JP3583112B2 - Thermoelectric module and cooling device - Google Patents

Thermoelectric module and cooling device Download PDF

Info

Publication number
JP3583112B2
JP3583112B2 JP2002087269A JP2002087269A JP3583112B2 JP 3583112 B2 JP3583112 B2 JP 3583112B2 JP 2002087269 A JP2002087269 A JP 2002087269A JP 2002087269 A JP2002087269 A JP 2002087269A JP 3583112 B2 JP3583112 B2 JP 3583112B2
Authority
JP
Japan
Prior art keywords
thermoelectric
thermoelectric module
wiring conductor
thickness
thermoelectric element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002087269A
Other languages
Japanese (ja)
Other versions
JP2003282975A (en
Inventor
正人 福留
広一 田中
健一 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002087269A priority Critical patent/JP3583112B2/en
Publication of JP2003282975A publication Critical patent/JP2003282975A/en
Application granted granted Critical
Publication of JP3583112B2 publication Critical patent/JP3583112B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、半導体等の発熱体の冷却等に好適に使用され、熱電特性に優れる熱電モジュール及びそれを用いた冷却装置に関する。
【0002】
【従来技術】
ペルチェ効果を利用した熱電モジュールは、構造が簡単で、取り扱いが容易であるのみでなく、安定な特性を維持することが出来るため、広範囲にわたる利用が注目されている。特に、熱電モジュールを用いると局所冷却ができ、室温付近の精密な温度制御が可能であるため、半導体レーザや光集積回路等装置や小型冷蔵庫等などの一定温度に精密制御される装置に利用されている。
【0003】
一般にこのような熱電モジュールは、図1に示すように、支持基板1の上にN型熱電素子2aとP型熱電素子2bとが交互に配列し、支持基板上1に形成された配線導体4によって電気的に直列に連結されるように構成されている。そして、この配線導体4は、大電流にもたえうるように通常銅板からなり、半田層を介して、N型熱電素子2aおよびP型熱電素子2bを固着している。
【0004】
配線導体4と熱電素子2a、2bの接合部は、図2に示すように、配線導体4上には、半田層5、メッキ層6(金メッキ層6a、ニッケルメッキ層6b)を介して、N型熱電素子2aおよびP型熱電素子2bを交互にそれぞれ1対ずつ固着し、PNPNPNの順に直列に接続されるように構成されている。
【0005】
従来、熱電モジュールの冷却面Tcと放熱面Thが最大温度差になるように電流(Imax)を1.5秒間通電し、しかる後に4.5秒間通電を停止するのを繰り返す出力サイクル試験において、支持基板1と配線導体4の接合部分、配線導体4と半田層5の接合部分、さらに半田層5と金メッキ層6aの接合部分において、クラックや破損が発生するという問題があった。
【0006】
この場合、最大温度差が約70℃あるため、熱電モジュールの低温側基板と高温側基板との温度差によって寸法に差が生じ、熱応力が発生する。即ち、熱電素子2の中心から外側になるほど熱電素子2の接合部に生ずる引っ張り応力が大きくなる。片側が急激に冷却された場合、支持基板1、配線導体4、半田層5、熱電素子2の熱膨張率が異なるため、夫々の接合界面において、破壊、亀裂が生じ、特性低下の原因となっていた。
【0007】
このため、接合面の構成および厚みを改善し、接合界面の機械的強度を向上させる事が知られている。例えば、熱電素子2の電極端面に施すニッケルメッキ層6bの厚さxを、熱電素子2断面の1辺の長さをyとしたとき、y/x≦100を満たすように厚くすることによって、冷却面Tcと放熱面Thが最大温度差になるときの電流値(Imax)の通電をON/OFFさせる出力サイクル試験における接合界面の機械的強度を向上させることが特開平4−249385号公報に記載されている。
【0008】
【発明が解決しようとする課題】
しかしながら、特開平4−249385号公報に記載の熱電モジュールは、ニッケルメッキ層6と熱電素子2の界面の接合強度は改善できるものの、電極と半田層5の界面、半田層5と金メッキ層6aの界面の熱応力を十分に緩和できなという問題があった。
【0009】
したがって、本発明は、熱電モジュールの破壊を防止し、長期信頼性を改善することを目的とする。
【0010】
【課題を解決するための手段】
本発明は、熱電素子断面の1辺の長さに対して半田層および電極の厚みを小さくして、最大温度差を生じさせたときの接合界面における熱応力差を低減させることによって、熱電モジュールにおける接合界面の破壊を防止することができるという知見に基づくものである。
【0011】
即ち、本発明の熱電モジュールは、支持基板と、該支持基板上に配列され、端面にメッキ層が形成された複数の熱電素子と、該複数の熱電素子間を電気的に連結する配線導体と、前記支持基板上に設けられ、該配線導体と電気的に連結された外部接続端子とを具備し、各熱電素子の端面に形成されたメッキ層と前記配線導体が半田層を介して接合されてなる熱電モジュールにおいて、前記半田層の厚みと前記配線導体の厚みとの和に対する前記熱電素子の断面における1辺の平均長さの比が5〜15であることを特徴とするものである。
【0012】
特に、前記配線導体の厚みに対する前記熱電モジュールの断面における1辺の平均長さの比が5〜20であることが好ましい。これにより、接合界面における熱応力を緩和し、長期信頼性を向上するだけでなく、電極及び半田層の熱抵抗を低減することができるため、優れた熱電特性を発現することが可能となる。
【0013】
また、前記半田層の厚みに対する前記熱電素子の断面における1辺の平均長さの比が10〜100であることが好ましい。これにより、半田層界面の接合不良を低減し、かつ接合界面における熱応力を緩和し、長期信頼性を向上することができる。
【0014】
さらに、前記熱電素子が5×10−5Ωm以下の比抵抗を有することが好ましい。これにより、素子の内部に発生するジュール熱を抑制し、素子の温度を一定温度に制御することが容易になる。
【0015】
また、前記熱電素子の形状因子が2000/m以上、素子密度が100個/cm以上であることが好ましい。これにより、素子内部に生じる熱を効率良く冷却でき、且つ素子内部の発熱量を抑制することができる。
【0016】
さらに、前記熱電素子間の最短距離が200〜400μmであることが好ましい。これにより、単位面積あたりの素子数を向上することができ、かつ素子と電極との接合に用いる半田により素子間の電気的短絡を抑制することが可能となる。また、熱電素子内部で発生する熱を効率よく冷却し、熱電素子内部の発熱量を抑制することができる。また、本発明の冷却装置は、熱電モジュールを用いたことを特徴とする
【0017】
【発明の実施の形態】
本発明の熱電モジュールは、図1及び2のように構成されており、熱電素子断面の1辺の長さをtとしたとき、配線導体の厚みaと前記半田層厚みbとの和が、関係式5≦t/(a+b)≦15を満たすように構成されていることが重要である。
【0018】
このような関係にある場合、熱電素子の中心から外側になるほど熱電素子の接合部に生ずる引っ張り応力を低減することができる。
【0019】
よって、t/(a+b)が5より小さいと、接合部における抵抗が増大し、十分な熱電特性が得られないという不都合があり、また、15より大きいと接合部分においてクラックや破損が発生するという不都合がある。
【0020】
なお、熱電素子の断面が正方形の場合、tは一辺の長さになり、長方形の場合、tは長辺と短辺との平均となる。また、熱電素子の断面が円の場合、tは直径に相当する。
【0021】
また、本発明の熱電モジュールは、熱電素子断面の1辺の長さをtとしたとき、配線導体の厚みaおよび前記半田層厚みbが、5≦t/≦20、10≦t/≦100を満たすように構成されていることが好ましい。
【0022】
このような関係にある場合、支持基板1、配線導体4、半田層5、および熱電素子2の熱応力差が低減されるため、熱電素子2の中心から外側になるほど熱電素子2の接合部に生ずる引っ張り応力を低減することができる
本発明の熱電素子2は、Bi、Sb、Te、Seのうち少なくとも2種を含むことが重要であり、例えば、上記の金属を用いても良いが、A型金属間化合物及びその固溶体であることが好ましい。ここで、AがBi及び/又はSb、BがTe及び/又はSeからなる半導体結晶であって、特に組成比B/Aが1.4〜1.6であることが、室温における熱電特性を高めるために好ましい。
【0023】
型金属間化合物としては、公知であるBiTe、SbTe、BiSeの少なくとも1種であることが好ましく、固溶体としてBiTeとBiSeの固溶体であるBiTe3−xSe(x=0.05〜0.25)、又はBiTeとSbTeの固溶体であるBiSb2−xTe(x=0.1〜0.6)等を例示できる。
【0024】
また、金属間化合物を効率よく半導体化するために、ドーパントとしてI、Cl及びBr等のハロゲン元素を含むことが好ましい。このハロゲン元素は、半導体化の点で、上記の金属間化合物原料100重量部に対して0.01〜5重量部、特に0.1〜4重量部の割合で含まれることが好ましい。
【0025】
さらに、P型熱電素子を製造する場合には、キャリア濃度調整のためにTeを含むことが好ましい。これにより、N型熱電素子と同様に、熱電特性を高めることができる。
【0026】
P型及びN型熱電素子の比抵抗が、5×10−5Ωm以下、特に1.5×10−5Ωm以下であることが好ましい。これにより、素子内部で発生するジュール熱を抑制することができ、効率良く冷却することができる。熱電素子は電流を流すことによりペルチェ効果によって、一方の端部を発熱、さらにもう一方の端部で冷却することができる。しかしながら、熱電素子自体の抵抗により、素子内部にジュール熱が発生し、効率よく冷却することができなくなる。そのため、P型及びN型熱電素子の比抵抗を5×10−5Ωm以下、特に1.5×10−5Ωm以下にすることにより、効率よく冷却することができる。
【0027】
さらに本発明の熱電モジュールは、熱電素子の幅W、長さLで表される形状因子L/Sを2000/m以上にすることが重要であり、発熱体の冷却効率を高め、信頼性の高い熱電モジュールを実現することができる。この形状因子L/Sが2000/m未満であれば、熱電素子の内部において生じるジュール熱を放熱し難くなり、所定の冷却温度を達成できなくなる。特に、冷却効率を高めるため、L/Sは3000/m以上、更には5000/m以上、より好適には7000/m以上であることが好ましい。なお、上限は製造上の実現性から30000/mであることが好ましい。
【0028】
また、単位面積あたりの熱電素子数である素子密度が100個/cm以上であることも重要である。素子密度が100個/cmに満たないと、十分な吸熱量が得られないという問題が生じる。そして、吸熱量をより向上させるため、特に120個/cm以上、更には140個/cm以上であることが好ましい。
【0029】
熱電モジュールは、モジュールを構成する熱電素子の数が多くなれば、モジュールの低温側の吸熱量が増大し、効率良く冷却することができる。しかしながら、熱電素子数の増大は、モジュールの大型化を招くため、好ましくない。そこで熱電素子の断面積を小さくし、単位面積あたりの素子数を増やすことによって、限られたスペース内に多くの素子を配列させることができ、小型化、高効率化が可能となる。
【0030】
さらに複数の熱電素子が配列された熱電モジュールにおいて、熱電素子間で最も間隔の狭い距離、即ち最短距離が200〜400μm、特に250〜350μmであることことが好ましい。200μm未満であれば、熱電素子と基板上の電極との接合に用いる半田ペーストにより熱電素子間の電気的短絡の問題が発生する傾向があり、また、400μmを越えると、単位面積あたりの熱電素子数が減少し、モジュールの大型化、もしくは吸熱量の低下を招く恐れがある。
【0031】
以上のように構成される本発明の熱電モジュールは、優れた冷却効率を有するため、特に半導体レーザや光集積回路などの恒温化、小型冷蔵庫として好適に使用することができる。
【0032】
【実施例】
金属間化合物を放電プラズマ法により焼成し、比抵抗ρ、出力因子PF及び性能指数Zが表1に示した特性を有するN型及びP型の熱電素子が得られ、これをワイヤーソウにて所定の厚みにスライシング加工し、ウエハーを切り出した。
【0033】
熱伝導率測定には、直径10mm、厚み1mmの円板試料を、ゼーベック係数、抵抗率測定には縦3mm、横3mm、長さ15mmの角柱試料を作製した。また、熱電モジュールの作製には、上記のウエハーにNi電極、Au電極をメッキにて形成した後、ダイサーにより所定のチップ形状に切断加工した。
【0034】
熱伝導率はレーザーフラッシュ法により、ゼーベック係数、抵抗率は真空理工社製熱電能評価装置により、それぞれ20℃の条件下で測定した。そして、性能指数Zは、式Z=S/ρk(Sはゼーベック係数、ρは抵抗率、kは熱伝導率である)により算出し、出力因子PFは、PF=S/ρにより算出した。
【0035】
次に、熱電モジュールを作製した。即ち、N型熱電素子を31個、P型熱電素子を31個選び出し、縦6mm、横8.2mmのアルミナ基板上に形成された厚さaの銅電極表面に、厚さbの半田層を介して熱電素子を固着し、図1のような熱電モジュールを作製した。その際に、熱電素子の断面における1辺の平均長さt、形状因子L/S、素子密度d及び素子間最短距離Dが表1となるようにした。
【0036】
このようにして得られた熱電モジュールの外観観察を行い、配線導体と半田層との界面及び半田層とメッキ層との界面でクラックが発生しているかどうかを観察した。また、冷却テストを行った。即ち、基板1aの載置面8に発熱体としてヒータ9を設置し、ヒータの冷却面(Tc)が60℃の一定温度となるように加熱した。
【0037】
そして、熱電モジュールを構成する熱電素子に直列に直流電流を流し、冷却面Tc及び放熱面Thの温度を測定するとともに、熱電素子に流す電流を変えて発熱体9から吸熱量が最大になる時の電流を最大電流Imax、その時の吸熱量最大吸熱量Qcmaxを測定した。
【0038】
次いで、熱電モジュールの冷却面Tcと放熱面Thが最大温度差になるように電流値(Imax)の電流を1.5秒間通電した後、4.5秒間通電を停止する通電のON/OFFを5000回繰り返す出力サイクル試験を実施し、試験後にも、試験前と同様の方法で、モジュール特性(Imax、Qcmax)を測定した。結果を表1、2に示した。
【0039】
【表1】

Figure 0003583112
【0040】
【表2】
Figure 0003583112
【0041】
本発明の試料No.2〜6及び9〜15は、t/(a+b)が5〜15、t/aが5〜20、t/bが10〜100であって、外観にも異常がなく、試験前の最大電流Imaxが1.6A以上、最大吸熱量Qcmaxが3W以上であった。そして、出力サイクル試験後のImax及びQcmaxの変化率はいずれも5%以下で、大きな特性劣化は見られなかった。
【0042】
一方、t/(a+b)が0.99と小さい本発明の範囲外の試料No.1は、試験前の最大電流Imaxが1.50A、最大吸熱量Qcmaxが2.94Wであり、外観検査においてにクラックが観察された。そして、出力サイクル試験後のImaxが1.39A、Qcmaxは1.83Wに低下し、その変化率はそれぞれ7.3%、37.8%と大きく変化した。
【0043】
また、t/(a+b)が18.1と大きく、本発明の範囲外の試料No.7及び8は、試験前の最大電流Imaxが2.11A以上、最大吸熱量Qcmaxが3.85W以上であり、外観検査においてクラックが観察された。そして、出力サイクル試験後のQcmaxは2.87W以下に低下し、その変化率は28.4%以上であった。
【0044】
【発明の効果】
本発明の熱電モジュールは、配線導体厚みおよび半田層厚みに対する熱電素子厚みを小さくすることによって、熱電モジュールにおける接合界面の熱応力による破壊を防止することができ、その結果、長期にわたり優れた熱電特性を発現する熱電モジュール及びそれを用いた冷却装置を実現できる。
【図面の簡単な説明】
【図1】本発明の熱電モジュールの概略を示す斜視図である。
【図2】本発明の熱電モジュールの接合断面を示す図である。
【符号の説明】
1、・・・支持基板
1a、・・・上部支持基板
1b・・・下部支持基板
2・・・熱電素子
2a・・・N型熱電素子
2b・・・P型熱電素子
4・・・配線導体
5・・・半田層
6・・・メッキ層
6a・・・金メッキ層
6b・・・ニッケルメッキ層
8・・・載置面
9・・・発熱体
Tc・・・冷却面
Th・・・放熱面[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a thermoelectric module that is suitably used for cooling a heating element such as a semiconductor and has excellent thermoelectric characteristics and a cooling device using the same .
[0002]
[Prior art]
A thermoelectric module using the Peltier effect has attracted attention for its wide use because it has a simple structure, is easy to handle, and can maintain stable characteristics. In particular, the use of a thermoelectric module enables local cooling and precise temperature control near room temperature, so it is used for devices that are precisely controlled at a constant temperature, such as semiconductor lasers, optical integrated circuits, and small refrigerators. ing.
[0003]
Generally, as shown in FIG. 1, such a thermoelectric module has N-type thermoelectric elements 2a and P-type thermoelectric elements 2b alternately arranged on a support substrate 1, and a wiring conductor 4 formed on the support substrate 1. Are electrically connected in series. The wiring conductor 4 is usually made of a copper plate so as to be able to withstand a large current, and fixes the N-type thermoelectric element 2a and the P-type thermoelectric element 2b via a solder layer.
[0004]
As shown in FIG. 2, the joint between the wiring conductor 4 and the thermoelectric elements 2a and 2b is formed on the wiring conductor 4 via a solder layer 5, a plating layer 6 (gold plating layer 6a, nickel plating layer 6b). The thermoelectric elements 2a and the P-type thermoelectric elements 2b are alternately fixed in pairs, and are connected in series in the order of PNPNPN.
[0005]
Conventionally, in an output cycle test in which a current (Imax) is applied for 1.5 seconds so that the cooling surface Tc and the heat dissipation surface Th of the thermoelectric module have a maximum temperature difference, and then the application is stopped for 4.5 seconds. There is a problem that cracks and breakage occur at the joint between the support substrate 1 and the wiring conductor 4, the joint between the wiring conductor 4 and the solder layer 5, and further between the solder layer 5 and the gold plating layer 6a.
[0006]
In this case, since the maximum temperature difference is about 70 ° C., a size difference occurs due to a temperature difference between the low-temperature side substrate and the high-temperature side substrate of the thermoelectric module, and thermal stress is generated. That is, the tensile stress generated at the junction of the thermoelectric element 2 increases as the distance from the center of the thermoelectric element 2 to the outside increases. When one side is rapidly cooled, the thermal expansion coefficients of the support substrate 1, the wiring conductor 4, the solder layer 5, and the thermoelectric element 2 are different, so that destruction and cracking are generated at respective bonding interfaces, which causes deterioration of characteristics. I was
[0007]
For this reason, it is known that the configuration and thickness of the bonding surface are improved and the mechanical strength of the bonding interface is improved. For example, when the thickness x of the nickel plating layer 6b applied to the electrode end surface of the thermoelectric element 2 is set such that the length of one side of the cross section of the thermoelectric element 2 is y, y / x ≦ 100 is satisfied. Japanese Unexamined Patent Publication No. 4-249385 discloses that the mechanical strength of a bonding interface in an output cycle test for turning on / off the current value (Imax) when the cooling surface Tc and the heat radiation surface Th have a maximum temperature difference is turned on / off. Has been described.
[0008]
[Problems to be solved by the invention]
However, in the thermoelectric module described in JP-A-4-249385, although the bonding strength at the interface between the nickel plating layer 6 and the thermoelectric element 2 can be improved, the interface between the electrode and the solder layer 5 and between the solder layer 5 and the gold plating layer 6a can be improved. There is a problem that the thermal stress at the interface cannot be sufficiently reduced.
[0009]
Therefore, an object of the present invention is to prevent breakage of a thermoelectric module and improve long-term reliability.
[0010]
[Means for Solving the Problems]
The present invention provides a thermoelectric module by reducing the thickness of a solder layer and an electrode with respect to the length of one side of a cross section of a thermoelectric element to reduce a thermal stress difference at a bonding interface when a maximum temperature difference is generated. It is based on the finding that the destruction of the bonding interface can be prevented in the above.
[0011]
That is, the thermoelectric module of the present invention includes a support substrate, a plurality of thermoelectric elements arranged on the support substrate, and a plating layer formed on an end surface, and a wiring conductor that electrically connects the plurality of thermoelectric elements. An external connection terminal provided on the support substrate and electrically connected to the wiring conductor, wherein a plating layer formed on an end face of each thermoelectric element and the wiring conductor are joined via a solder layer. The ratio of the average length of one side in the cross section of the thermoelectric element to the sum of the thickness of the solder layer and the thickness of the wiring conductor is 5 to 15.
[0012]
In particular, the ratio of the average length of one side in the cross section of the thermoelectric module to the thickness of the wiring conductor is preferably 5 to 20. Thereby, not only the thermal stress at the bonding interface is relieved, the long-term reliability can be improved, but also the thermal resistance of the electrode and the solder layer can be reduced, so that excellent thermoelectric characteristics can be exhibited.
[0013]
It is preferable that the ratio of the average length of one side in the cross section of the thermoelectric element to the thickness of the solder layer is 10 to 100. As a result, poor bonding at the solder layer interface can be reduced, thermal stress at the bonding interface can be reduced, and long-term reliability can be improved.
[0014]
Further, it is preferable that the thermoelectric element has a specific resistance of 5 × 10 −5 Ωm or less. Thereby, Joule heat generated inside the element is suppressed, and it becomes easy to control the temperature of the element to a constant temperature.
[0015]
Preferably, the thermoelectric element has a shape factor of 2000 / m or more and an element density of 100 / cm 2 or more. Thus, the heat generated inside the element can be efficiently cooled, and the amount of heat generated inside the element can be suppressed.
[0016]
Further, it is preferable that the shortest distance between the thermoelectric elements is 200 to 400 μm. Thus, the number of elements per unit area can be improved, and electrical short circuit between the elements can be suppressed by the solder used for joining the elements and the electrodes. Further, heat generated inside the thermoelectric element can be efficiently cooled, and the amount of heat generated inside the thermoelectric element can be suppressed. Further, the cooling device of the present invention is characterized by using a thermoelectric module .
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
The thermoelectric module of the present invention is configured as shown in FIGS. 1 and 2, and when the length of one side of the cross section of the thermoelectric element is t, the sum of the thickness a of the wiring conductor and the thickness b of the solder layer is: It is important that the relational expression 5 ≦ t / (a + b) ≦ 15 is satisfied.
[0018]
In such a relationship, the tensile stress generated at the junction of the thermoelectric element can be reduced as the distance from the center of the thermoelectric element increases.
[0019]
Therefore, if t / (a + b) is smaller than 5, the resistance at the junction increases, and there is a disadvantage that sufficient thermoelectric characteristics cannot be obtained. If t / (a + b) is larger than 15, cracks and breakage occur at the junction. There are inconveniences.
[0020]
When the cross section of the thermoelectric element is a square, t is the length of one side, and when the cross section is a rectangle, t is the average of the long side and the short side. When the cross section of the thermoelectric element is a circle, t corresponds to the diameter.
[0021]
Further, in the thermoelectric module of the present invention, when the length of one side of the cross section of the thermoelectric element is t, the thickness a of the wiring conductor and the thickness b of the solder layer are 5 ≦ t / a ≦ 20, 10 ≦ t / b. It is preferable to be configured to satisfy ≦ 100.
[0022]
In such a relationship, the difference in thermal stress between the support substrate 1, the wiring conductor 4, the solder layer 5, and the thermoelectric element 2 is reduced. It is important that the thermoelectric element 2 of the present invention capable of reducing the generated tensile stress contains at least two of Bi, Sb, Te, and Se. For example, the above-mentioned metal may be used. is preferably 2 B 3 type intermetallic compounds and solid solutions thereof. Here, A is a semiconductor crystal made of Bi and / or Sb, B is Te and / or Se, and particularly, the composition ratio B / A is 1.4 to 1.6. Preferred to increase.
[0023]
The A 2 B 3 type intermetallic compound is preferably at least one of known Bi 2 Te 3 , Sb 2 Te 3 and Bi 2 Se 3 , and a solid solution of Bi 2 Te 3 and Bi 2 Se 3 is preferable. a solid solution Bi 2 Te 3-x Se x (x = 0.05~0.25), or Bi 2 Te 3 and Bi which is a solid solution of Sb 2 Te 3 x Sb 2- x Te 3 (x = 0. 1 to 0.6).
[0024]
Further, in order to efficiently convert the intermetallic compound into a semiconductor, it is preferable to include a halogen element such as I, Cl, and Br as a dopant. This halogen element is preferably contained in a proportion of 0.01 to 5 parts by weight, particularly 0.1 to 4 parts by weight, based on 100 parts by weight of the above-mentioned intermetallic compound raw material from the viewpoint of semiconductor conversion.
[0025]
Further, when manufacturing a P-type thermoelectric element, it is preferable to contain Te for adjusting the carrier concentration. Thereby, similarly to the N-type thermoelectric element, the thermoelectric characteristics can be improved.
[0026]
The specific resistance of the P-type and N-type thermoelectric elements is preferably 5 × 10 −5 Ωm or less, particularly preferably 1.5 × 10 −5 Ωm or less. Thereby, Joule heat generated inside the element can be suppressed, and cooling can be performed efficiently. The thermoelectric element can generate heat at one end and cool at the other end by the Peltier effect by passing a current. However, due to the resistance of the thermoelectric element itself, Joule heat is generated inside the element, and cooling cannot be performed efficiently. Therefore, by setting the specific resistance of the P-type and N-type thermoelectric elements to 5 × 10 −5 Ωm or less, particularly 1.5 × 10 −5 Ωm or less, cooling can be performed efficiently.
[0027]
Further, in the thermoelectric module of the present invention, it is important that the shape factor L / S represented by the width W and the length L of the thermoelectric element is 2000 / m or more, so that the cooling efficiency of the heating element is increased and the reliability is improved. A high thermoelectric module can be realized. If the shape factor L / S is less than 2000 / m, it becomes difficult to radiate Joule heat generated inside the thermoelectric element, and it is impossible to achieve a predetermined cooling temperature. In particular, in order to increase the cooling efficiency, the L / S is preferably 3000 / m or more, more preferably 5000 / m or more, and more preferably 7000 / m or more. The upper limit is preferably 30,000 / m from the viewpoint of manufacturing feasibility.
[0028]
It is also important that the element density, which is the number of thermoelectric elements per unit area, is 100 / cm 2 or more. If the element density is less than 100 pieces / cm 2 , there is a problem that a sufficient heat absorption amount cannot be obtained. Then, in order to further improve the heat absorption amount, especially 120 / cm 2 or more, and further preferably not 140 / cm 2 or more.
[0029]
In a thermoelectric module, when the number of thermoelectric elements constituting the module increases, the amount of heat absorbed on the low-temperature side of the module increases, and cooling can be performed efficiently. However, an increase in the number of thermoelectric elements is not preferable because it increases the size of the module. Therefore, by reducing the cross-sectional area of the thermoelectric element and increasing the number of elements per unit area, many elements can be arranged in a limited space, and miniaturization and high efficiency can be achieved.
[0030]
Further, in a thermoelectric module in which a plurality of thermoelectric elements are arranged, it is preferable that the distance between the thermoelectric elements which is the shortest, that is, the shortest distance is 200 to 400 μm, particularly 250 to 350 μm. If the thickness is less than 200 μm, a problem of an electrical short circuit between the thermoelectric elements tends to occur due to the solder paste used for joining the thermoelectric element and the electrode on the substrate, and if it exceeds 400 μm, the thermoelectric element per unit area The number may decrease, which may lead to an increase in the size of the module or a decrease in heat absorption.
[0031]
Since the thermoelectric module of the present invention configured as described above has excellent cooling efficiency, it can be suitably used particularly as a thermostat for a semiconductor laser or an optical integrated circuit, and as a small refrigerator.
[0032]
【Example】
The intermetallic compound is fired by a discharge plasma method to obtain N-type and P-type thermoelectric elements having the specific resistance ρ, the power factor PF, and the performance index Z having the characteristics shown in Table 1, which are predetermined with a wire saw. The wafer was cut out by slicing to a thickness of.
[0033]
For the measurement of the thermal conductivity, a disk sample having a diameter of 10 mm and a thickness of 1 mm was prepared, and for the measurement of the Seebeck coefficient and the resistivity, a prism sample having a length of 3 mm, a width of 3 mm and a length of 15 mm was prepared. Further, to manufacture the thermoelectric module, Ni electrodes and Au electrodes were formed on the above-mentioned wafer by plating, and then cut into a predetermined chip shape by a dicer.
[0034]
The thermal conductivity was measured by the laser flash method, and the Seebeck coefficient and the resistivity were measured by a thermoelectric evaluation device manufactured by Vacuum Riko Co., Ltd. at 20 ° C., respectively. The figure of merit Z is calculated by the formula Z = S 2 / ρk (S is a Seebeck coefficient, ρ is resistivity, and k is thermal conductivity), and the output factor PF is calculated by PF = S 2 / ρ. did.
[0035]
Next, a thermoelectric module was manufactured. That is, 31 N-type thermoelectric elements and 31 P-type thermoelectric elements were selected, and a solder layer having a thickness b was formed on the surface of a copper electrode having a thickness a formed on an alumina substrate having a length of 6 mm and a width of 8.2 mm. The thermoelectric element was fixed through the intermediary, and a thermoelectric module as shown in FIG. 1 was produced. At this time, the average length t of one side in the cross section of the thermoelectric element, the shape factor L / S, the element density d, and the shortest distance D between the elements were as shown in Table 1.
[0036]
The appearance of the thermoelectric module thus obtained was observed, and it was observed whether cracks occurred at the interface between the wiring conductor and the solder layer and at the interface between the solder layer and the plating layer. In addition, a cooling test was performed. That is, a heater 9 was provided as a heating element on the mounting surface 8 of the substrate 1a, and the heater was heated such that the cooling surface (Tc) of the heater had a constant temperature of 60 ° C.
[0037]
Then, a direct current is applied in series to the thermoelectric elements constituting the thermoelectric module to measure the temperatures of the cooling surface Tc and the heat radiating surface Th, and when the amount of heat absorbed from the heating element 9 is maximized by changing the current applied to the thermoelectric elements. Was measured as the maximum current I max , and the endothermic maximum endothermic amount Qc max at that time.
[0038]
Then, a current having a current value (I max ) is applied for 1.5 seconds so that the cooling surface Tc and the heat radiation surface Th of the thermoelectric module have the maximum temperature difference, and then the energization is stopped for 4.5 seconds. Was repeated 5000 times, and after the test, module characteristics (I max , Qc max ) were measured by the same method as before the test. The results are shown in Tables 1 and 2.
[0039]
[Table 1]
Figure 0003583112
[0040]
[Table 2]
Figure 0003583112
[0041]
Sample No. of the present invention 2 to 6 and 9 to 15 have t / (a + b) of 5 to 15, t / a of 5 to 20, and t / b of 10 to 100, and have no abnormality in appearance and the maximum current before the test. I max was 1.6 A or more, and maximum heat absorption Qc max was 3 W or more. Then, the change rates of I max and Qc max after the output cycle test were all 5% or less, and no significant characteristic deterioration was observed.
[0042]
On the other hand, t / (a + b) was as small as 0.99, and sample No. out of the range of the present invention. Sample No. 1 had a maximum current I max of 1.50 A and a maximum heat absorption Qc max of 2.94 W before the test, and cracks were observed in the appearance inspection. Then, after the output cycle test, I max decreased to 1.39 A and Qc max decreased to 1.83 W, and the rates of change greatly changed to 7.3% and 37.8%, respectively.
[0043]
In addition, t / (a + b) was as large as 18.1 and the sample No. out of the range of the present invention. In Nos. 7 and 8, the maximum current I max before the test was 2.11 A or more, and the maximum heat absorption Qc max was 3.85 W or more, and cracks were observed in the appearance inspection. Then, Qc max after the output cycle test was reduced to 2.87 W or less, and the rate of change was 28.4% or more.
[0044]
【The invention's effect】
The thermoelectric module of the present invention can prevent breakage due to thermal stress at the bonding interface in the thermoelectric module by reducing the thickness of the thermoelectric element with respect to the thickness of the wiring conductor and the thickness of the solder layer. And a cooling device using the same .
[Brief description of the drawings]
FIG. 1 is a perspective view schematically showing a thermoelectric module of the present invention.
FIG. 2 is a view showing a junction cross section of the thermoelectric module of the present invention.
[Explanation of symbols]
1, support substrate 1a, upper support substrate 1b, lower support substrate 2, thermoelectric element 2a, N-type thermoelectric element 2b, P-type thermoelectric element 4, wiring conductor 5 solder layer 6 plating layer 6a gold plating layer 6b nickel plating layer 8 mounting surface 9 heating element Tc cooling surface Th ... heat radiation surface

Claims (7)

支持基板と、該支持基板上に配列され、端面にメッキ層が形成された複数の熱電素子と、該複数の熱電素子間を電気的に連結する配線導体と、前記支持基板上に設けられ、該配線導体と電気的に連結された外部接続端子とを具備し、各熱電素子の端面に形成された前記メッキ層と前記配線導体が半田層を介して接合されてなる熱電モジュールにおいて、前記半田層の厚みと前記配線導体の厚みとの和に対する前記熱電素子の断面における1辺の平均長さの比が5〜15であることを特徴とする熱電モジュール。A support substrate, a plurality of thermoelectric elements arranged on the support substrate, and a plating layer formed on an end surface, a wiring conductor for electrically connecting the plurality of thermoelectric elements, and provided on the support substrate, An external connection terminal electrically connected to the wiring conductor , wherein the plating layer formed on the end face of each thermoelectric element and the wiring conductor are joined via a solder layer; A thermoelectric module wherein a ratio of an average length of one side in a cross section of the thermoelectric element to a sum of a thickness of a layer and a thickness of the wiring conductor is 5 to 15. 前記配線導体の厚みに対する前記熱電モジュールの断面における1辺の平均長さの比が5〜20であること特徴とする請求項1記載の熱電モジュール。The thermoelectric module according to claim 1, wherein a ratio of an average length of one side in a cross section of the thermoelectric module to a thickness of the wiring conductor is 5 to 20. 前記半田層の厚みに対する前記熱電素子の断面における1辺の平均長さの比が10〜100であることを特徴とする請求項1又は2記載の熱電モジュール。The thermoelectric module according to claim 1, wherein a ratio of an average length of one side in a cross section of the thermoelectric element to a thickness of the solder layer is 10 to 100. 4. 前記熱電素子が5×10−5Ωm以下の比抵抗を有することを特徴とする請求項1乃至3のいずれかに記載の熱電モジュール。4. The thermoelectric module according to claim 1, wherein the thermoelectric element has a specific resistance of 5 × 10 −5 Ωm or less. 5 . 前記熱電素子の形状因子が2000/m以上、素子密度が100個/cm2以上であることを特徴とする請求項1乃至4のいずれかに記載の熱電モジュール。The thermoelectric module according to any one of claims 1 to 4, wherein the thermoelectric element has a shape factor of 2000 / m or more and an element density of 100 / cm2 or more. 前記熱電素子間の最短距離が200〜400μmであることを特徴とする請求項1乃至5のいずれかに記載の熱電モジュール。The thermoelectric module according to any one of claims 1 to 5, wherein the shortest distance between the thermoelectric elements is 200 to 400 µm. 請求項1〜6のずれかに記載の熱電モジュールを用いたことを特徴とする冷却装置 A cooling device using the thermoelectric module according to any one of claims 1 to 6 .
JP2002087269A 2002-03-27 2002-03-27 Thermoelectric module and cooling device Expired - Fee Related JP3583112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002087269A JP3583112B2 (en) 2002-03-27 2002-03-27 Thermoelectric module and cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002087269A JP3583112B2 (en) 2002-03-27 2002-03-27 Thermoelectric module and cooling device

Publications (2)

Publication Number Publication Date
JP2003282975A JP2003282975A (en) 2003-10-03
JP3583112B2 true JP3583112B2 (en) 2004-10-27

Family

ID=29233523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002087269A Expired - Fee Related JP3583112B2 (en) 2002-03-27 2002-03-27 Thermoelectric module and cooling device

Country Status (1)

Country Link
JP (1) JP3583112B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009302332A (en) * 2008-06-13 2009-12-24 Aruze Corp Thermoelectric conversion element and conductive member for thermoelectric conversion element
WO2011047404A2 (en) * 2009-10-23 2011-04-28 Miba Sinter Austria Gmbh Thermogenerator

Also Published As

Publication number Publication date
JP2003282975A (en) 2003-10-03

Similar Documents

Publication Publication Date Title
CN100397671C (en) Thermoelectric inverting model
Li et al. Bismuth telluride/half‐Heusler segmented thermoelectric unicouple modules provide 12% conversion efficiency
EP1594173A1 (en) Cooling device for electronic component using thermo-electric conversion material
JP2004031696A (en) Thermoelectric module and method for manufacturing the same
EA000388B1 (en) Method of fabrication of thermoelectric modules and solder for such fabrication
JP3245793B2 (en) Manufacturing method of thermoelectric conversion element
JP2013236057A (en) Thermoelectric conversion module
JP5713526B2 (en) Thermoelectric conversion module, cooling device, power generation device and temperature control device
KR102510123B1 (en) Thermoelectric element
JP4309623B2 (en) Electrode material for thermoelectric element and thermoelectric element using the same
CN110260556B (en) Thermoelectric refrigerating device and preparation method thereof
JP3583112B2 (en) Thermoelectric module and cooling device
JP2012069880A (en) Thermoelectric element and thermoelectric module equipped with the same
JP2003174204A (en) Thermoelectric conversion device
JP3588355B2 (en) Thermoelectric conversion module substrate and thermoelectric conversion module
JP2008085309A (en) Thermoelectric conversion module, its manufacturing method, and thermoelectric conversion material used for thermoelectric conversion module
JP2006013200A (en) Thermoelectric transducing module, substrate therefor cooling device, and power generating device
JP4005937B2 (en) Thermoelectric module package
CN101232071A (en) Thermoelectric module and package thereof
KR102456680B1 (en) Thermoelectric element
JP2004281451A (en) Thermoelectric conversion element
JP2005016836A (en) Cooling device
Tan et al. Fabrication of thermoelectric cooler for device integration
KR102333422B1 (en) Bulk thermoelectric element and manufacturing method thereof
CN110268536A (en) Thermoelectric element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040727

R150 Certificate of patent or registration of utility model

Ref document number: 3583112

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees