JP3588948B2 - Heat pump type bath hot water supply system - Google Patents

Heat pump type bath hot water supply system Download PDF

Info

Publication number
JP3588948B2
JP3588948B2 JP33928596A JP33928596A JP3588948B2 JP 3588948 B2 JP3588948 B2 JP 3588948B2 JP 33928596 A JP33928596 A JP 33928596A JP 33928596 A JP33928596 A JP 33928596A JP 3588948 B2 JP3588948 B2 JP 3588948B2
Authority
JP
Japan
Prior art keywords
hot water
water supply
temperature
bath
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33928596A
Other languages
Japanese (ja)
Other versions
JPH10185312A (en
Inventor
竹司 渡辺
寛明 米久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP33928596A priority Critical patent/JP3588948B2/en
Publication of JPH10185312A publication Critical patent/JPH10185312A/en
Application granted granted Critical
Publication of JP3588948B2 publication Critical patent/JP3588948B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はヒートポンプによる風呂給湯システムに関する。
【0002】
【従来の技術】
従来、この種のヒートポンプシステムは特開平7−71839号公報に示す如きものがある。以下、従来の技術について図面に基づき説明する。図14は従来のヒートポンプシステムの構成図である。図14において、圧縮機1の吐出側につながる高圧ガス管1a、圧縮機1の吸入側につながる低圧ガス管1b、高圧および低圧ガス管とともに配置された液管1cに開閉弁56a、56b、56c、56d、56e、56fを介して、給湯加熱器2、排熱利用熱交換器4、大気熱利用熱交換器55が並列につながるよう構成されている。また、開閉弁56a、56b、56c、56d、56e、56fの切り替えにより給湯運転、風呂追い焚き運転、給湯熱利用風呂追い焚き運転、浴槽排熱利用給湯運転がおこなわれる。例えば、浴槽排熱利用給湯運転時は、開閉弁56aと56dを開放して、排熱利用熱交換器4を介して浴槽8の湯を吸熱し、給湯加熱器2で加熱して貯湯する。
【0003】
【発明が解決しようとする課題】
しかしながら、従来のヒートポンプシステムでは、給湯加熱器2より流出した高圧液冷媒は冷媒流量制御弁57で低圧の二相冷媒となり、さらに冷媒流量制御弁58を通って排熱利用熱交換器4に流入することになる。よって、冷媒流量がかなり絞られるため、所定の冷媒流量が得られず、圧縮機1の吸入冷媒ガスは低圧の過熱ガスとなる。そのため、排熱利用熱交換器4での採熱量が少なくなり、高効率化が得られない。さらに、圧縮比が大きいため、高温化が得られない。
【0004】
本発明は上記課題を解決するもので、浴槽排熱利用給湯運転時に高温化沸き上げをして貯湯熱量増大をはかることを主目的とするものである。
【0005】
【課題を解決するための手段】
前記課題を解決するため本発明は、圧縮機を有する冷媒回路と、前記冷媒回路に接続した給湯加熱器および排熱利用熱交換器と、貯湯槽の湯水が流動し、前記給湯加熱器と熱交換関係を有する給湯熱交換器を途中に接続した給湯回路と、風呂循環ポンプを介して浴槽の湯水を循環させるとともに、前記排熱利用熱交換器と熱交換関係を有する風呂熱交換器を途中に接続した風呂循環回路と、前記給湯熱交換器の水出口温度を検出する給湯温度検知手段と、前記風呂循環回路水温を検出する風呂温度検知手段と、前記風呂温度検知手段の信号を受けて前記給湯熱交換器の出口湯温を設定する湯温設定手段とを備え、前記湯温設定手段の信号と前記給湯温度検知手段の信号に基づき前記給湯回路の流量制御をおこなうヒートポンプ式風呂給湯システムである。
【0006】
以上の構成によれば、浴槽排熱利用給湯運転において、風呂循環回路の水温を検出して、所定温度よりも高温の場合には給湯熱交換器出口温度の設定を高くして、給湯温度が湯温設定温度となるように流量制御を行うため、浴槽残湯温度が高い。特に入浴終了直後の運転時などは沸き上げ温度を高めて貯湯できることになり、貯湯熱量が増加する。特に給湯負荷が大きく、外気温度が低い冬季においては効果が大きい。
【0007】
【発明の実施の形態】
前記課題を解決するため、圧縮機を有する冷媒回路と、前記冷媒回路に接続した給湯加熱器および排熱利用熱交換器と、貯湯槽の湯水が流動し、前記給湯加熱器と熱交換関係を有する給湯熱交換器を途中に接続した給湯回路と、風呂循環ポンプを介して浴槽の湯水を循環させるとともに、前記排熱利用熱交換器と熱交換関係を有する風呂熱交換器を途中に接続した風呂循環回路と、前記給湯熱交換器の水出口温度を検出する給湯温度検知手段と、前記風呂循環回路水温を検出する風呂温度検知手段と、前記風呂温度検知手段の信号を受けて前記給湯熱交換器の出口湯温を設定する湯温設定手段とを備え、前記湯温設定手段の信号と前記給湯温度検知手段の信号に基づき前記給湯回路の流量制御をおこなうものである浴槽排熱利用の給湯運転において、圧縮機から吐出した高温高圧のガス冷媒は給湯加熱器に流入する。一方、貯湯槽の水は給湯循環ポンプによって給湯熱交換器に流入し、ここで、冷媒の凝縮熱によって給湯加熱器を介して加熱されて貯湯槽に流入する。また、凝縮液化した冷媒は減圧装置で減圧されて排熱利用熱交換器に流入する。一方、浴槽の残湯は風呂循環ポンプによって風呂熱交換器に流入し、ここで風呂熱交換器を介して排熱利用熱交換器を流れる冷媒を蒸発ガス化させる。その際に、風呂循環回路の水温を風呂温度検知手段が検出して、その信号が所定温度よりも高温の信号の場合には湯温設定手段は給湯熱交換器出口温度の設定を高くする。そして、運転制御手段は給湯温度検知手段の信号が湯温設定手段の信号と同じになるように、流量制御手段で給湯回路の流量を制御する。従って、入浴終了直後など浴槽残湯温度が高い場合には、圧縮機の低圧が比較的高くなるため、圧縮比が小さくなる。従って、高温沸き上げができるため、特に給湯負荷が大きい冬季においては貯湯熱量の増加をはかることが可能となる。なお、給湯循環ポンプの回転制御をおこなうことにより、給湯回路の流量を制御してもよい。
【0008】
また、圧縮機を有する冷媒回路と、前記冷媒回路に接続した給湯加熱器および排熱利用熱交換器と、貯湯槽の湯水が流動し、前記給湯加熱器と熱交換関係を有する給湯熱交換器を途中に接続した給湯回路と、風呂循環ポンプを介して浴槽の湯水を循環させるとともに、前記排熱利用熱交換器と熱交換関係を有する風呂熱交換器を途中に接続した風呂循環回路と、前記給湯熱交換器の水出口温度を検出する給湯温度検知手段と、前記冷媒回路の冷媒温度を検出する冷媒温度検知手段と、前記冷媒温度検知手段の信号を受けて前記給湯熱交換器の水出口湯温を設定する湯温設定手段と、前記湯温設定手段の信号と前記給湯温度検知手段の信号に基づき前記給湯回路の流量制御をおこなうものである。浴槽排熱利用の給湯運転において、冷媒回路低圧側の冷媒温度を冷媒温度検知手段で検出し、所定温度より高い場合には湯温設定手段が給湯熱交換器の出口湯温を高く設定し、運転制御手段は給湯回路の流量を制御する。従って、予め設定された冷媒温度と給湯温度で運転することになり、風呂循環回路系の配管形態(曲がりの数)の多様化および長配管により風呂熱交換器と浴槽を接続設置しても圧縮機の信頼性を確保して高温沸き上げができる。また、浴槽排熱利用量が増加するとともに圧縮機の冷媒吐出温度は異常上昇することもないため圧縮機のモータ巻線などの信頼性、耐久性が向上する。
【0009】
また、圧縮機は、風呂循環回路の水温に基づいて回転数を可変とするものであり、浴槽排熱利用の給湯運転において、運転経過とともに風呂循環回路内の残湯温度は吸熱されて低下する。また、残湯温度の低下にともない圧縮機の低圧および圧力相当の飽和冷媒温度も低下する。そして、風呂温度検知手段あるいは冷媒温度検知手段の信号が所定温度まで低下したことを示す信号に達すると、圧縮機の回転周波数を下げる制御をおこなう。従って、浴槽残湯温度の低下とともに圧縮機の回転周波数を下げるため、ヒートポンプの低圧は再び上昇し、高温高効率で運転することができる。
【0010】
また、給湯熱交換器の湯出口から貯湯槽上部と前記貯湯槽の中間位置へ流路の切り替えをおこなう給湯切り替え弁と、湯温設定手段の信号を受けて前記給湯切り替え弁を制御する弁制御部を備えるものであり、浴槽排熱利用の給湯運転において、弁制御部は給湯熱交換器から流出する湯が高温の場合は貯湯槽の上部に流入するように、また、中温湯は貯湯槽の中間位置に流入するように給湯切り替え弁を制御する。従って、貯湯槽に異なる温度の湯を貯湯することができるため、用途に適した湯温が利用できるようになる。
【0011】
また、湯槽に設けた貯湯温度検知手段と、前日の前記貯湯温度検知手段の信号を記憶する湯量記憶手段と、前記貯湯温度検知手段の信号と前記湯量記憶手段の信号を受けて給湯熱交換器の出口湯温を設定する湯温設定部とを備え、運転制御手段は、前記湯温設定部の信号と給湯温度検知手段の信号に基づき流量制御手段の制御をおこなうものであり、浴槽排熱利用の給湯運転において、運転制御手段は湯量記憶手段の信号と貯湯温度検知手段の信号から貯湯槽の使用湯量を判断し、使用湯量が増加したと判断した場合には給湯熱交換器の出口湯温を高く設定して運転をおこなう。逆に、使用湯量が減少したと判断した場合には給湯熱交換器の出口湯温を低く設定して高効率運転をおこなう。従って、給湯使用湯量の増減に応じて、貯湯熱量の最適化と高効率運転制御ができる。
【0012】
また、圧縮機の冷媒吐出温度を検知する吐出温度検知手段と、風呂循環回路の流量制御をおこなう風呂流量制御手段と、前記吐出温度検知手段の信号を受けて前記風呂流量制御手段を制御する流量制御部を有するものであり、冬季の浴槽排熱利用の給湯運転において、運転経過とともに風呂循環回路内の残湯温度は低下し、ヒートポンプサイクル内の低圧がしだいに低下して、圧縮比が大きくなり、圧縮機の冷媒吐出温度は上昇する。そして、冷媒吐出温度が所定温度に達すると流量制御部は風呂流量制御手段に信号を送り、風呂循環回路の流量を大きくするように風呂流量制御手段の制御をおこなう。そのため、吸熱量が大きくなって、圧縮機の低圧は上昇する。また、風呂熱交換器の水出入口温度差は小さくなるため、風呂循環系の残湯水が凍結することもなく、かなり低温まで利用することができる。従って、浴槽の残湯熱利用が増加する。
【0013】
また、給水温度を検知する給水温度検知手段と、残湯水の排水を行う排水開閉弁と、前記風呂温度検知手段と前記給水温度検知手段の信号に基づき前記排水開閉弁を開放する制御手段を有するものであり、浴槽排熱利用の給湯運転において、運転経過とともに風呂循環回路内の残湯温度は吸熱されてしだいに低下する。そして、風呂温度検知手段は残湯温度を検知して制御手段に信号を送る。制御手段は風呂温度検知手段の信号と給水温度検知手段の信号が同じになる排水開閉弁を開放する。従って、風呂の残湯熱を利用して高効率で給湯運転できるとともに風呂循環系内の雑菌が繁殖することもない。
【0014】
また、風呂循環回路内の湯を高温滅菌する滅菌手段と、滅菌終了を検出する滅菌終了検出手段と、前記滅菌終了検出手段の信号を受けて前記滅菌手段を制御する制御部と、前記制御部の信号を受けて冷媒回路によるヒートポンプ給湯運転を有するものであり、浴槽排熱利用の給湯運転において、最初に、風呂循環回路内の雑菌を滅菌手段によって高温滅菌する。そして、制御部は滅菌終了検出手段の信号を運転制御部に送り、浴槽排熱利用の給湯運転を開始する。従って、風呂循環系内の水は再利用できることになり、節水となる。また、滅菌終了後の高温湯が排熱利用できるため高効率給湯運転が可能となり、エネルギーの有効活用ができる。
【0015】
以下、本発明の実施例について図面を用いて説明する。
【0016】
なお、従来例および各実施例において、同じ構成同じ動作をするものについては同一符号を付し一部説明を省略する。
【0017】
(実施例1)
図1は本発明の実施例1のヒートポンプ式風呂給湯システムの構成図である。また、図2は同ヒートポンプ式風呂給湯システムの他の流量制御方法の構成図である。図1において、1は圧縮機、2は給湯加熱器、3は減圧装置、4は排熱利用熱交換器であり、圧縮機1、給湯加熱器2、減圧装置3、排熱利用熱交換器4で冷媒回路を構成する。5は貯湯槽、6は給湯循環ポンプ、7は給湯熱交換器であり、給湯加熱器2と熱交換関係を有する。また、貯湯槽5、給湯循環ポンプ6、給湯熱交換器7で給湯回路を構成する。8は浴槽、9は風呂循環ポンプ、10は風呂熱交換器であり、排熱利用熱交換器4と熱交換関係を有する。また、浴槽8、風呂循環ポンプ9、風呂熱交換器10で風呂循環回路を構成する。11は流量制御手段であり、給湯回路の流量制御をおこなう。12は給湯温度検知手段であり、前記給湯熱交換器7の水出口温度を検出する。13は風呂温度検知手段であり、風呂熱交換器10の水入口温度を検出する。14は湯温設定手段であり、風呂温度検知手段13の信号を受けて給湯熱交換器7の水出口温度を設定する。15は運転制御手段であり、給湯温度検知手段12の信号と湯温制御手段14の信号に基づき流量制御手段11の制御をおこなう。また、図に2において、16は回転数制御型の給湯循環ポンプである。17は回転数制御手段であり、給湯循環ポンプ16の回転数制御をおこなう。18は運転制御手段であり、給湯温度検知手段12の信号と湯温制御手段14の信号を受けて回転数制御手段17に信号を送る。
【0018】
以上の構成においてその動作、作用について説明する。図1に示す実施例において、浴槽排熱利用の給湯運転において、圧縮機1から吐出した高温高圧のガス冷媒は給湯加熱器2に流入する。一方、貯湯槽5の水は給湯循環ポンプ6によって給湯熱交換器7に流入し、ここで、冷媒の凝縮熱によって給湯加熱器2を介して加熱されて貯湯槽5に流入する。また、凝縮液化した冷媒は減圧装置3で減圧されて排熱利用熱交換器4に流入する。一方、浴槽8の残湯は風呂循環ポンプ9によって風呂熱交換器10に流入し、ここで風呂熱交換器10を介して排熱利用熱交換器4を流れる冷媒を蒸発ガス化させる。そして、水温を下げて浴槽8に流入する。また、蒸発ガス化した冷媒は圧縮機1に流入して1サイクルの運転となる。その際に、風呂温度検知手段13は風呂循環回路の水温を検出して、湯温設定手段14に信号を送る。
【0019】
そして、運転制御手段15は給湯温度検知手段12の信号が湯温設定手段14の信号と同じになるように流量制御手段11の制御をおこない給湯回路の流量を制御する。この場合、風呂温度検知手段13の信号を受けた湯温設定手段14は風呂循環回路の水温が所定温度よりも高温の場合には給湯熱交換器7の水出口温度を高く設定して、高温沸き上げの給湯運転をおこなう。従って、家族全員の入浴完了直後は浴槽8の残湯温度が高いため、圧縮機1の低圧は比較的高くなって圧縮比が小さい状態で運転する。そのため、高温湯に沸き上げても圧縮機1の吐出冷媒温度は低いため、高温沸き上げが可能となる。特に給湯負荷が多い冬季においては、高温沸き上げにより貯湯熱量が増加して湯切れの心配を解消することができる。また、図2に示す他の実施例において、流量制御手段11の代わりに給湯循環ポンプ16を用いて、回転数制御手段17で給湯循環ポンプ16の回転数制御をおこなう。そして、運転制御手段18は給湯温度検知手段12の信号と湯温制御手段14の信号を受けて回転数制御手段17に信号を送り、給湯循環ポンプ16の回転数制御をおこなって流量制御をするため、同じ効果が得られる。従って、以下の説明では省略する。
【0020】
(実施例2)
図3は本発明の実施例2のヒートポンプ式風呂給湯システムの構成図である。図3において、19は冷媒温度検知手段であり、排熱利用熱交換器4の冷媒入口温度を検出する。20は湯温設定手段であり、冷媒温度検知手段19の信号を受けて給湯熱交換器7の水出口温度を設定する。21は運転制御手段であり、給湯温度検知手段12の信号と湯温設定手段20の信号に基づき流量制御手段11の制御をおこなう。
【0021】
以上の構成においてその動作、作用を説明する。浴槽排熱利用の給湯運転において、ヒートポンプサイクルの低圧側の冷媒状態を冷媒温度検知手段19で検出して湯温設定手段20に信号を送る。そして、湯温設定手段20は冷媒温度検知手段19の信号が所定温度よりも高温の信号を示す場合には、給湯熱交換器7の水出口温度を高温に設定する。そして、運転制御手段21は給湯温度検知手段12の信号が湯温設定手段20の信号と同じになるように流量制御手段11の制御をおこなうため高温沸き上げとなる。従って、予め設定された冷媒温度と給湯温度で運転することになり、風呂循環回路系の配管形態(曲がりの数)の多様化および長配管により風呂熱交換器10と浴槽8を接続設置しても圧縮機1の信頼性を確保して高温沸き上げができる。
【0022】
(実施例3)
図4は本発明の実施例3のヒートポンプ式風呂給湯システムの構成図である。図4において、22は吐出温度検知手段であり、圧縮機1の冷媒吐出温度を検知する。23は湯温設定手段であり、吐出温度検知手段22の信号を受けて給湯熱交換器7の水出口温度を設定する。24は運転制御手段であり、給湯温度検知手段12の信号と湯温設定手段23の信号に基づき流量制御手段11の制御をおこなう。
【0023】
以上の構成においてその動作、作用を説明する。浴槽排熱利用の給湯運転において、運転経過とともに風呂循環回路内の残湯温度は吸熱されて低下する。そのため、ヒートポンプサイクル内の低圧はしだいに低下して、圧縮比が大きくなり、圧縮機1の冷媒吐出温度は上昇する。そして、冷媒吐出温度が所定温度に達すると吐出温度検知手段22は湯温設定手段23に信号を送り、給湯熱交換器7の水出口温度を低温に設定する。そして、運転制御手段24は給湯温度検知手段12の信号が湯温設定手段23の信号と同じになるように流量制御手段11の制御をおこない、給湯回路の流量を大きくする。よって、浴槽排熱利用量が増加するとともに圧縮機の冷媒吐出温度は異常上昇することもないため圧縮機のモータ巻線などの信頼性、耐久性が向上する。
【0024】
(実施例4)
図5は本発明の実施例4のヒートポンプ式風呂給湯システムの構成図である。図5において、25は回転周波数可変型の圧縮機である。26はインバータ電源部であり、圧縮機25の回転周波数を可変する。27は周波数制御手段であり、湯温設定手段14の信号を受けてインバータ電源部26の周波数制御をおこなう。
【0025】
以上の構成においてその動作、作用を説明する。浴槽排熱利用の給湯運転において、運転経過とともに風呂循環回路内の残湯温度は吸熱されて低下する。そして、風呂温度検知手段13あるいは図3に示す冷媒温度検知手段19の信号が所定温度まで低下したことを示す信号を発信すると湯温設定手段14は周波数制御手段27に信号を送る。そして、周波数制御手段27はインバータ電源部26に信号を送り、圧縮機25の回転周波数を下げる制御をおこなう。従って、浴槽残湯温度の低下とともに圧縮機25の回転周波数を下げるため、ヒートポンプの低圧は再び上昇し、高温高効率で運転することができる。
【0026】
(実施例5)
図6は本発明の実施例5のヒートポンプ式風呂給湯システムの構成図である。図6において、28は給湯切り替え弁であり、給湯熱交換器7の湯出口から貯湯槽5上部と貯湯槽5の中間位置へ流路の切り替えをおこなう。29は弁制御部であり、湯温設定手段14の信号を受けて給湯切り替え弁28を制御する。
【0027】
以上の構成においてその動作、作用を説明する。浴槽排熱利用の給湯運転において、入浴完了直後など浴槽残湯温度が高い場合には、湯温設定手段14は高温沸き上げを設定するため、給湯熱交換器7からは高温湯が流出する。そして、運転経過とともに浴槽残湯温度は低くなり、湯温設定手段14は沸き上げ温度の設定を少し下げるように切り変わる。そのため、給湯熱交換器7からは当初の運転時より少し温度が低い中温湯が流出する。そして、弁制御部29は給湯熱交換器7から流出する湯が高温の場合は貯湯槽5の上部に流入するように、また、中温湯は貯湯槽5の中間位置に流入するように給湯切り替え弁28を制御する。従って、貯湯槽5に異なる温度の湯を貯湯させることができ、用途に応じて必要な温度の湯が利用できる。
【0028】
(実施例6)
図7は本発明の実施例6のヒートポンプ式風呂給湯システムの構成図である。図7において、30は貯湯温度検知手段であり、貯湯槽5の内部あるいは表面に複数設けて、貯湯温度を検出する。31は湯量記憶手段であり、前日の貯湯温度検知手段31の信号を記憶する。32は湯温設定手段であり、貯湯温度検知手段30の信号と前記湯量記憶手段31の信号を受けて給湯熱交換器7の出口湯温を設定する。33は運転制御手段であり、湯温設定手段32の信号と給湯温度検知手段12に基づき流量制御手段11の制御をおこなう。
【0029】
以上の構成において動作、作用を説明する。浴槽排熱利用の給湯運転において、例えば、その日の家族が入浴を全員終了した後の運転開始時において、先ず、湯温設定手段32は貯湯温度検知手段30の信号と湯量記憶手段31の信号から貯湯槽5の使用湯量を判断して、湯の使用が増加している場合には給湯熱交換器7の出口湯温を高く設定する。そして、浴槽排熱利用の給湯運転が開始される。その際に給湯温度検知手段12の信号が湯温設定手段32の信号と同じになるように運転制御手段33は流量制御手段11を制御する。そのため、給湯熱交換器7の出口から流出した湯は前日よりも高温の湯として貯湯槽5の上部から貯湯される。また、貯湯槽5の湯の使用量が減少していると判断した場合には、湯温設定手段32は給湯熱交換器7の出口湯温を低く設定する。運転制御手段33は給湯温度検知手段12の信号が湯温設定手段32の信号と同じになるように流量制御手段11を制御する。この場合には、給湯熱交換器7の出口湯温は低いため、高効率で運転ができる。また、貯湯槽5からの放熱損失も少なくなる。従って、給湯使用量の増減に応じて、貯湯熱量の最適化と高効率運転制御ができる。
【0030】
(実施例7)
図8は本発明の実施例7のヒートポンプ式風呂給湯システムの構成図である。図8において、34は風呂流量制御手段であり、風呂循環回路の流量制御をおこなう。35は流量制御部であり、吐出温度検知手段22の信号を受けて風呂流量制御手段34を制御する。
【0031】
以上の構成においてその動作、作用を説明する。冬季の浴槽排熱利用の給湯運転において、運転経過とともに風呂循環回路内の残湯温度は低下し、ヒートポンプサイクル内の低圧がしだいに低下する。そのため、圧縮機1の圧縮比が大きくなり、圧縮機の冷媒吐出温度は上昇する。また、吐出温度検知手段22は冷媒吐出温度を検出し、流量制御部35に信号を送る。そして、流量制御部35は冷媒吐出温度が所定温度に達したことを示す信号を受けると風呂流量制御手段34に信号を送り、風呂循環回路の流量を大きくするように風呂流量制御手段34の制御をおこなう。そのため、吸熱量が大きくなり、圧縮機1の低圧は上昇して圧縮比は小さくなる。また、風呂熱交換器10の水出入口温度差は小さくなるため、風呂循環系の残湯水が凍結することもなく、かなり低温まで利用することができる。従って、浴槽の残湯熱利用が増加する。
【0032】
(実施例8)
図9は本発明の実施例8のヒートポンプ式風呂給湯システムの構成図である。36は給水温度検知手段である。37は排水開閉弁であり、浴槽8に設けてある。38は制御手段であり、風呂温度検知手段13と給水温度検知手段36の信号に基づき排水開閉弁37を開放する。
【0033】
以上の構成において動作、作用を説明する。浴槽排熱利用の給湯運転において、運転経過とともに風呂循環回路内の残湯温度は吸熱されてしだいに低下する。そして、風呂温度検知手段13は残湯温度を検知して制御手段38に信号を送る。制御手段38は風呂温度検知手段13の信号と給水温度検知手段36の信号が同じになると排水開閉弁37を開放する。従って、風呂残湯熱を利用して高効率で給湯運転できるとともに風呂循環系内の雑菌が繁殖することもない。
【0034】
(実施例9)
図10は本発明の実施例9のヒートポンプ式風呂給湯システムの構成図である。9は滅菌手段であり、風呂循環回路に接続されて、加熱源40で回路中の残湯水を高温滅菌する。41は滅菌終了検出手段であり、滅菌終了を検出する。42は制御部であり、滅菌終了検出手段41の信号を受けて滅菌手段39を制御する。43は運転制御部であり、制御部42の信号を受けてヒートポンプ給湯運転をおこなう。
【0035】
以上の構成においてその動作、作用を説明する。浴槽排熱利用の給湯運転において、最初に滅菌手段39は加熱源40によって風呂循環回路内の雑菌を高温滅菌する。そして、制御部42は滅菌終了検出手段41の信号を運転制御部43に送り、浴槽排熱利用の給湯運転を開始する。従って、風呂循環系内の水は再利用できることになり、節水となる。また、滅菌終了後の高温の湯の排熱利用ができるため高効率給湯運転が可能となり、エネルギーの有効活用ができる。
【0036】
(実施例10)
図11は本発明の実施例10のヒートポンプ式風呂給湯システムの構成図である。44は自然熱利用熱交換器であり、大気熱あるいは太陽熱を利用する。45は四方弁であり、圧縮機1の吐出冷媒流路を給湯加熱器2と自然熱利用熱交換器44に切り替える46は排熱利用熱交換器であり、自然熱利用熱交換器44と並列に設けて一端が四方弁45の低圧ガス冷媒管と接続されている。47は冷媒温度検知手段であり、自然熱利用熱交換器44の冷媒入口温度を検知する。48は運転制御手段であり、冷媒温度検知手段47の信号を受けて四方弁45の冷媒流路を圧縮機1、四方弁45、自然熱利用熱交換器44、排熱利用熱交換器46からなる冷媒除霜回路で運転をおこなう。
【0037】
以上の構成においてその動作、作用を説明する。冬季などの着霜条件下における給湯運転において、圧縮機1から吐出した高温高圧のガス冷媒は四方弁45を通り給湯加熱器2に流入する。一方、貯湯槽5の水は給湯循環ポンプによって給湯熱交換器7に流入し、ここで、冷媒の凝縮熱によって給湯加熱器2を介して加熱されて貯湯槽5に流入する。また、凝縮液化した冷媒は減圧装置3で減圧されて自然熱利用熱交換器44に流入し、蒸発ガス化して四方弁45を通り圧縮機1に流入する。この運転において、自然熱利用熱交換器44に着霜が生じると、入口冷媒温度は低下し、吸熱量も低下する。冷媒温度検知手段47は入口冷媒温度が所定温度まで低下したことを検出して運転制御手段48に信号を送る。そして、運転制御手段48は四方弁45の冷媒流路を切り替えて冷媒除霜回路で運転をおこなう。この場合には圧縮機1から吐出したガス冷媒は四方弁45を通り自然熱利用熱交換器44に流入する。そして、冷媒の凝縮熱によって除霜をおこない、液化冷媒となって排熱利用熱交換器46に流入する。ここで、風呂循環ポンプ9によって送られてきた浴槽8の残湯は風呂熱交換器10に流入し、ここで風呂熱交換器10を介して排熱利用熱交換器46を流れる冷媒を蒸発ガス化させる。一方、蒸発ガス化した冷媒は圧縮機1に流入する。従って、除霜運転時に浴槽8の残湯熱を利用するため、短時間で除霜が終了できる。また、簡単な構成であるため、部品も少なくコストも安価となる。
【0038】
(実施例11)
図12は本発明の実施例11のヒートポンプ式給湯システムの構成図である。図12において、49は補助熱交換器であり、自然熱利用熱交換器44の空気流れ方向の上流に設けて風呂循環回路と接続されている。50は流量制御手段であり、風呂循環回路の水を補助熱交換器49へ流す制御をおこなう。51は除霜制御手段であり、運転制御手段48の信号を受けて流量制御手段50の制御をおこなう。
【0039】
以上の構成においてその動作、作用を説明する。給湯運転時の除霜において、運転制御手段48は四方弁45を切り替えて除霜回路で運転をおこなうとともに除霜制御手段51に信号を送る。そして、除霜制御手段51は流量制御手段を制御して風呂循環回路の水を補助熱交換器49へ流す。従って、自然熱利用熱交換器44は圧縮機1の凝縮熱と風呂循環回路の湯水の熱で除霜されるため、さらに短時間で除霜が終了できる。
【0040】
(実施例12)
図13は本発明の実施例12のヒートポンプ式風呂給湯システムの構成図である。図13において、実線矢印は風の流れ方向を示す。
【0041】
52は冷媒回路であり、圧縮機1、四方弁45、給湯加熱器2、減圧手段3、大気熱あるいは太陽熱を利用する自然熱利用熱交換器44からなる。53は風呂循環回路であり、浴槽8、風呂循環ポンプ9、補助熱交換器49からなる。54は送風手段であり、風の流れ方向が補助熱交換器49から自然熱利用熱交換器44へ流れるように送風する。
【0042】
以上の構成においてその動作、作用を説明する。給湯運転において、圧縮機1から吐出した高温高圧のガス冷媒は給湯加熱器2に流入し、ここで、冷媒の凝縮熱によって給湯加熱器を介して貯湯槽5の水を加熱する。そして、凝縮液化した冷媒は減圧装置3で減圧されて自然熱利用熱交換器44に流入する。一方、浴槽8の残湯は風呂循環ポンプ9によって補助熱交換器49に流入し、ここで送風手段54で吸引された大気へ放熱する。そして、加温された大気は風下の自然熱利用熱交換器44を通過する際に内部を流れる冷媒を加熱し蒸発ガス化させる。従って、自然熱利用熱交換器44で外気の大気熱よりもエンタルピーの高い大気熱を吸熱するため、高温高効率給湯運転が可能となる。また、特に冬季の外気温度が低い運転時は自然熱利用熱交換器44で着霜が生じ難くなるため、高能力高効率で運転できる。
以上の説明からも明らかのように、各実施例の効果をまとめれば以下の通りである。
【0043】
