JP3588230B2 - Manufacturing method of wiring board - Google Patents

Manufacturing method of wiring board Download PDF

Info

Publication number
JP3588230B2
JP3588230B2 JP20603597A JP20603597A JP3588230B2 JP 3588230 B2 JP3588230 B2 JP 3588230B2 JP 20603597 A JP20603597 A JP 20603597A JP 20603597 A JP20603597 A JP 20603597A JP 3588230 B2 JP3588230 B2 JP 3588230B2
Authority
JP
Japan
Prior art keywords
heat
insulating layer
transfer member
heat transfer
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20603597A
Other languages
Japanese (ja)
Other versions
JPH1154939A (en
Inventor
桂 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP20603597A priority Critical patent/JP3588230B2/en
Publication of JPH1154939A publication Critical patent/JPH1154939A/en
Application granted granted Critical
Publication of JP3588230B2 publication Critical patent/JP3588230B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49109Connecting at different heights outside the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15153Shape the die mounting substrate comprising a recess for hosting the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1532Connection portion the connection portion being formed on the die mounting surface of the substrate

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、MPU等の高消費電力のLSIや、パワーIC素子等を搭載した半導体素子収納用パッケージや、抵抗素子などの発熱素子を搭載したプリント配線基板の改良に関するものである。
【0002】
【従来技術】
従来より、電子機器は小型化が進んでいるが、近年携帯情報端末の発達や、コンピューターを持ち運んで操作する、いわゆるモバイルコンピューティングの普及によってさらに小型、薄型且つ高精細の多層配線基板が求められる傾向にある。
【0003】
従来のプリント配線基板では、プリプレグと呼ばれる有機樹脂を含む平板の表面に銅箔を接着した後、これをエッチングして微細な回路を形成し、これを積層した後、所望位置にマイクロドリルでスルーホールの穴明けを行い、そのホール内壁にメッキ法により金属を付着させてスルーホール導体を形成して各層間の電気的な接続を行っている。
【0004】
ところが、この方法では、スルーホール導体は配線基板全体にわたり貫通したものであるために、積層数が増加するに伴い、スルーホール数が増加すると、配線に必要なスペースが確保できなくなるという問題が生じ、電子機器の軽量、小型化に伴うプリント基板の薄層化、小型化、軽量化に対しては、対応できないのが現状である。
【0005】
そこで、最近では、絶縁層に対して形成したビアホール内に金属粉末を充填してビアホール導体を形成した後、他の絶縁層を積層して多層化した配線基板が提案されている。
【0006】
また、従来のプリント配線基板に対して、半導体素子やコンデンサ素子、抵抗素子などを実装する場合には、配線基板の表面に形成された配線回路層に対してこれらの電気素子を半田等により実装し、実装した素子を樹脂によってモールドする方法、絶縁基板の表面に凹部を形成して、その凹部内に素子を収納して樹脂モールドしたり、蓋体によって凹部を気密に封止する方法がある。
【0007】
また、これらの電気素子の中には、パワーIC素子や抵抗素子など、作動時に発熱する素子も多く、IC素子などにおいては、発生した熱によりIC素子が誤動作するなどの問題が生じるために、これら素子自体の熱をいかに放散させて素子自体の温度を低下させるかが大きな課題となっている。
【0008】
このような素子から発生した熱を放散するための構造としては、例えば、半導体素子収納用パッケージにおいては、図6に示すように、絶縁基板51の表面にIC素子52が実装され、このIC素子52と絶縁基板51内に形成された配線回路層53とスルーホール導体54を介して絶縁基板51の底面に形成された接続端子55と電気的に接続されている。そして、IC素子52には直に金属からなる放熱体56が取付られている。また、図7は、絶縁基板57の表面に形成された配線回路層58とTAB接続されたIC素子59が絶縁基板57内に収納され、配線回路層58に対して、接続端子60が取付られている。そして、絶縁基板57の一方の表面には放熱体61が取り付けられている。
【0009】
【発明が解決しようとする課題】
しかしながら、従来の図6や図7に示したような放熱構造においては、素子を搭載する配線基板自体が放熱体を配線基板の少なくとも一方の表面に接合するために必然的に嵩高くなり、小型の電子機器に搭載するのが困難である。しかも、パッケージの一方の面に放熱体が取り付けられるために、電気素子などの高密度実装化、多素子化が難しく、素子の多ピン化にも対応できないという問題があった。
【0010】
また、ビアホール導体を金属粉末の充填によって形成する方法は、ビアホール導体の小径化が可能であるとともに、任意の位置に配設できる点で配線基板の小型化に対しては有効であるが、配線基板をより多層化したとしても、その配線基板に搭載する素子は、配線基板の表面にしか実装することができないために、配線基板の小型化には自ずと限界があった。
【0011】
従って、本発明は、半導体素子や抵抗素子などの発熱素子を搭載する多層配線基板において、発熱素子を冷却するとともに、発生した熱を効率的に放散することのできる配線基板を効率的に製造する方法を提供することを目的とするものである。さらに、本発明は、配線基板に対して多くの素子を搭載することができるとともに、それらの素子から発生する熱を素子の実装密度を下げることなく、放散させることのできる配線基板の製造方法を提供することを目的とするものである。
【0012】
【課題を解決するための手段】
本発明者らは、熱硬化性樹脂を含有する絶縁基板の表面および/または内部に配線回路層を被着形成し、絶縁基板の表面および/または内部に電気素子を搭載した配線基板に対して、電気素子の実装密度を下げることなく、発熱性電気素子の温度を低減できる構造について検討を重ねた結果、発熱性電気素子近傍の絶縁基板内部に金属箔からなる伝熱層を埋設することにより、電気素子から発生した熱を伝熱層により配線基板全体に拡散させて均熱化させることができ、これにより素子の温度を低下させることができることを見いだし、本発明に至った。
【0013】
即ち、本発明の配線基板の製造方法は、(a)少なくとも熱硬化性樹脂を含む非硬化または半硬化の軟質状態の絶縁層にビアホール導体および配線回路層を形成する工程と、(b)少なくとも熱硬化性樹脂を含む非硬化または半硬化の軟質状態の絶縁層に伝熱部材を埋設する工程と、(c)少なくとも熱硬化性樹脂を含む非硬化または半硬化の軟質状態の絶縁層に空隙部を形成し、該空隙部内に発熱性電気素子を収納する工程と、(d)前記(a)(b)(c)で作製された絶縁層を、前記発熱性電気素子の近傍に前記伝熱部材が位置するとともに、前記発熱性電気素子が基板内部に内蔵されるように積層する工程と、(f)前記積層物を一括して完全硬化する工程と、を具備することを特徴とするものである。
【0014】
本発明の配線基板によれば、伝熱部材を、発熱性の電気素子(以下、発熱素子という。)が搭載された近傍の絶縁基板内に埋設したことにより、発熱素子から発生した熱を伝熱部材を介して、配線基板全体に均熱化させることができる結果、電気素子の発生熱により熱の淀みを解消し、発熱素子の温度を低下させることができる。また、この伝熱部材の端部を配線基板の側面から露出または突出させることにより、発熱素子から発生した熱を伝熱部材を介して、基板外に放熱することができる。
【0015】
本発明によれば、電気素子を絶縁基板内部に設けた空隙内にて実装させることにより、配線基板の表面のみならず、基板内部に電気素子を搭載することができる結果、配線基板の多素子実装化、高密度実装化が可能となるとともに、それらの電気素子に対して、個々に伝熱部材を形成することにより、発生した熱の均熱化と放熱性を高めることができる。
【0016】
【発明の実施の形態】
以下、本発明を図面をもとに説明する。図1は、電気素子を配線基板の表面に実装したタイプの配線基板の基本的な構造を説明するための要部切り欠き斜視図である。図1によれば、配線基板1は、少なくとも熱硬化性樹脂を含む複数の絶縁層2a、2b、2cおよび2dを積層してなる絶縁基板3の表面および内部に配線回路層4が形成され、さらに、絶縁基板3内には異なる層間の配線回路層を接続するためのビアホール導体5を具備する。そして、図1の配線基板によれば、絶縁基板3の表面には、発熱素子6を収納するためのキャビティ7が設けられ、絶縁基板3の表面に形成された配線回路層4とワイヤーボンディング8等により電気的に接続されている。
【0017】
また、発熱素子6が収納されたキャビティ7の底面には、高熱伝導性材料からなる伝熱部材9が埋設されている。この伝熱部材9は、図1に示すように、キャビティ7の底面を形成する絶縁層2bの表面の発熱素子6の近傍、即ち、発熱素子6と接触するか、または発熱素子6と対面する場所を含め、ビアホール導体5や配線回路層4が設けられていない領域に伝熱部材9が埋設されている。
【0018】
このような構造において、発熱素子6から発生した熱は、伝熱部材9によって、配線基板全体に拡散され、均熱化されると同時に、発熱素子6での熱の淀みを防止し、発熱素子6を冷却することができる。なお、この伝熱部材9は、配線基板の表面で埋設すると、配線基板の表面での回路設計が大きく制約されるために、絶縁基板の内部に埋設されることが必要である。
【0019】
また、伝熱部材9の端部は、配線基板1の側面に露出しているか、あるいは図1の端部10のように、配線基板1の側面から突出させることが望ましい。このように、伝熱部材9の端部を配線基板1の側面から露出または突出させることにより、伝熱部材9の伝達された熱が、伝熱部材9の露出面、または端部10の突出部12から熱を放散することができる。なお、この場合、伝熱部材9の突出部11は、放熱フィンなどの他の放熱部材(図示せず)と熱的に接続して、さらに放熱性を高めることもできる。
【0020】
図1に示した配線基板は、例えば、以下の方法によって作製される。まず、図2(a)に示すように、熱硬化性樹脂を含有する非硬化または半硬化の軟質状態の絶縁層2aにビアホールを形成して、その内部に金属粉末を含有する導体ペーストを充填してビアホール導体5aを形成する。それと同時に、半導体素子6を収納するためのキャビティ7をパンチング等により形成する。また、絶縁層2aの所定箇所に配線回路層4aを被着形成する。配線回路層4aは、1)絶縁層の表面に金属箔を貼り付けた後、エッチング処理して回路パターンを形成する方法、2)絶縁層表面にレジストを形成して、メッキにより形成する方法、3)転写フィルム表面に金属箔を貼り付け、金属箔をエッチング処理して配線回路層を形成した後、この金属箔からなる配線回路層を絶縁層表面に転写させる方法等により形成することができる。
【0021】
また、同様に図2(b)に軟質状態の絶縁層2bに対して、絶縁層2aと同様に、所定箇所にビアホール導体を5bおよび配線回路層4bを形成する。そして、絶縁層2bのキャビティ7の底面を形成する箇所に伝熱部材9を埋設する。伝熱部材9の埋設は、軟質状態の絶縁層2bに対して、伝熱部材9を圧着して強制的に埋め込むか、または伝熱部材9の厚みが厚い場合には、絶縁層2bの所定箇所に凹部を形成して、その凹部内に、伝熱部材9を嵌め込む。凹部の形成は、軟質の絶縁層2a’の表面を加工するか、または型材にスラリーを流して形成すればよい。また、絶縁層2b’には、絶縁層2aと同様に、所定箇所にビアホール導体5および配線回路層4を形成する。
【0022】
さらに、上記の絶縁層2a、2bと同様に、図2(c)(d)に示すように、軟質状態の絶縁層2cおよび絶縁層2dに対しても、ビアホール導体5c,5dと配線回路層4c、5cを形成する。
【0023】
そして、これら絶縁層2a、2b、2cおよび2dを位置合わせして積層圧着した後、熱硬化性樹脂が完全硬化するに十分な温度で加熱して多層配線基板を作製する。そして、その基板のキャビティ7内の伝熱部材9の表面に半導体素子6を接着して、絶縁基板3表面の配線回路層4とワイヤボンディング等により接続することにより、半導体素子6を表面に搭載した図1の配線基板を作製することができる。なお、キャビティ7内の発熱素子6は、所望によりエポキシ樹脂等の封止樹脂で封止してもよい。
【0024】
次に、図3は、本発明の配線基板のうち、電気素子を配線基板の内部に実装したタイプの配線基板に適用した場合の基本的な構造を説明するための要部切り欠き斜視図である。図3によれば、配線基板21は、少なくとも熱硬化性樹脂を含む複数の絶縁層22a,22b、22c、22d、22eを積層してなる絶縁基板23の表面および内部に配線回路層24が形成され、さらに、絶縁基板23内には異なる層間の配線回路層を接続するためのビアホール導体25を具備する。
【0025】
そして、絶縁基板23の内部には、発熱素子26を収納するための空隙部27が設けられ、空隙部27内の絶縁層22aの表面に形成された配線回路層24aと電気的に接続されている。
【0026】
図3の配線基板21によれば、発熱素子26が収納された空隙部27に面した絶縁層22cの表面には、金属からなる伝熱部材29が埋設されている。この伝熱部材29は、絶縁層22cのビアホール導体25や配線回路層24が設けられていない領域に埋設されている。
【0027】
このような構造において、発熱素子26から発生した熱は、伝熱部材29によって、配線基板全体に拡散され、均熱化されると同時に、発熱素子26での熱の淀みを防止し、発熱素子26を冷却することができる。
【0028】
また、伝熱部材29の端部30は、配線基板21の側面に露出しているか、あるいは図3の端部30のように、配線基板21の側面から突出させることが望ましい。このように、伝熱部材29の端部を配線基板21の側面から露出または突出させることにより、伝熱部材29の伝達された熱が、伝熱部材29の端部の露出面、または端部30の突出部32から熱を放散することができる。なお、この場合、伝熱部材29の突出部32は、放熱フィンなどの他の放熱部材(図示せず)と熱的に接続して、さらに放熱性を高めることもできる。
【0029】
図3の配線基板21は、例えば、図4に示されるような工程によって作製される。まず、図4(a)に示すように、熱硬化性樹脂を含む非硬化または半硬化した軟質状態の絶縁層22aに、所望により厚み方向に貫通するビアホールを形成し、そのビアホール内に金属粉末を含む導体ペーストをスクリーン印刷や吸引処理しながら充填して、ビアホール導体25aを形成する
【0030】
配線回路層24aは、1)絶縁層の表面に金属箔を貼り付けた後、エッチング処理して回路パターンを形成する方法、2)絶縁層表面にレジストを形成して、メッキにより形成する方法、3)転写フィルム表面に金属箔を貼り付け、金属箔をエッチング処理して回路パターンを形成した後、この金属箔からなる回路パターンを絶縁層表面に転写させる方法等が挙げられる。
【0031】
また、図4(b)に示すように、絶縁層22aと同様にして、軟質状態の絶縁層22bに対してビアホール導体25bを形成するとともに、所定箇所に空隙部27を形成する。そして、絶縁層22bの表面に配線回路層24bを形成するとともに、絶縁層22bの空隙部27にて発熱素子26を実装収納する。
【0032】
発熱素子26の配線回路層24bへの実装方法としては、図4(b1)に示すように、転写フィルム33の表面に予め配線回路層24bを形成した、その配線回路層24bに対して発熱素子26を半田、TAB,ワイヤ−ボンディング等により実装する。その後、配線回路層24bと発熱素子26が実装された転写フィルム33を絶縁層22bに積層して転写フィルム33のみを剥がすことにより配線回路層24bと発熱素子26を絶縁層22bに転写させることができる。
【0033】
また、上記の例では、基本的には、発熱素子26を実装する配線回路層24bは発熱素子26とともに、同時に転写させるものであるが、発熱素子26の実装に関与しない配線回路層(図示せず)は、発熱素子26と配線回路層24bとともに同時するか、または個別に前述した1)〜3)のいずれの方法で形成してもよい。また、空隙部27内に収納された発熱素子26は、配線回路層24bに実装された状態でエポキシ樹脂等により封止してもよい。
【0034】
また、軟質状態の絶縁層22cに前記と同様にしてビアホール導体25cを形成すると同時に、絶縁層22cの空隙部27に対面する箇所に伝熱部材29を埋設する。伝熱部材29の埋設は、前記図2(b)で説明したのと同様な方法により行われる。
【0035】
さらに、軟質状態の絶縁層22dおよび絶縁層22eに対して、上記と同様な方法で配線回路層24d,24eやビアホール導体25d、25eを形成する。
【0036】
そして、上記のようにして作製した各軟質状態の絶縁層22a、22b、22c、22d,22eを位置合わせして積層圧着した後に、絶縁層22a〜22e中の熱硬化性樹脂が硬化するに十分な温度に加熱して一括して完全硬化させることにより、図3に示したような発熱素子26を内蔵するとともに、その発熱素子326の近傍の絶縁基板22内に伝熱部材29を埋設した配線基板を作製することができる。また、この配線基板の表面には、他の電子部品を搭載することができる。
【0037】
また、本発明によれば、上記の発熱素子の絶縁基板内に形成した空隙部内への実装収納構造と伝熱部材の埋設方法を基礎として、あらゆる形態の多層配線基板を作製することができ、図3、図4で説明した空隙部を有する絶縁層と、伝熱部材を埋設した絶縁層との積層技術によって、例えば、図5に示すように、多層配線基板の絶縁基板34内において、IC素子35や抵抗素子36等のなどの発熱素子を収納する空隙部37,38を同一面内、または異なる層内に形成して、これら複数の発熱素子を実装収納させることができる。そして、各発熱素子35、36に対して伝熱部材39、40、41を埋設することにより、個々の発熱素子に対して、発生した熱を基板全体に均熱化することができ、伝熱部材39、40、41を基板側面から突出させることによりさらに熱の放散性を高めることができる。その結果、配線基板における素子の高密度実装化と、小型化を実現しつつ、発熱素子の冷却を行うことのできる多層配線基板を得ることができる。なお、図5の実施例によれば、基板の表面にも電子部品を搭載することができる。
【0038】
本発明において、基板内に埋設される伝熱部材は、熱伝導性に優れた金属やセラミックスが良好に使用できる。金属としては銅、アルミニウムまたはその合金が適している。セラミックでは窒化アルミニウム、炭化珪素が良好に用いられるが、加工性の点からは銅やアルミニウムが最適である。この伝熱部材の厚さは50μm以上、望ましくは100μm以上がよい。伝熱部材の厚みが50μm未満でも均熱性および放熱性は改善できるが、伝熱部材としての取り扱いが難しくなり、製造上の困難が伴う。厚さの上限は特に限定されないが、小型軽量の機器に使用するためには1mm以下、望ましくは0.5mm以下が良い。最適には厚さ0.1〜0.3mmである。パワーアンプ用としてはさらに厚いものが好適であり、0.5〜5mm程度のものが使用でき,最適には0.5〜2mmが良い。
【0039】
また、この伝熱部材は必要によりグランド(接地)等の配線層を兼ねることができる。この場合、伝熱部材に直結する形でビアホール導体を形成すればよい。
【0040】
その場合、伝熱部材表面の酸化膜や油脂等の汚れをあらかじめエッチング等により除去しておくことにより、ビアホール導体との接触抵抗が増大し、接続部から発熱するのを防止することができる。
【0041】
なお、図2および図4で説明した製造方法において、用いられる熱硬化性樹脂を含有する絶縁層は、熱硬化性有機樹脂、または熱硬化性有機樹脂とフィラーなどの組成物を混練機や3本ロールなどの手段によって十分に混合し、これを圧延法、押し出し法、射出法、ドクターブレード法などによってシート状に成形する。そして、所望により熱処理して熱硬化性樹脂を半硬化させる。半硬化には、樹脂が完全硬化するに十分な温度よりもやや低い温度に加熱する。
【0042】
そして、この絶縁層に対してビアホール、空隙部の形成は、ドリル、パンチング、サンドブラスト、あるいは炭酸ガスレーザ、YAGレーザ、及びエキシマレーザ等の照射による加工など公知の方法が採用される。
【0043】
なお、絶縁層を形成する熱硬化性樹脂としては、絶縁材料としての電気的特性、耐熱性、および機械的強度を有する熱硬化性樹脂であれば特に限定されるものでなく、例えば、アラミド樹脂、フェノール樹脂、エポキシ樹脂、イミド樹脂、フッ素樹脂、フェニレンエーテル樹脂、ビスマイレイドトリアジン樹脂、ユリア樹脂、メラミン樹脂、シリコーン樹脂、ウレタン樹脂、不飽和ポリエステル樹脂、アリル樹脂等が、単独または組み合わせて使用できる。
【0044】
また、上記の絶縁層には、絶縁基板あるいは配線基板全体の強度を高めるために、有機樹脂に対してフィラーを複合化させることもできる。有機樹脂と複合化されるフィラーとしては、SiO、Al、ZrO、TiO、AlN、SiC、BaTiO、SrTiO、ゼオライト、CaTiO、ほう酸アルミニウム等の無機質フィラーが好適に用いられる。また、ガラスやアラミド樹脂からなる不織布、織布などに上記樹脂を含浸させて用いてもよい。なお、有機樹脂とフィラーとは、体積比率で15:85〜50:50の比率で複合化されるのが適当である。
【0045】
これらの発熱素子を収納するための空隙部を形成する絶縁層は、上記の種々の材質の中でも空隙部をパンチング又はレーザーで容易に加工できる点から、エポキシ樹脂、イミド樹脂、フェニレンエーテル樹脂と、シリカまたはアラミド不織布との混合物であることが最も望ましい。
【0046】
一方、ビアホール導体に充填される金属ペーストは、銅粉末、銀粉末、銀被覆銅粉末、銅銀合金などの、平均粒径が0.5〜50μmの金属粉末を含む。金属粉末の平均粒径が0.5μmよりも小さいと、金属粉末同士の接触抵抗が増加してスルーホール導体の抵抗が高くなる傾向にあり、50μmを越えるとスルーホール導体の低抵抗化が難しくなる傾向にある。
【0047】
また、導体ペーストは、前述したような金属粉末に対して、前述したような結合用有機樹脂や溶剤を添加混合して調製される。ペースト中に添加される溶剤としては、用いる結合用有機樹脂が溶解可能な溶剤であればよく、例えば、イソプロピルアルコール、テルピネオール、2−オクタノール、ブチルカルビトールアセテート等が用いられる。
【0048】
上記の導体ペースト中の結合用有機樹脂としては、前述した種々の絶縁シートを構成する有機樹脂の他、セルロースなども使用される。この有機樹脂は、前記金属粉末同士を互いに接触させた状態で結合するとともに、金属粉末を絶縁シートに接着させる作用をなしている。この有機樹脂は、金属ペースト中において、0.1乃至40体積%、特に0.3乃至30体積%の割合で含有されることが望ましい。これは、樹脂量が0.1体積%よりも少ないと、金属粉末同士を強固に結合することが難しく、低抵抗金属を絶縁層に強固に接着させることが困難となり、逆に40体積%を越えると、金属粉末間に樹脂が介在することになり粉末同士を十分に接触させることが難しくなり、スルーホール導体の抵抗が大きくなるためである。
【0049】
配線回路層としては、銅、アルミニウム、金、銀の群から選ばれる少なくとも1種、または2種以上の合金からなることが望ましく、特に、銅、または銅を含む合金が最も望ましい。また、場合によっては、導体組成物として回路の抵抗調整のためにNi−Cr合金などの高抵抗の金属を混合、または合金化してもよい。さらには、配線層の低抵抗化のために、前記低抵抗金属よりも低融点の金属、例えば、半田、錫などの低融点金属を導体組成物中の金属成分中にて2〜20重量%の割合で含んでもよい。
【0050】
また、配線回路層と絶縁層、または伝熱部材と絶縁層との密着強度を高める上では、絶縁層の表面または、配線回路層または伝熱部材の表面を0.1μm以上、特に0.3μm〜3μm、最適には0.3〜1.5μmに粗面加工することが望ましい。また、ビアホール導体の両端を金属箔からなる配線回路層によって封止する上では、配線回路層の厚みは、5〜40μmが適当である。
【0051】
このようにして、本発明によれば、配線基板の表面への種々の素子の実装性を低下させることなく、表面または絶縁基板内部の空隙部に実装された発熱素子による熱の淀みを解消して発生した熱を基板全体に均熱化するとともに、伝熱部材を介して熱を放散させることができる結果、発熱素子を冷却して、素子の誤動作などの障害が発生するのを防止することができる。
【0052】
【実施例】
実施例1
イミド樹脂50体積%を、アラミド樹脂の不織布に含浸したプリプレグに炭酸ガスレーザーで直径0.1mmのビアホールを形成し、そのホール内に銀をメッキした銅粉末を含む銅ペーストを充填してビアホール導体を形成した。さらにレーザーで発熱素子として、パワーIC素子を設置するためのキャビティを形成して絶縁層bを作製した。
【0053】
次に、イミド樹脂50体積%、シリカ粉末50体積%の割合となるよう、ワニス状態の樹脂と粉末を混合しドクターブレード法で作製した絶縁層にパンチングで直径0.1mmのビアホールを形成し、そのホール内に銀をメッキした銅粉末を含む銅ペーストを充填してビアホール導体を形成して、絶縁層aおよび絶縁層cを作製した。
【0054】
一方、ポリエチレンテレフタレート(PET)樹脂からなる転写シートの表面に接着剤を塗布して粘着性をもたせTAB接続のために一部を切除した。その後、厚さ12μm、表面粗さ0.8μmの銅箔を一面に接着した。その後、フォトレジスト(ドライフィルム)を塗布し露光現像を行った後、これを塩化第二鉄溶液中に浸漬して非パターン部をエッチング除去して配線回路層を形成した。なお、作製した配線回路層は、線幅が20μm、配線と配線との間隔が20μmの微細なパターンである。そして、この配線回路層を絶縁層bの表面に転写させた。
【0055】
また、絶縁層aおよび絶縁層cに対しても同様に転写によって配線回路層を形成した。
【0056】
そして、絶縁層bのビアホール導体および配線回路層を形成してない部分の表面に、凹部を形成して、その凹部内に厚さ0.1mmの炭化ケイ素(熱伝導率200W/m・K)からなる伝熱部材を嵌め込んだ。
【0057】
その後、絶縁層a,絶縁層bおよび絶縁層cの順で積層圧着した後、50kg/cmの圧力で圧着し、200℃で1時間加熱して完全硬化させて多層配線基板を作製した。そして、キャビティ内に露出している伝熱部材表面にパワ−IC素子を熱伝導性接着剤により接着して、パワーIC素子と絶縁層A表面の配線回路層とワイヤボンディングにより接続して、パワ−IC素子を搭載した配線基板を作製した。また、比較のために、伝熱部材を埋設しない以外は、全く同様にして、パワ−IC素子を搭載した配線基板を作製した。
【0058】
得られた各配線基板において、パワ−IC素子を10時間作動後のIC素子自体の温度を測定した結果、本発明に基づく伝熱部材を埋設することにより作動時のIC素子の温度を12℃低下させることができた。
【0059】
しかも、伝熱部材を形成した箇所を観察した結果、なんら問題はなかった。配線回路層とビアホール導体とは良好な接続状態であり、各配線間の導通テストを行った結果、配線の断線も認められなかった。特別な冷却ファンを用いなくても、各種素子及び電子部品は所定の動作が確認された。
【0060】
実施例2
イミド樹脂50体積%を、アラミド樹脂の不織布に含浸したプリプレグに炭酸ガスレーザーで直径0.1mmのビアホールを形成し、そのホール内に銀をメッキした銅粉末を含む銅ペーストを充填してビアホール導体を形成した。さらにレーザーで発熱素子としてパワーIC素子を設置するための空隙部を形成して絶縁層Aを作製した。
【0061】
一方、ポリエチレンテレフタレート(PET)樹脂からなる転写シートの表面に接着剤を塗布して粘着性をもたせTAB接続のために一部を切除した。その後、厚さ12μm、表面粗さ0.8μmの銅箔を一面に接着した。その後、フォトレジスト(ドライフィルム)を塗布し露光現像を行った後、これを塩化第二鉄溶液中に浸漬して非パターン部をエッチング除去して配線回路層を形成した。なお、作製した配線回路層は、線幅が20μm、配線と配線との間隔が20μmの微細なパターンである。その後、この配線回路層にパワーIC素子をTAB接続し、エポキシ樹脂で封止した。
【0062】
そして、前記絶縁層Aの表面にパワ−IC素子が実装された転写シートを位置決めして積層圧着して、転写シートのみを剥離して絶縁層Aに配線回路層とともにパワーIC素子を転写させた。
【0063】
次に、イミド樹脂50体積%、シリカ粉末50体積%の割合となるよう、ワニス状態の樹脂と粉末を混合しドクターブレード法で作製した絶縁層にパンチングで直径0.1mmのビアホールを形成し、そのホール内に銀をメッキした銅粉末を含む銅ペーストを充填してビアホール導体を形成して、絶縁層B、絶縁層Cを作製した。そして、前記絶縁層Bの絶縁層Aの空隙部に対面する箇所に、厚さ0.1mmの銅からなる伝熱部材を圧着して埋め込んだ。さらに、絶縁層Bおよび絶縁層Cの必要な部分に配線回路層を転写した。
【0064】
その後、空隙部にパワ−IC素子が収納された絶縁層Aを中心に、その上に絶縁層C、その下側に絶縁層Bの伝熱部材が空隙部に対向するようにして積層し、これを50kg/cmの圧力で圧着し、200℃で1時間加熱して完全硬化させて、パワーIC素子を内蔵した多層配線基板を作製した。また、比較のために、伝熱部材を埋設しない以外は、全く同様にしてパワーIC素子を内蔵した多層配線基板を作製した。また、放熱性の評価のために、絶縁層にIC素子と接触するように熱電対を埋め込んだ。
【0065】
そして、この基板に対してパワ−IC素子を10時間作動後のIC素子自体の温度を測定した結果、本発明に基づく伝熱部材を埋設することにより、埋設しない場合に比較して作動時のIC素子の温度を15℃低下させることができた。
【0066】
【発明の効果】
以上詳述したとおり、本発明によれば、発熱素子を搭載した配線基板において、伝熱部材を絶縁基板内に埋設させることにより、基板の表面への素子の実装性を阻害することなく、発熱素子から発生する熱の淀みなく、基板全体に均熱化、さらには放熱することができ、それにより発熱素子の異常加熱による誤動作を防止することができる。また、発熱素子を複数個内蔵した配線基板においても、内蔵された個々の発熱素子の近傍の絶縁基板内に伝熱部材を埋設することにより、基板の多素子化、高密度実装化に対して対応できる放熱構造を提供できる。
【図面の簡単な説明】
【図1】本発明の多層配線基板の一実施例を説明するための要部切り欠き斜視図である。
【図2】図1の多層配線基板を作製するための工程図である。
【図3】本発明の多層配線基板の他の実施例を説明するための要部切り欠き断面図である。
【図4】図3の多層配線基板を作製するための工程図である。
【図5】本発明の多層配線基板のさらに他の実施例を説明するための概略断面図である。
【図6】従来の配線基板を説明するための概略断面図である。
【図7】他の従来の配線基板を説明するための概略断面図である。
【符号の説明】
1 配線基板
2a〜2d 配線層
3 絶縁基板
4 配線回路層
5 ビアホール導体
6 発熱素子
7 キャビティ
8 ワイア−ボンディング
9 伝熱部材
10 端部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to, for example, improvement of a high power consumption LSI such as an MPU, a package for housing a semiconductor element on which a power IC element or the like is mounted, and a printed wiring board on which a heating element such as a resistance element is mounted.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, electronic devices have been miniaturized. However, in recent years, with the development of portable information terminals and the spread of so-called mobile computing that carries and operates a computer, a more compact, thinner, and higher-definition multilayer wiring board is required. There is a tendency.
[0003]
In a conventional printed wiring board, after attaching a copper foil to the surface of a flat plate containing an organic resin called prepreg, etching it to form a fine circuit, laminating it, and then micro-drilling it to the desired position with a micro drill Holes are drilled, and metal is adhered to the inner walls of the holes by a plating method to form through-hole conductors for electrical connection between the layers.
[0004]
However, in this method, since the through-hole conductor penetrates the entire wiring board, there is a problem that a space required for wiring cannot be secured when the number of through-holes increases as the number of layers increases. At present, it is impossible to cope with thinner, smaller, and lighter printed circuit boards accompanying the lighter and smaller electronic devices.
[0005]
Therefore, recently, a wiring board has been proposed in which a via hole formed in an insulating layer is filled with metal powder to form a via-hole conductor, and then another insulating layer is stacked to form a multilayer.
[0006]
When mounting semiconductor elements, capacitor elements, resistance elements, etc. on a conventional printed wiring board, these electric elements are mounted on a wiring circuit layer formed on the surface of the wiring board by soldering or the like. Then, there is a method of molding the mounted element with a resin, a method of forming a concave portion on the surface of an insulating substrate, housing the element in the concave portion and performing resin molding, or a method of hermetically sealing the concave portion with a lid. .
[0007]
In addition, among these electric elements, there are many elements that generate heat during operation, such as power IC elements and resistance elements, and in the case of IC elements, there is a problem that the generated heat causes malfunction of the IC elements. A major issue is how to dissipate the heat of the element itself to lower the temperature of the element itself.
[0008]
As a structure for dissipating heat generated from such an element, for example, in a package for housing a semiconductor element, an IC element 52 is mounted on a surface of an insulating substrate 51 as shown in FIG. 52, a wiring circuit layer 53 formed in the insulating substrate 51, and a connection terminal 55 formed on the bottom surface of the insulating substrate 51 via a through-hole conductor 54. A heat radiator 56 made of metal is directly attached to the IC element 52. FIG. 7 shows that an IC element 59 TAB-connected to a wiring circuit layer 58 formed on the surface of an insulating substrate 57 is housed in the insulating substrate 57, and a connection terminal 60 is attached to the wiring circuit layer 58. ing. A heat radiator 61 is attached to one surface of the insulating substrate 57.
[0009]
[Problems to be solved by the invention]
However, in the conventional heat radiating structure as shown in FIGS. 6 and 7, the wiring board itself on which the elements are mounted is inevitably bulky because the heat radiator is joined to at least one surface of the wiring board. It is difficult to mount on electronic devices. In addition, since the heat radiator is attached to one surface of the package, it is difficult to increase the density of the electric elements and the like and increase the number of elements, and there is a problem that the number of pins of the elements cannot be increased.
[0010]
The method of forming the via-hole conductor by filling the metal powder is effective in reducing the size of the wiring board in that the diameter of the via-hole conductor can be reduced and the via-hole conductor can be arranged at an arbitrary position. Even if the substrate is made more multilayered, the elements mounted on the wiring substrate can be mounted only on the surface of the wiring substrate, and thus there has been a limit to miniaturization of the wiring substrate.
[0011]
Therefore, the present invention efficiently manufactures a wiring board that can cool a heating element and efficiently dissipate generated heat in a multilayer wiring board on which a heating element such as a semiconductor element or a resistance element is mounted. It is intended to provide a method. Further, the present invention provides a method of manufacturing a wiring board, which can mount a large number of elements on a wiring board and dissipate heat generated from those elements without lowering the mounting density of the elements. It is intended to provide.
[0012]
[Means for Solving the Problems]
The present inventors apply a wiring circuit layer on the surface and / or inside of an insulating substrate containing a thermosetting resin, and apply a wiring substrate on which an electric element is mounted on the surface and / or inside of the insulating substrate. As a result of repeated investigations on a structure that can reduce the temperature of the heat-generating electric element without lowering the mounting density of the electric element, by embedding a heat transfer layer made of metal foil inside the insulating substrate near the heat-generating electric element, It has been found that the heat generated from the electric element can be diffused over the entire wiring board by the heat transfer layer to make the temperature uniform, thereby lowering the temperature of the element.
[0013]
That is, the method for manufacturing a wiring board according to the present invention includes the steps of (a) forming a via-hole conductor and a wiring circuit layer on an uncured or semi-cured soft insulating layer containing at least a thermosetting resin;Non-cured or semi-cured soft state containing at least thermosetting resinBurying a heat transfer member in the insulating layer; (c)Non-cured or semi-cured soft state containing at least thermosetting resinForming a void in the insulating layer and housing a heat-generating electric element in the void; (d)The insulating layers prepared in the above (a), (b) and (c)The heat transfer member is located near the heat generating electric element.So that the exothermic electric element is built into the substrate.And (f) a step of completely and completely curing the laminate.
[0014]
According to the wiring board of the present invention, the heat generated by the heat generating element is transferred by burying the heat transfer member in the insulating substrate near the mounting of the heat generating electric element (hereinafter referred to as the heating element). As a result of allowing the entire wiring board to be soaked via the heat member, heat stagnation due to heat generated by the electric element can be eliminated, and the temperature of the heating element can be reduced. Further, by exposing or projecting the end of the heat transfer member from the side surface of the wiring board, heat generated from the heating element can be radiated to the outside of the board via the heat transfer member.
[0015]
ADVANTAGE OF THE INVENTION According to this invention, by mounting an electric element in the space | gap provided in the inside of an insulating substrate, not only the surface of a wiring board but an electric element can be mounted inside a board | substrate. Mounting and high-density mounting are possible, and by forming a heat transfer member for each of these electric elements, uniformity of generated heat and heat dissipation can be improved.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described with reference to the drawings. FIG. 1 is a cutaway perspective view of a main part for describing a basic structure of a wiring board of a type in which an electric element is mounted on a surface of the wiring board. According to FIG. 1, the wiring board 1 has a wiring circuit layer 4 formed on the surface and inside of an insulating substrate 3 formed by laminating a plurality of insulating layers 2a, 2b, 2c and 2d containing at least a thermosetting resin. Further, the insulating substrate 3 has via-hole conductors 5 for connecting wiring circuit layers between different layers. According to the wiring board of FIG. 1, a cavity 7 for accommodating the heating element 6 is provided on the surface of the insulating substrate 3, and the wiring circuit layer 4 formed on the surface of the insulating substrate 3 and the wire bonding 8 are formed. And so on.
[0017]
A heat transfer member 9 made of a high heat conductive material is buried in the bottom surface of the cavity 7 in which the heating element 6 is stored. As shown in FIG. 1, the heat transfer member 9 is in the vicinity of the heating element 6 on the surface of the insulating layer 2 b forming the bottom surface of the cavity 7, that is, in contact with the heating element 6 or faces the heating element 6. The heat transfer member 9 is buried in a region including the place where the via-hole conductor 5 and the wiring circuit layer 4 are not provided.
[0018]
In such a structure, the heat generated from the heat generating element 6 is diffused throughout the wiring board by the heat transfer member 9 and is equalized, and at the same time, the heat stagnation in the heat generating element 6 is prevented. 6 can be cooled. When the heat transfer member 9 is buried on the surface of the wiring board, circuit design on the surface of the wiring board is greatly restricted, so that the heat transfer member 9 needs to be buried inside the insulating substrate.
[0019]
Further, it is desirable that the end of the heat transfer member 9 is exposed on the side surface of the wiring board 1 or protrudes from the side surface of the wiring board 1 like the end 10 in FIG. By exposing or projecting the end portion of the heat transfer member 9 from the side surface of the wiring board 1 in this manner, the heat transmitted from the heat transfer member 9 is transferred to the exposed surface of the heat transfer member 9 or the protrusion of the end portion 10. Heat can be dissipated from the part 12. In this case, the projecting portion 11 of the heat transfer member 9 can be thermally connected to another heat radiating member (not shown) such as a heat radiating fin to further enhance heat radiation.
[0020]
The wiring board shown in FIG. 1 is manufactured, for example, by the following method. First, as shown in FIG. 2A, a via hole is formed in an uncured or semi-cured soft insulating layer 2a containing a thermosetting resin, and a conductive paste containing a metal powder is filled therein. As a result, a via-hole conductor 5a is formed. At the same time, a cavity 7 for accommodating the semiconductor element 6 is formed by punching or the like. Further, the wiring circuit layer 4a is formed on a predetermined portion of the insulating layer 2a. The wiring circuit layer 4a includes: 1) a method of forming a circuit pattern by attaching a metal foil to the surface of the insulating layer and then performing an etching process; 2) a method of forming a resist on the surface of the insulating layer and forming the circuit pattern by plating; 3) A metal foil may be attached to the surface of the transfer film, and the metal foil may be etched to form a wiring circuit layer, and then the wiring circuit layer made of the metal foil may be transferred to the surface of the insulating layer. .
[0021]
Similarly, for the insulating layer 2b in the soft state shown in FIG. 2B, the via hole conductor 5b and the wiring circuit layer 4b are formed at predetermined locations in the same manner as the insulating layer 2a. Then, the heat transfer member 9 is buried in a portion of the insulating layer 2b where the bottom surface of the cavity 7 is formed. The heat transfer member 9 may be buried by pressing the heat transfer member 9 into the soft insulating layer 2b by force, or when the heat transfer member 9 is thick, the insulating layer 2b may be buried. A concave portion is formed at a location, and the heat transfer member 9 is fitted into the concave portion. The recess may be formed by processing the surface of the soft insulating layer 2a 'or by flowing a slurry through a mold. Further, the via-hole conductor 5 and the wiring circuit layer 4 are formed at predetermined locations on the insulating layer 2b ', similarly to the insulating layer 2a.
[0022]
Further, similarly to the insulating layers 2a and 2b, as shown in FIGS. 2C and 2D, the via-hole conductors 5c and 5d and the wiring circuit layer are also applied to the soft insulating layers 2c and 2d. 4c and 5c are formed.
[0023]
After the insulating layers 2a, 2b, 2c and 2d are aligned and laminated and pressed, the multilayer wiring board is manufactured by heating at a temperature sufficient to completely cure the thermosetting resin. Then, the semiconductor element 6 is bonded to the surface of the heat transfer member 9 in the cavity 7 of the substrate and connected to the wiring circuit layer 4 on the surface of the insulating substrate 3 by wire bonding or the like, thereby mounting the semiconductor element 6 on the surface. 1 can be manufactured. Note that the heating element 6 in the cavity 7 may be sealed with a sealing resin such as an epoxy resin if desired.
[0024]
Next, FIG. 3 is a cutaway perspective view of a main part for describing a basic structure in a case where the electric element is applied to a wiring board of a type in which an electric element is mounted inside the wiring board. is there. According to FIG. 3, the wiring board 21 has a wiring circuit layer 24 formed on the surface and inside of an insulating substrate 23 formed by laminating a plurality of insulating layers 22a, 22b, 22c, 22d and 22e containing at least a thermosetting resin. Further, a via-hole conductor 25 for connecting a wiring circuit layer between different layers is provided in the insulating substrate 23.
[0025]
A void 27 for accommodating the heating element 26 is provided inside the insulating substrate 23, and is electrically connected to the wiring circuit layer 24 a formed on the surface of the insulating layer 22 a in the void 27. I have.
[0026]
According to the wiring board 21 of FIG. 3, a heat transfer member 29 made of metal is embedded in the surface of the insulating layer 22c facing the gap 27 in which the heating element 26 is housed. The heat transfer member 29 is embedded in a region of the insulating layer 22c where the via-hole conductor 25 and the wiring circuit layer 24 are not provided.
[0027]
In such a structure, the heat generated from the heating element 26 is diffused by the heat transfer member 29 over the entire wiring board and is equalized, and at the same time, stagnation of the heat in the heating element 26 is prevented. 26 can be cooled.
[0028]
Further, it is desirable that the end portion 30 of the heat transfer member 29 is exposed on the side surface of the wiring board 21 or protrudes from the side surface of the wiring board 21 like the end portion 30 in FIG. By exposing or projecting the end portion of the heat transfer member 29 from the side surface of the wiring board 21 in this manner, the heat transmitted from the heat transfer member 29 is transferred to the exposed surface of the end portion of the heat transfer member 29 or the end portion. The heat can be dissipated from the protrusions 32 of the 30. In this case, the protruding portion 32 of the heat transfer member 29 can be thermally connected to another heat radiating member (not shown) such as a heat radiating fin to further enhance heat radiation.
[0029]
The wiring board 21 in FIG. 3 is manufactured by, for example, a process as shown in FIG. First, as shown in FIG. 4A, a via hole is formed in the non-cured or semi-cured soft insulating layer 22a containing a thermosetting resin, if necessary, in the thickness direction, and a metal powder is formed in the via hole. Is filled with a conductor paste containing the same while performing screen printing or suction processing to form a via-hole conductor 25a..
[0030]
The wiring circuit layer 24a is formed by: 1) a method of forming a circuit pattern by attaching a metal foil to the surface of the insulating layer and then performing an etching process; 2) a method of forming a resist on the surface of the insulating layer and plating. 3) A method of attaching a metal foil to the surface of the transfer film, etching the metal foil to form a circuit pattern, and then transferring the circuit pattern made of the metal foil to the surface of the insulating layer.
[0031]
Further, as shown in FIG. 4B, similarly to the insulating layer 22a, the soft insulating layer22bA via hole conductor 25b is formed, and a void 27 is formed at a predetermined position. Then, the wiring circuit layer 24b is formed on the surface of the insulating layer 22b, and the heating element 26 is mounted and housed in the gap 27 of the insulating layer 22b.
[0032]
As a method for mounting the heating element 26 on the wiring circuit layer 24b, as shown in FIG.24bFormedrearThe heating element 26 is mounted on the wiring circuit layer 24b by soldering, TAB, wire bonding, or the like. Thereafter, the transfer film 33 on which the wiring circuit layer 24b and the heating element 26 are mounted is laminated on the insulating layer 22b, and only the transfer film 33 is peeled off to transfer the wiring circuit layer 24b and the heating element 26 to the insulating layer 22b. it can.
[0033]
Further, in the above example, basically, the wiring circuit layer 24b on which the heating element 26 is mounted is simultaneously transferred with the heating element 26, but the wiring circuit layer 24b which is not involved in the mounting of the heating element 26 (not shown). ) May be formed simultaneously with the heating element 26 and the wiring circuit layer 24b, or individually by any of the above-described methods 1) to 3). The heating element 26 housed in the gap 27 may be sealed with an epoxy resin or the like while being mounted on the wiring circuit layer 24b.
[0034]
In addition, the via-hole conductor 25c is formed in the soft insulating layer 22c in the same manner as described above, and at the same time, the heat transfer member 29 is buried in the insulating layer 22c at a position facing the void 27. The embedding of the heat transfer member 29 is performed by a method similar to that described with reference to FIG.
[0035]
Further, the wiring circuit layers 24d and 24e and the via-hole conductors 25d and 25e are formed on the soft insulating layers 22d and 22e in the same manner as described above.
[0036]
After the soft insulating layers 22a, 22b, 22c, 22d, and 22e prepared as described above are aligned and laminated and pressed, the thermosetting resin in the insulating layers 22a to 22e is sufficiently cured. By heating to a suitable temperature and performing complete curing at a time, a wiring in which the heating element 26 as shown in FIG. 3 is built in and the heat transfer member 29 is embedded in the insulating substrate 22 near the heating element 326. A substrate can be made. Further, other electronic components can be mounted on the surface of the wiring board.
[0037]
Further, according to the present invention, it is possible to manufacture a multilayer wiring board of any form based on the mounting and housing structure of the above-described heating element in the void formed in the insulating substrate and the method of embedding the heat transfer member, According to the lamination technique of the insulating layer having the voids described in FIGS. 3 and 4 and the insulating layer in which the heat transfer member is embedded, for example, as shown in FIG. Void portions 37 and 38 for accommodating the heating elements such as the element 35 and the resistance element 36 can be formed in the same plane or in different layers, and these plural heating elements can be mounted and accommodated. By embedding the heat transfer members 39, 40, 41 for the respective heating elements 35, 36, the generated heat can be uniformed over the entire substrate with respect to the individual heating elements. By projecting the members 39, 40, and 41 from the side surfaces of the substrate, the heat dissipation can be further improved. As a result, it is possible to obtain a multilayer wiring board capable of cooling the heating elements while realizing high-density mounting and miniaturization of elements on the wiring board. According to the embodiment of FIG. 5, electronic components can be mounted on the surface of the substrate.
[0038]
In the present invention, as the heat transfer member embedded in the substrate, a metal or ceramic having excellent heat conductivity can be used favorably. Suitable metals are copper, aluminum or alloys thereof. Aluminum and silicon carbide are preferably used in ceramics, but copper and aluminum are most suitable from the viewpoint of workability. The thickness of the heat transfer member is preferably 50 μm or more, and more preferably 100 μm or more. Even if the thickness of the heat transfer member is less than 50 μm, the heat uniformity and heat dissipation can be improved, but handling as the heat transfer member becomes difficult, and there is a difficulty in manufacturing. The upper limit of the thickness is not particularly limited, but is preferably 1 mm or less, and more preferably 0.5 mm or less for use in small and lightweight equipment. Optimally, the thickness is 0.1 to 0.3 mm. For power amplifiers, a thicker one is preferable, and one having a thickness of about 0.5 to 5 mm can be used, and most preferably 0.5 to 2 mm.
[0039]
Further, this heat transfer member can also serve as a wiring layer such as a ground (ground) if necessary. In this case, the via-hole conductor may be formed so as to be directly connected to the heat transfer member.
[0040]
In this case, by removing stains such as an oxide film and oils and fats on the surface of the heat transfer member in advance by etching or the like, contact resistance with the via-hole conductor increases, and heat generation from the connection portion can be prevented.
[0041]
In the manufacturing method described with reference to FIGS. 2 and 4, the insulating layer containing the thermosetting resin to be used is made of a thermosetting organic resin or a composition such as a thermosetting organic resin and a filler by a kneader or the like. The mixture is sufficiently mixed by means such as a main roll and formed into a sheet by a rolling method, an extrusion method, an injection method, a doctor blade method, or the like. Then, if desired, heat treatment is performed to semi-harden the thermosetting resin. For semi-curing, the resin is heated to a temperature slightly lower than a temperature sufficient to completely cure the resin.
[0042]
A well-known method such as drilling, punching, sandblasting, or processing by irradiation with a carbon dioxide gas laser, a YAG laser, an excimer laser, or the like is used for forming the via hole and the void in the insulating layer.
[0043]
The thermosetting resin forming the insulating layer is not particularly limited as long as the thermosetting resin has electrical properties, heat resistance, and mechanical strength as an insulating material. For example, an aramid resin , Phenolic resin, epoxy resin, imide resin, fluororesin, phenylene ether resin, bismaleide triazine resin, urea resin, melamine resin, silicone resin, urethane resin, unsaturated polyester resin, allyl resin, etc., used alone or in combination it can.
[0044]
In addition, a filler can be compounded with an organic resin in the insulating layer in order to increase the strength of the entire insulating substrate or wiring substrate. As the filler to be combined with the organic resin, SiO2, Al2O3, ZrO2, TiO2, AlN, SiC, BaTiO3, SrTiO3, Zeolite, CaTiO3An inorganic filler such as aluminum borate is preferably used. Further, a nonwoven fabric or a woven fabric made of glass or aramid resin may be used by impregnating the above resin. The organic resin and the filler are preferably compounded in a volume ratio of 15:85 to 50:50.
[0045]
The insulating layer that forms the gap for accommodating these heating elements, the point that the gap can be easily processed by punching or laser among the various materials described above, epoxy resin, imide resin, phenylene ether resin, Most preferably, it is a mixture with silica or aramid nonwoven fabric.
[0046]
On the other hand, the metal paste filled in the via-hole conductor includes metal powder having an average particle size of 0.5 to 50 μm, such as copper powder, silver powder, silver-coated copper powder, and copper-silver alloy. If the average particle size of the metal powder is smaller than 0.5 μm, the contact resistance between the metal powders tends to increase and the resistance of the through-hole conductor tends to increase. If it exceeds 50 μm, it is difficult to reduce the resistance of the through-hole conductor. Tend to be.
[0047]
The conductive paste is prepared by adding and mixing the above-mentioned organic resin for binding and the solvent to the above-mentioned metal powder. The solvent added to the paste may be any solvent that can dissolve the binding organic resin to be used. For example, isopropyl alcohol, terpineol, 2-octanol, butyl carbitol acetate, and the like are used.
[0048]
As the organic resin for bonding in the above-mentioned conductor paste, cellulose and the like are used in addition to the organic resins constituting the various insulating sheets described above. The organic resin functions to bond the metal powders to each other in a state where they contact each other, and to bond the metal powders to the insulating sheet. This organic resin is desirably contained in the metal paste at a ratio of 0.1 to 40% by volume, particularly 0.3 to 30% by volume. If the amount of the resin is less than 0.1% by volume, it is difficult to firmly bond the metal powders to each other, and it is difficult to firmly adhere the low-resistance metal to the insulating layer. If it exceeds, the resin is interposed between the metal powders, making it difficult to bring the powders into sufficient contact with each other and increasing the resistance of the through-hole conductor.
[0049]
The wiring circuit layer is preferably made of at least one kind or two or more kinds of alloys selected from the group consisting of copper, aluminum, gold and silver, and most preferably copper or an alloy containing copper. In some cases, a high-resistance metal such as a Ni—Cr alloy may be mixed or alloyed as the conductor composition for adjusting the resistance of the circuit. Further, in order to reduce the resistance of the wiring layer, a metal having a lower melting point than the low-resistance metal, for example, a low-melting metal such as solder or tin is used in an amount of 2 to 20% by weight in the metal component in the conductor composition. May be included.
[0050]
Further, in order to increase the adhesion strength between the wiring circuit layer and the insulating layer, or between the heat transfer member and the insulating layer, the surface of the insulating layer or the surface of the wiring circuit layer or the heat transfer member should be 0.1 μm or more, especially 0.3 μm. It is desirable to roughen the surface to a thickness of up to 3 μm, optimally 0.3 to 1.5 μm. In order to seal both ends of the via-hole conductor with a wiring circuit layer made of metal foil, the thickness of the wiring circuit layer is appropriately 5 to 40 μm.
[0051]
In this manner, according to the present invention, it is possible to eliminate the heat stagnation caused by the heating elements mounted on the surface or the gap inside the insulating substrate without deteriorating the mountability of various elements on the surface of the wiring board. As a result, the generated heat can be uniformed over the entire substrate, and the heat can be dissipated through the heat transfer member.As a result, the heat-generating element is cooled to prevent a malfunction such as a malfunction of the element from occurring. Can be.
[0052]
【Example】
Example 1
A via hole conductor is formed by forming a via hole having a diameter of 0.1 mm with a carbon dioxide laser in a prepreg impregnated with 50% by volume of an imide resin in a nonwoven fabric of an aramid resin, and filling the hole with a copper paste containing copper powder plated with silver. Was formed. Further, a cavity for installing a power IC element as a heating element by a laser was formed to form an insulating layer b.
[0053]
Next, a resin and a powder in a varnish state were mixed so as to have a ratio of 50% by volume of imide resin and 50% by volume of silica powder, and a via hole having a diameter of 0.1 mm was formed by punching in an insulating layer prepared by a doctor blade method. The holes were filled with a copper paste containing copper powder plated with silver to form via-hole conductors, thereby forming insulating layers a and c.
[0054]
On the other hand, an adhesive was applied to the surface of a transfer sheet made of polyethylene terephthalate (PET) resin to make it sticky, and a part was cut off for TAB connection. Thereafter, a copper foil having a thickness of 12 μm and a surface roughness of 0.8 μm was bonded to one surface. Thereafter, a photoresist (dry film) was applied and exposed and developed, and then immersed in a ferric chloride solution to remove non-pattern portions by etching to form a wiring circuit layer. Note that the manufactured wiring circuit layer is a fine pattern having a line width of 20 μm and an interval between wirings of 20 μm. Then, this wiring circuit layer was transferred to the surface of the insulating layer b.
[0055]
Similarly, a wiring circuit layer was formed on the insulating layer a and the insulating layer c by transfer.
[0056]
Then, a concave portion is formed on the surface of the portion of the insulating layer b where the via hole conductor and the wiring circuit layer are not formed, and silicon carbide having a thickness of 0.1 mm (thermal conductivity of 200 W / m · K) is formed in the concave portion. A heat transfer member consisting of
[0057]
After that, the insulating layer a, the insulating layer b, and the insulating layer c were laminated and pressed in this order, and then 50 kg / cm2, And heated at 200 ° C. for 1 hour to completely cure, thereby producing a multilayer wiring board. Then, the power IC element is adhered to the surface of the heat transfer member exposed in the cavity with a heat conductive adhesive, and the power IC element is connected to the wiring circuit layer on the surface of the insulating layer A by wire bonding. -A wiring board on which an IC element was mounted was manufactured. For comparison, a wiring board on which a power IC element was mounted was manufactured in exactly the same manner except that the heat transfer member was not embedded.
[0058]
In each of the obtained wiring boards, as a result of measuring the temperature of the IC element itself after operating the power IC element for 10 hours, the temperature of the IC element during operation was reduced to 12 ° C. by embedding the heat transfer member according to the present invention. Could be lowered.
[0059]
Moreover, as a result of observing the place where the heat transfer member was formed, there was no problem. The wiring circuit layer and the via-hole conductor were in a good connection state, and as a result of a continuity test between the wirings, no disconnection of the wiring was observed. Even if a special cooling fan was not used, various elements and electronic components were confirmed to perform predetermined operations.
[0060]
Example 2
A via hole conductor is formed by forming a via hole having a diameter of 0.1 mm with a carbon dioxide laser in a prepreg impregnated with 50% by volume of an imide resin in a nonwoven fabric of an aramid resin, and filling the hole with a copper paste containing copper powder plated with silver. Was formed. Further, a gap for installing a power IC element as a heating element was formed by a laser to form an insulating layer A.
[0061]
On the other hand, an adhesive was applied to the surface of a transfer sheet made of polyethylene terephthalate (PET) resin to make it sticky, and a part was cut off for TAB connection. Thereafter, a copper foil having a thickness of 12 μm and a surface roughness of 0.8 μm was bonded to one surface. Thereafter, a photoresist (dry film) was applied and exposed and developed, and then immersed in a ferric chloride solution to remove non-pattern portions by etching to form a wiring circuit layer. Note that the manufactured wiring circuit layer is a fine pattern having a line width of 20 μm and an interval between wirings of 20 μm. Thereafter, a power IC element was TAB-connected to this wiring circuit layer, and sealed with epoxy resin.
[0062]
Then, the transfer sheet on which the power IC element was mounted was positioned on the surface of the insulating layer A, laminated and pressed, and only the transfer sheet was peeled off to transfer the power IC element together with the wiring circuit layer to the insulating layer A. .
[0063]
Next, a resin and a powder in a varnish state were mixed so as to have a ratio of 50% by volume of imide resin and 50% by volume of silica powder, and a via hole having a diameter of 0.1 mm was formed by punching in an insulating layer formed by a doctor blade method. The holes were filled with a copper paste containing copper powder plated with silver to form via-hole conductors, whereby insulating layers B and C were formed. Then, a heat transfer member made of copper having a thickness of 0.1 mm was pressure-bonded and buried in a portion of the insulating layer B facing the gap of the insulating layer A. Further, the wiring circuit layer was transferred to necessary portions of the insulating layers B and C.
[0064]
After that, the heat transfer member of the insulating layer C is placed on the insulating layer A in which the power IC element is accommodated in the gap, the insulating layer C is placed on the insulating layer A, and the heat transfer member of the insulating layer B is placed under the insulating layer C. This is 50kg / cm2, And completely cured by heating at 200 ° C. for 1 hour to produce a multilayer wiring board with a built-in power IC element. For comparison, a multilayer wiring board having a built-in power IC element was manufactured in exactly the same manner except that the heat transfer member was not embedded. In addition, a thermocouple was embedded in the insulating layer so as to be in contact with the IC element for evaluation of heat dissipation.
[0065]
Then, as a result of measuring the temperature of the IC element itself after operating the power IC element for 10 hours with respect to this substrate, the heat transfer member according to the present invention was buried, so that the heat transfer member was operated at a lower operating time than when it was not buried. The temperature of the IC element could be reduced by 15 ° C.
[0066]
【The invention's effect】
As described in detail above, according to the present invention, in a wiring board on which a heating element is mounted, a heat transfer member is buried in an insulating substrate, so that heat generation can be performed without impairing the mountability of the element on the surface of the board. Without the stagnation of the heat generated from the element, it is possible to equalize the temperature of the entire substrate and further radiate the heat, thereby preventing a malfunction due to abnormal heating of the heating element. In addition, even in a wiring board having a plurality of built-in heating elements, by burying a heat transfer member in an insulating substrate near each built-in heating element, it is possible to increase the number of elements of the board and increase the mounting density. A heat radiation structure that can be provided can be provided.
[Brief description of the drawings]
FIG. 1 is a cutaway perspective view of an essential part for explaining an embodiment of a multilayer wiring board of the present invention.
FIG. 2 is a process chart for manufacturing the multilayer wiring board of FIG. 1;
FIG. 3 is a cutaway sectional view of a main part for explaining another embodiment of the multilayer wiring board of the present invention.
FIG. 4 is a process chart for manufacturing the multilayer wiring board of FIG. 3;
FIG. 5 is a schematic sectional view for explaining still another embodiment of the multilayer wiring board of the present invention.
FIG. 6 is a schematic cross-sectional view illustrating a conventional wiring board.
FIG. 7 is a schematic cross-sectional view for explaining another conventional wiring board.
[Explanation of symbols]
1 Wiring board
2a to 2d wiring layer
3 Insulating board
4 Wiring circuit layer
5 Via hole conductor
6. Heating element
7 cavities
8 Wire bonding
9 Heat transfer members
10 end

Claims (3)

(a)少なくとも熱硬化性樹脂を含む非硬化または半硬化の軟質状態の絶縁層にビアホール導体および配線回路層を形成する工程と、
(b)少なくとも熱硬化性樹脂を含む非硬化または半硬化の軟質状態の絶縁層に伝熱部材を埋設する工程と、
(c)少なくとも熱硬化性樹脂を含む非硬化または半硬化の軟質状態の絶縁層に空隙部を形成し、該空隙部内に発熱性電気素子を収納する工程と、
(d)前記(a)(b)(c)で作製された絶縁層を、前記発熱性電気素子の近傍に前記伝熱部材が位置するとともに、前記発熱性電気素子が基板内部に内蔵されるように積層する工程と、
(f)前記積層物を一括して完全硬化する工程と、
を具備することを特徴とする配線基板の製造方法。
(A) forming a via-hole conductor and a wiring circuit layer on an uncured or semi-cured soft insulating layer containing at least a thermosetting resin;
(B) embedding a heat transfer member in an uncured or semi-cured soft insulating layer containing at least a thermosetting resin ;
(C) forming a void in an uncured or semi-cured soft insulating layer containing at least a thermosetting resin, and housing a heat-generating electric element in the void;
(D) The insulating layer manufactured in (a), (b), and (c) is provided with the heat transfer member located near the heat-generating electric element, and the heat- generating electric element is built in the substrate. And laminating so that
(F) a step of collectively and completely curing the laminate;
A method for manufacturing a wiring board, comprising:
前記伝熱部材の端部を、前記積層物の側面から露出あるいは突出させたことを特徴とする請求項1記載の配線基板の製造方法。The method according to claim 1, wherein an end of the heat transfer member is exposed or protrudes from a side surface of the laminate. 前記発熱性電気素子が、IC素子、抵抗素子、コンデンサ、発振子、フィルターの群から選ばれる1種であることを特徴とする請求項1記載の配線基板の製造方法。2. The method according to claim 1, wherein the heat-generating electric element is one selected from the group consisting of an IC element, a resistance element, a capacitor, an oscillator, and a filter.
JP20603597A 1997-07-31 1997-07-31 Manufacturing method of wiring board Expired - Lifetime JP3588230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20603597A JP3588230B2 (en) 1997-07-31 1997-07-31 Manufacturing method of wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20603597A JP3588230B2 (en) 1997-07-31 1997-07-31 Manufacturing method of wiring board

Publications (2)

Publication Number Publication Date
JPH1154939A JPH1154939A (en) 1999-02-26
JP3588230B2 true JP3588230B2 (en) 2004-11-10

Family

ID=16516828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20603597A Expired - Lifetime JP3588230B2 (en) 1997-07-31 1997-07-31 Manufacturing method of wiring board

Country Status (1)

Country Link
JP (1) JP3588230B2 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1259103B1 (en) 2000-02-25 2007-05-30 Ibiden Co., Ltd. Multilayer printed wiring board and method for producing multilayer printed wiring board
WO2002027786A1 (en) 2000-09-25 2002-04-04 Ibiden Co., Ltd. Semiconductor element, method of manufacturing semiconductor element, multi-layer printed circuit board, and method of manufacturing multi-layer printed circuit board
JP4869488B2 (en) * 2000-12-15 2012-02-08 イビデン株式会社 Manufacturing method of multilayer printed wiring board
JP2003152317A (en) 2000-12-25 2003-05-23 Ngk Spark Plug Co Ltd Wiring board
JP4038363B2 (en) 2000-12-25 2008-01-23 日本特殊陶業株式会社 Wiring board
JP3926141B2 (en) 2000-12-27 2007-06-06 日本特殊陶業株式会社 Wiring board
WO2004100264A1 (en) * 2003-05-09 2004-11-18 Matsushita Electric Industrial Co. Ltd. Module including circuit elements
JP4693381B2 (en) * 2004-02-24 2011-06-01 京セラ株式会社 Wiring board and manufacturing method thereof
JP4285339B2 (en) * 2004-06-15 2009-06-24 パナソニック株式会社 Circuit module and method of manufacturing circuit module
US8101868B2 (en) 2005-10-14 2012-01-24 Ibiden Co., Ltd. Multilayered printed circuit board and method for manufacturing the same
JP5188816B2 (en) 2005-12-16 2013-04-24 イビデン株式会社 Multilayer printed wiring board and manufacturing method thereof
JP5212359B2 (en) * 2007-03-09 2013-06-19 株式会社村田製作所 Multilayer wiring board and manufacturing method thereof
JP2009088390A (en) 2007-10-02 2009-04-23 Denso Corp Printed circuit board, method for manufacturing the printed circuit board, and electronic apparatus
KR101055561B1 (en) 2009-07-29 2011-08-08 삼성전기주식회사 Printed Circuit Board with Cavity and Manufacturing Method Thereof
US8217272B2 (en) * 2009-12-18 2012-07-10 Intel Corporation Apparatus and method for embedding components in small-form-factor, system-on-packages
US9225379B2 (en) 2009-12-18 2015-12-29 Intel Corporation Apparatus and method for embedding components in small-form-factor, system-on-packages
JP2014011385A (en) * 2012-07-02 2014-01-20 Nec Access Technica Ltd Electronic device, electronic apparatus, and manufacturing method of electronic device
US9018754B2 (en) 2013-09-30 2015-04-28 International Business Machines Corporation Heat dissipative electrical isolation/insulation structure for semiconductor devices and method of making
JP2018157041A (en) * 2017-03-16 2018-10-04 日本特殊陶業株式会社 Multilayer ceramic wiring board and manufacturing method thereof
KR102597160B1 (en) * 2018-07-13 2023-11-02 삼성전기주식회사 Printed circuit board and battery module having the same
JP2020013979A (en) * 2018-07-13 2020-01-23 サムソン エレクトロ−メカニックス カンパニーリミテッド. Printed circuit board and battery module comprising the same
JP7144732B2 (en) * 2018-09-19 2022-09-30 株式会社デンソーウェーブ laminated substrate

Also Published As

Publication number Publication date
JPH1154939A (en) 1999-02-26

Similar Documents

Publication Publication Date Title
JP3588230B2 (en) Manufacturing method of wiring board
JP3051700B2 (en) Method of manufacturing multilayer wiring board with built-in element
CN107787112B (en) Printed circuit board with electronic component, manufacturing method thereof and electronic component module
JP3236818B2 (en) Method for manufacturing multilayer wiring board with built-in element
JPH11126978A (en) Multilayered wiring board
JP2001044641A (en) Wiring board incorporating semiconductor element and its manufacture
WO2006061916A1 (en) Printed board and printed board manufacturing method
JP3207174B2 (en) Wiring board mounted with electric element and method of manufacturing the same
WO2004068923A1 (en) Metal core multilayer printed wiring board
WO2002007485A1 (en) Circuit board and method for manufacturing the same, and electronic apparatus comprising it
US9345125B2 (en) Wiring substrate
JP2005109307A (en) Board with built-in circuit part, and manufacturing method of the same
JP2004274035A (en) Module having built-in electronic parts and method of manufacturing same
JP2004007006A (en) Multilayer wiring board
JP2002246542A (en) Power module and manufacturing method therefor
JP3733419B2 (en) Electronic component built-in type multilayer substrate, method for manufacturing the same, and metal core substrate used therefor
JP3982479B2 (en) Electric component built-in circuit board and method for manufacturing the same
JP2004055967A (en) Manufacturing method of board with built-in electronic component
JP2801896B2 (en) Manufacturing method of metal-based multilayer circuit board
JP2008091377A (en) Printed wiring board and its manufacturing method
JP4283753B2 (en) Multi-layer printed wiring board with built-in electrical components and method for manufacturing the same
JP3985772B2 (en) Electric component built-in circuit board and method for manufacturing the same
JP7161629B1 (en) Substrate with built-in component and method for manufacturing the same
JP3174026B2 (en) Metal-based multilayer circuit board
JP2001077488A (en) Circuit board and manufacture, thereof, and lead frame

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040812

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100820

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100820

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110820

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110820

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120820

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140820

Year of fee payment: 10

EXPY Cancellation because of completion of term