JP3589195B2 - Sorting method for small metal balls - Google Patents

Sorting method for small metal balls Download PDF

Info

Publication number
JP3589195B2
JP3589195B2 JP2001149321A JP2001149321A JP3589195B2 JP 3589195 B2 JP3589195 B2 JP 3589195B2 JP 2001149321 A JP2001149321 A JP 2001149321A JP 2001149321 A JP2001149321 A JP 2001149321A JP 3589195 B2 JP3589195 B2 JP 3589195B2
Authority
JP
Japan
Prior art keywords
ball
inclined surface
supply unit
diameter
ball supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001149321A
Other languages
Japanese (ja)
Other versions
JP2002343821A (en
Inventor
則彦 長谷川
晃 市田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ALMT Corp
Original Assignee
ALMT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ALMT Corp filed Critical ALMT Corp
Priority to JP2001149321A priority Critical patent/JP3589195B2/en
Publication of JP2002343821A publication Critical patent/JP2002343821A/en
Application granted granted Critical
Publication of JP3589195B2 publication Critical patent/JP3589195B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Combined Means For Separation Of Solids (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体素子を搭載する半導体装置において、電極として用いられる微小金属球の選別方法とそれにより製造された微小金属球を用いた半導体パッケージに関するものである。
【0002】
【従来の技術】
パッケージ(PKG)の高密度化が進む中で、特に内部電極(インナーバンプ)の特性、性能は大切である。接続長の短尺化(狭ピッチ化に対応する工法の一つ)に対し、150若しくは100μm程度の精密なボールはその製造方法もさることながら、実用に供するには精密選別は欠かせぬ課題である。中でも異形状の選別は、微小ボール同士の干渉による付着や反発により、僅かな転がり性の差だけでは選別が出来なかった。
【0003】
【発明が解決しようとする課題】
具体的には、精密篩や一方向傾斜選別では、良品の精密検査を行えば少なからず異形状品の混入が避けられず完全には実用に供し得ない。前者は線材を編んだ篩では勿論の事、パンチングメタルにより作製された篩によっても、付着ボール、例えば、異形状ボール2個が、自然の力では剥がれない付着ボールとして在った場合は、除去出来ない上、50〜150μmの微小なボールでも表面の凹凸、即ち異形状品には充分選別する事は困難である。
【0004】
加えて光学的手法をもっても、微小ボールの選別は困難な現状である。
【0005】
実用に供する場合には、数百万個や数千万個レベルの数量を処理出来るプロセスで考えなければ不都合である。凡そ0.5〜数%の異形状品の混入が避けられず不十分であった。具体的には、本発明者らが、実際に検査した場合、1,000個中、十個〜300個程度の異形状品が混入していたので、正に不十分であった。
【0006】
PKGの内部電極として利用するのは、この程度のサイズが採用されるPKGでは、凡そ数百から数万のボールがひとつのデバイスに搭載され、不良があれば直ちに電気的不具合の発生が予測される。
【0007】
そこで、本発明の技術的課題は、簡単な構成又は簡便な方法でその制御が達成出来る且つ精度良く良品を選別できる微小金属球の選別方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明によれば、傾斜面を備えた傾斜テーブル、当該傾斜面に振動を与える直進フィーダー装置、前記傾斜面の端部に設けられたボール供給部、及び前記ボール供給部と対向する前記傾斜面の端部位置に設けられたボール回収部とを使用して、直径50〜150μmの金属球を形状選別する方法において、前記直進フィーダー装置によって、前記傾斜テーブルを予め定められた振動方向に振動させ、前記傾斜面に沿って前記ボール供給部からのボールを前記ボール回収部に導く段階と、前記振動方向に対する前記傾斜面とグランド面との間の傾斜角度Aと、当該振動方向と垂直方向の前記傾斜面と前記グランド面との間の傾斜角度Bとを調整する段階とを含み、前記傾斜角度Bは、前記ボール供給部から前記ボール回収部に向かって前記ボールが転がるような角度の範囲内で調整されると共に、前記傾斜角度Aは、前記ボール供給部から供給されるボールが前記振動方向に前記傾斜面を競り上がった後、前記ボール回収部方向に向かって広がるように、調整されることを特徴とする微小金属球の選別方法。
【0009】
また、本発明によれば、前記微小金属球の選別方法において、更に,直径精度の確度を高める為に、二本の精密加工されたローラーの隙間を高精度に隙間を制御したローラー外径選別機により選別することを前工程若しくは後工程に備えていることを特徴とする高精度を有する微小金属球の選別方法が得られる。
【0010】
また、本発明によれば、前記いずれかの微小球の選別方法において、前記金属球は銅、コバルト、ニッケルの内の一種から成る事を特徴とする微小金属球であることを特徴とする微小金属球の選別方法が得られる。
【0011】
また、本発明によれば、半導体素子を搭載するPKGの高実装密度品であって、基板と素子の間隔が50μm以上で150μm以下の接続電極から成る半導体パッケージにおいて、請求項1記載の微小金属球の選別方法によって得られた高精度な金属球をフリップチップ工法のマイクロボールとして半導体チップと基板との接続に用いたことを特徴とする接続信頼性の高い半導体パッケージが得られる。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照しながら、説明する。
【0013】
図1は本発明の実施の形態による形状選別機の概略構成を示す図である。図2及び図3は図1の形状選別機のローラー外径選別機の構成を示す斜視図及び断面図である。
【0014】
図1に示すように、形状選別機10は、ボール供給部8と、傾斜面5を備えた傾斜テーブル7と、傾斜面5に設けられた直進フィーダー装置4と、傾斜テーブルの下方に設けられた回収部6とを備えている。また、ボール1は、銅、コバルト、ニッケルのいずれでも良い。尚、白抜きの矢印3は、振動方向を示している。
【0015】
図2及び図3に示すように、ローラー外径選別機20は、選別するボール1の外径にほぼ等しい隙間を備えた回転する一対の平行に設けられたローラー21,22と、ローラー21,22の下部に設けられ、ローラー21,22の隙間から落下した径の小さなボールを収容する小径収容容器23と、矢印25に示すように、ボールの進行方向に沿って移動し、ローラーの端部から落下した径の大きなボールを収容する大径収容容器24とを備えて構成されている。
【0016】
図3に最も良く示されるように、径の小さなボール1cはローラー21,22の隙間から落下し、隙間よりも径の大きなボールはローラの隙間上を、傾斜したローラーの動きに従って移動して、端部から大径ボール収容容器24に収容される。従って、径に応じて高精度な微小金属球を得ることができる。
【0017】
図1を再び参照して、本発明の実施の形態による形状選別機10は、ボール供給部8から、傾斜テーブル7に選別するボール1を、ボール1,1同士が干渉し過ぎない程度に供給する。傾斜テーブル7には、直進フィーダ装置4から矢印3に示す振動方向の振動を与えて、ボール1がテーブル7の表面を容易に移動出来るようにし、合わせて傾斜テーブル7の傾斜角度を、直進振動フイーダー装置4と固定された傾斜テーブル7のグランド(本選別機の設置床面をグランドとする)との間に振る角度を角度A・2a、それと直角の方向でグランドとの間に振る角度を角度B・2bとする。スムーズに転がれば近くに到達し、回収部6にて回収される。良く転がらなければ、直進振動により遠くに到達・回収される。
【0018】
ここで、通常はボールの回転モーメントが第一の支配因子と思われるが、本発明による微小ボールは、寧ろボール同士の干渉を開放させれば、異形状ボールと充分良好な球状を有するボールとは、そのサイズと角度A・2a、角度B・2bの相互作用により、充分な選別可能な領域が存在することが得られた。
【0019】
図1に示す図面において、右側ほど異形状の不良品が回収される動きとなる。また、振動は、テーブルの上のボールの運搬そのものを支配する。
【0020】
本発明の実施の形態において、当該ボールが良好に搬送される条件は、振幅で20から150μm凡そ100μmが良好だった。これに準ずる振動は50から70ヘルツ(Hz)が良く、60Hz近傍が最適であった。
【0021】
本発明の条件は、この振動条件を一定にしての角度A,Bの適正領域を設定したものである。
【0022】
当然これら数値は、絶対的な数値では無いが、同一装置での条件設定には欠かせぬ要因である。
【0023】
図4は、微小金属球として、銅ボール、コバルトボール、ニッケルボールの何れかで、実際に選別可能領域のエリアを限定する実験結果を示す図である。図5は図4のボールの直径軸の3点についての、選別可否結果を示す図である。図4および図5において、黒丸が選別出来た領域である。
【0024】
直径サイズ依存は大きいが、サイズの変化と一律に選別可能領域は変化せず、大直径の場合は、異形部分のサイズや特にその直径に対する比率が小さい為、角度、振動域の制御だけでは良い領域を広く採れず狭い範囲で良好エリアが在り、一方50μm程度の領域ではボール同士の干渉により選別可能領域が限定される事が得られた。
【0025】
しかし、この領域は実に再現性があり、少なくても銅、コバルト、ニッケルの50μm〜150μmの範囲の微小ボールの形状選別には充分実用的に利用可能と分った。
【0026】
鋭意検討した結果、この領域は下記表1に纏めた通りであり、予め定められた領域に該当する。
【0027】
【表1】

Figure 0003589195
【0028】
また、異形状検査の頻度は、良品選別された中からランダムに採取したポール20,000個を全数外表皮検査して、不良の無いエリアを条件設定の領域とした。先述した通り高密度実装するPKGは、内部電極の数として数百以上になることは自明であり、検査数も20000個とした。一方2百万個を選別し、20000個を3回(個別に3度)抜き取り検査したが、良品中に異形状品は全く見出せなかった。
【0029】
また、異形状の定義であるが、PKG実装に実質的に支障のあると思われる形状の定義を表2にした。
【0030】
【表2】
Figure 0003589195
ここで、表2において、(a)は真球、(b)は一部異形、(c)は面荒れ,即ち、転がりが極めて良好とは言えないが、定常的な転がり性を有する上、めっきやはんだ被覆に対し全く支障無いので良品の範疇とした。
【0031】
また、上記表2の不良のものは絵にも示したが、パッケージング(PKG′ing)において、基板とチップとの一定な距離が得られない上、基板の所望の位置に整置させることも困難であった。実用上使用に耐えられない。
【0032】
更に、一方、金属球に半田などを均一に被覆した微小ボールの形状選別にも当然応用出来ることは言うまでも無い。
【0033】
更に、また、直径精度も従来のBGA(ボールグリッドアレイ)用ボールのサイズ、即ち、500μmから850μmまで各種あり、主流は700μmから750μm直径のボールであり、本発明のボールに比べ巨大である。
【0034】
当然本発明に関わる形状選別の精度を高めるには、球体の直径選別を合わせ持つ処理を行えば、更に精度を向上させる事が出来る。具体的には、この形状選別に、更に、直径精度の確度を高めるために、図2及び図3に示した二本の精密加工されたローラーの隙間を高精度に隙間を制御したローラー外径選別機の装置を組み合わせて選別することにより、高精度な微小金属球が得られた。
【0035】
今後の高密度実装化に対し、実質何処まで精度の向上が欠かせぬかは現状明確になっていないが、本発明はその場合の対応も可能になる発明であり、実用上有用な発明と言える。
【0036】
【発明の効果】
以上説明したように、本発明によれば、簡単な構成で且つ精度良く良品を選別できる微小金属球の選別方法を提供することができる。
【図面の簡単な説明】
【図1】図1は本発明の実施の形態による形状選別機の概略構成を示す図である。
【図2】図1の形状選別機のローラー外径選別機の構成を示す斜視図である。
【図3】図1の形状選別機のローラー外径選別機の構成を示す断面図である。
【図4】微小金属球として、銅ボール、コバルトボール、ニッケルボールの何れかで、実際に選別可能領域のエリアを限定する実験結果を示す図である。
【図5】図4のボールの直径軸の3点についての、選別可否結果を示す図である。
【符号の説明】
1,1a,1b,1c ボール
2a,2b 角度
4 直進フィーダー装置
5 傾斜面
6 回収部
7 傾斜テーブル
8 ボール供給部
10 形状選別機
20 ローラー外径選別機
21,22 ローラー
23 小径収容容器
24 大径収容容器[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for selecting a fine metal sphere used as an electrode in a semiconductor device on which a semiconductor element is mounted, and a semiconductor package using the fine metal sphere manufactured by the method.
[0002]
[Prior art]
As the density of the package (PKG) increases, the characteristics and performance of the internal electrodes (inner bumps) are particularly important. In order to shorten the connection length (one of the methods for narrowing the pitch), a precision ball of about 150 or 100 μm is an issue that requires precise sorting in order to put it to practical use, in addition to its manufacturing method. is there. Above all, in the selection of different shapes, it was not possible to select only a slight difference in rolling properties due to adhesion and repulsion due to interference between the small balls.
[0003]
[Problems to be solved by the invention]
Specifically, in a precision sieve or a one-way slant sorting, if a precise inspection of a non-defective product is performed, mixing of a considerable amount of a deformed product is unavoidable and cannot be completely put to practical use. The former is not only a wire knitted sieve, but also a sieve made of punched metal, if there are adhered balls, for example, two deformed balls, as adhered balls that cannot be peeled off by natural force. In addition, it is difficult to sufficiently select even a fine ball having a size of 50 to 150 μm into irregularities on the surface, that is, an irregularly shaped product.
[0004]
In addition, it is difficult to sort out minute balls by using an optical method.
[0005]
In practical use, it is inconvenient unless a process capable of processing a quantity of several millions or tens of millions is considered. About 0.5 to several percent of irregularly shaped products were unavoidable and inadequate. Specifically, when the present inventors actually inspected, out of 1,000 pieces, about 10 to 300 pieces with different shapes were mixed, which was inadequate.
[0006]
The PKG used as the internal electrode of the PKG adopts such a size. In the PKG, approximately hundreds to tens of thousands of balls are mounted on one device, and if there is a defect, the occurrence of an electrical defect is predicted immediately. You.
[0007]
Therefore, a technical problem of the present invention is to provide a method of selecting fine metal spheres that can achieve control thereof with a simple configuration or a simple method and that can accurately select good products.
[0008]
[Means for Solving the Problems]
According to the present invention, an inclined table having an inclined surface, a linear feeder device that applies vibration to the inclined surface, a ball supply unit provided at an end of the inclined surface, and the inclined surface facing the ball supply unit In a method of selecting the shape of a metal sphere having a diameter of 50 to 150 μm using a ball collecting portion provided at an end position of the tilting table, the inclination table is vibrated in a predetermined vibration direction by the linear feeder device. Guiding the ball from the ball supply unit to the ball collection unit along the inclined surface, an inclination angle A between the inclined surface and the ground surface with respect to the vibration direction, and a direction perpendicular to the vibration direction. Adjusting an inclination angle B between the inclined surface and the ground surface, wherein the inclination angle B is set such that the ball angle is increased from the ball supply unit toward the ball collection unit. Is adjusted within a range of an angle at which the ball rolls, and the inclination angle A is directed toward the ball collection unit after the ball supplied from the ball supply unit races on the inclined surface in the vibration direction. A method for sorting small metal spheres, characterized in that they are adjusted to spread .
[0009]
Further, according to the present invention, in the above-mentioned method for sorting fine metal spheres, in order to further increase the accuracy of the diameter accuracy, a roller outer diameter sorting in which a gap between two precision-machined rollers is controlled with high precision. A method for sorting fine metal spheres with high accuracy, characterized in that sorting by a machine is provided in a pre-process or a post-process.
[0010]
Further, according to the present invention, in any one of the methods for selecting microspheres, the metal sphere is a micrometal sphere characterized in that it is made of one of copper, cobalt, and nickel. A method for sorting metal balls is obtained.
[0011]
Further, according to the present invention, there is provided a semiconductor package comprising a connection electrode having a high mounting density of a PKG on which a semiconductor element is mounted and having a connection electrode having a distance between a substrate and the element of not less than 50 μm and not more than 150 μm. A semiconductor package with high connection reliability, characterized in that a high-precision metal sphere obtained by the sphere selection method is used as a microball of the flip chip method for connection between a semiconductor chip and a substrate .
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0013]
FIG. 1 is a diagram showing a schematic configuration of a shape sorter according to an embodiment of the present invention. 2 and 3 are a perspective view and a sectional view showing the configuration of a roller outer diameter sorter of the shape sorter of FIG.
[0014]
As shown in FIG. 1, the shape sorter 10 includes a ball supply unit 8, an inclined table 7 having an inclined surface 5, a linear feeder device 4 provided on the inclined surface 5, and provided below the inclined table. And a collecting unit 6. The ball 1 may be made of any of copper, cobalt, and nickel. The white arrow 3 indicates the vibration direction.
[0015]
As shown in FIGS. 2 and 3, the roller outer diameter sorter 20 includes a pair of rotating parallel rollers 21 and 22 having a clearance substantially equal to the outer diameter of the ball 1 to be sorted, and rollers 21 and 22. A small-diameter storage container 23 provided at a lower portion of the roller 22 for storing a small-diameter ball dropped from a gap between the rollers 21 and 22 and, as shown by an arrow 25, moves along the traveling direction of the ball. And a large-diameter storage container 24 for storing a large-diameter ball dropped from the container.
[0016]
As best shown in FIG. 3, the ball 1c having a small diameter falls from the gap between the rollers 21 and 22, and the ball having a diameter larger than the gap moves on the gap between the rollers according to the movement of the inclined roller. It is housed in the large-diameter ball housing container 24 from the end. Therefore, it is possible to obtain high-precision fine metal spheres according to the diameter.
[0017]
Referring again to FIG. 1, the shape sorter 10 according to the embodiment of the present invention supplies the balls 1 to be sorted to the inclined table 7 from the ball supply unit 8 to such an extent that the balls 1 and 1 do not interfere with each other. I do. Vibration in the vibration direction shown by the arrow 3 is given to the tilt table 7 from the straight-ahead feeder device 4 so that the ball 1 can easily move on the surface of the table 7, and the tilt angle of the tilt table 7 is adjusted to the linear vibration. The angle between the feeder device 4 and the ground of the fixed tilting table 7 (the floor on which the sorting machine is installed is referred to as ground) is an angle A · 2a, and the angle between the feeder device 4 and the ground in a direction perpendicular to the angle is A · 2a. Angle B · 2b. If it rolls smoothly, it reaches nearby and is collected by the collection unit 6. If it does not roll well, it will reach far away and be collected by straight-line vibration.
[0018]
Here, the rotational moment of the ball is usually considered to be the first controlling factor, but the microball according to the present invention can be modified into a deformed ball and a ball having a sufficiently good sphere if the interference between the balls is released. It was found that due to the interaction between the size and the angles A.2a and B.2b, there was a sufficiently selectable region.
[0019]
In the drawing shown in FIG. 1, the movement toward the right side is such that defective products having different shapes are collected. Also, the vibrations govern the transport of the ball on the table itself.
[0020]
In the embodiment of the present invention, the condition under which the ball is satisfactorily conveyed is 20 to 150 μm in amplitude and approximately 100 μm in amplitude. Vibration according to this is preferably from 50 to 70 Hertz (Hz), and optimally around 60 Hz.
[0021]
The condition of the present invention is that an appropriate range of the angles A and B is set while keeping the vibration condition constant.
[0022]
Naturally, these numerical values are not absolute numerical values, but are indispensable factors for setting conditions in the same apparatus.
[0023]
FIG. 4 is a diagram showing an experimental result of actually limiting the area of the selectable region with any one of a copper ball, a cobalt ball, and a nickel ball as a minute metal sphere. FIG. 5 is a diagram showing the results of the screening possibility for three points on the diameter axis of the ball in FIG. In FIGS. 4 and 5, the black circles are the selected areas.
[0024]
Although the diameter size dependence is large, the selectable area does not change uniformly with the change in size.In the case of a large diameter, only the control of the angle and vibration range is sufficient because the size of the deformed portion and especially the ratio to the diameter are small. It was found that there was a good area in a narrow range without taking a large area, while in the area of about 50 μm, the selectable area was limited by interference between balls.
[0025]
However, it has been found that this area has reproducibility indeed, and is at least sufficiently practicable for shape selection of minute balls of copper, cobalt and nickel in the range of 50 μm to 150 μm.
[0026]
As a result of intensive studies, this area is as summarized in Table 1 below, and corresponds to a predetermined area.
[0027]
[Table 1]
Figure 0003589195
[0028]
As for the frequency of the irregular shape inspection, 20,000 poles randomly picked from non-defective products were subjected to an outer skin inspection, and an area having no defect was defined as a condition setting area. As described above, it is obvious that the number of PKGs to be mounted at a high density is several hundred or more as the number of internal electrodes, and the number of inspections is also 20,000. On the other hand, 2 million pieces were selected and 20,000 pieces were sampled and inspected three times (individually three times).
[0029]
Table 2 shows the definitions of the different shapes that are considered to have a substantial problem in PKG mounting.
[0030]
[Table 2]
Figure 0003589195
Here, in Table 2, (a) is a true sphere, (b) is partially deformed, and (c) is rough, that is, it cannot be said that the rolling is extremely good, but it has a steady rolling property. Since there is no hindrance to plating and solder coating, it was included in the category of non-defective products.
[0031]
In addition, although the defective ones in Table 2 are also shown in the picture, in the packaging (PKG'ing), a fixed distance between the substrate and the chip cannot be obtained, and the package must be arranged at a desired position on the substrate. Was also difficult. Not practically usable.
[0032]
Further, on the other hand, it is needless to say that the present invention can also be applied to the shape selection of a minute ball in which a metal ball is uniformly coated with solder or the like.
[0033]
Furthermore, the precision of the diameter is also various from the size of a conventional ball for a BGA (ball grid array), that is, from 500 μm to 850 μm, and the mainstream is a ball having a diameter of 700 μm to 750 μm, which is larger than the ball of the present invention.
[0034]
Naturally, in order to increase the accuracy of the shape selection according to the present invention, the accuracy can be further improved by performing a process that combines the diameter selection of the sphere. Specifically, in order to further improve the accuracy of the diameter accuracy in this shape selection, the gap between the two precision-processed rollers shown in FIGS. 2 and 3 is a roller outer diameter in which the gap is controlled with high precision. High-precision fine metal spheres were obtained by combining and sorting devices of the sorting machine.
[0035]
At present, it is not clear to what extent the improvement of accuracy is essential for the future high-density mounting, but the present invention is an invention that can cope with such a case and can be said to be a practically useful invention. .
[0036]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a method of selecting fine metal spheres that can select good products with a simple configuration and with high accuracy.
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic configuration of a shape sorter according to an embodiment of the present invention.
FIG. 2 is a perspective view showing a configuration of a roller outer diameter sorter of the shape sorter of FIG.
FIG. 3 is a sectional view showing a configuration of a roller outer diameter sorter of the shape sorter of FIG.
FIG. 4 is a diagram showing an experimental result of actually limiting the area of a selectable area by using a copper ball, a cobalt ball, or a nickel ball as a minute metal sphere.
FIG. 5 is a diagram showing the results of the sorting possibility for three points on the diameter axis of the ball of FIG. 4;
[Explanation of symbols]
1, 1a, 1b, 1c Ball 2a, 2b Angle 4 Straight feeder device 5 Inclined surface 6 Collection unit 7 Inclined table 8 Ball supply unit 10 Shape sorter 20 Roller outer diameter sorter 21, 22 Roller 23 Small diameter container 24 Large diameter Container

Claims (3)

傾斜面を備えた傾斜テーブル、当該傾斜面に振動を与える直進フィーダー装置、前記傾斜面の端部に設けられたボール供給部、及び前記ボール供給部と対向する前記傾斜面の端部位置に設けられたボール回収部とを使用して、直径50〜150μmの金属球を形状選別する方法において、前記直進フィーダー装置によって、前記傾斜テーブルを予め定められた振動方向に振動させ、前記傾斜面に沿って前記ボール供給部からのボールを前記ボール回収部に導く段階と、前記振動方向に対する前記傾斜面とグランド面との間の傾斜角度Aと、当該振動方向と垂直方向の前記傾斜面と前記グランド面との間の傾斜角度Bとを調整する段階とを含み、
前記傾斜角度Bは、前記ボール供給部から前記ボール回収部に向かって前記ボールが転がるような角度の範囲内で調整されると共に、前記傾斜角度Aは、前記ボール供給部から供給されるボールが前記振動方向に前記傾斜面を競り上がった後、前記ボール回収部方向に向かって広がるように、調整されることを特徴とする微小金属球の選別方法。
An inclined table having an inclined surface, a linear feeder device that applies vibration to the inclined surface, a ball supply unit provided at an end of the inclined surface, and an end position of the inclined surface facing the ball supply unit In the method of selecting the shape of a metal sphere having a diameter of 50 to 150 μm by using the ball collection unit provided, the tilting table is vibrated in a predetermined vibration direction by the straight-ahead feeder device, and is moved along the tilted surface. Guiding the ball from the ball supply unit to the ball collection unit, an inclination angle A between the inclined surface and the ground surface with respect to the vibration direction, and the inclined surface and the ground in a direction perpendicular to the vibration direction. Adjusting the angle of inclination B between the surface and the surface.
The inclination angle B is adjusted within a range of an angle at which the ball rolls from the ball supply unit toward the ball collection unit, and the inclination angle A is a value at which the ball supplied from the ball supply unit is adjusted. A method for sorting fine metal spheres, wherein the fine metal spheres are adjusted so as to spread toward the ball collecting part after competing on the inclined surface in the vibration direction .
請求項1記載の微小金属球の選別方法において、更に,直径精度の確度を高める為に、二本の精密加工されたローラーの隙間を高精度に隙間を制御したローラー外径選別機により選別することを前工程若しくは後工程に備えていることを特徴とする高精度を有する微小金属球の選別方法。2. The method of claim 1, wherein the gap between the two precision-machined rollers is further sorted by a roller outer diameter sorter that controls the gap with high precision in order to further increase the accuracy of the diameter accuracy. A method for sorting fine metal spheres with high precision, wherein the method is provided in a pre-process or a post-process. 請求項1又は2記載の微小金属球の選別方法において、前記金属球は銅、コバルト、ニッケルの内の一種から成ることを特徴とする微小金属球の選別方法。In screening method according to claim 1 or 2, wherein the fine metal balls, the metal balls are copper, cobalt, method of sorting small metal balls to feature in that it consists of one of a nickel.
JP2001149321A 2001-05-18 2001-05-18 Sorting method for small metal balls Expired - Lifetime JP3589195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001149321A JP3589195B2 (en) 2001-05-18 2001-05-18 Sorting method for small metal balls

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001149321A JP3589195B2 (en) 2001-05-18 2001-05-18 Sorting method for small metal balls

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004200573A Division JP2004312040A (en) 2004-07-07 2004-07-07 Sorting equipment for micro metal ball

Publications (2)

Publication Number Publication Date
JP2002343821A JP2002343821A (en) 2002-11-29
JP3589195B2 true JP3589195B2 (en) 2004-11-17

Family

ID=18994509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001149321A Expired - Lifetime JP3589195B2 (en) 2001-05-18 2001-05-18 Sorting method for small metal balls

Country Status (1)

Country Link
JP (1) JP3589195B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10249573A1 (en) * 2002-10-24 2004-05-13 Robert Bosch Gmbh Device for separating faulty components from good components comprises two parallel counter-rotating rolls with a gap between them dimensioned so that only good components can pass through it
JPWO2014069131A1 (en) * 2012-10-30 2016-09-08 新日鉄住金マテリアルズ株式会社 Deformation removal apparatus and irregular shape removal method
CN113618069B (en) * 2021-08-13 2023-07-07 四川铭泰顺硬质合金有限公司 Wet milling device for hard alloy mixture

Also Published As

Publication number Publication date
JP2002343821A (en) 2002-11-29

Similar Documents

Publication Publication Date Title
US6268275B1 (en) Method of locating conductive spheres utilizing screen and hopper of solder balls
US6541364B2 (en) Bump forming method and bump forming apparatus
US8104663B2 (en) Solder ball mounting method and apparatus
US6750549B1 (en) Variable pad diameter on the land side for improving the co-planarity of ball grid array packages
TWI546129B (en) Method and device for sorting balls
JP3589195B2 (en) Sorting method for small metal balls
JP3654433B2 (en) Solder ball sorting method and sorting device
US20150343564A1 (en) Method for selective laser processing using electrostatic powder deposition
JP2004312040A (en) Sorting equipment for micro metal ball
US20040087046A1 (en) Method for testing chips on flat solder bumps
JP2006122826A (en) Sieve for microsphere screening and microsphere screening method using the same
JP2018018985A (en) Columnar member mounting apparatus and columnar member mounting method
JP3814718B2 (en) Microsphere sorting device
JP4697566B2 (en) Oval sphere sorting method and apparatus
JP2556766B2 (en) Electronic component chip sorter
JP2001286826A (en) Rotary inclined sorting system
JP2001300429A (en) Sphere sorting apparatus
WO2014069131A1 (en) Variant removal device and variant removal method
WO2022239124A1 (en) Solder particle classifying method, monodispersed solder particle, and solder particle classifying system
JP5568268B2 (en) Contact probe pin for semiconductor inspection equipment
JP2000144216A (en) Manufacture of solder ball for bga
Nurmi et al. The effect of PCB surface finish on lead‐free solder joints
JPH0754969Y2 (en) Chip-shaped electronic component sorter
CN108525998A (en) A kind of wood powder screening plant and screening system
JP3017415B2 (en) Compact electronic component sorting device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040809

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3589195

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070827

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term