(1)浴槽排熱利用の給湯運転において、給湯回路の流量制御をおこなう流量制御手段と、前記給湯熱交換器の水出口温度を検出する給湯温度検知手段と、前記風呂循環回路の水温を検出する風呂温度検知手段と、前記風呂温度検知手段の信号を受けて前記給湯熱交換器の水出口湯温を設定する湯温設定手段と、前記湯温設定手段の信号と前記給湯温度検知手段の信号に基づき前記流量制御手段の制御をおこなう運転制御手段を備え、風呂循環回路の水温を検出して、所定温度よりも高温の場合には給湯熱交換器の出口温度の設定を高くして、給湯温度が湯温設定温度となるように給湯回路の流量制御をおこない、浴槽残湯温度が高い場合に沸き上げ温度を高めて貯湯するため、貯湯熱量が増加する。
【0044】
(2)冷媒回路の冷媒温度を検出する冷媒温度検知手段と、冷媒温度検知手段の信号を受けて給湯熱交換器の出口湯温を設定する湯温設定手段と、前記湯温設定手段の信号と給湯温度検知手段の信号に基づき流量制御手段の制御をおこなう運転制御手段を備え、浴槽排熱利用の給湯運転において、冷媒回路低圧側の冷媒温度を検出して所定温度より高温の場合には給湯熱交換器の出口湯温の設定を高くして、給湯温度が湯温設定温度となるように給湯回路の流量制御をおこなうことによって、予め設定された冷媒温度と給湯温度で運転することになり、風呂循環回路系の配管形態(曲がりの数)の多様化および長配管による風呂熱交換器と浴槽を接続設置しても圧縮機の信頼性を確保して高温沸き上げができる。また、浴槽排熱利用量が増加するとともに圧縮機の冷媒吐出温度は異常上昇すること もないため圧縮機のモータ巻線などの信頼性、耐久性が向上する。
【0045】
(3)風呂循環回路の水温に基づいて回転周波数を可変とする圧縮機によれば、浴槽排熱利用の給湯運転において、運転経過とともに風呂循環回路内の残湯温度および冷媒回路の低圧圧力相当の飽和冷媒温度は低下する。そして、風呂温度あるいは冷媒温度が所定温度に低下した時に圧縮機の回転周波数を下げる制御をおこない浴槽残湯温度の低下とともに前記圧縮機の回転周波数を下げるため、冷媒回路の低圧は再び上昇し、高温高効率で運転することができる。
【0046】
(4)給湯熱交換器の湯出口から貯湯槽上部と貯湯槽の中間位置へ流路の切り替えをおこなう給湯切り替え弁と、湯温設定手段の信号を受けて給湯切り替え弁を制御する弁制御部を備え、浴槽排熱利用の給湯運転において、弁制御部は給湯熱交換器から流出する湯が高温の場合は貯湯槽の上部に流入するように、また、中温湯は貯湯槽の中間位置に流入するように給湯切り替え弁を制御する。従って、貯湯槽に異なる温度の湯を貯湯することができるため、用途に適した湯温が利用できるようになる。
【0047】
(5)貯湯槽に設けた複数の貯湯温度検知手段と、前日の貯湯温度検知手段の信号を記憶する湯量記憶手段と、貯湯温度検知手段の信号と湯量記憶手段の信号を受けて給湯熱交換器の出口の湯温を設定する湯温設定手段と、湯温設定手段の信号と給湯温度検知手段の信号から流量制御手段の制御をおこなう運転制御手段を備え、浴槽排熱利用の給湯運転において、湯量記憶手段の信号と貯湯温度検知手段の信号から貯湯槽の使用湯量を判断し、使用湯量が増加した場合には湯温設定手段が給湯熱交換器の出口湯温を高く設定して運転をおこなう。逆に、使用湯量が減少した場合には給湯熱交換器の出口湯温を低く設定して高効率運転をおこなう。従って、給湯使用湯量の増減に応じて、貯湯熱量の最適化と高効率運転制御ができる。
【0048】
(6)圧縮機の冷媒吐出温度を検知する吐出温度検知手段と、風呂循環回路の流量制御をおこなう風呂流量制御手段と、吐出温度検知手段の信号を受けて風呂流量制御手段を制御する流量制御部を備え、冬季の浴槽排熱利用の給湯運転において、運転経過とともに風呂循環回路内の残湯温度は低下し、圧縮機の冷媒吐出温度は上昇する。そして、冷媒吐出温度が所定温度に達すると風呂循環回路の流量を大きくするように風呂流量制御手段の制御をおこなうため、吸熱量が大きくなって、圧縮機の低圧は上昇して冷媒吐出温度は低下する。また、風呂熱交換器の水の出口、入口の温度差は小さくなるため、風呂循環系の残湯水が凍結することもなく、かなり低温まで利用することができる。従って、浴槽の残湯熱利用が増加する。
【0049】
(7)風呂循環回路に設けた風呂温度検知手段と、給水温度を検知する給水温度検知手段と、浴槽に設けた排水開閉弁と、風呂温度検知手段と給水温度検知手段の信号に基づき排水開閉弁を開放する制御手段を備え、浴槽排熱利用の給湯運転において、運転経過とともに風呂循環回路内の残湯温度は低下し、給水温度と同温に達すると排水開閉弁を開放して排水するため、風呂の残湯を利用して高効率で給湯運転できるとともに風呂循環系内の雑菌の繁殖を抑制することができる。
【0050】
(8)風呂循環回路内の湯を高温滅菌する滅菌手段と、滅菌終了を検出する滅菌終了検出手段と、滅菌終了検出手段の信号を受けて滅菌手段を制御する制御部と、制御部の信号を受けて冷媒回路によるヒートポンプ給湯運転をおこなう運転制御部を備え、浴槽排熱利用の給湯運転において、最初に風呂循環回路内の雑菌を高温滅菌し、滅菌終了後に浴槽排熱利用の給湯運転を開始するため、風呂循環系内の水は再利用できることになり、節水となる。また、滅菌終了後の高温湯が排熱利用できるため高効率給湯運転が可能となり、エネルギーの有効活用ができる。
【0051】
(9)圧縮機、四方弁、給湯加熱器、減圧手段、大気熱あるいは太陽熱を利用する自然熱利用熱交換器からなる冷媒給湯回路と、自然熱利用熱交換器と並列に設けて一端が四方弁の低圧ガス冷媒管と接続された排熱利用熱交換器と、貯湯槽、給湯循環ポンプ、給湯加熱器と熱交換関係を有する給湯熱交換器を接続した給湯回路と、浴槽、風呂循環ポンプ、排熱利用熱交換器と熱交換関係を有する風呂熱交換器を接続した風呂循環回路と、自然熱利用熱交換器の冷媒入口温度を検知する冷媒温度検知手段と、冷媒温度検知手段の信号を受けて四方弁の冷媒流路を圧縮機、四方弁、自然熱利用熱交換器、排熱利用熱交換器からなる冷媒除霜回路で運転をおこなう運転制御手段を備え、冬季などの着霜条件下における給湯運転において、自然熱利用熱交換器に着霜が生じて入口冷媒温度が所定温度まで低下したことを検出して四方弁の冷媒流路を切り替え、浴槽の残湯熱を利用して圧縮機の凝縮熱で自然熱利用熱交換器の除霜をおこなうため、短時間で除霜が終了できることになり、給湯運転時間および加熱能力が増加する。また、簡単な構成であるため、部品も少なくコストも安価となる。
【0052】
(10)自然熱利用熱交換器の空気流れ方向の上流に設けて風呂循環回路と接続された補助熱交換器と、風呂循環回路の水を補助熱交換器へ流す制御をおこなう流量制御手段と、運転制御手段の信号を受けて流量制御手段の制御をおこなう除霜制御手段を備え、給湯運転時の除霜において、自然熱利用熱交換器に着霜が生じて入口冷媒温度が所定温度まで低下したことを検出して四方弁の冷媒流路を切り替えて除霜運転をおこなうとともに風呂循環回路の水を補助熱交換器へ流す。従って、自然熱利用熱交換器は圧縮機の凝縮熱と風呂循環回路の湯水の熱で除霜されるため、さらに短時間で除霜が終了できる。
【0053】
(11)圧縮機、四方弁、給湯加熱器、減圧手段、大気熱あるいは太陽熱を利用する自然熱利用熱交換器からなる冷媒給湯回路と、貯湯槽、給湯加熱器と熱交換関係を有する給湯熱交換器を接続した給湯回路と、自然熱利用熱交換器の空気の流れ方向の上流に設けた補助熱交換器と、浴槽、風呂循環ポンプ、補助熱交換器からなる風呂循環回路を備え、給湯運転において、浴槽の残湯熱を補助熱交換器に流して自然熱利用熱交換器を熱源となる大気熱あるいは太陽熱に加えて加熱するため、高温高効率給湯運転が可能となる。特に冬季の外気温度が低い運転時は自然熱利用熱交換器で着霜が生じ難くなるため、高能力高効率が運転できる。
【0054】
【発明の効果】
以上のように本発明によれば、風呂循環回路の水温を検出して、所定温度よりも高温の場合には給湯熱交換器の出口温度の設定を高くして、給湯温度が湯温設定温度となるように給湯回路の流量制御をおこない、浴槽残湯温度が高い場合に沸き上げ温度を高めて貯湯するため、貯湯熱量が増加する。
【図面の簡単な説明】
【図1】本発明の実施例1のヒートポンプ式風呂給湯システムの構成図
【図2】同ヒートポンプ式風呂給湯システムの他の流量制御方法を示す構成図
【図3】本発明の実施例2のヒートポンプ式風呂給湯システムの構成図
【図4】本発明の実施例3のヒートポンプ式風呂給湯システムの構成図
【図5】本発明の実施例4のヒートポンプ式風呂給湯システムの構成図
【図6】本発明の実施例5のヒートポンプ式風呂給湯システムの構成図
【図7】本発明の実施例6のヒートポンプ式風呂給湯システムの構成図
【図8】本発明の実施例7のヒートポンプ式風呂給湯システムの構成図
【図9】本発明の実施例8のヒートポンプ式風呂給湯システムの構成図
【図10】本発明の実施例9のヒートポンプ式風呂給湯システムの構成図
【図11】本発明の実施例10のヒートポンプ式風呂給湯システムの構成図
【図12】本発明の実施例11のヒートポンプ式風呂給湯システムの構成図
【図13】本発明の実施例12のヒートポンプ式風呂給湯システムの構成図
【図14】従来のヒートポンプシステムの構成図
【符号の説明】
1、25 圧縮機
2 給湯加熱器
3 減圧装置
4、46排熱利用熱交換器
5 貯湯槽
6、16 給湯循環ポンプ
7 給湯熱交換器
8 浴槽
9 風呂循環ポンプ
10 風呂熱交換器
11 流量制御手段
12 給湯温度検知手段
13 風呂温度検知手段
14、20、23、32 湯温設定手段
15、18、21、24、33、48 運転制御手段
17 回転数制御手段
19、47 冷媒温度検知手段
22 吐出温度検知手段
26 インバータ電源部
27 周波数制御手段
28 給湯切り替え弁
29 弁制御部
30 貯湯温度検知手段
31 湯量記憶手段
34 風呂流量制御手段
35 流量制御部
36 給水温度検知手段
37 排水開閉弁
38 制御手段
39 滅菌手段
40 加熱源
41 滅菌終了検出手段
42 制御部
43 運転制御部
44 自然熱利用熱交換器
45 四方弁
49 補助熱交換器
50 流量制御手段
51 除霜制御手段
52 冷媒回路
53 風呂循環回路
54 送風手段
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a bath hot water supply system using a heat pump.
[0002]
[Prior art]
Conventionally, there is a heat pump system of this kind as disclosed in Japanese Patent Application Laid-Open No. 7-71839. Hereinafter, the related art will be described with reference to the drawings. FIG. 14 is a configuration diagram of a conventional heat pump system. In FIG. 14, high-pressure gas pipes 1a connected to the discharge side of the compressor 1, low-pressure gas pipes 1b connected to the suction side of the compressor 1, and liquid pipes 1c arranged together with the high-pressure and low-pressure gas pipes are provided with open / close valves 56a, 56b, 56c. , 56d, 56e, and 56f, the hot water supply heater 2, the exhaust heat utilization heat exchanger 4, and the atmospheric heat utilization heat exchanger 55 are configured to be connected in parallel. Further, by switching the on-off valves 56a, 56b, 56c, 56d, 56e, and 56f, a hot water supply operation, a bath reheating operation, a hot water reheating bath operation using hot water supply, and a hot water supply operation using exhaust heat from the bathtub are performed. For example, during the hot water supply operation using the exhaust heat from the bathtub, the open / close valves 56a and 56d are opened to absorb the hot water in the bathtub 8 via the heat exchanger 4 using the exhaust heat, and the hot water heater 2 heats the hot water to store the hot water.
[0003]
[Problems to be solved by the invention]
However, in the conventional heat pump system, the high-pressure liquid refrigerant flowing out of the hot water supply heater 2 becomes a low-pressure two-phase refrigerant at the refrigerant flow control valve 57 and further flows into the exhaust heat utilizing heat exchanger 4 through the refrigerant flow control valve 58. Will do. Therefore, the flow rate of the refrigerant is considerably reduced, so that a predetermined flow rate of the refrigerant cannot be obtained, and the refrigerant gas sucked into the compressor 1 is a low-pressure superheated gas. Therefore, the amount of heat collected by the heat exchanger 4 utilizing waste heat is reduced, and high efficiency cannot be obtained. Furthermore, high compression ratios make it impossible to achieve high temperatures.
[0004]
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has as its main object to increase the amount of stored hot water by raising the temperature to a high temperature during a hot water supply operation utilizing bath tub exhaust heat.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the present inventionA refrigerant circuit having a compressor, a hot water supply heater and a waste heat utilization heat exchanger connected to the refrigerant circuit,Hot water storage tankHot water flows,Hot water supply heat exchanger having a heat exchange relationship with the hot water supply heaterConnected in the middleHot water supply circuit and bath circulation pumpCirculates hot and cold water in the bathtub throughBath heat exchanger having a heat exchange relationship with the waste heat utilizing heat exchangerConnected in the middleBath circulation circuitWhen,Hot water supply temperature detecting means for detecting a water outlet temperature of the hot water supply heat exchanger, and the bath circulation circuitofA bath temperature detecting means for detecting a water temperature, and receiving a signal from the bath temperature detecting means,waterA heat pump type bath hot water supply system comprising hot water temperature setting means for setting an outlet hot water temperature, and performing flow control of the hot water supply circuit based on a signal from the hot water temperature setting means and a signal from the hot water supply temperature detecting means.You.
[0006]
According to the above configuration,In the hot water supply operation using the bathtub exhaust heat, the water temperature of the bath circulation circuit is detected, and when the temperature is higher than a predetermined temperature, the setting of the outlet temperature of the hot water supply heat exchanger is increased so that the hot water temperature becomes the set temperature. The temperature of the remaining hot water in the bathtub is high to control the flow rate. In particular, during operation immediately after the end of bathing or the like, hot water can be stored by raising the boiling temperature, and the amount of hot water stored increases. The effect is particularly large in winter when the hot water supply load is large and the outside air temperature is low.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
To solve the above problems,A refrigerant circuit having a compressor, a hot water supply heater and a waste heat utilization heat exchanger connected to the refrigerant circuit,Hot water tankHot water flows,Hot water supply heat exchanger having a heat exchange relationship with the hot water supply heaterConnected in the middleHot water supply circuit and bath circulation pumpCirculates hot and cold water in the bathtub throughBath heat exchanger having a heat exchange relationship with the waste heat utilizing heat exchangerConnected in the middleBath circulation circuitWhen,Hot water supply temperature detecting means for detecting a water outlet temperature of the hot water supply heat exchanger, and the bath circulation circuitofA bath temperature detecting means for detecting a water temperature, and receiving a signal from the bath temperature detecting means,waterA hot water temperature setting means for setting an outlet hot water temperature, wherein a flow rate of the hot water supply circuit is controlled based on a signal from the hot water temperature setting means and a signal from the hot water temperature detecting means..In the hot water supply operation using the exhaust heat of the bathtub, the high-temperature and high-pressure gas refrigerant discharged from the compressor flows into the hot water supply heater. On the other hand, the water in the hot water storage tank flows into the hot water supply heat exchanger by the hot water supply circulation pump, where it is heated by the heat of condensation of the refrigerant through the hot water supply heater and flows into the hot water storage tank. Further, the condensed and liquefied refrigerant is depressurized by the decompression device and flows into the heat exchanger using waste heat. On the other hand, the remaining hot water in the bathtub flows into the bath heat exchanger by the bath circulation pump, where the refrigerant flowing through the waste heat utilizing heat exchanger via the bath heat exchanger is vaporized and gasified. At this time, the bath temperature detecting means detects the water temperature of the bath circulation circuit, and if the signal is a signal higher than a predetermined temperature, the hot water temperature setting means increases the setting of the outlet temperature of the hot water supply heat exchanger. Then, the operation control means controls the flow rate of the hot water supply circuit by the flow rate control means so that the signal of the hot water temperature detection means becomes the same as the signal of the hot water temperature setting means. Therefore, when the temperature of the remaining hot water in the bathtub is high, such as immediately after the end of bathing, the low pressure of the compressor becomes relatively high, and the compression ratio becomes small. Therefore, since high-temperature boiling can be performed, it is possible to increase the amount of stored hot water particularly in winter when the hot water supply load is large.The flow rate of the hot water supply circuit may be controlled by controlling the rotation of the hot water supply circulation pump.
[0008]
Further, a refrigerant circuit having a compressor, a hot water supply heater and a waste heat utilization heat exchanger connected to the refrigerant circuit,Hot water tankHot water flows,Hot water supply heat exchanger having a heat exchange relationship with the hot water supply heaterConnected in the middleHot water supply circuit and bath circulation pumpCirculates hot and cold water in the bathtub throughBath heat exchanger having a heat exchange relationship with the waste heat utilizing heat exchangerConnected in the middleBath circulation circuitHot water supply temperature detection means for detecting a water outlet temperature of the hot water supply heat exchanger, refrigerant temperature detection means for detecting a refrigerant temperature of the refrigerant circuit, and the hot water supply heat exchanger receiving a signal from the refrigerant temperature detection means Hot water temperature setting means for setting the water outlet hot water temperature, based on a signal of the hot water temperature setting means and a signal of the hot water supply temperature detecting meansFor controlling the flow rate of the hot water supply circuitIt is.In the hot water supply operation utilizing the exhaust heat of the bathtub, the refrigerant temperature on the refrigerant circuit low pressure side is detected by the refrigerant temperature detection means, and when the temperature is higher than a predetermined temperature, the hot water temperature setting means sets the outlet hot water temperature of the hot water supply heat exchanger high, The operation control means controls the flow rate of the hot water supply circuit. Therefore, the operation is performed at the preset refrigerant temperature and hot water supply temperature, and even if the bath heat exchanger and the bathtub are connected and installed by diversifying the piping configuration (the number of bends) of the bath circulation circuit system and the long piping. High-temperature boiling can be performed while ensuring the reliability of the machine.Further, since the amount of waste heat used in the bathtub increases and the refrigerant discharge temperature of the compressor does not rise abnormally, the reliability and durability of the motor windings of the compressor and the like are improved.
[0009]
In addition, the compressor changes the rotation speed based on the water temperature of the bath circulation circuit.In the hot water supply operation using the exhaust heat from the bathtub, the temperature of the remaining hot water in the bath circuit decreases as the operation proceeds. Further, as the temperature of the remaining hot water decreases, the saturated refrigerant temperature corresponding to the low pressure and pressure of the compressor also decreases. Then, when the signal from the bath temperature detecting means or the refrigerant temperature detecting means reaches a signal indicating that the temperature has dropped to a predetermined temperature, control is performed to reduce the rotational frequency of the compressor. Therefore, since the rotation frequency of the compressor is lowered together with the temperature of the remaining hot water in the bathtub, the low pressure of the heat pump is increased again, and the operation can be performed at high temperature and high efficiency.
[0010]
Also, a hot water supply switching valve for switching a flow path from a hot water outlet of the hot water supply heat exchanger to an upper portion of the hot water storage tank and an intermediate position between the hot water storage tank and a valve control for controlling the hot water supply switching valve in response to a signal from the hot water temperature setting means. Part,In the hot water supply operation using the exhaust heat from the bathtub, the valve control unit causes the hot water flowing out of the hot water supply heat exchanger to flow into the upper portion of the hot water storage tank when the temperature is high, and the medium-temperature hot water to flow to an intermediate position of the hot water storage tank. The hot water supply switching valve is controlled. Therefore, since hot water having different temperatures can be stored in the hot water storage tank, a hot water temperature suitable for the application can be used.
[0011]
A hot water storage temperature detecting means provided in the hot water tank; a hot water storage means for storing a signal of the hot water storage temperature detecting means of the previous day; a hot water supply heat exchanger receiving the signal of the hot water storage temperature detecting means and the signal of the hot water storage means; A hot water temperature setting unit for setting an outlet hot water temperature, wherein the operation control unit controls the flow rate control unit based on a signal from the hot water temperature setting unit and a signal from the hot water supply temperature detecting unit.In the hot water supply operation utilizing the exhaust heat of the bathtub, the operation control means determines the amount of hot water in the hot water tank from the signal of the hot water storage means and the signal of the hot water storage temperature detecting means, and when it is determined that the hot water usage has increased, the hot water supply is performed. Set the outlet temperature of the heat exchanger to a high temperature to operate. Conversely, when it is determined that the amount of hot water used has decreased, the outlet hot water temperature of the hot water supply heat exchanger is set low to perform high-efficiency operation. Therefore, according to the increase / decrease of the amount of hot water used, the amount of hot water stored can be optimized and high-efficiency operation control can be performed.
[0012]
A discharge temperature detecting means for detecting a refrigerant discharge temperature of the compressor; a bath flow rate controlling means for controlling a flow rate of a bath circuit; and a flow rate for controlling the bath flow rate controlling means in response to a signal from the discharge temperature detecting means. Having a control unitIn the hot water supply operation using the bathtub exhaust heat in winter, the temperature of the remaining hot water in the bath circulation circuit decreases as the operation progresses, the low pressure in the heat pump cycle gradually decreases, the compression ratio increases, and the compressor The refrigerant discharge temperature rises. Then, when the refrigerant discharge temperature reaches the predetermined temperature, the flow control unit sends a signal to the bath flow control means to control the bath flow control means so as to increase the flow rate of the bath circulation circuit. Therefore, the heat absorption increases, and the low pressure of the compressor increases. Further, since the temperature difference between the water inlet and outlet of the bath heat exchanger becomes small, the remaining hot water in the bath circulation system does not freeze and can be used at a considerably low temperature. Therefore, the utilization of the remaining hot water in the bathtub increases.
[0013]
In addition, a water supply temperature detecting means for detecting a water supply temperature and drainage of remaining hot water are performed.A drain opening / closing valve, and control means for opening the drain opening / closing valve based on signals from the bath temperature detecting means and the feedwater temperature detecting means.thingIn the hot water supply operation using the exhaust heat from the bathtub, the temperature of the remaining hot water in the bath circulation circuit is gradually reduced as the operation proceeds. The bath temperature detecting means detects the remaining hot water temperature and sends a signal to the control means. The control means opens the drainage on-off valve at which the signal from the bath temperature detection means and the signal from the water supply temperature detection means become the same. Therefore, the hot water supply operation can be performed with high efficiency by using the remaining hot water in the bath, and no germs in the bath circulation system propagate.
[0014]
A sterilizing means for sterilizing hot water in the bath circulation circuit at a high temperature; a sterilization completion detecting means for detecting completion of sterilization; a control unit for controlling the sterilization means in response to a signal from the sterilization completion detecting means; With heat pump hot water supply operation by refrigerant circuit in response to the signal ofIn the hot water supply operation using the exhaust heat from the bathtub, first, various bacteria in the bath circulation circuit are sterilized at a high temperature by sterilization means. Then, the control unit sends a signal of the sterilization end detection means to the operation control unit, and starts a hot water supply operation using bathtub exhaust heat. Therefore, the water in the bath circulation system can be reused, and water is saved. Also, hot water after sterilization iswaste heatBecause it can be used, high-efficiency hot water supply operation is possible, and energy can be used effectively.
[0015]
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0016]
In the conventional example and each embodiment, the same components having the same operation are denoted by the same reference numerals, and the description thereof is partially omitted.
[0017]
(Example 1)
FIG. 1 is a configuration diagram of a heat pump type bath hot water supply system according to a first embodiment of the present invention. FIG. 2 is a block diagram of another flow control method of the heat pump type hot water supply system. In FIG. 1, 1 is a compressor, 2 is a hot water supply heater, 3 is a decompression device, and 4 is an exhaust heat utilization heat exchanger, and is a compressor 1, a hot water supply heater 2, a decompression device 3, and an exhaust heat utilization heat exchanger. 4 constitutes a refrigerant circuit. 5 is a hot water storage tank, 6 is a hot water supply circulation pump, 7 is a hot water supply heat exchanger, and has a heat exchange relationship with the hot water supply heater 2. Hot water storage tank 5, hot water supply circulation pump 6, and hot water supply heat exchanger 7 constitute a hot water supply circuit. 8 is a bathtub, 9 is a bath circulation pump, 10 is a bath heat exchanger, which has a heat exchange relationship with the exhaust heat utilization heat exchanger 4. In addition, the bathtub 8, the bath circulation pump 9, and the bath heat exchanger 10 constitute a bath circulation circuit. Numeral 11 denotes a flow control means for controlling the flow rate of the hot water supply circuit. Reference numeral 12 denotes hot water supply temperature detecting means for detecting a water outlet temperature of the hot water supply heat exchanger 7. Reference numeral 13 denotes a bath temperature detecting means for detecting a water inlet temperature of the bath heat exchanger 10. Reference numeral 14 denotes hot water temperature setting means, which receives a signal from the bath temperature detecting means 13 and sets the water outlet temperature of the hot water supply heat exchanger 7. An operation control unit 15 controls the flow rate control unit 11 based on a signal from the hot water supply temperature detection unit 12 and a signal from the hot water temperature control unit 14. In FIG. 2, reference numeral 16 denotes a rotation speed control type hot water supply circulation pump. Reference numeral 17 denotes a rotation speed control unit that controls the rotation speed of the hot water supply circulation pump 16. Reference numeral 18 denotes an operation control unit, which receives a signal from the hot water supply temperature detection unit 12 and a signal from the hot water temperature control unit 14 and sends a signal to the rotation speed control unit 17.
[0018]
The operation and operation of the above configuration will be described. In the embodiment shown in FIG. 1, in the hot water supply operation using the bathtub exhaust heat, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the hot water supply heater 2. On the other hand, the water in the hot water storage tank 5 flows into the hot water supply heat exchanger 7 by the hot water supply circulation pump 6, where the water is heated via the hot water supply heater 2 by the heat of condensation of the refrigerant and flows into the hot water storage tank 5. The condensed and liquefied refrigerant is decompressed by the decompression device 3 and flows into the exhaust heat utilization heat exchanger 4. On the other hand, the remaining hot water in the bathtub 8 flows into the bath heat exchanger 10 by the bath circulation pump 9, where the refrigerant flowing through the waste heat utilizing heat exchanger 4 via the bath heat exchanger 10 is evaporated and gasified. Then, the water temperature is lowered and flows into the bathtub 8. Further, the refrigerant that has been vaporized and gasified flows into the compressor 1 and operates in one cycle. At that time, the bath temperature detecting means 13 detects the water temperature of the bath circuit and sends a signal to the hot water setting means 14.
[0019]
Then, the operation control means 15 controls the flow rate control means 11 so that the signal of the hot water temperature detection means 12 becomes the same as the signal of the hot water temperature setting means 14, and controls the flow rate of the hot water supply circuit. In this case, the hot water temperature setting means 14 which has received the signal from the bath temperature detecting means 13 sets the water outlet temperature of the hot water supply heat exchanger 7 high when the water temperature of the bath circulation circuit is higher than a predetermined temperature, and Perform a hot water supply operation. Therefore, immediately after the bathing of all the family members is completed, since the remaining hot water temperature in the bathtub 8 is high, the low pressure of the compressor 1 is relatively high and the compressor 1 is operated with a small compression ratio. Therefore, even if the refrigerant is heated to high-temperature hot water, the refrigerant discharged from the compressor 1 has a low temperature, so that high-temperature boiling is possible. Particularly in winter, when the load of hot water supply is large, the amount of heat stored in the hot water increases due to high-temperature boiling, so that the fear of running out of hot water can be eliminated. In another embodiment shown in FIG. 2, a hot water supply circulation pump 16 is used instead of the flow rate control means 11, and the rotation speed control means 17 controls the rotation speed of the hot water supply circulation pump 16. The operation control means 18 receives a signal from the hot water supply temperature detection means 12 and a signal from the hot water temperature control means 14 and sends a signal to the rotation speed control means 17 to control the rotation speed of the hot water circulation pump 16 to control the flow rate. Therefore, the same effect can be obtained. Therefore, it is omitted in the following description.
[0020]
(Example 2)
Third Embodiment FIG. 3 is a configuration diagram of a heat pump bath hot water supply system according to a second embodiment of the present invention. In FIG. 3, reference numeral 19 denotes a refrigerant temperature detecting means for detecting a refrigerant inlet temperature of the exhaust heat utilizing heat exchanger 4. Reference numeral 20 denotes hot water temperature setting means, which receives a signal from the refrigerant temperature detecting means 19 and sets the water outlet temperature of the hot water supply heat exchanger 7. An operation control means 21 controls the flow rate control means 11 based on a signal from the hot water supply temperature detection means 12 and a signal from the hot water temperature setting means 20.
[0021]
The operation and operation of the above configuration will be described. In the hot water supply operation using the exhaust heat of the bathtub, the refrigerant state on the low pressure side of the heat pump cycle is detected by the refrigerant temperature detecting means 19 and a signal is sent to the hot water temperature setting means 20. Hot water setting means 20 sets the water outlet temperature of hot water supply heat exchanger 7 to a high temperature when the signal of refrigerant temperature detecting means 19 indicates a signal higher than a predetermined temperature. Then, the operation control means 21 controls the flow rate control means 11 so that the signal of the hot water supply temperature detection means 12 becomes the same as the signal of the hot water temperature setting means 20, so that high-temperature boiling is performed. Therefore, the operation is performed at the preset refrigerant temperature and hot water supply temperature, and the bath heat exchanger 10 and the bathtub 8 are connected and installed by diversifying the piping configuration (the number of bends) of the bath circulation circuit system and using long piping. In addition, high-temperature boiling can be performed while ensuring the reliability of the compressor 1.
[0022]
(Example 3)
FIG. 4 is a configuration diagram of a heat pump type bath hot water supply system according to Embodiment 3 of the present invention. In FIG. 4, reference numeral 22 denotes a discharge temperature detecting means for detecting a refrigerant discharge temperature of the compressor 1. 23 is a hot water temperature setting means, which receives the signal of the discharge temperature detecting means 22 and sets the water outlet temperature of the hot water supply heat exchanger 7. An operation control unit 24 controls the flow rate control unit 11 based on a signal from the hot water supply temperature detection unit 12 and a signal from the hot water temperature setting unit 23.
[0023]
The operation and operation of the above configuration will be described. In the hot water supply operation using the exhaust heat from the bathtub, the temperature of the remaining hot water in the bath circulation circuit is reduced as the operation proceeds. Therefore, the low pressure in the heat pump cycle gradually decreases, the compression ratio increases, and the refrigerant discharge temperature of the compressor 1 increases. Then, when the refrigerant discharge temperature reaches a predetermined temperature, the discharge temperature detecting means 22 sends a signal to the hot water temperature setting means 23 to set the water outlet temperature of the hot water supply heat exchanger 7 to a low temperature. The operation control means 24 controls the flow rate control means 11 so that the signal of the hot water temperature detection means 12 becomes the same as the signal of the hot water temperature setting means 23, and increases the flow rate of the hot water supply circuit. Accordingly, the amount of exhaust heat from the bathtub increases and the refrigerant discharge temperature of the compressor does not rise abnormally, so that the reliability and durability of the motor windings of the compressor and the like are improved.
[0024]
(Example 4)
FIG. 5 is a configuration diagram of a heat pump type bath hot water supply system according to Embodiment 4 of the present invention. In FIG. 5, reference numeral 25 denotes a variable rotation frequency compressor. Reference numeral 26 denotes an inverter power supply, which varies the rotation frequency of the compressor 25. Reference numeral 27 denotes a frequency control unit that controls the frequency of the inverter power supply unit 26 in response to a signal from the hot water temperature setting unit 14.
[0025]
The operation and operation of the above configuration will be described. In the hot water supply operation using the exhaust heat from the bathtub, the temperature of the remaining hot water in the bath circulation circuit is reduced as the operation proceeds. Then, when a signal indicating that the signal from the bath temperature detecting means 13 or the refrigerant temperature detecting means 19 shown in FIG. 3 has dropped to a predetermined temperature is transmitted, the hot water temperature setting means 14 sends a signal to the frequency control means 27. Then, the frequency control unit 27 sends a signal to the inverter power supply unit 26 to perform control to reduce the rotation frequency of the compressor 25. Therefore, since the rotation frequency of the compressor 25 is reduced along with the decrease in the temperature of the remaining hot water in the bathtub, the low pressure of the heat pump is increased again, and the operation can be performed at high temperature and high efficiency.
[0026]
(Example 5)
FIG. 6 is a configuration diagram of a heat pump type bath hot water supply system according to Embodiment 5 of the present invention. In FIG. 6, reference numeral 28 denotes a hot water supply switching valve, which switches a flow path from a hot water outlet of the hot water supply heat exchanger 7 to an upper portion of the hot water tank 5 and an intermediate position between the hot water tank 5. Reference numeral 29 denotes a valve control unit that controls the hot water supply switching valve 28 in response to a signal from the hot water temperature setting unit 14.
[0027]
The operation and operation of the above configuration will be described. In the hot water supply operation using the exhaust heat from the bathtub, when the temperature of the remaining hot water in the bathtub is high, for example, immediately after the completion of bathing, the hot water setting means 14 sets the high-temperature boiling, so that the high-temperature hot water flows out of the hot-water supply heat exchanger 7. Then, as the operation proceeds, the temperature of the remaining hot water in the bathtub decreases, and the hot water temperature setting means 14 switches to slightly lower the setting of the boiling temperature. Therefore, medium-temperature hot water having a slightly lower temperature than that at the time of the initial operation flows out of the hot water supply heat exchanger 7. The valve control unit 29 switches the hot water supply so that the hot water flowing out of the hot water supply heat exchanger 7 flows into the upper portion of the hot water storage tank 5 when the temperature is high, and the medium-temperature hot water flows into an intermediate position of the hot water storage tank 5. Control the valve 28. Therefore, hot water of different temperatures can be stored in the hot water storage tank 5, and hot water of a required temperature can be used depending on the application.
[0028]
(Example 6)
FIG. 7 is a configuration diagram of a heat pump bath hot water supply system according to Embodiment 6 of the present invention. In FIG. 7, reference numeral 30 denotes hot water storage temperature detecting means, which is provided in a plurality of positions inside or on the surface of the hot water storage tank 5, and detects hot water storage temperature. Reference numeral 31 denotes a hot water storage means for storing a signal from the hot water storage temperature detecting means 31 on the previous day. Reference numeral 32 denotes hot water temperature setting means, which receives a signal from the hot water storage temperature detecting means 30 and a signal from the hot water storage means 31 and sets the hot water temperature at the outlet of the hot water supply heat exchanger 7. An operation control unit 33 controls the flow rate control unit 11 based on a signal from the hot water temperature setting unit 32 and the hot water supply temperature detection unit 12.
[0029]
The operation and operation of the above configuration will be described. In the hot water supply operation using the exhaust heat from the bathtub, for example, at the start of the operation after all the family members finish bathing on that day, the hot water temperature setting means 32 first receives the signal of the hot water storage temperature detecting means 30 and the signal of the hot water storage means 31. The amount of hot water used in hot water storage tank 5 is determined, and when the use of hot water is increasing, the outlet hot water temperature of hot water supply heat exchanger 7 is set high. Then, the hot water supply operation using the bathtub exhaust heat is started. At that time, the operation control means 33 controls the flow rate control means 11 so that the signal from the hot water supply temperature detection means 12 becomes the same as the signal from the hot water temperature setting means 32. Therefore, the hot water flowing out of the outlet of the hot water supply heat exchanger 7 is stored from the upper part of the hot water storage tank 5 as hot water higher than the previous day. If it is determined that the amount of hot water used in hot water storage tank 5 is decreasing, hot water temperature setting means 32 sets the outlet hot water temperature of hot water supply heat exchanger 7 low. The operation control means 33 controls the flow rate control means 11 so that the signal from the hot water supply temperature detection means 12 becomes the same as the signal from the hot water temperature setting means 32. In this case, since the outlet hot water temperature of the hot water supply heat exchanger 7 is low, the operation can be performed with high efficiency. Further, heat loss from the hot water storage tank 5 is reduced. Accordingly, optimization of the amount of hot water stored and high-efficiency operation control can be performed according to the increase or decrease in the amount of hot water used.
[0030]
(Example 7)
FIG. 8 is a configuration diagram of a heat pump type bath hot water supply system according to Embodiment 7 of the present invention. In FIG. 8, reference numeral 34 denotes a bath flow rate control unit which controls the flow rate of the bath circulation circuit. Reference numeral 35 denotes a flow rate control unit which controls the bath flow rate control means 34 in response to a signal from the discharge temperature detection means 22.
[0031]
The operation and operation of the above configuration will be described. In the hot water supply operation using the exhaust heat of the bathtub in winter, the temperature of the remaining hot water in the bath circulation circuit decreases as the operation progresses, and the low pressure in the heat pump cycle gradually decreases. Therefore, the compression ratio of the compressor 1 increases, and the refrigerant discharge temperature of the compressor increases. Further, the discharge temperature detecting means 22 detects the refrigerant discharge temperature and sends a signal to the flow control unit 35. Then, upon receiving a signal indicating that the refrigerant discharge temperature has reached the predetermined temperature, the flow rate control unit 35 sends a signal to the bath flow rate control means 34 to control the bath flow rate control means 34 so as to increase the flow rate of the bath circulation circuit. Perform Therefore, the heat absorption increases, the low pressure of the compressor 1 increases, and the compression ratio decreases. Further, since the temperature difference between the water inlet and outlet of the bath heat exchanger 10 becomes small, the remaining hot water in the bath circulation system does not freeze, and can be used at a considerably low temperature. Therefore, the utilization of the remaining hot water in the bathtub increases.
[0032]
(Example 8)
FIG. 9 is a configuration diagram of a heat pump type hot water supply system according to Embodiment 8 of the present invention. Reference numeral 36 denotes a water supply temperature detecting means. Reference numeral 37 denotes a drainage opening / closing valve, which is provided in the bathtub 8. A control means 38 opens the drainage on-off valve 37 based on signals from the bath temperature detecting means 13 and the feed water temperature detecting means 36.
[0033]
The operation and operation of the above configuration will be described. In the hot water supply operation using the exhaust heat from the bathtub, the temperature of the remaining hot water in the bath circulation circuit gradually decreases as the operation proceeds, as the heat is absorbed. The bath temperature detecting means 13 detects the remaining hot water temperature and sends a signal to the control means 38. The control means 38 opens the drainage on-off valve 37 when the signal from the bath temperature detection means 13 and the signal from the water supply temperature detection means 36 become the same. Therefore, the hot water supply operation can be performed with high efficiency by using the remaining hot water of the bath, and the germs in the bath circulation system do not propagate.
[0034]
(Example 9)
FIG. 10 is a configuration diagram of a heat pump type bath hot water supply system according to Embodiment 9 of the present invention. Reference numeral 9 denotes a sterilizing means, which is connected to a bath circulation circuit, and sterilizes remaining hot water in the circuit by a heating source 40 at a high temperature. Reference numeral 41 denotes a sterilization end detection unit that detects the end of sterilization. Reference numeral 42 denotes a control unit which controls the sterilization unit 39 in response to a signal from the sterilization completion detection unit 41. An operation control unit 43 receives a signal from the control unit 42 and performs a heat pump hot water supply operation.
[0035]
The operation and operation of the above configuration will be described. In the hot water supply operation using the exhaust heat from the bathtub, first, the sterilization means 39 sterilizes the germs in the bath circulation circuit at a high temperature by the heating source 40. Then, the control unit 42 sends a signal from the sterilization end detection unit 41 to the operation control unit 43, and starts a hot water supply operation using bathtub exhaust heat. Therefore, the water in the bath circulation system can be reused, and water is saved. In addition, since high-temperature hot water after sterilization can be used for waste heat, high-efficiency hot water supply operation can be performed, and energy can be effectively used.
[0036]
(Example 10)
FIG. 11 is a configuration diagram of a heat pump type bath hot water supply system according to Embodiment 10 of the present invention. Reference numeral 44 denotes a heat exchanger utilizing natural heat, which utilizes atmospheric heat or solar heat. A four-way valve 45 switches the discharge refrigerant flow path of the compressor 1 between the hot water supply heater 2 and the natural heat utilizing heat exchanger 44. A waste heat utilizing heat exchanger 46 is provided in parallel with the natural heat utilizing heat exchanger 44. And one end thereof is connected to the low-pressure gas refrigerant pipe of the four-way valve 45. 47 is a refrigerant temperature detecting means for detecting the refrigerant inlet temperature of the heat exchanger 44 utilizing natural heat. Reference numeral 48 denotes an operation control unit which receives a signal from the refrigerant temperature detecting unit 47 and switches the refrigerant flow path of the four-way valve 45 from the compressor 1, the four-way valve 45, the natural heat utilizing heat exchanger 44, and the exhaust heat utilizing heat exchanger 46. The operation is performed in the refrigerant defrost circuit.
[0037]
The operation and operation of the above configuration will be described. In a hot water supply operation under frosting conditions such as winter, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the hot water supply heater 2 through the four-way valve 45. On the other hand, the water in the hot water storage tank 5 flows into the hot water supply heat exchanger 7 by the hot water supply circulation pump, where it is heated through the hot water supply heater 2 by the heat of condensation of the refrigerant and flows into the hot water storage tank 5. The condensed and liquefied refrigerant is decompressed by the decompression device 3 and flows into the natural heat utilizing heat exchanger 44, is vaporized and gasified, and flows into the compressor 1 through the four-way valve 45. In this operation, when frost is formed on the natural heat utilizing heat exchanger 44, the inlet refrigerant temperature decreases, and the amount of heat absorbed also decreases. The refrigerant temperature detecting means 47 detects that the inlet refrigerant temperature has dropped to a predetermined temperature and sends a signal to the operation control means 48. Then, the operation control means 48 switches the refrigerant flow path of the four-way valve 45 to operate in the refrigerant defrosting circuit. In this case, the gas refrigerant discharged from the compressor 1 flows into the natural heat utilizing heat exchanger 44 through the four-way valve 45. Then, the refrigerant is defrosted by the heat of condensation of the refrigerant, and flows into the waste heat utilizing heat exchanger 46 as a liquefied refrigerant. Here, the remaining hot water in the bathtub 8 sent by the bath circulation pump 9 flows into the bath heat exchanger 10, where the refrigerant flowing through the waste heat utilizing heat exchanger 46 via the bath heat exchanger 10 is converted into evaporative gas. To On the other hand, the evaporated gasified refrigerant flows into the compressor 1. Therefore, since the remaining hot water in the bathtub 8 is used during the defrosting operation, the defrost can be completed in a short time. In addition, since the configuration is simple, the number of components is small and the cost is low.
[0038]
(Example 11)
FIG. 12 is a configuration diagram of a heat pump hot water supply system according to Embodiment 11 of the present invention. In FIG. 12, reference numeral 49 denotes an auxiliary heat exchanger which is provided upstream of the natural heat utilizing heat exchanger 44 in the air flow direction and is connected to the bath circulation circuit. Reference numeral 50 denotes a flow control unit which controls flow of water in the bath circulation circuit to the auxiliary heat exchanger 49. Reference numeral 51 denotes a defrost control unit that controls the flow control unit 50 in response to a signal from the operation control unit 48.
[0039]
The operation and operation of the above configuration will be described. In the defrosting operation during the hot water supply operation, the operation control means 48 switches the four-way valve 45 to operate the defrosting circuit, and sends a signal to the defrost control means 51. Then, the defrost control means 51 controls the flow rate control means to flow the water in the bath circulation circuit to the auxiliary heat exchanger 49. Accordingly, since the natural heat utilizing heat exchanger 44 is defrosted by the condensation heat of the compressor 1 and the heat of the hot and cold water in the bath circuit, the defrost can be completed in a shorter time.
[0040]
(Example 12)
FIG. 13 is a configuration diagram of a heat pump type bath hot water supply system according to Embodiment 12 of the present invention. In FIG. 13, solid arrows indicate the flow direction of the wind.
[0041]
Reference numeral 52 denotes a refrigerant circuit, which includes a compressor 1, a four-way valve 45, a hot water supply heater 2, a pressure reducing means 3, and a natural heat utilizing heat exchanger 44 utilizing atmospheric heat or solar heat. Reference numeral 53 denotes a bath circulation circuit, which comprises a bathtub 8, a bath circulation pump 9, and an auxiliary heat exchanger 49. Numeral 54 denotes a blower, which blows the air so that the flow direction of the wind flows from the auxiliary heat exchanger 49 to the natural heat utilizing heat exchanger 44.
[0042]
The operation and operation of the above configuration will be described. In the hot water supply operation, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the hot water supply heater 2, where the water in the hot water storage tank 5 is heated via the hot water supply heater by the heat of condensation of the refrigerant. Then, the condensed and liquefied refrigerant is decompressed by the decompression device 3 and flows into the heat exchanger 44 utilizing natural heat. On the other hand, the remaining hot water in the bathtub 8 flows into the auxiliary heat exchanger 49 by the bath circulation pump 9 and radiates heat to the air sucked by the blowing means 54 here. Then, the heated atmosphere heats the refrigerant flowing inside when passing through the natural heat utilizing heat exchanger 44 downwind to evaporate the refrigerant. Therefore, since the natural heat utilizing heat exchanger 44 absorbs the atmospheric heat having a higher enthalpy than the atmospheric heat of the outside air, a high-temperature and high-efficiency hot water supply operation becomes possible. In addition, especially during an operation in which the outside air temperature is low in winter, frost formation is less likely to occur in the heat exchanger 44 utilizing natural heat, so that the operation can be performed with high efficiency and high efficiency.
As is clear from the above description, the effects of each embodiment are summarized as follows.
[0043]
(1) In the hot water supply operation using the exhaust heat from the bathtub, a flow rate control means for controlling a flow rate of the hot water supply circuit, a hot water supply temperature detection means for detecting a water outlet temperature of the hot water supply heat exchanger, and a water temperature detection of the bath circulation circuit Bath temperature detecting means, a hot water temperature setting means for receiving a signal from the bath temperature detecting means, and setting a hot water temperature at a water outlet of the hot water supply heat exchanger; and a signal from the hot water temperature setting means and the hot water temperature detecting means. Operation control means for controlling the flow rate control means based on a signalThe water temperature of the bath circulation circuit is detected, and when the temperature is higher than a predetermined temperature, the outlet temperature of the hot water supply heat exchanger is set higher, and the hot water supply circuit is set so that the hot water temperature becomes the hot water set temperature. Since the flow rate is controlled and the boiling water temperature is raised to store the hot water when the temperature of the remaining hot water in the bathtub is high, the amount of hot water stored increases.
[0044]
(2) Refrigerant temperature detecting means for detecting the refrigerant temperature of the refrigerant circuitAnd the hot water supply heat exchangerwaterHot water temperature setting means for setting the outlet hot water temperature, and operation control means for controlling the flow rate control means based on the signal of the hot water temperature setting means and the signal of the hot water supply temperature detection means, in the hot water supply operation using the bathtub exhaust heat, When the refrigerant temperature on the low pressure side of the refrigerant circuit is detected and the temperature is higher than a predetermined temperature, the outlet water temperature of the hot water supply heat exchanger is set higher, and the flow rate of the hot water supply circuit is controlled so that the hot water temperature becomes the set temperature. By doing so, it will be operated at the preset refrigerant temperature and hot water supply temperature, diversify the piping configuration (number of bends) of the bath circulation circuit system, and connect and install the bath heat exchanger and bathtub with long piping. However, high-temperature boiling can be performed while ensuring the reliability of the compressor.In addition, as the amount of waste heat from the bathtub increases, the refrigerant discharge temperature of the compressor rises abnormally. Since there is no compressor, the reliability and durability of the motor windings of the compressor are improved.
[0045]
(3) Variable rotation frequency based on water temperature of bath circulation circuitCompressorAccording toIn the hot water supply operation using the exhaust heat from the bathtub, the temperature of the remaining hot water in the bath circulation circuit and the saturated refrigerant temperature corresponding to the low pressure of the refrigerant circuit decrease as the operation proceeds. Then, when the bath temperature or the refrigerant temperature is reduced to a predetermined temperature, control is performed to reduce the rotation frequency of the compressor, and the rotation frequency of the compressor is reduced with the decrease in the bathtub remaining hot water temperature, so that the low pressure of the refrigerant circuit increases again, It can be operated at high temperature and high efficiency.
[0046]
(4) A hot water supply switching valve for switching a flow path from a hot water outlet of a hot water supply heat exchanger to an upper portion of the hot water tank and an intermediate position between the hot water tank and a valve control unit for controlling the hot water supply switching valve in response to a signal from the hot water temperature setting means. In hot water supply operation using bath tub exhaust heat, the valve control unit makes the hot water flowing out of the hot water supply heat exchanger flow into the upper part of the hot water tank when the temperature is high, and the medium-temperature hot water is located at the middle position of the hot water tank. The hot water supply switching valve is controlled so as to flow. Therefore, since hot water having different temperatures can be stored in the hot water storage tank, a hot water temperature suitable for the application can be used.
[0047]
(5) A plurality of hot-water storage temperature detecting means provided in the hot-water storage tank, a hot-water storage means for storing a signal of the hot-water storage temperature detecting means of the previous day, and a hot-water supply heat exchange in response to the signal of the hot-water storage temperature detecting means and the signal of the hot water storage means. Hot water setting means for setting the hot water temperature at the outlet of the vessel, and operation control means for controlling the flow rate control means from the signal of the hot water setting means and the signal of the hot water supply temperature detecting means. The amount of hot water in the hot water storage tank is determined from the signal of the hot water storage means and the signal of the hot water storage temperature detecting means, and when the hot water usage increases, the hot water setting means sets the outlet hot water temperature of the hot water supply heat exchanger to a high temperature and operates. Perform Conversely, when the amount of hot water used decreases, the outlet hot water temperature of the hot water supply heat exchanger is set low to perform high-efficiency operation. Therefore, according to the increase / decrease of the amount of hot water used, the amount of hot water stored can be optimized and high-efficiency operation control can be performed.
[0048]
(6) A discharge temperature detecting means for detecting a refrigerant discharge temperature of the compressor, a bath flow rate controlling means for controlling a flow rate of the bath circulation circuit, and a flow rate control for controlling a bath flow rate controlling means in response to a signal from the discharge temperature detecting means. In the hot water supply operation using the exhaust heat from the bathtub in winter, the temperature of the remaining hot water in the bath circuit decreases and the refrigerant discharge temperature of the compressor increases with the progress of the operation. When the refrigerant discharge temperature reaches a predetermined temperature, the bath flow rate control means is controlled so as to increase the flow rate of the bath circulation circuit, so that the heat absorption increases, the low pressure of the compressor increases, and the refrigerant discharge temperature increases. descend. Further, since the temperature difference between the outlet and the inlet of the water of the bath heat exchanger becomes small, the remaining hot water in the bath circulation system does not freeze and can be used at a considerably low temperature. Therefore, the utilization of the remaining hot water in the bathtub increases.
[0049]
(7) Bath temperature detection means provided in the bath circulation circuit, supply water temperature detection means for detecting supply water temperature, drainage opening / closing valve provided in the bathtub, drainage opening / closing based on signals from the bath temperature detection means and supply water temperature detection means. Equipped with control means to open the valve, in the hot water supply operation using the exhaust heat of the bathtub, the temperature of the remaining hot water in the bath circulation circuit decreases as the operation progresses, and when it reaches the same temperature as the supply water temperature, the drainage on-off valve is opened to drain water Therefore, the hot water supply operation can be performed with high efficiency by using the remaining hot water in the bath, and the propagation of various bacteria in the bath circulation system can be suppressed.
[0050]
(8) Sterilization means for sterilizing the hot water in the bath circulation circuit at high temperature, sterilization end detection means for detecting the end of sterilization, a control unit for controlling the sterilization means in response to a signal from the sterilization end detection means, and a signal from the control unit An operation control unit that performs a heat pump hot water supply operation by the refrigerant circuit in response to the heat, and in the hot water supply operation using the bathtub exhaust heat, first sterilizes various bacteria in the bath circulation circuit at high temperature, and after the sterilization is completed, performs the hot water supply operation using the bathtub exhaust heat. To start, the water in the bath circulation system can be reused, saving water. In addition, hot water after sterilization isBecause it can be used, high-efficiency hot water supply operation is possible, and energy can be used effectively.
[0051]
(9) A refrigerant hot water supply circuit comprising a compressor, a four-way valve, a hot water supply heater, a pressure reducing means, a heat exchanger utilizing natural heat utilizing atmospheric heat or solar heat, and a heat exchanger utilizing natural heat provided in parallel with one end having a four-way end. Exhaust heat utilization heat exchanger connected to the low pressure gas refrigerant pipe of the valve, hot water supply circuit connecting hot water storage tank, hot water supply circulation pump, hot water supply heat exchanger having heat exchange relationship with hot water supply heater, bathtub, bath circulation pump A bath circulation circuit connecting a bath heat exchanger having a heat exchange relationship with the waste heat utilizing heat exchanger, a refrigerant temperature detecting means for detecting a refrigerant inlet temperature of the natural heat utilizing heat exchanger, and a signal of the refrigerant temperature detecting means In response to this, the refrigerant flow path of the four-way valve is provided with an operation control means that operates with a refrigerant defrost circuit consisting of a compressor, a four-way valve, a heat exchanger using natural heat, and a heat exchanger using waste heat, so that frost formation in winter etc. Use of natural heat in hot water supply operation under conditions Detects that the frost has formed on the exchanger and the inlet refrigerant temperature has dropped to a predetermined temperature, switches the refrigerant flow path of the four-way valve, and uses the residual heat of the bathtub to condense heat of the compressor to use natural heat. Since the defrosting of the exchanger is performed, the defrosting can be completed in a short time, and the hot water supply operation time and the heating capacity increase. In addition, since the configuration is simple, the number of components is small and the cost is low.
[0052]
(10) An auxiliary heat exchanger provided upstream of the natural heat utilizing heat exchanger in the air flow direction and connected to the bath circulation circuit, and a flow control means for controlling flow of water in the bath circulation circuit to the auxiliary heat exchanger. A defrost control unit that receives a signal from the operation control unit and controls the flow rate control unit.In the defrosting operation during the hot water supply operation, frost occurs on the heat exchanger using natural heat and the inlet refrigerant temperature reaches a predetermined temperature. Upon detection of the decrease, the refrigerant flow path of the four-way valve is switched to perform the defrosting operation, and the water in the bath circulation circuit flows to the auxiliary heat exchanger. Therefore, the natural heat utilizing heat exchanger is defrosted by the condensing heat of the compressor and the heat of the hot and cold water in the bath circuit, so that the defrosting can be completed in a shorter time.
[0053]
(11) Refrigerant hot water supply circuit composed of a compressor, a four-way valve, a hot water heater, a pressure reducing means, a heat exchanger utilizing natural heat utilizing atmospheric heat or solar heat, and a hot water supply having a heat exchange relationship with a hot water storage tank and a hot water heater. A hot water supply circuit to which an exchanger is connected, an auxiliary heat exchanger provided upstream of the natural heat use heat exchanger in the air flow direction, and a bath circulation circuit including a bathtub, a bath circulation pump, and an auxiliary heat exchanger. In operation, since the remaining hot-water heat of the bathtub flows to the auxiliary heat exchanger to heat the natural-heat-utilizing heat exchanger in addition to atmospheric heat or solar heat as a heat source, high-temperature high-efficiency hot water supply operation becomes possible. In particular, during the operation in which the outside air temperature is low in winter, frost formation is less likely to occur in the heat exchanger using natural heat, so that high-performance and high-efficiency operation is possible.
[0054]
【The invention's effect】
As described above, according to the present invention, the water temperature of the bath circulation circuit is detected, and when the temperature is higher than a predetermined temperature, the outlet temperature of the hot water supply heat exchanger is set higher, and the hot water supply temperature is set to the hot water set temperature. The flow rate of the hot water supply circuit is controlled such that when the remaining hot water temperature of the bathtub is high, the boiling water temperature is raised and the hot water is stored.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a heat pump type bath hot water supply system according to a first embodiment of the present invention.
FIG. 2 is a block diagram showing another flow control method of the heat pump type hot water supply system.
FIG. 3 is a configuration diagram of a heat pump type bath hot water supply system according to a second embodiment of the present invention.
FIG. 4 is a configuration diagram of a heat pump type bath hot water supply system according to a third embodiment of the present invention.
FIG. 5 is a configuration diagram of a heat pump type bath hot water supply system according to a fourth embodiment of the present invention.
FIG. 6 is a configuration diagram of a heat pump type bath hot water supply system according to a fifth embodiment of the present invention.
FIG. 7 is a configuration diagram of a heat pump type bath hot water supply system according to a sixth embodiment of the present invention.
FIG. 8 is a configuration diagram of a heat pump type bath hot water supply system according to a seventh embodiment of the present invention.
FIG. 9 is a configuration diagram of a heat pump type bath hot water supply system according to an eighth embodiment of the present invention.
FIG. 10 is a configuration diagram of a heat pump type hot water supply system according to Embodiment 9 of the present invention.
FIG. 11 is a configuration diagram of a heat pump type bath hot water supply system according to Embodiment 10 of the present invention.
FIG. 12 is a configuration diagram of a heat pump type hot water supply system according to Embodiment 11 of the present invention.
FIG. 13 is a configuration diagram of a heat pump type hot water supply system according to Embodiment 12 of the present invention.
FIG. 14 is a configuration diagram of a conventional heat pump system.
[Explanation of symbols]
1,25 compressor
2 Hot water heater
3 Decompression device
4,46 Exhaust heat utilization heat exchanger
5 Hot water storage tank
6,16 Hot water supply circulation pump
7 Hot water supply heat exchanger
8 Bathtub
9 Bath circulation pump
10 Bath heat exchanger
11 Flow control means
12 Hot water supply temperature detection means
13 Bath temperature detection means
14, 20, 23, 32 hot water temperature setting means
15, 18, 21, 24, 33, 48 Operation control means
17 Speed control means
19, 47 refrigerant temperature detecting means
22 Discharge temperature detecting means
26 Inverter power supply
27 Frequency control means
28 Hot water supply switching valve
29 Valve control unit
30 Hot water storage temperature detection means
31 Hot water storage means
34 Bath flow control means
35 Flow control unit
36 Water supply temperature detecting means
37 Drain valve
38 control means
39 Sterilization means
40 heating source
41 Sterilization completion detection means
42 control unit
43 Operation control unit
44 Natural heat heat exchanger
45 Four-way valve
49 Auxiliary heat exchanger
50 Flow control means
51 Defrost control means
52 refrigerant circuit
53 Bath circulation circuit
54 Blowing means

Claims (13)

圧縮機を有する冷媒回路と、前記冷媒回路に接続した給湯加熱器および排熱利用熱交換器と、貯湯槽の湯水が流動し、前記給湯加熱器と熱交換関係を有する給湯熱交換器を途中に接続した給湯回路と、風呂循環ポンプを介して浴槽の湯水を循環させるとともに、前記排熱利用熱交換器と熱交換関係を有する風呂熱交換器を途中に接続した風呂循環回路と、前記給湯熱交換器の水出口温度を検出する給湯温度検知手段と、前記風呂循環回路の水温を検出する風呂温度検知手段と、前記風呂温度検知手段の信号を受けて前記給湯熱交換器の水出口湯温を設定する湯温設定手段とを備え、前記湯温設定手段の信号と前記給湯温度検知手段の信号に基づき前記給湯回路の流量制御をおこなうヒートポンプ式風呂給湯システム。 A refrigerant circuit having a compressor, a hot water supply heater and a waste heat utilization heat exchanger connected to the refrigerant circuit, and hot water in a hot water tank flows, and the hot water supply heat exchanger having a heat exchange relationship with the hot water supply heater is disposed in the middle. a hot water supply circuit connected to, via a bath circulation pump with circulating hot water bath, and the bath circulation circuit connected to the middle of the bath heat exchanger having a waste heat utilization heat exchanger and the heat exchange relationship, the hot water supply Hot water supply temperature detecting means for detecting a water outlet temperature of the heat exchanger, bath temperature detecting means for detecting a water temperature of the bath circulation circuit, and a water outlet hot water of the hot water supply heat exchanger in response to a signal from the bath temperature detecting means. A heat pump type bath hot water supply system comprising hot water temperature setting means for setting a temperature, and controlling flow rate of the hot water supply circuit based on a signal from the hot water temperature setting means and a signal from the hot water temperature detecting means. 流量制御をおこなう流量制御手段を給湯回路に接続した請求項1記載のヒートポンプ式風呂給湯システム。 The heat pump type bath hot water supply system according to claim 1, wherein flow rate control means for performing flow rate control is connected to the hot water supply circuit . 給湯回路に接続した給湯循環ポンプの回転制御を行うことで流量制御を行うようにした請求項1記載のヒートポンプ式風呂給湯システム。 2. The heat pump bath hot water supply system according to claim 1, wherein the flow rate control is performed by controlling the rotation of a hot water circulation pump connected to the hot water supply circuit . 圧縮機を有する冷媒回路と、前記冷媒回路に接続した給湯加熱器および排熱利用熱交換器と、貯湯槽の湯水が流動し、前記給湯加熱器と熱交換関係を有する給湯熱交換器を途中に接続した給湯回路と、風呂循環ポンプを介して浴槽の湯水を循環させるとともに、前記排熱利用熱交換器と熱交換関係を有する風呂熱交換器を途中に接続した風呂循環回路と、前記給湯熱交換器の水出口温度を検出する給湯温度検知手段と、前記冷媒回路の冷媒温度を検出する冷媒温度検知手段と、前記冷媒温度検知手段の信号を受けて前記給湯熱交換器の水出口湯温を設定する湯温設定手段と、前記湯温設定手段の信号と前記給湯温度検知手段の信号に基づき前記給湯回路の流量制御をおこなうヒートポンプ式風呂給湯システム。 Way a refrigerant circuit having a compressor, a hot water heater and waste heat utilization heat exchanger connected to the refrigerant circuit, the hot water of the hot water storage tank to flow, the hot-water supply heat exchanger with the hot water heater heat exchange relationship A hot water supply circuit connected to the hot water supply , a hot water supply in the bath tub is circulated through a hot water circulation pump , and a hot water supply circuit having a heat exchange relationship with the waste heat utilizing heat exchanger is connected in the middle of the hot water supply circuit. Hot water supply temperature detecting means for detecting a water outlet temperature of the heat exchanger, refrigerant temperature detecting means for detecting a refrigerant temperature of the refrigerant circuit, and a water outlet hot water of the hot water supply heat exchanger in response to a signal from the refrigerant temperature detecting means. A hot-water bath setting system for controlling a flow rate of the hot water supply circuit based on a hot water temperature setting means for setting a temperature and a signal from the hot water temperature setting means and a signal from the hot water temperature detecting means . 冷媒温度検知手段は、排熱利用熱交換器の冷媒入口温度を検出する請求項記載のヒートポンプ式風呂給湯システム。 The heat pump type bath hot water supply system according to claim 4 , wherein the refrigerant temperature detection means detects a refrigerant inlet temperature of the exhaust heat utilization heat exchanger . 冷媒温度検知手段は、圧縮機の冷媒吐出温度を検知する請求項記載のヒートポンプ式風呂給湯システム。 The heat pump type hot water supply system according to claim 4 , wherein the refrigerant temperature detecting means detects a refrigerant discharge temperature of the compressor . 圧縮機は、風呂循環回路の水温に基づいて回転数を可変とする請求項1からいずれか1項に記載のヒートポンプ式風呂給湯システム。 The heat pump bath hot water supply system according to any one of claims 1 to 6 , wherein the compressor changes a rotation speed based on a water temperature of the bath circulation circuit . 圧縮機の回転周波数を可変するインバータ電源部と、湯温設定手段の信号に基づき前記インバータ電源部の周波数を制御する周波数制御手段備える請求項7記載のヒートポンプ式風呂給湯システム。Heat pump bath hot-water supply system according to claim 7, further comprising an inverter power supply unit for varying the rotational frequency of the compressor, and a frequency control means for controlling the frequency of the inverter power supply unit based on a signal hot water temperature setting means. 給湯熱交換器の湯出口から貯湯槽上部と前記貯湯槽の中間位置へ流路の切り替えをおこなう給湯切り替え弁と、湯温設定手段の信号を受けて前記給湯切り替え弁を制御する弁制御部とを備える請求項1からいずれか1項に記載のヒートポンプ式風呂給湯システム。 A hot water supply switching valve for switching a flow path from a hot water outlet of a hot water supply heat exchanger to an upper portion of the hot water storage tank and an intermediate position of the hot water storage tank, and a valve control unit that receives the signal of the hot water temperature setting means and controls the hot water supply switching valve. heat pump bath hot-water supply system according to any one of claims 1 to 6, comprising a. 貯湯槽に設けた貯湯温度検知手段と、前日の前記貯湯温度検知手段の信号を記憶する湯量記憶手段と、前記貯湯温度検知手段の信号と前記湯量記憶手段の信号を受けて給湯熱交換器の出口湯温を設定する湯温設定部を備え
運転制御手段は、前記湯温設定の信号と給湯温度検知手段の信号に基づき流量制御手段の制御をおこなう請求項2記載のヒートポンプ式風呂給湯システム。
A hot-water storage temperature detecting means provided in the hot-water storage tank, a hot-water storage means for storing a signal of the hot-water storage temperature detecting means of the previous day, and a hot-water supply heat exchanger which receives the signal of the hot-water storage temperature detecting means and the signal of the hot-water storage means. and a hot water temperature setting unit for setting an outlet water temperature,
The heat pump bath hot water supply system according to claim 2 , wherein the operation control means controls the flow rate control means based on a signal from the hot water temperature setting unit and a signal from the hot water supply temperature detecting means.
圧縮機の冷媒吐出温度を検知する吐出温度検知手段と、風呂循環回路の流量制御をおこなう風呂流量制御手段と、前記吐出温度検知手段の信号を受けて前記風呂流量制御手段を制御する流量制御部とを備える請求項1からいずれか1項に記載のヒートポンプ式風呂給湯システム。 Discharge temperature detection means for detecting the refrigerant discharge temperature of the compressor, bath flow control means for controlling the flow rate of the bath circuit, and a flow control unit for controlling the bath flow control means in response to a signal from the discharge temperature detection means heat pump bath hot-water supply system according to any one of claims 1 3 comprising and. 給水温度を検知する給水温度検知手段と、残湯水の排水を行う排水開閉弁と、風呂温度検知手段と前記給水温度検知手段の信号に基づき前記排水開閉弁を開放する制御手段とを備える請求項1からいずれか1項に記載のヒートポンプ式風呂給湯システム。 A water supply temperature detection means for detecting a water supply temperature, a drainage opening / closing valve for draining residual hot water, and a control means for opening the drainage opening / closing valve based on signals from a bath temperature detection means and the water supply temperature detection means. heat pump bath hot-water supply system according to any one of 1 to 3. 風呂循環回路内の湯を高温滅菌する滅菌手段と、滅菌終了を検出する滅菌終了検出手段と、前記滅菌終了検出手段の信号を受けて前記滅菌手段を制御する制御部とを備え、運転制御手段は、前記制御部の信号を受けて冷媒回路によるヒートポンプ給湯運転をおこなう請求項2または3に記載のヒートポンプ式風呂給湯システム。 Operation control means, comprising: a sterilization means for sterilizing hot water in a bath circulation circuit at a high temperature; a sterilization end detection means for detecting the end of sterilization; and a control unit for controlling the sterilization means by receiving a signal from the sterilization end detection means The heat pump bath hot water supply system according to claim 2 , wherein the heat pump hot water supply operation is performed by a refrigerant circuit in response to a signal from the control unit.
JP33928596A 1996-12-19 1996-12-19 Heat pump type bath hot water supply system Expired - Fee Related JP3588948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33928596A JP3588948B2 (en) 1996-12-19 1996-12-19 Heat pump type bath hot water supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33928596A JP3588948B2 (en) 1996-12-19 1996-12-19 Heat pump type bath hot water supply system

Publications (2)

Publication Number Publication Date
JPH10185312A JPH10185312A (en) 1998-07-14
JP3588948B2 true JP3588948B2 (en) 2004-11-17

Family

ID=18326014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33928596A Expired - Fee Related JP3588948B2 (en) 1996-12-19 1996-12-19 Heat pump type bath hot water supply system

Country Status (1)

Country Link
JP (1) JP3588948B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5176474B2 (en) * 2007-10-18 2013-04-03 パナソニック株式会社 Heat pump water heater
KR101131990B1 (en) * 2010-04-29 2012-03-29 한국에너지기술연구원 Hybrid heat source cooling and heating apparatus depending on load and the control method thereof

Also Published As

Publication number Publication date
JPH10185312A (en) 1998-07-14

Similar Documents

Publication Publication Date Title
JP2008096044A (en) Hot water reservoir type hot-water supply device
JP3788419B2 (en) Water heater
JP3663828B2 (en) Heat pump bath water supply system
JP2006090689A (en) Solar hot water supply system with heat pump heat source unit
JP3737357B2 (en) Water heater
JP3855695B2 (en) Heat pump water heater
JP3588948B2 (en) Heat pump type bath hot water supply system
JP3632306B2 (en) Heat pump bath water supply system
JP3840914B2 (en) Heat pump bath water supply system
JP4466084B2 (en) Hybrid heat source machine and water heater
JP3703995B2 (en) Heat pump water heater
JP2002115908A (en) Hot water supply apparatus
JP3632401B2 (en) Heat pump bath water supply system
JPH10311597A (en) Heat-pump-type boiling device
JP4236542B2 (en) Heat pump water heater
JPS6346336B2 (en)
JPH11337188A (en) Storage type hot water supply equipment
JP3589028B2 (en) Heat pump type bath hot water supply system
JP3692813B2 (en) Heat pump water heater
JP3719161B2 (en) Heat pump water heater
JP2001289506A (en) Storage type hot-water supplier
JP2002162112A (en) Heat recovery bath
JP3841051B2 (en) Heat pump water heater
JP7014699B2 (en) Water heating system and hot water facility
JP2705492B2 (en) Water storage, hot water storage type hot water supply device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040809

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070827

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees