JP3588355B2 - Thermoelectric conversion module substrate and thermoelectric conversion module - Google Patents

Thermoelectric conversion module substrate and thermoelectric conversion module Download PDF

Info

Publication number
JP3588355B2
JP3588355B2 JP2002156287A JP2002156287A JP3588355B2 JP 3588355 B2 JP3588355 B2 JP 3588355B2 JP 2002156287 A JP2002156287 A JP 2002156287A JP 2002156287 A JP2002156287 A JP 2002156287A JP 3588355 B2 JP3588355 B2 JP 3588355B2
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
conversion module
wiring conductor
insulating substrate
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002156287A
Other languages
Japanese (ja)
Other versions
JP2003347607A (en
Inventor
広一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002156287A priority Critical patent/JP3588355B2/en
Publication of JP2003347607A publication Critical patent/JP2003347607A/en
Application granted granted Critical
Publication of JP3588355B2 publication Critical patent/JP3588355B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Description

【0001】
【発明の属する技術分野】
本発明は、温度制御用、保冷用として好適に使用される熱電変換モジュールに使用される絶縁基板およびそれを用いた熱電変換モジュール用基板及び熱電変換モジュールに関する。
【0002】
【従来技術】
ペルチェ効果を利用した熱電変換モジュールは、構造が簡単で、取り扱いが容易でありかつ、安定な特性を維持することが出来るため、広範囲にわたる利用が注目されている。特に、局所冷却ができ、室温付近の精密な温度制御が可能であるため、半導体レーザや光集積回路等に代表される一定温度に精密制御される装置や小型冷蔵庫等に利用されている。
【0003】
このような熱電変換モジュールは、例えば図1に示したように、絶縁基板2、6の表面に、それぞれ配線導体3a、3bが形成され、N型熱電変換素子5aとP型熱電変換素子5bからなる複数の熱電変換素子5が挟持されるように、半田で接合されている。
【0004】
これらのN型熱電変換素子5a及びP型熱電変換素子5bは、電気的に直列になるように配線導体3a、3bで接続され、さらに外部接続端子4に接続しており、半田8によって外部接続端子4に固定された外部配線7を通じて、外部から熱電素子5に電力が供給される。
【0005】
上記の配線導体3a、3bには銅電極が用いられるが、熱電変換素子5との半田接合を強固なものとするため、熱電変換素子5と半田の濡れ性を改善し、半田成分の拡散を防止するため、銅電極表面に金メッキを施したり、熱電変換素子5の接続面にはNiメッキ及び金メッキ等を施し、密着性と半田との濡れ性を改善していても良い。
【0006】
従来、熱電変換モジュールの冷却面と放熱面が最大温度差になるときの電流値(Imax)の通電をON/OFFさせる出力サイクル試験や温度サイクル試験において、熱応力によって、絶縁基板2と配線導体3の接合部分において破損するという問題があった。
【0007】
最大温度差の状態では、熱電変換モジュールの低温側基板と高温側基板との温度差及び熱膨張率の差によって寸法差が大きくなり、中心から外側になるほど熱電変換素子の接合部に生ずる引っ張り応力が大きくなる。
【0008】
この引っ張り応力は、熱電変換モジュールの組み込み圧縮応力によって緩和されているが、片側が急激に冷却された場合、絶縁基板、配線導体、半田層、熱電変換素子の熱膨張率が異なるため、夫々の接合界面において、破壊、亀裂が生じ、特性低下の原因となっていた。
【0009】
また高温側基板では基板とその表面に形成した配線導体の熱膨張率が異なるために、基板と配線導体の接合部に繰り返し応力が発生し、接合界面のクラック、剥がれを発生させることがあった。
【0010】
このため、接合面の構成および厚みを改善し、接合界面の機械的強度を向上させる事が知られている。例えば、熱電変換素子の電極端面に施すニッケルメッキ層の厚さtを、熱電変換素子断面の1片の長さをbとしたとき、b/t≦100を満たすように厚くすることによって、接合界面の機械的強度を向上させることが特開平4−249385号公報に記載されている。
【0011】
【発明が解決しようとする課題】
しかしながら、特開平4−249385号公報に記載の熱電変換モジュールは、メッキ強度を向上させる効果はあるものの、根本的に接合面の熱応力を緩和するものではなく、対策としては不十分であった。
【0012】
したがって、本発明は、絶縁基板と配線導体との接合部の破壊するのを防ぎ、長期信頼性に優れた熱電変換モジュール用配線基板及び熱電変換モジュールを提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明は、配線導体間の間隔に対する配線導体の長さを小さくすることにより、電極と絶縁基板の熱膨張率の差に起因する伸びの差を小さくし、絶縁基板と配線導体の接合部に発生する応力を低減し、破壊を防止することができるという知見に基づくものである。
【0014】
即ち、本発明の熱電変換モジュール用基板は、複数の熱電変換素子を実装し、電気的に接続するための配線導体を主面に形成してなる絶縁基板であって、該絶縁基板の線膨張係数が4×10−6/K以上、前記絶縁基板の強度が200MPa以上、前記配線導体間の平均距離に対する配線導体の長辺の比が15以下であることを特徴とする。
【0015】
また、前記絶縁基板の主面の面積に対する前記配線導体の占有する面積の割合が50〜85%であることが好ましい。これにより絶縁基板と配線導体の熱膨張差によって発生する接合部の応力を低減し、破損を低減することができる。
【0017】
また、前記絶縁基板が、アルミナ、窒化アルミニウムのうち少なくとも1種を主成分とする焼結体からなることが好ましい。これによって、良好な素子保持性、熱伝導性、耐振動、衝撃性、絶縁性が期待できる。
【0018】
さらに、前記配線導体がCu、Al、Au、Pt、Ni及びWのうち少なくとも1種からなることが好ましい。これにより、接合部の破損をさらに低減することができる。
【0019】
また、本発明の熱電変換モジュールは、対向する一対の絶縁基板と、該一対の絶縁基板に挟持されるように設けられ、複数配列された熱電変換素子と、該複数の熱電変換素子間を電気的に接続するために前記一対の絶縁基板の表面に設けられた配線導体と、前記絶縁基板上に設けられ、該配線導体と電気的に連結された外部接続端子とを具備する熱電変換モジュールにおいて、前記一対の絶縁基板の少なくとも一方が、本発明の熱電変換モジュール用基板であることを特徴とする。これにより、高信頼性で、長寿命の熱電変換モジュールを提供することができる。
【0020】
特に、前記熱電変換モジュールの熱電変換素子が、Bi、Te、Se及びSb元素のうち少なくとも2種の元素からなることが好ましい。これによって、常温付近において優れた熱電変換性能を得ることができる。
【0021】
【発明の実施の形態】
本発明の熱電変換モジュール用基板は、複数の熱電変換素子を実装し、電気的に接続するための配線導体を主面に形成してなる絶縁基板である。例えば、図2は、熱電モジュールを示した図1の平面図であり、一部の絶縁基板を除去して内部が見えるように描かれている。
【0022】
この図によれば、絶縁基板12の主面に配線導体13aが設けられ、さらにその上にN型熱電変換素子15a及びP型熱電変換素子15bが設けられている。なお、これらの熱電変換素子5と絶縁基板16との間にも、図示はしてないが、配線導体が設けられ、N型熱電変換素子15a及びP型熱電変換素子15bが電気的に直列に接続している。
【0023】
本発明の熱電変換モジュール用基板は、図2における絶縁基板12とその主面に設けられた配線導体13aからなり、配線導体13aの線膨張係数が4×10−6/K以上であることが重要である。線膨張係数が4×10−6/Kより小さい場合、絶縁基板12と配線導体13aとの熱膨張率の差が大きくなるため、150〜320℃で半田付け後に冷却すると、絶縁基板12と配線導体13aとの接合部に過大な応力が発生し、クラックや剥離が発生する。また長期の高温環境下、あるいは温度変動環境下での使用によっても絶縁基板12と配線導体13aとの接合部に過大な応力が発生し、クラックや剥離が発生する。
【0024】
この絶縁基板12と配線導体13aの接合部に生じる応力を低減し、さらに信頼性を高めるため、絶縁基板12の熱膨張係数は、特に4.5×10−6/K以上、好ましくは5×10−6/K以上であることが好ましい。また、その上限は、熱膨張係数の差を小さくするため、10×10−6/K、特に9×10−6/Kが好ましい。
【0025】
また、本発明によれば、前記配線導体間の距離に対する配線導体の長辺の比が15以下であることが重要である。即ち、図2の一部を拡大した図3によれば、絶縁基板22の主面に設けられた配線導体23aの上にN型熱電変換素子25aとP型熱電変換素子25bとが配列して搭載することができ、この時、配線導体23aの長辺Lと配線導体間の平均距離Dが、L/D≦15の関係を満足することを意味する。L/D>15である場合には、基板と配線導体との膨張率差が大きく異なるため、絶縁基板と配線導体との接合部に過大な応力が発生し、クラックや剥離が発生する。
【0026】
この絶縁基板と配線導体の接合部に生じる応力を低減し、さらに信頼性を高めるため、LとDとの関係は、特にL/D≦14、好ましくはL/D≦13であることが望ましい。
【0027】
なお、図3のように、配線導体間の平均距離Dが、横と縦とで異なる場合、横の平均距離Dと縦の平均距離Dとを平均してDを算出すれば良い。
【0028】
また、配線導体及び熱電変換素子が設けられた絶縁基板の主面において、配線導体の占める面積が主面の大きさの50〜85%であることが好ましい。配線導体の占有率を上記の範囲に設定することにより、絶縁基板の単位面積当りの冷熱効率を低下させることなく、熱膨張の差に起因する発生応力を低減して基板と配線導体との接合部に発生するクラックや剥離を抑制できる。
【0029】
さらに、発生する応力を低減するため、上記配線導体の面積占有率の上限を、特に80%、更には75%とすることが好ましく、また、絶縁基板の単位面積当りの冷熱効率を高めるため、配線導体の面積占有率の下限を、特に55%、更には60%とすることが好ましい。
【0030】
絶縁基板の強度は、200MPa以上、特に250MPa以上にすることが好ましく、これにより、応力集中が起こっても基板の破損を防止する効果を高め、より高い信頼性を得ることができる。
【0031】
絶縁基板は、耐振動、衝撃性、配線導体の密着強度を大きく、また、冷却面と放熱面の熱抵抗を小さくする必要があることから、アルミナ、窒化アルミニウム、窒化珪素、炭化珪素が強度及び熱伝導性などの理由から好適に使用される。特にコストの点からアルミナを、熱伝導率の点で窒化アルミニウムを、衝撃性や強度の点で窒化珪素を好適に使用できる。
【0032】
なお、本発明の絶縁基板は、公知の粉体プロセス及び焼結方法によって作製することができる。
【0033】
本発明の熱電変換素子は、Bi、Sb、Te、Seのうち少なくとも2種を含むことが好ましい。このような材料は性能指数に優れ、特に、A型金属間化合物であることが好ましく、例えばAがBi及び/又はSb、BがTe及び/又はSeからなる半導体結晶であって、組成比B/Aが1.4〜1.6であることが、室温における性能指数を高めるために好ましい。
【0034】
また、金属間化合物を効率よく半導体化するために、不純物をドーパントとして添加することができる。例えば、原料粉末にI、Cl及びBr等のハロゲン元素を含む化合物を含有せしめることにより、N型半導体を製造することができる。例えば、AgI粉末、CuBr粉末、SbI粉末、SbCl粉末、SbBr粉末、HgBr粉末等を単独または複数加えることにより、金属間化合物半導体中のキャリア濃度を調整することができ、その結果、性能指数を高めることが可能となる。上記のハロゲン元素は、効率的な半導体化の点で、0.01〜5重量%、特に0.05〜4重量%の割合で含むことが好ましい。
【0035】
さらに、P型半導体を製造する場合には、キャリア濃度調整のためにTeを添加することができ、N型半導体と同様に、性能指数を高めることができる。これにより、常温付近において良好な冷熱性能が得られる。
【0036】
また配線導体がCu、Al、Au、Pt、Ni及びWのうち少なくとも1種からなることが望ましい。これにより良好な電気電導性および密着強度が得られ、性能、信頼性に優れたモジュールが提供できる。
【0037】
本発明の熱電変換モジュールは、図1のように、絶縁基板2、6の上に配線導体3a、3bを形成し、配線導体3aと接続するように絶縁基板2、6で上記の熱電変換素子5を挟持する。この熱電変換素子5は、N型熱電変換素子(5a)及びP型熱電変換素子(5b)からなり、配線導体3a、3bによりP、N、P、Nの順に交互に且つ電気的に直列に接続される。さらに、配線導体3a、3bは外部接続端子4に接続し、外部から動作電源を供給する。
【0038】
このような構成にすることにより、温度制御に好適に応用される熱電変換モジュールを作製することができ、これによって、長寿命で、特性が安定性した熱電変換モジュールが実現できる。
【0039】
本発明は、絶縁基板の少なくとも一方が上記熱電変換素子であることが重要である。即ち、本発明の絶縁基板の表面に熱電変換素子をP型、N型交互に複数対直列に配列し、これを配線導体を用いて電気的に接続してモジュール化し、温度制御に好適に応用される熱電変換モジュールを作製することができる。
【0040】
上記の絶縁基板を用いた熱電変換モジュールは、熱電変換素子と配線導体との接合界面の破壊を防ぎ、長期信頼性に優れるため、半導体レーザや光集積回路などの恒温化、小型冷蔵庫として好適に使用することができる。
【0041】
【実施例】
出発原料には、純度99.99%以上のビスマス、テルル、およびセレンをn型としてBiTe2.85Se0.15となるように秤量し、これらの混合粉末をそれぞれパイレックス(R)ガラス管に真空封入しロッキング炉にて溶融・攪拌後冷却することにより熱電半導体材料インゴットを作製した。
【0042】
その後スタンプミルを用いて粗粉砕し、得られた粗粉砕原料に対して、SbI及びHgBrをそれぞれ0.1質量%ずつ加えて再度パイレックス(R)ガラス管に真空封入し、溶融・攪拌後、一端から徐々に冷却、固化させた。
【0043】
冷却後ガラス管から取り出し、スライスした。このようにして得られたウエハーを無電解メッキ法にて、10μmのNi層及び0.5μmのAu層を形成した。その後、1mm角にダイシングし、熱電変換素子とした。
【0044】
得られた熱電変換素子の線膨張係数αを、TMAを用いて−100〜400℃で測定した。
【0045】
絶縁基板は、テープ成形法、プレス法、鋳込み法、排泥法などの成形法、常圧焼成、加圧焼成、HIP焼成、ホットプレス焼成などの焼成法などのアルミナ、窒化アルミを製造する通常の製造方法で作製できる。配線導体の形成は、メタライズ法、メッキ法などの常法が適応できる。
【0046】
このようにして得られた絶縁基板の配線導体上に、半田ペーストを印刷し、その上に素子を並べ、絶縁基板の反対面から過熱し、素子を固定する。素子の数は、N型熱電変換素子及びP型熱電変換素子を同数ずつ、合計で表1に素子数として示す数だけ用いた。
【0047】
同様にしてもう一面の絶縁基板と素子を固定してサーモモジュールが得られる。リード線は、1面の絶縁基板接合と同時に接合してもよく、また両面の絶縁基板を接合した後に接合しても構わない。配線導体の密着強度は、配線導体にリード線を半田接合し、引っ張って強度を測定する。
【0048】
作製した熱電変換モジュールにおいて、絶縁基板の寸法、配線導体の長辺L、配線導体間の平均距離D及び電極面積を測定し、電極占有率Sを算出した。
【0049】
次に、熱電変換モジュールの信頼試験を行った。即ち、電圧を1.5分間印加(ON)した後、印加電圧を停止して(OFF)4.5分保持するON−OFFの通電サイクル試験(5000サイクル)を行った後に外観検査及び抵抗変化(ΔR)を交流4端子法により測定し、△Rが5%を超えるものはNGとした。
【0050】
【表1】

Figure 0003588355
【0051】
本発明の範囲の試料No.1〜2、4〜6、8〜10、12〜13、15〜20は、信頼性試験後の外観も良好で、試験前後の抵抗変化△Rも4.5%以下で、良好な耐久性を示した。
【0052】
一方、L/D>15で本発明の範囲外の試料No.3、7、11、14は信頼性試験後の電極剥がれが確認され、抵抗変化△Rも5%を超え、劣化が大きかった。
【0053】
【発明の効果】
絶縁基板と配線導体との線膨張係数の差を低減するとともに、配線導体間の間隔Dに対する配線導体の長さLを小さくする(L/D≦15)ことにより、絶縁基板と配線導体の接合部に発生する応力を低減し、破壊を防止することができる。
【0054】
【図面の簡単な説明】
【図1】本発明の熱電変換モジュールを示す斜視図である。
【図2】熱電変換モジュールを示す一部を示す平面図である。
【図3】熱電変換モジュールの一部を示す平面図である。
【符号の説明】
2、6、12、16、22・・・絶縁基板
3a、3b、13a、23a・・・配線導体
4・・・外部接続端子
5・・・熱電変換素子
5a、15a、25a・・・N型熱電変換素子
5b、15b、25b・・・P型熱電変換素子
7・・・外部配線
8・・・半田[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an insulating substrate used for a thermoelectric conversion module suitably used for temperature control and cooling, a thermoelectric conversion module substrate and a thermoelectric conversion module using the same.
[0002]
[Prior art]
A thermoelectric conversion module utilizing the Peltier effect has attracted attention for its wide use because it has a simple structure, is easy to handle, and can maintain stable characteristics. In particular, since local cooling can be performed and precise temperature control near room temperature is possible, it is used in devices that are precisely controlled to a constant temperature represented by semiconductor lasers, optical integrated circuits, and the like, small refrigerators, and the like.
[0003]
In such a thermoelectric conversion module, for example, as shown in FIG. 1, wiring conductors 3a and 3b are formed on the surfaces of insulating substrates 2 and 6, respectively, and N-type thermoelectric conversion elements 5a and P-type thermoelectric conversion elements 5b Are joined by solder so that a plurality of thermoelectric conversion elements 5 are sandwiched.
[0004]
These N-type thermoelectric conversion elements 5a and P-type thermoelectric conversion elements 5b are connected by wiring conductors 3a and 3b so as to be electrically connected in series, further connected to an external connection terminal 4, and externally connected by solder 8. Electric power is supplied from outside to the thermoelectric element 5 through the external wiring 7 fixed to the terminal 4.
[0005]
Copper electrodes are used for the wiring conductors 3a and 3b. However, in order to strengthen the solder joint with the thermoelectric conversion element 5, the wettability between the thermoelectric conversion element 5 and the solder is improved, and the diffusion of the solder component is reduced. To prevent this, the surface of the copper electrode may be plated with gold, or the connection surface of the thermoelectric conversion element 5 may be plated with Ni or gold to improve adhesion and wettability with solder.
[0006]
Conventionally, in an output cycle test or a temperature cycle test for turning on / off a current value (Imax) when the cooling surface and the heat radiation surface of the thermoelectric conversion module have a maximum temperature difference, the insulating substrate 2 and the wiring conductor are thermally stressed. There was a problem that the joint was damaged at No. 3.
[0007]
In the state of the maximum temperature difference, the dimensional difference increases due to the difference in temperature and coefficient of thermal expansion between the low-temperature substrate and the high-temperature substrate of the thermoelectric conversion module, and the tensile stress generated at the junction of the thermoelectric conversion element from the center to the outside increases. Becomes larger.
[0008]
This tensile stress is relieved by the built-in compressive stress of the thermoelectric conversion module.However, if one side is rapidly cooled, the thermal expansion coefficients of the insulating substrate, wiring conductor, solder layer, and thermoelectric conversion element are different. At the joint interface, breakage and cracks occurred, causing a deterioration in characteristics.
[0009]
On the high-temperature side substrate, the thermal expansion coefficient of the substrate and the wiring conductor formed on the surface thereof are different, so that repeated stress is generated at the joint between the substrate and the wiring conductor, which may cause cracks and peeling at the joint interface. .
[0010]
For this reason, it is known that the configuration and thickness of the bonding surface are improved and the mechanical strength of the bonding interface is improved. For example, when the thickness t of the nickel plating layer applied to the electrode end surface of the thermoelectric conversion element is set to be thick so as to satisfy b / t ≦ 100, where b is the length of one piece of the cross section of the thermoelectric conversion element, bonding is performed. JP-A-4-249385 describes that the mechanical strength of the interface is improved.
[0011]
[Problems to be solved by the invention]
However, although the thermoelectric conversion module described in JP-A-4-249385 has the effect of improving plating strength, it does not fundamentally relieve the thermal stress of the bonding surface, and is insufficient as a countermeasure. .
[0012]
Therefore, an object of the present invention is to provide a wiring board for a thermoelectric conversion module and a thermoelectric conversion module, which prevent breakage of a joint between an insulating substrate and a wiring conductor and have excellent long-term reliability.
[0013]
[Means for Solving the Problems]
The present invention reduces the difference in elongation caused by the difference in the coefficient of thermal expansion between the electrode and the insulating substrate by reducing the length of the wiring conductor with respect to the interval between the wiring conductors, and reduces the difference in expansion between the electrode and the insulating substrate. This is based on the finding that generated stress can be reduced and breakage can be prevented.
[0014]
That is, the substrate for a thermoelectric conversion module of the present invention is an insulating substrate on which a plurality of thermoelectric conversion elements are mounted and wiring conductors for electrical connection are formed on a main surface, and a linear expansion of the insulating substrate. The coefficient is 4 × 10 −6 / K or more, the strength of the insulating substrate is 200 MPa or more, and the ratio of the long side of the wiring conductor to the average distance between the wiring conductors is 15 or less.
[0015]
Further, it is preferable that a ratio of an area occupied by the wiring conductor to an area of a main surface of the insulating substrate is 50 to 85%. Thereby, the stress at the joint generated due to the difference in thermal expansion between the insulating substrate and the wiring conductor can be reduced, and breakage can be reduced.
[0017]
Further, it is preferable that the insulating substrate is made of a sintered body containing at least one of alumina and aluminum nitride as a main component. Thereby, good element retention, thermal conductivity, vibration resistance, impact resistance, and insulation can be expected.
[0018]
Further, it is preferable that the wiring conductor is made of at least one of Cu, Al, Au, Pt, Ni and W. Thereby, the breakage of the joint can be further reduced.
[0019]
Further, the thermoelectric conversion module of the present invention is provided so as to be sandwiched between a pair of opposed insulating substrates, a plurality of arranged thermoelectric conversion elements, and an electric connection between the plurality of thermoelectric conversion elements. A thermoelectric conversion module comprising: a wiring conductor provided on the surface of the pair of insulating substrates for external connection; and an external connection terminal provided on the insulating substrate and electrically connected to the wiring conductor. At least one of the pair of insulating substrates is a substrate for a thermoelectric conversion module of the present invention. Thereby, a highly reliable and long-life thermoelectric conversion module can be provided.
[0020]
In particular, it is preferable that the thermoelectric conversion element of the thermoelectric conversion module is made of at least two of Bi, Te, Se and Sb elements. Thereby, excellent thermoelectric conversion performance can be obtained at around normal temperature.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
The thermoelectric conversion module substrate of the present invention is an insulating substrate on which a plurality of thermoelectric conversion elements are mounted and a wiring conductor for electrical connection is formed on a main surface. For example, FIG. 2 is a plan view of FIG. 1 showing the thermoelectric module, in which a part of the insulating substrate is removed so that the inside can be seen.
[0022]
According to this figure, a wiring conductor 13a is provided on a main surface of an insulating substrate 12, and an N-type thermoelectric conversion element 15a and a P-type thermoelectric conversion element 15b are further provided thereon. Although not shown, a wiring conductor is also provided between the thermoelectric conversion element 5 and the insulating substrate 16, and the N-type thermoelectric conversion element 15a and the P-type thermoelectric conversion element 15b are electrically connected in series. Connected.
[0023]
The thermoelectric conversion module substrate of the present invention includes the insulating substrate 12 in FIG. 2 and the wiring conductor 13a provided on the main surface thereof, and the linear expansion coefficient of the wiring conductor 13a is 4 × 10 −6 / K or more. is important. When the coefficient of linear expansion is smaller than 4 × 10 −6 / K, the difference in the coefficient of thermal expansion between the insulating substrate 12 and the wiring conductor 13a increases. Excessive stress is generated at the joint with the conductor 13a, and cracks and separation occur. Also, even when used in a long-term high-temperature environment or a temperature-variable environment, excessive stress is generated at the joint between the insulating substrate 12 and the wiring conductor 13a, and cracks and peeling occur.
[0024]
In order to reduce the stress generated at the joint between the insulating substrate 12 and the wiring conductor 13a and further increase the reliability, the thermal expansion coefficient of the insulating substrate 12 is 4.5 × 10 −6 / K or more, preferably 5 ×. It is preferably at least 10 −6 / K. Further, the upper limit is preferably 10 × 10 −6 / K, particularly preferably 9 × 10 −6 / K in order to reduce the difference in the coefficient of thermal expansion.
[0025]
According to the present invention, it is important that the ratio of the long side of the wiring conductor to the distance between the wiring conductors is 15 or less. That is, according to FIG. 3 in which a part of FIG. 2 is enlarged, the N-type thermoelectric conversion elements 25a and the P-type thermoelectric conversion elements 25b are arranged on the wiring conductor 23a provided on the main surface of the insulating substrate 22. At this time, it means that the long side L of the wiring conductor 23a and the average distance D between the wiring conductors satisfy the relationship of L / D ≦ 15. When L / D> 15, the difference in expansion coefficient between the substrate and the wiring conductor is significantly different, so that excessive stress is generated at the joint between the insulating substrate and the wiring conductor, and cracks and peeling occur.
[0026]
In order to reduce the stress generated at the joint between the insulating substrate and the wiring conductor and further enhance the reliability, the relationship between L and D is preferably L / D ≦ 14, and more preferably L / D ≦ 13. .
[0027]
Incidentally, as shown in FIG. 3, the average distance D between the wiring conductors, differ in the horizontal and vertical, may be calculated D the horizontal average distance D 1 of the and the vertical and the average distance D 2 on average.
[0028]
Further, it is preferable that the area occupied by the wiring conductor on the main surface of the insulating substrate provided with the wiring conductor and the thermoelectric conversion element is 50 to 85% of the size of the main surface. By setting the occupation ratio of the wiring conductor in the above range, the stress generated due to the difference in thermal expansion is reduced without lowering the cooling efficiency per unit area of the insulating substrate, and the connection between the substrate and the wiring conductor is reduced. Cracks and peeling occurring in the portion can be suppressed.
[0029]
Further, in order to reduce the generated stress, the upper limit of the area occupancy of the wiring conductor is preferably set to 80%, more preferably 75%. In order to increase the cooling / heating efficiency per unit area of the insulating substrate, The lower limit of the area occupancy of the wiring conductor is particularly preferably 55%, more preferably 60%.
[0030]
The strength of the insulating substrate is preferably at least 200 MPa, particularly at least 250 MPa, whereby the effect of preventing damage to the substrate even when stress concentration occurs can be enhanced, and higher reliability can be obtained.
[0031]
Alumina, aluminum nitride, silicon nitride, and silicon carbide have high strength and strength because the insulating substrate needs to have high vibration resistance, shock resistance, and high adhesion strength between wiring conductors and low thermal resistance between the cooling surface and the heat radiation surface. It is preferably used for reasons such as thermal conductivity. In particular, alumina can be suitably used in terms of cost, aluminum nitride in terms of thermal conductivity, and silicon nitride in terms of impact resistance and strength.
[0032]
Note that the insulating substrate of the present invention can be manufactured by a known powder process and sintering method.
[0033]
The thermoelectric conversion element of the present invention preferably contains at least two of Bi, Sb, Te, and Se. Such a material has an excellent figure of merit, and is particularly preferably an A 2 B 3 type intermetallic compound, for example, a semiconductor crystal in which A is Bi and / or Sb and B is Te and / or Se, It is preferable that the composition ratio B / A is 1.4 to 1.6 in order to increase the figure of merit at room temperature.
[0034]
In order to efficiently convert the intermetallic compound into a semiconductor, an impurity can be added as a dopant. For example, an N-type semiconductor can be manufactured by adding a compound containing a halogen element such as I, Cl and Br to the raw material powder. For example, the carrier concentration in the intermetallic compound semiconductor can be adjusted by adding one or more of AgI powder, CuBr powder, SbI 3 powder, SbCl 3 powder, SbBr 3 powder, HgBr 2 powder or the like, and as a result, It is possible to increase the figure of merit. The halogen element is preferably contained at a ratio of 0.01 to 5% by weight, particularly 0.05 to 4% by weight, from the viewpoint of efficient semiconductor conversion.
[0035]
Further, when a P-type semiconductor is manufactured, Te can be added for adjusting the carrier concentration, and the figure of merit can be increased similarly to the N-type semiconductor. Thereby, good cooling performance near normal temperature is obtained.
[0036]
It is desirable that the wiring conductor be made of at least one of Cu, Al, Au, Pt, Ni and W. Thereby, good electrical conductivity and adhesion strength are obtained, and a module excellent in performance and reliability can be provided.
[0037]
In the thermoelectric conversion module of the present invention, as shown in FIG. 1, wiring conductors 3a and 3b are formed on insulating substrates 2 and 6, and the above-described thermoelectric conversion element is connected to insulating conductors 2 and 6 so as to be connected to wiring conductor 3a. 5 is pinched. The thermoelectric conversion element 5 is composed of an N-type thermoelectric conversion element (5a) and a P-type thermoelectric conversion element (5b). The wiring conductors 3a and 3b alternately and electrically electrically connect P, N, P, and N in this order. Connected. Further, the wiring conductors 3a and 3b are connected to the external connection terminals 4 to supply operation power from outside.
[0038]
With such a configuration, a thermoelectric conversion module that is suitably applied to temperature control can be manufactured, and thereby a thermoelectric conversion module having a long life and stable characteristics can be realized.
[0039]
In the present invention, it is important that at least one of the insulating substrates is the thermoelectric conversion element. That is, P-type and N-type thermoelectric conversion elements are alternately arranged in series on the surface of the insulating substrate of the present invention, and are electrically connected using wiring conductors to form a module, which is suitably applied to temperature control. The thermoelectric conversion module to be manufactured can be manufactured.
[0040]
The thermoelectric conversion module using the above-mentioned insulating substrate prevents breakage of the junction interface between the thermoelectric conversion element and the wiring conductor, and has excellent long-term reliability. Can be used.
[0041]
【Example】
As starting materials, bismuth, tellurium, and selenium having a purity of 99.99% or more were weighed as n-type Bi 2 Te 2.85 Se 0.15, and each of these mixed powders was Pyrex (R) glass. A thermoelectric semiconductor material ingot was produced by vacuum sealing in a tube, melting and stirring in a rocking furnace, and then cooling.
[0042]
Thereafter, the mixture was coarsely pulverized using a stamp mill, and SbI 3 and HgBr 2 were each added in an amount of 0.1% by mass to the obtained coarsely pulverized raw material, and the mixture was vacuum-sealed again in a Pyrex (R) glass tube and melted and stirred. Thereafter, it was gradually cooled and solidified from one end.
[0043]
After cooling, it was taken out of the glass tube and sliced. A 10 μm Ni layer and a 0.5 μm Au layer were formed on the wafer thus obtained by electroless plating. Thereafter, the resultant was diced into 1 mm square to obtain a thermoelectric conversion element.
[0044]
The linear expansion coefficient α of the obtained thermoelectric conversion element was measured at −100 to 400 ° C. using TMA.
[0045]
Insulating substrate is usually used to produce alumina, aluminum nitride, etc. by molding methods such as tape molding method, pressing method, casting method, mud discharging method, firing methods such as normal pressure firing, pressure firing, HIP firing, hot press firing etc. It can be manufactured by the manufacturing method described above. Conventional methods such as a metallization method and a plating method can be applied to the formation of the wiring conductor.
[0046]
Solder paste is printed on the wiring conductor of the insulating substrate thus obtained, elements are arranged thereon, and the element is fixed by heating from the opposite surface of the insulating substrate. As the number of elements, the same number of N-type thermoelectric conversion elements and P-type thermoelectric conversion elements were used, and the total number shown in Table 1 as the number of elements was used.
[0047]
Similarly, the thermo module is obtained by fixing the element on the other surface of the insulating substrate. The lead wires may be joined at the same time as the joining of the insulating substrate on one surface, or may be joined after joining the insulating substrates on both surfaces. The adhesion strength of the wiring conductor is measured by soldering a lead wire to the wiring conductor and pulling the lead wire to measure the strength.
[0048]
In the produced thermoelectric conversion module, the dimensions of the insulating substrate, the long side L of the wiring conductor, the average distance D between the wiring conductors, and the electrode area were measured, and the electrode occupancy S was calculated.
[0049]
Next, a reliability test of the thermoelectric conversion module was performed. That is, after the voltage is applied (ON) for 1.5 minutes, the applied voltage is stopped (OFF) and an ON-OFF energization cycle test (5000 cycles) is maintained for 4.5 minutes, and then the appearance inspection and the resistance change are performed. (ΔR) was measured by an AC four-terminal method, and those with ΔR exceeding 5% were regarded as NG.
[0050]
[Table 1]
Figure 0003588355
[0051]
Sample No. within the scope of the present invention. 1 to 2, 4 to 6, 8 to 10, 12 to 13, and 15 to 20 have good appearance after the reliability test, and a resistance change ΔR before and after the test of 4.5% or less, and good durability. showed that.
[0052]
On the other hand, sample No. L / D> 15 out of the range of the present invention. In 3, 7, 11, and 14, electrode peeling after the reliability test was confirmed, and the resistance change ΔR exceeded 5%, and the deterioration was large.
[0053]
【The invention's effect】
By reducing the difference in linear expansion coefficient between the insulating substrate and the wiring conductor, and reducing the length L of the wiring conductor with respect to the distance D between the wiring conductors (L / D ≦ 15), the joining between the insulating substrate and the wiring conductor is reduced. The stress generated in the portion can be reduced and breakage can be prevented.
[0054]
[Brief description of the drawings]
FIG. 1 is a perspective view showing a thermoelectric conversion module of the present invention.
FIG. 2 is a plan view showing a part of the thermoelectric conversion module.
FIG. 3 is a plan view showing a part of the thermoelectric conversion module.
[Explanation of symbols]
2, 6, 12, 16, 22 ... insulating substrates 3a, 3b, 13a, 23a ... wiring conductors 4 ... external connection terminals 5 ... thermoelectric conversion elements 5a, 15a, 25a ... N-type Thermoelectric conversion elements 5b, 15b, 25b P-type thermoelectric conversion element 7 External wiring 8 Solder

Claims (6)

複数の熱電変換素子を実装し、電気的に接続するための配線導体を主面に形成してなる絶縁基板であって、該絶縁基板の線膨張係数が4×10−6/K以上、前記絶縁基板の強度が200MPa以上、前記配線導体間の平均距離に対する配線導体の長辺の比が15以下であることを特徴とする熱電変換モジュ―ル用基板。An insulating substrate on which a plurality of thermoelectric conversion elements are mounted and a wiring conductor for electrical connection is formed on a main surface, wherein the linear expansion coefficient of the insulating substrate is 4 × 10 −6 / K or more. A substrate for a thermoelectric conversion module , wherein the strength of the insulating substrate is 200 MPa or more, and the ratio of the long side of the wiring conductor to the average distance between the wiring conductors is 15 or less. 前記絶縁基板の主面の面積に対する前記配線導体の占有する面積の割合が50〜85%であることを特徴とする請求項1に記載の熱電変換モジュール用基板。The thermoelectric conversion module substrate according to claim 1, wherein a ratio of an area occupied by the wiring conductor to an area of a main surface of the insulating substrate is 50 to 85%. 前記絶縁基板が、アルミナ、窒化アルミニウムのうち少なくとも1種を主成分とする焼結体からなることを特徴とする請求項1又は2記載の熱電変換モジュール用基板。Wherein the insulating substrate is alumina, according to claim 1 or 2 thermoelectric conversion module substrate according to, characterized in that a sintered body mainly composed of at least one of aluminum nitride. 前記配線導体がCu、Al、Au、Pt、Ni及びWのうち少なくとも1種からなることを特徴とする請求項1乃至のいずれかに記載の熱電変換モジュール用基板。The thermoelectric conversion module substrate according to any one of claims 1 to 3 , wherein the wiring conductor is made of at least one of Cu, Al, Au, Pt, Ni, and W. 対向する一対の絶縁基板と、該一対の絶縁基板に挟持されるように設けられ、複数配列された熱電変換素子と、該複数の熱電変換素子間を電気的に接続するために前記一対の絶縁基板の表面に設けられた配線導体と、前記絶縁基板上に設けられ、該配線導体と電気的に連結された外部接続端子とを具備する熱電変換モジュ―ルにおいて、前記一対の絶縁基板の少なくとも一方が、請求項1乃至のいずれかに記載の熱電変換モジュ―ル用基板であることを特徴とする熱電変換モジュール。A pair of opposing insulating substrates, a plurality of thermoelectric conversion elements provided so as to be sandwiched between the pair of insulating substrates, and the pair of insulating elements for electrically connecting the plurality of thermoelectric conversion elements. In a thermoelectric conversion module including a wiring conductor provided on a surface of a substrate and an external connection terminal provided on the insulating substrate and electrically connected to the wiring conductor, at least one of the pair of insulating substrates is provided. A thermoelectric conversion module, characterized in that one of the substrates is the thermoelectric conversion module substrate according to any one of claims 1 to 4 . 前記熱電変換モジュールの熱電変換素子が、Bi、Te、Se及びSb元素のうち少なくとも2種の元素からなることを特徴とする請求項記載の熱電変換モジュール。The thermoelectric conversion module according to claim 5, wherein the thermoelectric conversion element of the thermoelectric conversion module is made of at least two of Bi, Te, Se, and Sb elements.
JP2002156287A 2002-05-29 2002-05-29 Thermoelectric conversion module substrate and thermoelectric conversion module Expired - Fee Related JP3588355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002156287A JP3588355B2 (en) 2002-05-29 2002-05-29 Thermoelectric conversion module substrate and thermoelectric conversion module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002156287A JP3588355B2 (en) 2002-05-29 2002-05-29 Thermoelectric conversion module substrate and thermoelectric conversion module

Publications (2)

Publication Number Publication Date
JP2003347607A JP2003347607A (en) 2003-12-05
JP3588355B2 true JP3588355B2 (en) 2004-11-10

Family

ID=29772576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002156287A Expired - Fee Related JP3588355B2 (en) 2002-05-29 2002-05-29 Thermoelectric conversion module substrate and thermoelectric conversion module

Country Status (1)

Country Link
JP (1) JP3588355B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101980194B1 (en) * 2011-01-24 2019-05-21 삼성전자주식회사 Thermoelectric material comprising nano-inclusions, thermoelectric module and thermoelectric apparatus comprising same
JP2012196651A (en) * 2011-03-23 2012-10-18 Panasonic Corp Electrostatic atomizer and method for producing the same
KR101952358B1 (en) * 2011-10-31 2019-02-26 엘지이노텍 주식회사 The thermoelectric device having improved thermoelectric characteristics
KR101952883B1 (en) * 2011-10-31 2019-05-31 엘지이노텍 주식회사 The thermoelectric device having improved thermoelectric efficiency
WO2018151176A1 (en) 2017-02-15 2018-08-23 日本特殊陶業株式会社 Package with built-in thermoelectric element

Also Published As

Publication number Publication date
JP2003347607A (en) 2003-12-05

Similar Documents

Publication Publication Date Title
JP2004031696A (en) Thermoelectric module and method for manufacturing the same
CA2272193C (en) Improved thermoelectric module and method of manufacturing the same
US20080087317A1 (en) Thermoelectric Transducer
JP2007103580A (en) Thermoelectric transducer and method of manufacturing same
JP3550390B2 (en) Thermoelectric conversion element and thermoelectric module
JP2006332443A (en) Thermoelectric conversion module and power generator and cooling device using the same
JP2001267642A (en) Method of manufacturing thermoelectric conversion module
US20220181533A1 (en) Thermoelectric conversion module
JP2004031697A (en) Thermoelectric module
JP3588355B2 (en) Thermoelectric conversion module substrate and thermoelectric conversion module
JP4309623B2 (en) Electrode material for thermoelectric element and thermoelectric element using the same
JP2006237547A (en) Thermoelectric conversion module, power generator and cooler using the same
CN108028306A (en) Thermo-electric conversion module and thermoelectric conversion device
US20140360549A1 (en) Thermoelectric Module and Method of Making Same
JP2004235367A (en) Thermoelectric module
JP4005937B2 (en) Thermoelectric module package
JP3763107B2 (en) Thermoelectric conversion module and manufacturing method thereof
JP3457958B2 (en) Package for optical transmission module
JP3583112B2 (en) Thermoelectric module and cooling device
JP2006013200A (en) Thermoelectric transducing module, substrate therefor cooling device, and power generating device
JP3623178B2 (en) Thermoelectric conversion module integrated package
JP6809852B2 (en) Thermoelectric conversion element and thermoelectric conversion module
TW202002341A (en) Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
JP3007904U (en) Thermal battery
JPH1022531A (en) Thermoelectric converter element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040812

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3588355

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100820

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100820

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110820

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110820

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120820

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees