicular to the bridge axis. Further, since the finger portion has a rigid portion on the tip side and is supported by the load supporting member against wheel loads, it can withstand the vehicle weight despite having a deformable portion. In the case of an arc-shaped bridge (curved), it is possible to cope with a relative displacement in a direction perpendicular to the bridge axis due to a temperature change.
[0012]
Further, the finger portion can be elastically returned to the original shape after being deformed by the resilient member. Note that a spring or a leaf spring can be used as the resilient member, for example.
[0013]
(3) Further, at least one side of the opposing finger portions may be rotatable upon relative displacement in a direction perpendicular to the bridge axis, and a load support member may be provided below the finger portions. Is also good.
BEST MODE FOR CARRYING OUT THE INVENTION
[0014]
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(Embodiment 1)
As shown in FIGS. 1 to 6, in the bridge telescopic device according to this embodiment, the comb-shaped finger portions 1 are disposed to face each other across a play 2 such as a bridge girder or an abutment to reduce the wheel load of the traveling vehicle. It supports and absorbs expansion and contraction in the bridge axis (runway) direction X due to temperature changes and the like. Specifically, as shown in FIG. 3, they are disposed in a play space 2 between bridge girders 5 supported by piers 4 via seismic isolation devices 3.
[0015]
The finger portion 1 made of steel has a deformable portion 1a on the root side and a rigid portion 1b on the distal end side, and the deformable portion 1a is made of rubber as an elastic member and is relatively movable in a direction Y perpendicular to the bridge axis (transverse). It can follow the displacement.
[0016]
As shown in FIG. 6, rubber is filled and embedded between the cylindrical frame portion 7 of the outer steel finger portion 1 and the center steel pin 8, and the finger portion 1 is displaced during relative displacement. The rubber is rotated and deformed in the circumferential direction so that the rubber is twisted. In addition, when an earthquake or the like is settled down and the displacement converges due to the elastic action of the rubber, the rubber is restored to its original state and returned. A thin rubber layer (not shown) for cushioning impact may be formed around the finger portion 1.
[0017]
One of the finger portions 1 facing each other with the play 2 therebetween is rotatable in a circumferential direction upon relative displacement in a direction Y perpendicular to the bridge axis (transverse direction). The finger 1 on the other side is integrally formed of steel together with the base 9 and is not deformed, but the fixed finger 1 is relatively displaced to rotate the opposing finger 1. A steel load supporting member 10 is provided below the rotatable finger portion 1. The rotatable finger portion 1 is supported by a load supporting member 10 against a wheel load.
[0018]
Next, the usage state of the bridge telescopic device of this embodiment will be described.
[0019]
This telescopic device for a bridge absorbs the relative displacement by deforming the finger 1 on one side in the circumferential direction by the elastic action of rubber, even if a large relative displacement occurs in the direction Y perpendicular to the bridge axis (transverse) due to an earthquake or the like. I do. That is, the finger portion 1 can follow the relative displacement in the bridge axis perpendicular (transverse) direction Y, and allows a large relative displacement in the bridge axis perpendicular (transverse) direction Y due to an earthquake or the like.
[0020]
Therefore, in the case of a bridge provided with the seismic isolation device 3, the vibration can be absorbed and the seismic isolation function can be effectively exhibited, so that there is an advantage that destruction or collapse of the bridge can be effectively suppressed. In addition, since the finger portion 1 is not damaged by being deformed, the emergency vehicle can pass through a play space after the convergence of the earthquake. In addition, the finger portion 1 is deformable by rubber as an elastic member, and the rubber allows the finger portion 1 to elastically return to its original shape and position after deformation.
[0021]
By the way, in the case of an arc-shaped bridge (curved), it is possible to cope with a relative displacement in a direction Y perpendicular to the bridge axis (transverse) due to a temperature change.
[0022]
(Embodiment 2)
Next, the second embodiment will be described focusing on differences from the first embodiment.
[0023]
In the first embodiment, one of the opposing finger portions 1 is configured to be rotatable upon relative displacement in the direction Y perpendicular to the bridge axis (transverse direction). On the other hand, as shown in FIG. Is rotatable upon relative displacement in the direction Y perpendicular to the bridge axis (transverse direction). Therefore, it is possible to more smoothly cope with a relative displacement in the direction Y perpendicular to the bridge axis (transverse direction) caused by an earthquake or the like.
[0024]
(Embodiment 3)
Next, a third embodiment will be described focusing on differences from the first embodiment.
[0025]
As shown in FIG. 8, the finger portion 1 made of steel has a deformable portion 1a on the base side and a rigid portion 1b on the tip side, so that it can follow the relative displacement in the direction perpendicular to the bridge axis. ing. Specifically, a deformable portion 1a (made of rubber, which is an elastic member) is interposed between the base portion 9 and the rigid portion 1b on the distal end side, so that it can be deformed at the time of a relative displacement in the direction Y perpendicular to the bridge axis (transverse).
[0026]
(Embodiment 4)
Next, the fourth embodiment will be described focusing on differences from the third embodiment.
[0027]
As shown in FIG. 9, a deformable portion 1a (rubber serving as an elastic member) interposed between the base portion 9 of the steel finger portion 1 and the rigid portion 1b on the distal end side is alternately cut from both sides. Deformation can be made more smoothly when relative displacement in the direction Y perpendicular to the bridge axis (transverse).
[0028]
Also, both sides of the opposing finger portion 1 are rotatable upon relative displacement in the direction Y perpendicular to the bridge axis (transverse direction). It should be noted that this elastic member has a great advantage in that it can deform and cope with expansion and contraction in the bridge axis (runway) direction X of the play (the rubber can be efficiently compressed and deformed by the thin slits being alternately inserted). .
[0029]
(Embodiment 5)
Next, a fifth embodiment will be described focusing on differences from the fourth embodiment.
[0030]
As shown in FIG. 10, a base portion 9 and a root-side deformable portion 1a are integrally formed of a rubber as an elastic member with respect to a rigid portion 1b (made of steel) on the distal end side of the finger portion 1, and the rubber is used. By making cuts alternately from both sides of the bridge, it can be smoothly deformed at the relative displacement in the direction Y perpendicular to the bridge axis (transverse).
[0031]
Also, both sides of the opposing finger portion 1 are rotatable upon relative displacement in the direction Y perpendicular to the bridge axis (transverse direction). This elastic member also has a great advantage that it can deform and cope with expansion and contraction in the bridge axis (runway) direction X of the play.
[0032]
(Embodiment 6)
Next, a sixth embodiment will be described focusing on differences from the above-described embodiment.
[0033]
As shown in FIG. 11, a deformable portion 1a (spring serving as a resilient member) is interposed between a rigid portion 1b (made of steel) on the distal end side of the finger portion 1 and a base portion 9 so as to be perpendicular to the bridge axis (crossing). Deformation is possible at the time of relative displacement in the direction Y. The resilient member has a great advantage in that it can deform and cope with expansion and contraction in the bridge axis (runway) direction X of the play space.
[0034]
(Embodiment 7)
Next, a seventh embodiment will be described focusing on differences from the above-described embodiment.
[0035]
As shown in FIG. 12, a deformable portion 1a (a leaf spring, which is a resilient member) is interposed between a rigid portion 1b (made of steel) on the distal end side of the finger portion 1 and a base portion 9 so that the bridge shaft is perpendicular to the bridge axis. ) Deformable upon relative displacement in the direction Y.
【The invention's effect】
[0036]
The present invention is configured as described above and has the following effects.
[0037]
Since the finger portion can follow the relative displacement in the direction perpendicular to the bridge axis, a telescopic device for a bridge capable of allowing a large relative displacement in the direction perpendicular to the bridge axis due to an earthquake or the like can be provided.
[Brief description of the drawings]
[0038]
FIG. 1 is a partially cutaway perspective view illustrating a first embodiment of a bridge telescopic device according to the present invention.
FIG. 2 is an enlarged sectional view of a main part of the telescopic device for a bridge in FIG. 1;
FIG. 3 is an overall cross-sectional view of the bridge telescopic device of FIG. 1;
FIG. 4 is an enlarged plan view of a main part of the bridge expansion / contraction device of FIG. 1;
5 is an enlarged plan view of a main part of the bridge telescopic device of FIG. 1 in a state where finger portions are deformed.
FIG. 6 is an enlarged plan view of a structure of a finger portion of the telescopic device for a bridge in FIG. 1;
FIG. 7 is a partially cutaway perspective view for explaining Embodiment 2 of a bridge telescopic device of the present invention.
FIG. 8 is a main part plan view for explaining a third embodiment of a bridge telescopic device of the present invention.
FIG. 9 is a partially cutaway perspective view illustrating a fourth embodiment of a bridge telescopic device of the present invention.
FIG. 10 is a partially cutaway perspective view for explaining a fifth embodiment of a bridge telescopic device according to the present invention.
FIG. 11 is a plan view of a principal part for explaining a sixth embodiment of the telescopic device for bridges of the present invention.
FIG. 12 is a plan view of a principal part explaining a seventh embodiment of a bridge extension device of the present invention.
FIG. 13 is a partially cutaway perspective view illustrating a conventional bridge extension device.
FIG. 14 is a cross-sectional view of a conventional telescopic device for a bridge.
FIG. 15 is a plan view of a main part of a conventional expansion / contraction device for a bridge.
[Explanation of symbols]
[0039]
1 finger part
1a Deformable part
1b Rigid part 2 Play area 4 Pier 5 Bridge girder
10 Load support members

Claims (3)

櫛形のフィンガー部が遊間をはさんで対向して配設され、走行車両の輪荷重を支持し、温度変化等による橋軸方向の伸縮を吸収する橋梁用伸縮装置であって、前記フィンガー部は根本側の変形可能部分と先端側の剛性部分とを有していて橋軸直角方向の相対変位に際して追随可能であると共に、前記フィンガー部は輪荷重に対し荷重支持部材により支持されるようにしており、前記変形可能部分は弾性部材により形成されていることを特徴とする橋梁用伸縮装置。Comb-shaped finger portions are arranged opposite to each other with a play space therebetween to support a wheel load of a traveling vehicle and absorb expansion and contraction in a bridge axis direction due to a temperature change or the like. It has a deformable part on the root side and a rigid part on the tip side, and can follow the relative displacement in the direction perpendicular to the bridge axis, and the finger part is supported by the load supporting member against the wheel load. The telescopic device for a bridge , wherein the deformable portion is formed of an elastic member . 櫛形のフィンガー部が遊間をはさんで対向して配設され、走行車両の輪荷重を支持し、温度変化等による橋軸方向の伸縮を吸収する橋梁用伸縮装置であって、前記フィンガー部は根本側の変形可能部分と先端側の剛性部分とを有していて橋軸直角方向の相対変位に際して追随可能であると共に、前記フィンガー部は輪荷重に対し荷重支持部材により支持されるようにしており、前記変形可能部分は弾発部材により形成されていることを特徴とする橋梁用伸縮装置。Comb-shaped finger portions are arranged opposite to each other with a play space therebetween to support a wheel load of a traveling vehicle and absorb expansion and contraction in a bridge axis direction due to a temperature change or the like. It has a deformable part on the root side and a rigid part on the tip side, and can follow the relative displacement in the direction perpendicular to the bridge axis, and the finger part is supported by the load supporting member against the wheel load. The telescopic device for a bridge , wherein the deformable portion is formed by a resilient member . 前記対向するフィンガー部の少なくとも一方側が橋軸直角方向の相対変位に際して回動可能である請求項1又は2記載の橋梁用伸縮装置。The telescopic device for a bridge according to claim 1 or 2, wherein at least one side of the opposed finger portions is rotatable upon relative displacement in a direction perpendicular to the bridge axis.
JP26509498A 1998-09-18 1998-09-18 Bridge telescopic device Expired - Fee Related JP3593644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26509498A JP3593644B2 (en) 1998-09-18 1998-09-18 Bridge telescopic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26509498A JP3593644B2 (en) 1998-09-18 1998-09-18 Bridge telescopic device

Publications (2)

Publication Number Publication Date
JP2000096504A JP2000096504A (en) 2000-04-04
JP3593644B2 true JP3593644B2 (en) 2004-11-24

Family

ID=17412529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26509498A Expired - Fee Related JP3593644B2 (en) 1998-09-18 1998-09-18 Bridge telescopic device

Country Status (1)

Country Link
JP (1) JP3593644B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007231710A (en) * 2006-02-27 2007-09-13 Takumi Matsumoto Expansion device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6609265B1 (en) * 2002-10-03 2003-08-26 Thomas C. Jee Seismic proof articulating bridge deck expansion joint
JP2007056489A (en) * 2005-08-23 2007-03-08 Ishikawajima Harima Heavy Ind Co Ltd Side block for curved bridge
KR101438357B1 (en) 2007-06-25 2014-09-04 공혜선 expansion joint
CN114150574A (en) * 2021-12-23 2022-03-08 张和平 Spring support type bridge expansion joint structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007231710A (en) * 2006-02-27 2007-09-13 Takumi Matsumoto Expansion device

Also Published As

Publication number Publication date
JP2000096504A (en) 2000-04-04

Similar Documents

Publication Publication Date Title
JP4641558B2 (en) Modular comb-type bridge joint device that can withstand oversized displacement
JP4545920B2 (en) Seismic isolation system for bridges
JP3593644B2 (en) Bridge telescopic device
US5710396A (en) Energy-dissipating vibration damping structure
JP3803930B2 (en) Telescopic device for bridge
JP3650873B2 (en) Telescopic device for bridge
JP3686990B2 (en) Telescopic device for bridge
JP2000265410A (en) Bridge retracting device
JP3619952B2 (en) Telescopic device for bridge
JP2000328507A (en) Expansion joint
JPS5930006Y2 (en) Vibration damping devices in bridges
JP2000248505A (en) Expansion joint for bridge
JP2547619Y2 (en) Structure seismic isolation device
JPH08326829A (en) Bump stopper
JP2000096503A (en) Expansion device for bridge
KR102369347B1 (en) Joint for connecting transverse crossing frame of soundproof tunnel
JP4368044B2 (en) Anti-vibration structure of viaduct
JPH11323826A (en) Lower structure of viaduct
JP3639944B2 (en) Telescopic device for bridge
JP2858303B2 (en) Bridge joint structure
JPH08128014A (en) Knock-off device for bridge girder
JP2923613B2 (en) Bridge expansion joints
JP2002371517A (en) Support for bridge
KR200222321Y1 (en) Bridge expansion joint
JP3615625B2 (en) Bridge telescopic device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040819

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070910

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120910

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees