JP3591496B2 - 電源装置 - Google Patents

電源装置 Download PDF

Info

Publication number
JP3591496B2
JP3591496B2 JP2001245585A JP2001245585A JP3591496B2 JP 3591496 B2 JP3591496 B2 JP 3591496B2 JP 2001245585 A JP2001245585 A JP 2001245585A JP 2001245585 A JP2001245585 A JP 2001245585A JP 3591496 B2 JP3591496 B2 JP 3591496B2
Authority
JP
Japan
Prior art keywords
voltage
output
voltage conversion
power supply
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001245585A
Other languages
English (en)
Other versions
JP2003061341A (ja
Inventor
寿純 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2001245585A priority Critical patent/JP3591496B2/ja
Priority to TW091117809A priority patent/TW571496B/zh
Priority to KR1020020047021A priority patent/KR20030015133A/ko
Priority to US10/216,945 priority patent/US6693414B2/en
Publication of JP2003061341A publication Critical patent/JP2003061341A/ja
Application granted granted Critical
Publication of JP3591496B2 publication Critical patent/JP3591496B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/08Three-wire systems; Systems having more than three wires
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/08Three-wire systems; Systems having more than three wires
    • H02J1/082Plural DC voltage, e.g. DC supply voltage with at least two different DC voltage levels
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/462Regulating voltage or current wherein the variable actually regulated by the final control device is dc as a function of the requirements of the load, e.g. delay, temperature, specific voltage/current characteristic
    • G05F1/465Internal voltage generators for integrated circuits, e.g. step down generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/008Plural converter units for generating at two or more independent and non-parallel outputs, e.g. systems with plural point of load switching regulators

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Rectifiers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、直流電源によって発生される電圧を調整して外部に出力する電源装置に関する。
【0002】
【従来の技術】
近年、例えばニッケル・カドミウム電池やニッケル・水素電池等、乾電池を電力供給源とする電子機器が一般に多く使用されている。これらの乾電池は比較的低い領域の出力電圧を有するため、乾電池の供給可能な電圧と電子機器で使用される電圧とは必ずしも一致せず、このため、DC/DCコンバータと呼ばれる電圧変換装置を使用して乾電池の出力電圧を変換することにより、電子回路に対して電源電圧を安定的に供給している。
【0003】
ここで、図8に従来の昇圧型の電圧変換回路の構成例を示す。
図8に示す電圧変換回路100は、入力電圧を昇圧して出力する昇圧型コンバータの構成例である。この電圧変換回路100において、トランジスタQ21のドレインは、チョークコイルL21を介して電源端子12aに接続され、ソースは接地されている。また、ゲートには、図示しない発振回路(PWM:Pulse Width Modulator)からのスイッチングパルスの入力を受けるためのパルス入力端子12bが接続されている。トランジスタQ21とチョークコイルL21との結合点には、ダイオード(ショットキーダイオード)D21のアノードが接続され、このダイオードD21のカソードにはコンデンサC21が接続されて、コンデンサC21の他端は接地されている。ダイオードD21とコンデンサC21との結合点には、負荷への出力端子12cと、エラーアンプへのフィードバック端子12dが接続されている。
【0004】
トランジスタQ21はNチャンネルMOS−FET(Metal Oxide Semiconductor−Field Effect Transistor)であり、パルス入力端子12bからのスイッチングパルスに応じてON/OFFの状態をとることにより、スイッチング素子として機能する。このスイッチングパルスによってトランジスタQ21がONからOFFされると、チョークコイルL21とダイオードD21との接続点には、チョークコイルL21による励磁エネルギーが放出されることにより、電源端子12aの電圧より高い電圧が発生し、コンデンサC21が充電される。また、この接続点の電圧はその後しだいに低下し、次に再びトランジスタQ21がオンするときには接地電圧にほぼ等しい電圧になる。従って、ダイオードD21のアノードにはスイッチングパルスに応答した電圧変動が現れ、その変動をダイオードD21により整流すると、入力された電圧より高い電圧が得られる。この電圧はコンデンサC21により平滑されて出力端子12cから取り出され、負荷に供給される。
【0005】
また、フィードバック端子12dからは出力端子12cと同じ電圧が出力され、図示しないエラーアンプに供給される。エラーアンプでは、フィードバック端子12dから出力された電圧と予め定めた電圧とが比較されて、この比較信号に応じて発振回路のスイッチングパルス出力が制御される。
【0006】
【発明が解決しようとする課題】
ところで、乾電池を使用した電源装置では、出力電圧が1Vの周辺となる場合が多く考えられる。しかし、上記の電圧変換回路100のような従来の電圧変換回路を使用した電源装置では、入力電圧が約1V以下であると、負荷が比較的大きい場合に起動することができないか、あるいは起動してもその後の動作が安定しないことがあった。ここで、図9は従来の電源回路における負荷電力と起動可能電圧との関係の一例を示すグラフである。
【0007】
図9は、従来の電源回路を起動可能な電圧(Vstart)、および、起動後に入力電圧が低下した場合に安定的に動作させることが可能な入力電圧の許容最低値(Vhold)の負荷電力に対する関係を示している。この図9によれば、負荷電力が約25mW以下の場合は、入力電圧が約0.8V〜1.0Vの範囲で起動することが可能となっているが、負荷電力の上昇とともに起動可能電圧も上昇していき、25mW以上では、起動可能な電圧が負荷電力にほぼ比例して増加している。
【0008】
また、図9によれば、起動可能な電圧に対して、起動後の入力電圧がわずかに下降しても正常に動作させることが可能なことがわかるが、その許容低下幅は、負荷電力が約15mW以下の領域では、負荷電力が低くなるにつれて大きくなる傾向が見られるのに対して、15mW以上の重負荷領域ではより小さい許容量のまま、ほぼ一定の幅で推移している。
【0009】
このように、従来の電源装置では、入力電圧が1Vをわずかに下回る領域にある場合、負荷電力が25mW程度の場合までは起動させて正常に動作させることができるが、負荷電力がそれ以上である場合は、起動することができないか、あるいは、起動後の入力電圧の下降に対して正常動作が可能な許容量が狭いために動作が不安定になることがあった。この原因としては、スイッチングパルスを出力する発振回路が低電圧で正常に発振できないことや、電圧変換回路におけるスイッチング素子(FET)のゲート電圧が低すぎて、チョークコイルに対する正常なスイッチング動作ができないこと等が考えられる。
【0010】
また、図8に示した構成を有する電圧変換回路100を使用し、入力電圧を昇圧した一定の電圧を負荷に供給する電源装置の場合、入力電圧が規定より低いときには昇圧比を大きくする必要がある。ここで、電圧変換回路100におけるトランジスタQ21がONしている時間をTon、OFFしている時間をToffとすると、電源端子12aからの入力電圧Vinと、出力端子12cからの出力電圧Voutとの関係は、次の式(1)で表される。
【0011】
【数1】
Figure 0003591496
【0012】
このような電圧変換回路100に対して乾電池を電力供給源として使用した場合は、Vinが1Vの周辺の値を取ることがあり得るが、この例としてVinを1V、Voutを5Vとした場合を想定すると、Ton:Toff=4:1となり、Tonの区間のデューティは80%となる。この場合、入力電圧Vinが1Vからさらに低下すると、ディーティ比がさらに大きく偏ってしまうことから、負荷が大きい場合の起動が困難になったり、定常動作中における安定性が悪化してしまうという問題があった。
【0013】
本発明はこのような課題に鑑みてなされたものであり、入力電圧が低い場合にも、高い負荷に対して安定して動作することが可能な電源装置を提供することを目的とする。
【0014】
【課題を解決するための手段】
本発明では上記課題を解決するために、電池によって発生される電圧を調整して所定の負荷に出力する電源装置において、前記電池による発生電圧を昇圧する第1の電圧変換手段と、前記電池による発生電圧を所定の電圧に変換して前記所定の負荷に出力する第2の電圧変換手段と、前記第1の電圧変換手段からの出力電圧によって駆動され、起動信号の受信に応じて、スイッチングパルスを出力して前記第2の電圧変換手段の動作を制御する動作制御手段と、電源制御信号を出力するスイッチ手段と、前記電源制御信号の受信時に前記第1の電圧変換手段からの出力電圧を前記動作制御手段に対して導通させる開閉手段、および、前記開閉手段が導通してから一定時間後に前記動作制御手段に対して起動信号を出力する起動信号遅延手段を具備し、前記第1の電圧変換手段からの出力電圧によって駆動される起動制御手段とを有することを特徴とする電源装置が提供される。
【0015】
このような電源装置では、電池による発生電圧が、第1の電圧変換手段によって昇圧され、この昇圧された電圧により動作制御手段および起動制御手段が駆動される。起動制御手段は、スイッチ手段から電源制御信号が出力されると始動し、動作制御手段は、起動制御手段の制御により、第1の電圧変換手段からの出力電圧の供給が開始された後、一定時間後に起動信号を受信することにより、スイッチングパルスを出力して、電池からの出力電圧に駆動される第2の電圧変換手段の動作制御を開始する。また、例えば、第2の電圧変換手段は、出力段にチャージポンプ回路部が配置された構成をなしている。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。
図1に本発明の電源装置の概略構成例を示す。
【0017】
図1に示す電源装置1は、電力供給源である直流電源2と、直流電源2からの配線を保護するヒューズ3aおよび3bと、直流電源2からの出力電圧を昇圧する電圧変換回路4と、後述する制御IC9を起動するためインタフェース・マイコン(以下、I/Fマイコンと略称する)5と、I/Fマイコン5に電源を供給するためのリセットIC6と、電圧変換回路4からの出力ラインを開閉するスイッチ7と、I/Fマイコン5からの起動信号を遅延させる遅延回路8と、電圧変換回路4からの出力電圧により駆動する制御IC9と、外部の所定の負荷に対して所定の電圧を供給する電圧出力部10によって構成される。
【0018】
また、電圧出力部10は、5チャンネルの電圧変換回路11、12、13、14および15によって構成される。電圧変換回路11、12および13は、出力電圧がそれぞれ5V、3V、15Vの昇圧型コンバータであり、また、電圧変換回路14は、出力電圧が1.5Vの降圧型コンバータであり、さらに、電圧変換回路15は、出力電圧が−7.5Vの反転型コンバータである。これにより電圧出力部10では、5V、3V、15V、1.5Vおよび−7.5Vの各電圧を負荷に対して供給することが可能となっている。
【0019】
直流電源2は、例えばニッケル・カドミウムやニッケル・水素等の乾電池を使用した電力供給源であり、出力電圧は通常約0.9V〜1.6Vとなっている。ヒューズ3aおよび3bは、遮断容量がそれぞれ0.4A、2Aとなっている。電圧変換回路4は、ヒューズ3aを介して直流電源2から電圧の供給を受け、この電圧を入力電圧より比較的高い値(ここでは4V)に昇圧して、リセットIC6およびスイッチ7に対して出力する。
【0020】
リセットIC6は、バックアップ電源6aによる、I/Fマイコン5の内部時計のバックアップ機能を有するとともに、内部にシリーズレギュレータを具備し、電圧変換回路4からの出力電圧を3Vに変換して、I/Fマイコン5の電源として供給する。また、直流電源2がこの電源装置1に接続されたときにI/Fマイコン5に対してリセット信号を出力して、これを起動させる。I/Fマイコン5は、この電源装置1を起動するための電源スイッチ5aを具備し、この電源スイッチ5aの操作に応じてスイッチ7および遅延回路8に対して起動信号を出力する。
【0021】
スイッチ7は、I/Fマイコン5からの起動信号の受信によりONされ、これにより電圧変換回路4からの出力電圧が、制御IC9の具備する電源端子9aに供給される。遅延回路8は、I/Fマイコン5からの起動信号を一定時間だけ遅延させて、制御IC9の具備する起動制御ピン9bに対して供給する。
【0022】
制御IC9は、電源端子9aを介して電圧変換回路4から電源の供給を受け、起動制御ピン9bから起動信号を受信して起動し、電圧出力部10の電圧変換回路11〜15に対してスイッチングパルスを出力することにより、それぞれの動作を制御する。制御IC9には、各電圧変換回路11〜15に対応したエラーアンプ(図示せず)およびスイッチングパルスを発振する発振回路(図示せず)が一体に集積されており、エラーアンプに各電圧変換回路11〜15からの出力がフィードバックされて、この電圧と予め定められた電圧とが比較され、この比較信号に応じて発振回路によるスイッチングパルス出力が制御される。
【0023】
電圧出力部10において、電圧変換回路11および12は、直流電源2からヒューズ3bを介して電源の供給を受けて動作する。このうち、出力電圧5Vの電圧変換回路11は、昇圧比が約4倍以上と高いことから、後述するように、出力段にチャージポンプ回路を配置した構成とすることによって、安定した電圧出力が行われるようになされている。また、電圧変換回路13および15は、電圧変換回路11からの出力を電源として動作し、電圧変換回路14は電圧変換回路12からの出力を電源として動作する。この電圧出力部10の各電圧変換回路11〜15は、制御IC9からのスイッチングパルスに応じて動作し、また、所定の電圧を負荷に対して出力するとともに、この出力電圧を制御IC9に対してフィードバックさせるための端子を具備する。
【0024】
次に、この電源装置1の起動時の動作について説明する。図2に、起動時の電源装置1の各部における信号タイミングを示す。
タイミングT201において、まず、直流電源2として例えば乾電池が接続されると(図2(A))、ヒューズ3aを通じて電圧変換回路4に電圧が加えられ、4Vに昇圧された電圧が出力される(図2(B))。この出力電圧は、リセットIC6を介してI/Fマイコン5に供給され、I/Fマイコン5が起動される。このとき、I/Fマイコン5の消費電流は十分小さいことから、直流電源2の出力電圧が1V以下に低下した場合でも、I/Fマイコン5は確実に起動する。
【0025】
タイミングT202において、I/Fマイコン5の電源スイッチ5aがONされると(図2(C))、I/Fマイコン5からは起動信号が出力される(図2(D))。この起動信号を受信して、スイッチ7はON状態となり、電圧変換回路4からの出力電圧が制御IC9の電源端子9aに対して供給され(図2(E))、制御IC9はスタンバイ状態となる。また、遅延回路8に供給された起動信号は遅延されて、タイミングT203において、スタンバイ状態となった制御IC9の起動制御ピン9bに対して供給される(図2())。これにより制御IC9が起動し、電圧出力部10の各電圧変換回路11〜15に対するスイッチングパルスの発振を開始して、これらの動作を制御する(図2(G))
【0026】
このように、制御IC9は、直流電源2の出力を昇圧した電圧変換回路4からの出力電圧により駆動されるので、負荷電力25mW以上の重負荷時において、直流電源2からの出力電圧が1V以下に低下した場合でも、所定の出力レベルおよびデューティ比のスイッチングパルスを安定的に発振することが可能となる。また、I/Fマイコン5、スイッチ7および遅延回路8の作用により、制御IC9は、電圧変換回路4からの電圧供給を受けてスタンバイ状態となった後に、遅延回路8を通過した起動信号を受信して電圧出力部10の動作制御を開始するので、重負荷時において、起動する際に電圧変換回路4からの出力電圧の供給を確実に受けて、正常に起動することが可能となる。さらに、I/Fマイコン5によって制御IC9への電源電圧印加を起動時に行うように制御することによって、制御IC9による消費電力を抑制することが可能となっている。
【0027】
次に、電圧出力部10について説明する。
電圧出力部10において、電圧変換回路11および12は直流電源2からの出力を電源として動作する。このうち、出力電圧が5Vの電圧変換回路11は、昇圧比が約4倍以上と高いことから、安定した昇圧動作を行うために出力段にチャージポンプ回路を具備した構成をなしている。
【0028】
ここで、図3に電圧変換回路11の回路構成例を示す。
電圧変換回路11は、入力端子として、直流電源2からの出力電圧の入力を受ける電源端子11aと、制御IC9からのスイッチングパルスの入力を受けるパルス入力端子11bとを具備し、また出力端子として、負荷に対して5Vの電圧を出力する出力端子11cと、これと同じ電圧を制御IC9の具備するエラーアンプへフィードバックするためのフィードバック端子11dを具備している。
【0029】
この電圧変換回路11は、図3に示すように、ゲートがパルス入力端子11bに接続され、ソースが接地されたトランジスタQ11と、一端が電源端子11aに接続され、他端がトランジスタQ11のドレインに接続されたチョークコイルL11と、アノードがトランジスタQ11とチョークコイルL11との結合点に接続されたダイオードD11と、このダイオードD11のカソードに一端が接続され、他端が接地されたコンデンサC11と、アノードがダイオードD11のカソードに接続されたダイオードD12と、一端がトランジスタQ11のドレインに接続され、他端がダイオードD12のカソードに接続されたコンデンサC12と、アノードがダイオードD12のカソードに接続されたダイオードD13と、一端がダイオードD13のカソードに接続され、他端が接地されたコンデンサC13によって構成される。また、負荷への出力端子11cおよびエラーアンプへのフィードバック端子11dは、ともにダイオードD13とコンデンサC13との結合点に接続されている。
【0030】
ここで、トランジスタQ11はNチャンネルMOS−FETであり、パルス入力端子11bからのスイッチングパルスに応じてON/OFFの状態をとることにより、スイッチング素子として機能する。また、ダイオードD11、D12およびD13はショットキーダイオードである。
【0031】
この電圧変換回路11は、トランジスタQ11、チョークコイルL11、ダイオードD11およびコンデンサC11によりなる従来の昇圧型コンバータに加えて、ダイオードD12とコンデンサC12、およびダイオードD13とコンデンサC13よりなる2段のチャージポンプ回路が出力段に配置された構成をなしている。
【0032】
次に、図4にこの電圧変換回路11における各部の信号出力タイミングを概念的に示し、この図4を使用して電圧変換回路11の動作を説明する。なお、図4では、説明を簡単にするために、スイッチングパルスのデューティ比を1:1として示している。また、以下の説明では、ダイオードD11、D12およびD13による電圧降下を無視している。
【0033】
T401のタイミングにおいて、パルス入力端子11bよりスイッチングパルスが入力されると、トランジスタQ11がONされ、チョークコイルL11が励磁されて磁気エネルギーを蓄積する。T402のタイミングにおいて、スイッチングパルスの入力が切断され、トランジスタQ11がOFFされると、チョークコイルL11からの磁気エネルギーの放出によって電圧Vlが発生し、コンデンサC11およびC13の両端には、この電圧Vlに電源端子11aからの入力電圧Vinが重畳された電圧Voがともに印加されて、コンデンサC11およびC12は充電される。なお、この電圧Voは、トランジスタQ11、チョークコイルL11、ダイオードD11およびコンデンサC11によってなる従来の昇圧型コンバータの出力電圧となっている。
【0034】
T403のタイミングにおいて、スイッチングパルスの印加によりトランジスタQ11が再びONされた時点では、コンデンサC11の電荷により導通状態のダイオードD12を通じてコンデンサC12が充電され、コンデンサC12の両端には電圧Voが発生する。このとき、ダイオードD11はカットオフ状態となって、コンデンサC11の電荷がトランジスタQ11側に流れることを阻止する。さらに、ダイオードD13もカットオフ状態となり、コンデンサC13の電荷がトランジスタQ11側に洩れることを阻止する。また、この後チョークコイルL11が再び励磁される。
【0035】
T404のタイミングにおいて、スイッチングパルスの切断によりトランジスタQ11がOFFされると、トランジスタQ11のドレインに発生する電圧Voに、コンデンサC12の両端の電圧Voが重畳されて、この電圧2VoによりコンデンサC13が充電され、コンデンサC13の両端には電圧2Voが発生する。このとき、ダイオードD12のカソード電圧は2Vo、アノード電圧はVoとなるので、ダイオードD12はカットオフ状態となり、コンデンサC11は電圧Voにより充電される。
【0036】
以上の動作が繰り返されることにより、コンデンサC13の両端には、従来の昇圧型コンバータの出力電圧の2倍である電圧2Voが常に発生し、この電圧2VoがコンデンサC13により平滑されて、出力端子11cより負荷に対して出力される。また、これとともにフィードバック端子11dより、同じ電圧2Voが制御IC9のエラーアンプに供給されて予め定めた電圧と比較され、この比較信号に応じて発振回路のスイッチングパルス出力が制御される。なお、出力端子11cからの出力電圧は、電圧変換回路13および15の電源としても供給される。
【0037】
また、この電圧変換回路11では、チャージポンプ回路をさらに多くの段数だけ配置することにより、さらに高い昇圧比を得ることが容易に可能となる。例えば図3の電圧変換回路11の出力段にさらに1段のチャージポンプ回路を設ける場合は、チャージポンプ回路のコンデンサの一端をダイオードD12のカソードに接続し、ダイオードのアノードをダイオードD13のカソードに接続する。このように、出力段にチャージポンプ回路を複数段設けた構成とした場合、この段数の合計をMとすると、従来の昇圧型コンバータと比較して約M倍の出力電圧を得ることが可能となる。
【0038】
ところで、このように出力段にチャージポンプ回路を具備する電圧変換回路11において、チャージポンプの倍率をN、トランジスタQ11がONしている時間をTon、OFFしている時間をToffとすると、電源端子11aの入力電圧Vinと出力端子11cの出力電圧Voutとの関係は、次の式(2)で表される。
【0039】
【数2】
Figure 0003591496
【0040】
直流電源2として乾電池を使用する上記の電源装置1の場合、Vinが1Vの周辺の値を取ることがあり得るが、この例としてVinを1V、Voutを5Vとし、さらにN=2とした場合を想定すると、Ton:Toff=3:2となり、Tonの区間のデューティは60%となる。従って、デューティ比に余裕が生まれるため、負荷電力25mW以上といった重負荷時において、Vinが1V以下に低下した場合でも、確実に起動して所定の電圧を出力することができる。また、定常動作時でもデューティ比に余裕があるため、Vinの変動に対して安定的に動作することができる。このような起動および定常動作の際に、上述したように、制御IC9が電圧変換回路4からの出力電圧により起動されることにより、乾電池による直流電源2の出力レベルが低下した場合でも、電圧変換回路11には所定の出力レベルおよびデューティ比のスイッチングパルスが安定的に供給されるため、起動および動作の安定性がさらに高まる。
【0041】
また、チャージポンプ回路の設置段数を調節して倍率Nを任意に設定することにより、昇圧比を任意に設定することが可能であることから、出力電圧に対する設定時のスイッチングパルスのデューティ比を安定的に動作する領域に設定することができるため、昇圧比を高めた場合にも確実な起動および安定的な動作がなされる。
【0042】
次に、電圧出力部10における他の電圧変換回路12〜15の回路構成について説明する。3Vの電圧を出力する電圧変換回路12は、直流電源2の発生電圧に対して3倍程度昇圧する能力があればよい。また、最も高い15Vの電圧を出力する電圧変換回路13は、5Vの電圧を出力する電圧変換回路11からの出力電圧を電源として使用することにより、昇圧率を3倍に抑制することができる。従って、これらの電圧変換回路12および13は、ともに従来の昇圧型コンバータと同様の構成とした場合でも、スイッチングパルスのデューティ比が大きく偏ることがなく、安定的に動作することが可能である。
【0043】
ここで、図5に、これらを代表して電圧変換回路12の回路構成例を示す。なお、電圧変換回路13においても、トランジスタ、チョークコイル、ダイオードおよびコンデンサの配置は同様となる。
【0044】
図5に示す電圧変換回路12は、従来の昇圧型コンバータとして図8に示した電圧変換回路100と同様の構成を有しており、同じ構成部品には同じ記号を付し、ここでは回路構成の説明は省略する。
【0045】
この電圧変換回路12では、このスイッチングパルスによってトランジスタQ21がONからOFFされると、チョークコイルL21の磁気エネルギーによる逆起電圧と電源端子12aの電圧とが重畳され、この重畳電圧によりコンデンサC21が充電される。また、次にトランジスタQ21がオンすると、コンデンサC21からこの重畳電圧が平滑されて出力端子12cおよびフィードバック端子12dに出力され、昇圧された電圧が取り出される。
【0046】
この電圧変換回路12では、スイッチングパルスのデューティ比の偏りが小さく、また上述したように制御IC9からスイッチングパルスの安定的な供給を受けられることから、直流電源2の出力電圧の低下に対しても安定した動作が行われる。また、同様の構成を有する電圧変換回路13では、上述したように電圧変換回路11から安定的に出力される5Vの電圧を電源として昇圧比を抑制したことにより、スイッチングパルスの安定供給と併せて、15Vの高電圧を安定して出力することが可能となっている。
【0047】
次に、図6に電圧変換回路14の回路構成を示す。
図6に示す電圧変換回路14は、従来から使用されている一般的な降圧型コンバータである。この電圧変換回路14は、ソースに電圧変換回路12の出力電圧が入力され、ゲートに制御IC9からのスイッチングパルスが入力される、PチャンネルMOS−FETであるトランジスタQ41と、アノードが接地され、カソードがトランジスタQ41のドレインに接続されたダイオードD41と、一端がトランジスタQ41のドレインに接続され、他端が負荷およびエラーアンプへの出力となっているチョークコイルL41と、一端がチョークコイルL41の出力側に接続され、他端が接地されたコンデンサC41によって構成される。
【0048】
この電圧変換回路14において、スイッチングパルスの供給によりトランジスタQ41がONされると、入力電圧と出力電圧との差によりチョークコイルL41が励磁され、ダイオードD41はカットオフされる。その後トランジスタQ41がOFFされると、ダイオードD41が導通して、チョークコイルL41による磁気エネルギーがコンデンサC41に充電される。従って、コンデンサC41の両端には入力電圧より低い電圧が発生して、この電圧が負荷およびエラーアンプに対して出力される。
【0049】
ところで、1.5Vの電圧を出力する場合は、直流電源2の出力電圧の領域とクロスすることから、直流電源2から直接電圧の供給を受ける構成の回路にすると、電圧の変動に伴って動作が不安定になる場合がある。このため、上記の電圧変換回路14では、電圧変換回路12から3Vの電圧の安定的な供給を受けて、この電圧を降圧することによって、安定した起動および定常動作を可能としている。
【0050】
次に、図7に電圧変換回路15の回路構成例を示す。
図7に示す電圧変換回路15は、従来から使用されている一般的な反転型コンバータである。この電圧変換回路15は、ソースに電圧変換回路11の出力電圧が入力され、ゲートに制御IC9からのスイッチングパルスが入力される、PチャンネルMOS−FETであるトランジスタQ51と、一端がトランジスタQ51のドレインに接続され、他端が接地されているチョークコイルL51と、カソードがトランジスタQ51のドレインに接続され、アノードが負荷およびエラーアンプへの出力となっているダイオードD51と、一端がダイオードD51のアノードに接続され、他端が接地されたコンデンサC51によって構成される。
【0051】
この電圧変換回路15において、スイッチングパルスの供給によりトランジスタQ51がONされると、電圧変換回路11からの入力電圧によりチョークコイルL51が励磁され、ダイオードD51はカットオフされる。その後トランジスタQ51がOFFされると、ダイオードD51が導通して、チョークコイルL51による磁気エネルギーがコンデンサC51に充電されるが、このとき、コンデンサC51の両端には負電圧が発生して、この負電圧が負荷およびエラーアンプに対して出力される。
【0052】
この電圧変換回路15では、−7.5Vの電圧を出力するために直流電源2の出力電圧を直接昇圧した場合では、昇圧率が高く、スイッチングパルスのデューティ比が極端に偏ってしまい、動作が不安定になることから、電圧変換回路11から5Vの電圧の安定的な供給を受けて、デューティ比に余裕を持たせることにより、安定した起動および定常動作を可能としている。
【0053】
以上のように、電圧出力部10では、直流電源2から5Vの電圧を得るためにチャージポンプ回路を具備する電圧変換回路11を使用し、この出力電圧を使用して従来からの昇圧型コンバータによりさらに昇圧することによって、重負荷時においても、直流電源2と比較して比較的高い電圧を安定的に出力することが可能となっている。
【0054】
なお、上記の電源装置1では、制御IC9に対する起動信号を遅延させるための遅延回路8を単体の外部回路として設けたが、例えば、I/Fマイコン5に遅延された起動信号を出力するための専用ポートを設け、I/Fマイコン5の内部において所定の遅延タイミングを生成し、このタイミングに従って専用ポートから起動信号を出力して、制御IC9の起動制御ピン9bに供給するような構成としてもよい。
【0055】
また、電圧出力部10内の各電圧変換回路11〜15と、電圧変換回路4とを、同一のIC内に集積させて実現してもよい。さらに、電圧出力部10に対する制御IC9と、電圧変換回路4にスイッチングパルスを供給してこの動作を制御する図示しない制御回路とを、同一のICとして実現してもよい。
【0056】
【発明の効果】
以上説明したように、本発明の電源装置では、電池による発生電圧が、第1の電圧変換手段によって昇圧され、この昇圧された電圧により動作制御手段および起動制御手段が駆動される。起動制御手段は、スイッチ手段から電源制御信号が出力されると始動し、動作制御手段は、起動制御手段の制御により、第1の電圧変換手段からの出力電圧の供給が開始された後、一定時間後に起動信号を受信する。これによって、重負荷時において、電池の出力電圧が、動作制御手段を正常に起動させることが不可能な電圧まで低下した場合にも、スイッチ手段が電源制御信号を出力するのに応じて、第1の電圧変換手段によって昇圧された電圧によって動作制御手段が確実に起動し、第2の電圧変換手段を安定的に制御するようになり、負荷に対して安定的に電圧を供給することが可能となる。また、起動制御手段も、第1の電圧変換手段による昇圧電圧によって駆動されるので、電池の出力電圧低下時に、より確実に動作制御手段を起動させて、負荷に安定的に電圧を供給することができる。
【0057】
また、例えば、第2の電圧変換手段は、出力段にチャージポンプ回路部が配置されているため、動作制御回路の安定動作と併せて、昇圧比が高い場合でも、電池の出力電圧低下にかかわらず、重負荷に対して安定した電圧出力を行うことが可能となる。
【図面の簡単な説明】
【図1】本発明の電源装置の概略構成例を示す図である。
【図2】起動時の電源装置の各部における信号タイミングを示す図である。
【図3】5V出力の電圧変換回路の回路構成例を示す図である。
【図4】5V出力の電圧変換回路における各部の信号出力タイミングを概念的に示す図である。
【図5】3V出力の電圧変換回路の回路構成例を示す図である。
【図6】1.5V出力の電圧変換回路の回路構成例を示す図である。
【図7】−7.5V出力の電圧変換回路の回路構成例を示す図である。
【図8】従来の昇圧型の電圧変換回路の構成例を示す図である。
【図9】従来の電源回路における負荷電力と起動可能電圧との関係の一例を示すグラフである。
【符号の説明】
1……電源装置、2……直流電源、3a、3b……ヒューズ、4……電圧変換回路、5……I/Fマイコン、6……リセットIC、7……スイッチ、8……遅延回路、9……制御IC、9a……電源端子、9b……起動制御ピン、10……電圧出力部、11、12、13、14、15……電圧変換回路

Claims (7)

  1. 電池によって発生される電圧を調整して所定の負荷に出力する電源装置において、
    前記電池による発生電圧を昇圧する第1の電圧変換手段と、
    前記電池による発生電圧を所定の電圧に変換して前記所定の負荷に出力する第2の電圧変換手段と、
    前記第1の電圧変換手段からの出力電圧によって駆動され、起動信号の受信に応じて、スイッチングパルスを出力して前記第2の電圧変換手段の動作を制御する動作制御手段と、
    電源制御信号を出力するスイッチ手段と、
    前記電源制御信号の受信時に前記第1の電圧変換手段からの出力電圧を前記動作制御手段に対して導通させる開閉手段、および、前記開閉手段が導通してから一定時間後に前記動作制御手段に対して起動信号を出力する起動信号遅延手段を具備し、前記第1の電圧変換手段からの出力電圧によって駆動される起動制御手段と、
    を有することを特徴とする電源装置。
  2. 前記電池による発生電圧を昇圧する、または反転させる場合、前記第2の電圧変換手段は、出力段にチャージポンプ回路部が配置された構成をなすことを特徴とする請求項1記載の電源装置。
  3. 前記第2の電圧変換手段は、
    ゲートに前記スイッチングパルスの入力を受け、ソースが接地されたスイッチング素子、一端より前記電池からの出力電圧が入力され、他端が前記スイッチング素子のドレインに接続された第1のチョークコイル、アノードが前記スイッチング素子に接続された第1のダイオード、および、一端が前記第1のダイオードのカソードに接続され、他端が接地された第1のコンデンサによってなる昇圧型電圧変換回路部と、
    アノードが前記第1のダイオードのカソードに接続された第2のダイオード、および、一端が前記スイッチング素子のドレインに接続され、他端が前記第2のダイオードのカソードに接続された第2のコンデンサによってなる第1段目の前記チャージポンプ回路部と、
    アノードが前記第2のダイオードのカソードに接続され、カソードが前記所定の負荷への出力および前記動作制御手段への帰還出力とされた第3のダイオード、および、一端が前記第3のダイオードのカソードに接続され、他端が接地された第3のコンデンサによってなる第2段目の前記チャージポンプ回路部と、
    によって構成されることを特徴とする請求項2記載の電源装置。
  4. 前記第2の電圧変換手段の出力段には3段以上の前記チャージポンプ回路部が配置されることを特徴とする請求項2記載の電源装置。
  5. 前記動作制御手段によって動作が制御され、前記第2の電圧変換手段からの出力電圧を所定の電圧に変換して出力する第3の電圧変換手段をさらに有することを特徴とする請求項2記載の電源装置。
  6. 前記第1および第2の電圧変換手段は同一の半導体集積回路として構成されることを特徴とする請求項1記載の電源装置。
  7. 前記動作制御手段は半導体集積回路として構成され、前記第2の電圧変換手段とともに前記第1の電圧変換手段の動作の制御も行うことを特徴とする請求項1記載の電源装置。
JP2001245585A 2001-08-13 2001-08-13 電源装置 Expired - Fee Related JP3591496B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001245585A JP3591496B2 (ja) 2001-08-13 2001-08-13 電源装置
TW091117809A TW571496B (en) 2001-08-13 2002-08-07 Power supply apparatus
KR1020020047021A KR20030015133A (ko) 2001-08-13 2002-08-09 전원 장치
US10/216,945 US6693414B2 (en) 2001-08-13 2002-08-12 Power supply apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001245585A JP3591496B2 (ja) 2001-08-13 2001-08-13 電源装置

Publications (2)

Publication Number Publication Date
JP2003061341A JP2003061341A (ja) 2003-02-28
JP3591496B2 true JP3591496B2 (ja) 2004-11-17

Family

ID=19075303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001245585A Expired - Fee Related JP3591496B2 (ja) 2001-08-13 2001-08-13 電源装置

Country Status (4)

Country Link
US (1) US6693414B2 (ja)
JP (1) JP3591496B2 (ja)
KR (1) KR20030015133A (ja)
TW (1) TW571496B (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005004304A1 (ja) * 2003-07-07 2005-01-13 Nippon Telegraph And Telephone Corporation 昇圧装置
JP4673046B2 (ja) 2004-11-26 2011-04-20 ザインエレクトロニクス株式会社 スイッチング電源
KR20060080272A (ko) * 2005-01-04 2006-07-10 주식회사 팬택앤큐리텔 갑작스런 전원 유입에 의한 오동작 방지 기능을 가진ic칩과, 이를 탑재한 이동통신 단말기의 배터리충전장치
JP4639830B2 (ja) * 2005-02-03 2011-02-23 パナソニック株式会社 昇圧装置と流速または流量計測装置
JP4876624B2 (ja) 2006-02-22 2012-02-15 富士通セミコンダクター株式会社 電源装置の制御回路、電源装置及びその制御方法
JP4688725B2 (ja) * 2006-05-09 2011-05-25 三洋電機株式会社 電源装置
JP2008112507A (ja) * 2006-10-30 2008-05-15 Toshiba Corp 半導体記憶装置
DE102007014398B4 (de) * 2007-03-26 2009-07-09 Texas Instruments Deutschland Gmbh Stromversorgungsschaltkreis
US7719239B2 (en) * 2007-03-27 2010-05-18 Honeywell International Inc. Fast field discharge for generator over-voltage control
JP4306768B2 (ja) * 2007-06-18 2009-08-05 エプソンイメージングデバイス株式会社 電気光学装置及び電子機器
JP4770888B2 (ja) * 2008-07-31 2011-09-14 船井電機株式会社 電源回路
JP5301976B2 (ja) * 2008-12-11 2013-09-25 株式会社小糸製作所 車両用灯具の制御装置
US8924745B2 (en) * 2012-04-11 2014-12-30 Zippy Technology Corp. Simulation of first power good signal to generate second power good signal by power enabling control circuit for uninterrupted power supplies
US9197129B2 (en) 2013-01-28 2015-11-24 Qualcomm, Incorporated Boost converter topology for high efficiency and low battery voltage support
US9490653B2 (en) 2013-07-23 2016-11-08 Qualcomm Incorporated Systems and methods for enabling a universal back-cover wireless charging solution
US9673699B1 (en) * 2013-08-08 2017-06-06 Iml International Floating charge pump voltage converter
US9582016B2 (en) * 2015-02-05 2017-02-28 Silicon Laboratories Inc. Boost converter with capacitive boost stages
CN108919871A (zh) * 2017-03-30 2018-11-30 立锜科技股份有限公司 电源传输装置
US10741348B2 (en) * 2017-03-30 2020-08-11 Richtek Technology Corporation Power transmission apparatus
US10348193B1 (en) * 2018-06-19 2019-07-09 Texas Instruments Incorporated Power supply system with non-linear capacitance charge-pump
FR3089720B1 (fr) 2018-12-06 2020-11-20 Continental Automotive France Convertisseur de tension
TWI812189B (zh) * 2022-04-25 2023-08-11 宏碁股份有限公司 電源供應器以及電子系統

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0993914A (ja) * 1995-09-22 1997-04-04 Toshiba Corp 多出力dc/dcコンバータ
US5737208A (en) * 1996-05-24 1998-04-07 Chen; Sung-Chin Modular uninterruptable power supply system
JPH09322535A (ja) * 1996-05-31 1997-12-12 Murata Mfg Co Ltd スイッチング電源回路
US5729098A (en) * 1996-06-04 1998-03-17 Motorola, Inc. Power supply and electronic ballast with a novel boost converter control circuit
JPH10161178A (ja) * 1996-12-03 1998-06-19 Olympus Optical Co Ltd カメラの電源装置
JP2000023461A (ja) * 1998-07-02 2000-01-21 Hitachi Ltd 電源回路
US6198257B1 (en) * 1999-10-01 2001-03-06 Metropolitan Industries, Inc. Transformerless DC-to-AC power converter and method

Also Published As

Publication number Publication date
US20030071602A1 (en) 2003-04-17
JP2003061341A (ja) 2003-02-28
US6693414B2 (en) 2004-02-17
KR20030015133A (ko) 2003-02-20
TW571496B (en) 2004-01-11

Similar Documents

Publication Publication Date Title
JP3591496B2 (ja) 電源装置
US7288854B2 (en) Power linear and switching regulators commonly controlled for plural loads
US7567065B2 (en) Switching regulator and method for changing output voltages thereof
US6438005B1 (en) High-efficiency, low noise, inductorless step-down DC/DC converter
US7940031B2 (en) Switching power supply circuitry
US5336985A (en) Tapped inductor slave regulating circuit
US7812579B2 (en) High-efficiency DC/DC voltage converter including capacitive switching pre-converter and up inductive switching post-regulator
US7522432B2 (en) Switching regulator and control circuit and method used therein
US6954056B2 (en) Switching power supply unit and controller IC thereof
US7701180B2 (en) DC-to-DC converter and method therefor
Huang et al. Sub-1 V input single-inductor dual-output (SIDO) DC–DC converter with adaptive load-tracking control (ALTC) for single-cell-powered systems
US8164315B2 (en) Power supply circuit
JPH07177731A (ja) 不連続モードで動作するdc−dcコンバータ
US6972973B2 (en) Voltage booster having noise reducing structure
US7084611B2 (en) DC/DC converter
US6307359B1 (en) DC-DC converter powered by doubled output voltage
EP2020076A2 (en) Startup for dc/dc converters
US6798262B2 (en) Switching regulator control circuit for a PFM control
US20080303493A1 (en) Boost regulator startup circuits and methods
JP3576526B2 (ja) Dc/dcコンバータ
JPWO2002099947A1 (ja) 電源装置及び電源装置の給電方法
JPH09327170A (ja) 電源回路
JPH1023749A (ja) スイッチング電源装置
JPH0591727A (ja) 電源装置
JP4609285B2 (ja) 電源用半導体集積回路および電源装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040305

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040624

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040816

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120903

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees