JP3586182B2 - Method for manufacturing solid electrolytic capacitor - Google Patents

Method for manufacturing solid electrolytic capacitor Download PDF

Info

Publication number
JP3586182B2
JP3586182B2 JP2000308030A JP2000308030A JP3586182B2 JP 3586182 B2 JP3586182 B2 JP 3586182B2 JP 2000308030 A JP2000308030 A JP 2000308030A JP 2000308030 A JP2000308030 A JP 2000308030A JP 3586182 B2 JP3586182 B2 JP 3586182B2
Authority
JP
Japan
Prior art keywords
formation
voltage
solid electrolytic
oxide film
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000308030A
Other languages
Japanese (ja)
Other versions
JP2002118034A (en
Inventor
忠昌 朝見
勝洋 吉田
利彦 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2000308030A priority Critical patent/JP3586182B2/en
Publication of JP2002118034A publication Critical patent/JP2002118034A/en
Application granted granted Critical
Publication of JP3586182B2 publication Critical patent/JP3586182B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、弁作用金属からなるコンデンサ素子の表面に、誘電体酸化皮膜と導電性高分子層とを順次形成して固体電解コンデンサを製造する固体電解コンデンサの製造方法に関するものである。
【0002】
【従来の技術】
一般に固体電解コンデンサは、タンタル或いはアルミニウム等の弁作用金属からなる多孔質成形体を陽極として用い、前記多孔質成形体の表面に形成される酸化皮膜を誘電体として用い、前記酸化皮膜上に形成される導電体層を陰極として用いた構造を装備している。
【0003】
ところで、最近、高分子材料の技術分野では新しい導電性高分子素材の研究が盛んに行われており、この導電性高分子素材を用いた固体電解コンデンサが開発されている(特開平10−303075号公報等参照)。
【0004】
特開平10−303075号公報に開示された固体電解コンデンサは、弁作用金属からなる陽極体の表面に、誘電体酸化皮膜と導電性高分子層と導電体層としてのグラファイト層及び銀ペースト層(陰極)が順次形成され、導電体層から陰極リードが、陽極体から陽極リードがそれぞれ引出され、陽極体の全周面が外装樹脂にてモールド封止した構造のものである。
【0005】
【発明が解決しようとする課題】
ところで、特開平10−303075号公報等に開示された固体電解コンデンサは、導電性高分子層と比較して酸化皮膜の膜厚が薄いため、製造工程において酸化皮膜が熱等の影響を受けて破壊されやすいため、製造過程において前記酸化皮膜に生じた欠陥部分を修復させる処理が行われている。
【0006】
これらの修復技術は、例えば特開平05−090081号公報,特開平04−103117号公報,特開平03−102812号公報,特開平02−288318号公報,特開平02−219211号公報,特開昭63−140517号公報等に開示されている。
【0007】
これらの公報に開示された技術は、弁作用金属からなる陽極体の表面に誘電体酸化皮膜が形成された直後であって、酸化皮膜が剥き出しの状態で再化成による修復が行われている。
【0008】
したがって、上述したように酸化皮膜が修復されたとしても、修復された酸化皮膜の膜厚が極めて薄いため、後工程で行われる導電性高分子層の形成過程等において、再び酸化皮膜が熱等の影響を受けて破壊されやすく、等価直列抵抗(ESR)の特性値及び漏れ電流(LC)の特性値に不良が生じてしまうという問題がある。
【0009】
コンデンサの漏れ電流が再化成により低減できるメカニズムには、▲1▼酸化皮膜欠陥部の修復、▲2▼酸化皮膜欠陥部を覆っている導電性高分子化合層の絶縁化、の2つがある。
【0010】
しかしながら、上述した先行技術では、導電性高分子層を形成していない状態で再化成が行われるため、上述した▲2▼の効果を得ることができないという問題がある。
【0011】
本発明の目的は、等価直列抵抗(ESR)の特性値及び漏れ電流(LC)の特性値を改善する固体電解コンデンサの製造方法を提供することにある。
【0012】
【課題を解決しようとする課題】
前記目的を達成するため、本発明に係る固体電解コンデンサの製造方法は、弁作用金属からなるコンデンサ素子の表面に、誘電体酸化皮膜と導電性高分子層とを順次形成して固体電解コンデンサを製造する固体電解コンデンサの製造方法であって、
電解重合により前記導電性高分子層を形成した後、再化成溶液内に浸漬した前記誘電体酸化皮膜を再化成電圧の印加により再化成する工程において、コンデンサ素子に流れる漏れ電流の電流値の変化にピーク電流値が現れるまで再化成電圧の昇圧と降圧とを繰返し行うものである。
【0013】
また本発明に係る固体電解コンデンサの製造方法は、弁作用金属からなるコンデンサ素子の表面に、誘電体酸化皮膜と導電性高分子層とを順次形成して固体電解コンデンサを製造する固体電解コンデンサの製造方法であって、
電解重合により前記導電性高分子層を形成した後、再化成溶液内に浸漬した前記誘電体酸化皮膜を再化成電圧の印加により再化成する工程において、再化成電圧値に達するまでに前記漏れ電流の電流値の変化にピーク電流値が現れない場合には一旦再化成電圧を降圧し、その後、前記漏れ電流の電流値の変化にピーク電流値が現れるまで再化成電圧の昇圧と降圧とを繰返すものである。
【0014】
また前記再化成電圧を一旦降圧させて前記誘電体酸化皮膜の欠陥部に再化成溶液を浸透させ、前記再化成電圧を昇圧させて再化成を行うものである。
【0015】
また再化成用電導度に調整した再化成溶液にコンデンサ素子を浸漬して再化成を行うものである。
【0016】
また前記再化成電圧の電圧値は、コンデンサ素子の表面に前記誘電体酸化皮膜を化成させるための化成電圧値の70〜90%の範囲に設定するものである。
【0017】
また前記再化成電圧の昇圧速度は、0.1〜5V/minの範囲に設定するものである。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態を図により説明する。
【0019】
図1及び図2は、本発明に係る固体電解コンデンサの製造方法において、コンデンサ素子に流れる漏れ電流とコンデンサ素子に印加する再化成電圧との関係を示す特性図である。
【0020】
コンデンサ素子の表面に形成された酸化皮膜を被覆する導電性高分子層にクラックが発生すると、そのクラック内に再化成溶液が浸入するが、電圧の高い状態では発熱や水の電気分解による発泡等により溶液が前記クラックを通して酸化皮膜の欠陥部に浸透しにくく、酸化皮膜の欠陥部の再化成処理が進みにくいものである。
【0021】
これを解決するには、再化成電圧の高い状態で生じる発熱や水の電気分解による発泡等を排除すれば良いものであり、再化成電圧を降圧させて、前記クラック内に再化成溶液が侵入して酸化皮膜の欠陥部分に接触し易い状態を積極的に作り出す必要がある。
【0022】
一方、前記クラック内に再化成溶液が侵入して酸化皮膜の欠陥部分に接触し、その状態で再化成電圧の印加により再化成が進行すると、コンデンサ素子を流れる漏れ電流に変化が生じ、コンデンサ素子を流れる漏れ電流は再化成電圧の印加による再化成が進行している期間に増加し、再化成処理が進んで酸化皮膜の欠陥部分が修復されると、図1及び図2に示すように再化成電圧を降圧させた後に再印加する昇圧過程において漏れ電流値の変化にピーク電流値Qが現れ、その後、漏れ電流は再化成電圧を増加しても減少を続けることとなる。
【0023】
これは、漏れ電流値の変化にピーク電流値Qが現れた後には、酸化皮膜の欠陥部分が修復されるため、再化成電圧を昇圧して印加し続けても漏れ電流値は増加することなく減少することとなるためである。
【0024】
そこで、図1及び2に示すように本発明に係る固体電解コンデンサの製造方法は、弁作用金属からなるコンデンサ素子の表面に、誘電体酸化皮膜と導電性高分子層とを順次形成して固体電解コンデンサを製造する固体電解コンデンサの製造方法を対象とするものであり、電解重合により前記導電性高分子層を形成した後、再化成溶液内に浸漬した前記誘電体酸化皮膜を再化成電圧の印加により再化成する工程において、コンデンサ素子に流れる漏れ電流の電流値の変化にピーク電流値(極大値)Qが現れるまで再化成電圧の昇圧と降圧とを繰返して行うことを特徴とするものである。
【0025】
さらに電解重合により前記導電性高分子層を形成した後、再化成溶液内に浸漬した前記誘電体酸化皮膜を再化成電圧の印加により再化成する工程において、再化成電圧値に達するまでに前記漏れ電流の電流値の変化にピーク電流値(極大値)Qが現れない場合には一旦再化成電圧を降圧し、その後、前記漏れ電流の電圧値の変化にピーク電流値Qが現れるまで再化成電圧の昇圧と降圧を繰返す。
【0026】
また前記再化成電圧を一旦降圧させて前記誘電体酸化皮膜の欠陥部に再化成溶液を浸透させ、前記再化成電圧を昇圧させて再化成を行う。また再化成用電導度に調整した再化成溶液にコンデンサ素子を浸漬して再化成を行う。
【0027】
また前記再化成電圧の電圧値は、コンデンサ素子の表面に前記誘電体酸化皮膜を化成させるための化成電圧値の70〜90%の範囲に設定し、また前記再化成電圧の昇圧速度は、0.1〜5V/minの範囲に設定することが望ましいものである。
【0028】
コンデンサの漏れ電流が再化成により低減できるメカニズムには、▲1▼酸化皮膜欠陥部の修復、▲2▼酸化皮膜欠陥部を覆っている導電性高分子化合層の絶縁化、の2つがあるが、本発明によれば、導電性高分子層が形成された状態で再化成を行なうため、上述した▲1▼及び▲2▼の双方の効果を得ることができる。
【0029】
次に具体例を用いて本発明を詳細に説明する。
【0030】
(実施例1)陽極材料としてNb金属粉,タンタル或いはアルミニウム等の弁作用金属を用い、導電性高分子層としてポリピロール,ポリチオフェンを用い、固体電解コンデンサの一種であるNb電解コンデンサを製造する方法に付いて説明する。
【0031】
(1)Nb素子の製造方法
プレス成形によりNb金属粉(弁作用金属)にNb陽極リードを埋設した成形体を作製し、1220℃で30分間、4×10−3Paで真空焼結を行って多孔質の固体電解コンデンサ用Nb素子を得る。
【0032】
(2)絶縁性(誘電性)酸化皮膜の形成
次に前記Nb素子をリン酸水溶液(0.6wt%)に浸漬し、前記Nb素子のNb陽極リードに正電位を印加し、水溶液中に浸漬した対向電極の電位に、Nb陽極リードに印加した電位より低電位の電圧を印加して化成処理を行い、絶縁性(誘電性)酸化皮膜Nbを前記Nb素子の表面に形成する。
【0033】
このときNb陽極リードと対向電極との間の電位差(化成電圧)を20Vに設定して酸化皮膜の形成を行う。ただし、この化成電圧は、コンデンサ用素子に用いる弁作用金属の種類に応じて設定されるものであり、必ずしも前記化成電圧に限定されるものではない。
【0034】
(3)化学重合プレコート層の形成
前記酸化皮膜を形成したNb素子を、酸化剤であるドデシルベンゼンスルフォン酸鉄塩メタノール溶液10wt%に6分間浸漬し、乾燥させた後、これを重合材であるピロールモノマーに17分間浸漬し、乾燥を行い、導電性高分子プレコート層を前記Nb素子の多孔質内部に形成する。
【0035】
その後、前記Nb素子をメタノール,水でそれぞれ洗浄した後、電導度150μS/cmに調整したリン酸水溶液に浸漬して、前記Nb陽極リードと前記対向電極との間の電位差を18Vにして再化成を行う。
【0036】
(4)電解重合による導電性高分子層の形成
モノマーとしてピロール0.7mol/l、界面活性剤・支持電解質・導電性高分子のドーパントを兼ねてドデシルベンゼンスルフォン酸ナトリウムを0.05mol/l、p−トルエンスルフォン酸ナトリウムを0.3mol/l含む水溶媒の電解重合溶液に前記Nb素子を浸漬し、給電端子を化学重合を実施した前記Nb素子に接近させ、そのNb素子の表面に電解重合による導電性高分子層を形成する。
【0037】
このとき、重合電位は1.3V(vs.Ag/AgCl)に、通電時間は30分に設定する。その後、水洗を行なう。
【0038】
(5)電解重合後の再化成
電導度を150μS/cmに調整したリン酸水溶液に前記Nb素子を浸漬して再化成を行う。
【0039】
図1に示すように再化成電圧は15Vに設定し、その電圧の昇圧速度は1V/minに設定して再化成電圧15Vまで昇圧し、その昇圧中の電圧と、コンデンサ素子中に流れる漏れ電流との変化をモニターして、コンデンサ素子に流れる漏れ電流の電流値の変化を観察する。
【0040】
また再化成電圧は化成電圧の70〜90%、その再化成電圧までの昇圧速度は0.1〜5V/minに設定することが望ましいものである。
【0041】
図1に示すように、第1回目の再化成電圧を昇圧して再化成電圧値が15Vに到達するまでに、前記Nb素子(コンデンサ素子)に流れる漏れ電流値の変化にピーク電流値Qが現れるか否かを観察する。
【0042】
この場合、コンデンサ素子の表面に形成された酸化皮膜を被覆する導電性高分子層にクラックが発生して、そのクラック内に再化成溶液が浸入するが、電圧の高い状態では発熱や水の電気分解による発泡等により溶液が前記クラックを通して酸化皮膜の欠陥部に浸透しにくく、酸化皮膜の欠陥部の再化成処理が進みにくいものである。この場合、コンデンサ素子に流れる漏れ電流値は、再化成電圧を徐々に昇圧させるのに応じて、その昇圧度に応じて漏れ電流値が増大する。
【0043】
このように前記Nb素子(コンデンサ素子)に流れる漏れ電流値の変化にピーク電流値Qが出現しない場合に、再化成電圧値が15Vに到達した時点で再化成電圧の印加を終了させ、再化成電圧値を降圧させる。
【0044】
酸化皮膜の欠陥部の再化成処理が進み易くする処理として、再化成電圧の高い状態で生じる発熱や水の電気分解による発泡等を排除するために、再化成電圧を降圧させて、前記クラック内に再化成溶液が侵入して酸化皮膜の欠陥部分に接触し易い状態を積極的に作り出す。
【0045】
前記クラック内に再化成溶液が侵入して酸化皮膜の欠陥部分に接触し、その状態で再化成電圧の印加により再化成が進行すると、コンデンサ素子の流れる漏れ電流に変化が生じ、コンデンサ素子を流れる漏れ電流は再化成電圧の印加による再化成が進行している期間に増加し、再化成処理が進んで酸化皮膜の欠陥部分が修復されると、図1及び図2に示すように再化成電圧を降圧させた後に再印加する際に漏れ電流値の変化にピーク電流値Qが現れると、漏れ電流は再化成電圧を増加しても減少を続けることとなる。
【0046】
そこで、Nb素子に流れる漏れ電流によって充電された容量を放電させた後、再び再化成電圧を1V/minの速度で昇圧させてNb素子に印加する。
【0047】
図1に示すように前記2回目の再化成電圧の昇圧中に、前記Nb素子(コンデンサ素子)に流れる漏れ電流値の変化にピーク電流値Qが出現した場合に、引き続き昇圧させつつ電圧を印加し、再化成電圧の設定値15Vに到達した後、その電圧値を維持した状態を60分間保持する。その後、純水にて洗浄を行なう。
【0048】
(6)外装
前記電解重合再化成完了後のNb素子表面に、グラファイト層,銀層をペースト塗布・硬化により形成し、さらにその上に陰極引き出しリードを接続し、コンデンサ素子を構成した後、コンデンサ素子を樹脂モールド等により外装して固体電解コンデンサを完成させる。
【0049】
次に本発明の製造方法で製造した固体電解コンデンサの特性評価について説明する。本発明の効果を説明する上でESR(等価直列抵抗)とLC(漏れ電流)という特性値を用いる。
【0050】
ESRは、コンデンサのインピーダンスを等価的に抵抗分とリアクタンス分との直列抵抗で表したときの抵抗分を表す。LCは、誘電体の絶縁抵抗を表す。ESR及びLCは低いことが望ましい。
【0051】
測定は、
ESR : 1Vrms、Bias1.5V、 100kHz 室温
LC : 6.3V、 室温、 電圧印加後30秒の値
の条件の下に行った。
【0052】
図1に本実施例で作製したコンデンサと、比較のために図4に示す従来例のように1回目の昇圧において電流ピークが出現せず、15Vで1時間キープしたコンデンサとのESRとLCを図3に示す。
【0053】
図3から明らかなように、本実施例1で作成したコンデンサのESRの平均は34mΩ、LCの平均は200μAであり、従来例で作成したコンデンサのESRの平均は108mΩ、LCの平均は1000μAであり、このことからして、本発明によりESR・LC特性の良好なコンデンサが得られることが明らかである。
【0054】
次に前記効果が得られる理由について説明する。電解重合層は化学重合層に比べて一般的に高密度で厚みが大きくなるため、再化成溶液が化成皮膜に到達しにくい。化成皮膜の欠陥部付近では電圧・電流により導電性高分子の体積変化が起こり、導電性高分子層に微小なクラックを発生する。クラック内に再化成溶液が浸入するが、電圧の高い状態では発熱や水の電気分解による発泡等により溶液が欠陥部に浸透しにくく、欠陥部の再化成が進みにくい。
【0055】
しかし、一度電圧を下げることにより、欠陥部の発熱・発泡が収まり再化成溶液が欠陥部に浸透しやすくなるため、2回目の昇圧では欠陥部の再化成が促進され、欠陥部を流れる電流を抑制することができ、結果的に過度の導電性高分子の絶縁化を抑制することができる。
【0056】
図4のように電解重合後の再化成において電圧昇圧中に漏れ電流の変化にピーク電流値が現れない場合、電圧キープ中の電流減少は緩慢となっており、欠陥部の再化成が進みにくいことがわかる。そのため図4に示す従来例では、長時間にわたって欠陥部に大電流が流れてしまい、化成皮膜欠陥部を覆っている導電性高分子の絶縁化が極度に進行する。
【0057】
したがってコンデンサのESRは劣化してしまい、欠陥部の再化成も進行しにくいためLCも大きくなってしまう。
【0058】
一方、本発明では図1のように漏れ電流の変化にピーク電流値Qが出現するまで昇圧・降圧を繰り返すことによって欠陥部の再化成を促進するため、コンデンサのESRは良好となる。また欠陥部の再化成が進行して再化成電流が急激に抑制されるため、コンデンサのLCも低く抑えられるからである。
【0059】
(実施例2)
【0060】
本実施例2における電解重合後の再化成以外の工程は実施例1の(1),(2),(3),(4)及び(6)と同様で処理を行なう。
【0061】
本実施例2における再化成工程において、図2に示すように1回目及び2回目の電圧昇圧中においても、前記Nb素子(コンデンサ素子)に流れる漏れ電流値の変化にピーク電流値Qが出現しない場合には、再化成電圧の印加を終了させ、コンデンサ素子に印加される再化成電圧を一旦降圧させる。
【0062】
そして図2に示すように、Nb素子に流れる漏れ電流によって充電された容量を放電させた後、再び再化成電圧を1V/minの速度で昇圧させてNb素子に印加する。
【0063】
3回目の電圧昇圧中において、前記Nb素子(コンデンサ素子)に流れる漏れ電流値の変化にピーク電流値Qが出現した場合に、引き続き昇圧させつつ電圧を印加し、再化成電圧の設定値15Vに到達した後、その電圧値を維持した状態を60分間保持する。その後、純水にて洗浄を行なう。
【0064】
図3に、本実施例2において再化成電圧の昇圧3回目において漏れ電流の変化にピーク電流値Qが現れたコンデンサのESRとLCを示す。
【0065】
本実施例2ではESR[100kHz]の平均は44mΩ、LCの平均は300μAとなり、従来例に比べて特性が改善されていることが明らかである。
【0066】
なお、実施例では、再化成電圧の昇圧と降圧との繰返しを3回の場合について説明したが、これに限定されるものではなく、電解重合により前記導電性高分子層を形成した後、再化成溶液内に浸漬した前記誘電体酸化皮膜を再化成電圧の印加により再化成する工程において、コンデンサ素子に流れる漏れ電流の電流値の変化を観測し、前記漏れ電流の電流値の変化にピーク電流値(極大値)Qが現れるまで再化成電圧の昇圧と降圧とを繰返すことに特徴があるものであって、その回数に限定されるものではない。
【0067】
【発明の効果】
以上説明したように本発明によれば、等価直列抵抗(ESR)の特性値及び漏れ電流(LC)の特性値を改善する固体電解コンデンサの製造方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施例1に係る固体電解コンデンサの製造方法を説明する特性図である。
【図2】本発明の実施例2に係る固体電解コンデンサの製造方法を説明する特性図である。
【図3】本発明と従来例とを比較して効果の相違を説明する図である。
【図4】従来例に係る固体電解コンデンサの製造方法を説明する特性図である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a solid electrolytic capacitor in which a dielectric oxide film and a conductive polymer layer are sequentially formed on the surface of a capacitor element made of a valve metal to manufacture a solid electrolytic capacitor.
[0002]
[Prior art]
Generally, a solid electrolytic capacitor is formed on the oxide film using a porous formed body made of a valve metal such as tantalum or aluminum as an anode, and using an oxide film formed on the surface of the porous formed body as a dielectric. A structure using a conductive layer to be used as a cathode is provided.
[0003]
By the way, recently, in the technical field of polymer materials, research on a new conductive polymer material has been actively conducted, and a solid electrolytic capacitor using this conductive polymer material has been developed (Japanese Patent Laid-Open No. 10-303075). Reference).
[0004]
In the solid electrolytic capacitor disclosed in Japanese Patent Application Laid-Open No. 10-303075, a dielectric oxide film, a conductive polymer layer, a graphite layer as a conductor layer and a silver paste layer ( A cathode) is sequentially formed, a cathode lead is drawn out from the conductor layer, and an anode lead is drawn out from the anode body, and the entire peripheral surface of the anode body is molded and sealed with an exterior resin.
[0005]
[Problems to be solved by the invention]
By the way, the solid electrolytic capacitor disclosed in Japanese Patent Application Laid-Open No. 10-303075 and the like has a thin oxide film as compared with the conductive polymer layer. Since it is easily broken, a process of repairing a defective portion generated in the oxide film in a manufacturing process is performed.
[0006]
These repair techniques are disclosed, for example, in JP-A-05-090081, JP-A-04-103117, JP-A-03-102812, JP-A-02-288318, JP-A-02-219211, and 63-140517.
[0007]
The techniques disclosed in these publications are repaired by re-chemical formation immediately after a dielectric oxide film is formed on the surface of an anode body made of a valve metal and the oxide film is exposed.
[0008]
Therefore, even if the oxide film is repaired as described above, since the thickness of the repaired oxide film is extremely small, the oxide film may be heated again in the process of forming the conductive polymer layer performed in a later step. And the characteristic value of the equivalent series resistance (ESR) and the characteristic value of the leakage current (LC) are defective.
[0009]
There are two mechanisms by which the leakage current of the capacitor can be reduced by re-chemical formation: (1) repair of the oxide film defect, and (2) insulation of the conductive polymer compound layer covering the oxide film defect.
[0010]
However, in the above-mentioned prior art, there is a problem that the above-mentioned effect (2) cannot be obtained because re-chemical formation is performed in a state where the conductive polymer layer is not formed.
[0011]
An object of the present invention is to provide a method for manufacturing a solid electrolytic capacitor that improves the characteristic value of equivalent series resistance (ESR) and the characteristic value of leakage current (LC).
[0012]
[Problem to be solved]
In order to achieve the above object, a method of manufacturing a solid electrolytic capacitor according to the present invention is to form a solid electrolytic capacitor by sequentially forming a dielectric oxide film and a conductive polymer layer on the surface of a capacitor element made of a valve metal. A method for manufacturing a solid electrolytic capacitor to be manufactured,
After forming the conductive polymer layer by electrolytic polymerization, in the step of re-formation of the dielectric oxide film immersed in the re-formation solution by applying a re-formation voltage, a change in the current value of the leakage current flowing through the capacitor element The step-up and step-down of the re-formed voltage is repeated until the peak current value appears in FIG.
[0013]
Further, the method for manufacturing a solid electrolytic capacitor according to the present invention is a solid electrolytic capacitor for manufacturing a solid electrolytic capacitor by sequentially forming a dielectric oxide film and a conductive polymer layer on the surface of a capacitor element made of a valve metal. A manufacturing method,
After forming the conductive polymer layer by electrolytic polymerization, in the step of re-formation of the dielectric oxide film immersed in the re-formation solution by applying a re-formation voltage, the leakage current until the re-formation voltage value is reached. If the peak current value does not appear in the change in the current value, the re-formed voltage is once lowered, and then the boosting and the step-down of the re-formed voltage are repeated until the peak current value appears in the change in the current value of the leakage current. Things.
[0014]
Further, the re-formation voltage is once lowered to allow a re-formation solution to penetrate into the defective portion of the dielectric oxide film, and the re-formation voltage is raised to perform re-formation.
[0015]
In addition, the capacitor element is immersed in a re-formation solution adjusted to the re-formation electric conductivity to carry out re-formation.
[0016]
Further, the voltage value of the re-formation voltage is set in the range of 70 to 90% of the formation voltage value for forming the dielectric oxide film on the surface of the capacitor element.
[0017]
The rate of boosting the re-formation voltage is set in the range of 0.1 to 5 V / min.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0019]
FIGS. 1 and 2 are characteristic diagrams showing a relationship between a leakage current flowing through a capacitor element and a re-formation voltage applied to the capacitor element in the method for manufacturing a solid electrolytic capacitor according to the present invention.
[0020]
When cracks occur in the conductive polymer layer that covers the oxide film formed on the surface of the capacitor element, the re-chemical solution penetrates into the cracks, but when the voltage is high, heat generation or foaming due to water electrolysis occurs. This makes it difficult for the solution to penetrate the defective portion of the oxide film through the cracks, and the re-chemical treatment of the defective portion of the oxide film does not easily proceed.
[0021]
In order to solve this, it is only necessary to eliminate the heat generated in the state of high re-formation voltage and the bubbling due to the electrolysis of water.The re-formation voltage is lowered, and the re-formation solution enters the crack. Therefore, it is necessary to positively create a state where the oxide film easily comes into contact with the defective portion.
[0022]
On the other hand, when the re-formation solution enters the crack and comes into contact with the defective portion of the oxide film and the re-formation proceeds by applying the re-formation voltage in that state, a change occurs in the leakage current flowing through the capacitor element, and The leakage current flowing through the electrode increases during the period in which the re-formation by the application of the re-formation voltage is in progress, and when the re-formation treatment proceeds and the defective portion of the oxide film is repaired, as shown in FIG. 1 and FIG. The peak current value Q appears in the change of the leakage current value in the step of boosting the voltage after the formation voltage is reduced and then re-applied, and thereafter the leakage current continues to decrease even if the re-formation voltage is increased.
[0023]
This is because the defect portion of the oxide film is repaired after the peak current value Q appears in the change of the leakage current value, so that the leakage current value does not increase even if the re-forming voltage is continuously increased and applied. This is because it will decrease.
[0024]
Therefore, as shown in FIGS. 1 and 2, the method of manufacturing a solid electrolytic capacitor according to the present invention comprises forming a dielectric oxide film and a conductive polymer layer on a surface of a capacitor element made of a valve metal in order. The present invention is directed to a method for manufacturing a solid electrolytic capacitor for manufacturing an electrolytic capacitor.After forming the conductive polymer layer by electrolytic polymerization, the dielectric oxide film immersed in a rechemical solution is subjected to a rechemical voltage. In the step of reforming by applying voltage, the step of raising and lowering the reforming voltage is repeated until a peak current value (maximum value) Q appears in a change in the value of the leakage current flowing through the capacitor element. is there.
[0025]
Further, after forming the conductive polymer layer by electrolytic polymerization, in the step of re-forming the dielectric oxide film immersed in the re-forming solution by applying a re-forming voltage, the leakage occurs until the re-forming voltage value is reached. When the peak current value (maximum value) Q does not appear in the change in the current value of the current, the re-formation voltage is temporarily reduced, and then the re-formation voltage is reduced until the peak current value Q appears in the change in the leak current voltage value. Repeat step-up and step-down.
[0026]
Further, the re-formation voltage is once lowered to allow a re-formation solution to penetrate into the defective portion of the dielectric oxide film, and the re-formation voltage is raised to perform re-formation. In addition, the capacitor element is immersed in a re-formation solution adjusted to the re-formation conductivity and re-formation is performed.
[0027]
Further, the voltage value of the re-formation voltage is set in a range of 70 to 90% of the formation voltage value for forming the dielectric oxide film on the surface of the capacitor element. It is desirable to set it in the range of 0.1 to 5 V / min.
[0028]
There are two mechanisms by which the leakage current of the capacitor can be reduced by re-chemical formation: (1) repairing the oxide film defect and (2) insulating the conductive polymer compound layer covering the oxide film defect. According to the present invention, since the re-formation is performed in a state where the conductive polymer layer is formed, both the effects (1) and (2) described above can be obtained.
[0029]
Next, the present invention will be described in detail using specific examples.
[0030]
(Example 1) A method for manufacturing an Nb electrolytic capacitor, which is a kind of solid electrolytic capacitor, using Nb metal powder, valve metal such as tantalum or aluminum as an anode material, and using polypyrrole and polythiophene as a conductive polymer layer. It will be explained.
[0031]
(1) Manufacturing method of Nb element A molded body in which an Nb anode lead is embedded in Nb metal powder (valve action metal) by press molding is manufactured, and vacuum sintering is performed at 1220 ° C. for 30 minutes at 4 × 10 −3 Pa. To obtain a porous Nb element for a solid electrolytic capacitor.
[0032]
(2) Formation of Insulating (Dielectric) Oxide Film Next, the Nb element was immersed in a phosphoric acid aqueous solution (0.6 wt%), a positive potential was applied to the Nb anode lead of the Nb element, and immersed in the aqueous solution. A chemical treatment is performed by applying a voltage lower than the potential applied to the Nb anode lead to the potential of the counter electrode thus formed to form an insulating (dielectric) oxide film Nb 2 O 5 on the surface of the Nb element.
[0033]
At this time, an oxide film is formed by setting the potential difference (formation voltage) between the Nb anode lead and the counter electrode to 20 V. However, the formation voltage is set according to the type of valve metal used for the capacitor element, and is not necessarily limited to the formation voltage.
[0034]
(3) Formation of Chemical Polymerization Precoat Layer The Nb element on which the oxide film was formed was immersed in a 10% by weight methanol solution of iron dodecylbenzenesulfonate as an oxidizing agent for 6 minutes, dried, and then used as a polymer. It is immersed in a pyrrole monomer for 17 minutes and dried to form a conductive polymer precoat layer inside the porous Nb element.
[0035]
Thereafter, the Nb element was washed with methanol and water, respectively, and then immersed in a phosphoric acid aqueous solution adjusted to an electric conductivity of 150 μS / cm, and the potential difference between the Nb anode lead and the counter electrode was set to 18 V and re-formed. I do.
[0036]
(4) Pyrole 0.7 mol / l as a monomer for forming the conductive polymer layer by electrolytic polymerization, 0.05 mol / l sodium dodecylbenzenesulfonate also serving as a surfactant, a supporting electrolyte, and a dopant of the conductive polymer; The Nb element is immersed in an electrolytic polymerization solution of an aqueous solvent containing 0.3 mol / l of sodium p-toluenesulfonate, a power supply terminal is brought close to the Nb element which has been subjected to chemical polymerization, and electrolytic polymerization is performed on the surface of the Nb element. To form a conductive polymer layer.
[0037]
At this time, the polymerization potential is set to 1.3 V (vs. Ag / AgCl), and the energization time is set to 30 minutes. Thereafter, washing with water is performed.
[0038]
(5) Reformation after electrolytic polymerization The Nb element is immersed in a phosphoric acid aqueous solution whose electric conductivity is adjusted to 150 μS / cm to perform rechemical formation.
[0039]
As shown in FIG. 1, the re-forming voltage is set to 15 V, and the voltage is increased to a re-forming voltage of 15 V by setting the voltage rising rate to 1 V / min. The voltage during the boosting and the leakage current flowing in the capacitor element And monitor the change in the value of the leakage current flowing through the capacitor element.
[0040]
Further, it is desirable that the re-formation voltage is set to 70 to 90% of the formation voltage, and the step-up speed to the re-formation voltage is set to 0.1 to 5 V / min.
[0041]
As shown in FIG. 1, the peak current value Q changes due to the change in the leakage current value flowing through the Nb element (capacitor element) before the first formation voltage is increased to 15 V after the first formation voltage is increased. Observe if it appears.
[0042]
In this case, cracks occur in the conductive polymer layer covering the oxide film formed on the surface of the capacitor element, and the re-formation solution enters the cracks. The solution hardly penetrates into the defective portion of the oxide film through the cracks due to foaming or the like due to decomposition, and the chemical conversion treatment of the defective portion of the oxide film does not easily proceed. In this case, the value of the leakage current flowing through the capacitor element increases according to the degree of boosting as the re-formation voltage is gradually boosted.
[0043]
When the peak current value Q does not appear in the change in the leakage current value flowing through the Nb element (capacitor element), the application of the re-formation voltage is terminated when the re-formation voltage value reaches 15 V, Decrease the voltage value.
[0044]
As a process for facilitating the re-chemical treatment of the defective portion of the oxide film, the re-chemical voltage is lowered to eliminate heat generated at a high re-chemical voltage or foaming due to electrolysis of water, and the inside of the crack is reduced. A state in which the re-chemical solution penetrates into the substrate and easily contacts the defective portion of the oxide film is positively created.
[0045]
When the re-formation solution enters the crack and comes into contact with the defective portion of the oxide film, and the re-formation proceeds by application of the re-formation voltage in this state, a change occurs in the leakage current flowing through the capacitor element and the current flows through the capacitor element. The leakage current increases during the period in which the re-formation by the application of the re-formation voltage is in progress, and when the re-formation treatment proceeds and the defective portion of the oxide film is repaired, as shown in FIG. 1 and FIG. When the peak current value Q appears in the change of the leakage current value when reapplying after stepping down the voltage, the leakage current continues to decrease even if the re-formation voltage is increased.
[0046]
Therefore, after discharging the capacity charged by the leakage current flowing through the Nb element, the regenerated voltage is increased again at a rate of 1 V / min and applied to the Nb element.
[0047]
As shown in FIG. 1, when the peak current value Q appears in a change in the leakage current value flowing through the Nb element (capacitor element) during the second boosting of the regenerated voltage, the voltage is applied while continuously boosting. Then, after reaching the set value of the re-formation voltage of 15 V, the state where the voltage value is maintained is maintained for 60 minutes. Thereafter, cleaning is performed with pure water.
[0048]
(6) Exterior A graphite layer and a silver layer are formed on the surface of the Nb element after the completion of the electrolytic polymerization re-chemical formation by applying and curing a paste, and a cathode lead is connected thereon to form a capacitor element. The element is packaged with a resin mold or the like to complete a solid electrolytic capacitor.
[0049]
Next, evaluation of characteristics of the solid electrolytic capacitor manufactured by the manufacturing method of the present invention will be described. In describing the effects of the present invention, characteristic values of ESR (equivalent series resistance) and LC (leakage current) are used.
[0050]
The ESR represents a resistance when the impedance of the capacitor is equivalently represented by a series resistance of a resistance and a reactance. LC represents the insulation resistance of the dielectric. Low ESR and LC are desirable.
[0051]
The measurement is
ESR: 1 Vrms, Bias 1.5 V, 100 kHz Room temperature LC: 6.3 V, room temperature, performed under the conditions of a value of 30 seconds after voltage application.
[0052]
FIG. 1 shows the ESR and LC of the capacitor manufactured in this example and the capacitor which did not show a current peak at the first boosting as in the conventional example shown in FIG. As shown in FIG.
[0053]
As is clear from FIG. 3, the average of the ESR of the capacitor prepared in the first embodiment is 34 mΩ and the average of the LC is 200 μA, and the average of the ESR of the capacitor prepared in the conventional example is 108 mΩ and the average of the LC is 1000 μA. From this, it is apparent that the present invention can provide a capacitor having good ESR / LC characteristics.
[0054]
Next, the reason why the above-described effect is obtained will be described. Since the electrolytic polymerization layer generally has a higher density and a larger thickness than the chemical polymerization layer, it is difficult for the re-chemical solution to reach the chemical conversion film. In the vicinity of the defect portion of the chemical conversion film, a change in volume of the conductive polymer occurs due to voltage and current, and a minute crack is generated in the conductive polymer layer. Although the re-formation solution infiltrates into the cracks, it is difficult for the solution to penetrate into the defective portion due to heat generation or foaming due to electrolysis of water in a high voltage state, and the re-formation of the defective portion does not easily proceed.
[0055]
However, once the voltage is lowered, the heat generation and bubbling of the defective portion stops, and the re-chemical solution easily penetrates into the defective portion. Therefore, in the second pressurization, the re-chemical formation of the defective portion is promoted, and the current flowing through the defective portion is reduced. It can be suppressed, and as a result, excessive insulation of the conductive polymer can be suppressed.
[0056]
As shown in FIG. 4, when the peak current value does not appear in the change of the leakage current during the voltage increase during the re-formation after the electrolytic polymerization, the current decrease during the voltage keeping is slow, and the re-formation of the defective portion does not easily proceed. You can see that. Therefore, in the conventional example shown in FIG. 4, a large current flows through the defective portion for a long time, and the insulation of the conductive polymer covering the chemical conversion film defective portion progresses extremely.
[0057]
Therefore, the ESR of the capacitor is degraded, and re-formation of the defective portion hardly progresses, so that the LC becomes large.
[0058]
On the other hand, in the present invention, as shown in FIG. 1, repetition of the step-up / step-down until the peak current value Q appears in the change of the leakage current promotes the re-formation of the defective portion, so that the ESR of the capacitor is improved. In addition, since the re-formation of the defective portion progresses and the re-formation current is rapidly suppressed, the LC of the capacitor can be suppressed low.
[0059]
(Example 2)
[0060]
The steps other than the re-chemical formation after the electrolytic polymerization in the second embodiment are the same as those of the first embodiment (1), (2), (3), (4) and (6).
[0061]
In the re-formation step in the second embodiment, the peak current Q does not appear in the change in the leakage current flowing through the Nb element (capacitor element) even during the first and second voltage boosting as shown in FIG. In this case, the application of the re-formation voltage is terminated, and the re-formation voltage applied to the capacitor element is once reduced.
[0062]
Then, as shown in FIG. 2, after discharging the capacity charged by the leakage current flowing through the Nb element, the re-formation voltage is increased again at a rate of 1 V / min and applied to the Nb element.
[0063]
During the third voltage boosting, when a peak current value Q appears in a change in the leakage current value flowing through the Nb element (capacitor element), a voltage is applied while continuously increasing the voltage, and the re-forming voltage is set to 15 V. After reaching, the state where the voltage value is maintained is maintained for 60 minutes. Thereafter, cleaning is performed with pure water.
[0064]
FIG. 3 shows the ESR and LC of the capacitor in which the peak current value Q appears in the change in the leakage current at the third boosting of the regenerated voltage in the second embodiment.
[0065]
In the second embodiment, the average of the ESR [100 kHz] is 44 mΩ, and the average of the LC is 300 μA. It is clear that the characteristics are improved as compared with the conventional example.
[0066]
In the example, the case where the repetition of the step-up and step-down of the re-formation voltage is described as three times is not limited to this. After the conductive polymer layer is formed by electrolytic polymerization, the step is repeated. In the step of reforming the dielectric oxide film immersed in the chemical conversion solution by applying a reformation voltage, a change in the current value of the leakage current flowing through the capacitor element is observed, and a change in the current value of the leakage current indicates a peak current. It is characterized by repeating the step-up and step-down of the regenerated voltage until the value (maximum value) Q appears, and is not limited to the number of times.
[0067]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a method for manufacturing a solid electrolytic capacitor that improves the characteristic value of equivalent series resistance (ESR) and the characteristic value of leakage current (LC).
[Brief description of the drawings]
FIG. 1 is a characteristic diagram illustrating a method for manufacturing a solid electrolytic capacitor according to Embodiment 1 of the present invention.
FIG. 2 is a characteristic diagram illustrating a method for manufacturing a solid electrolytic capacitor according to Embodiment 2 of the present invention.
FIG. 3 is a diagram for explaining a difference in effect between the present invention and a conventional example.
FIG. 4 is a characteristic diagram illustrating a method for manufacturing a solid electrolytic capacitor according to a conventional example.

Claims (6)

弁作用金属からなるコンデンサ素子の表面に、誘電体酸化皮膜と導電性高分子層とを順次形成して固体電解コンデンサを製造する固体電解コンデンサの製造方法であって、
電解重合により前記導電性高分子層を形成した後、再化成溶液内に浸漬した前記誘電体酸化皮膜を再化成電圧の印加により再化成する工程において、コンデンサ素子に流れる漏れ電流の電流値の変化にピーク電流値が現れるまで再化成電圧の昇圧と降圧とを繰返し行うことを特徴とする固体電解コンデンサの製造方法。
A method for manufacturing a solid electrolytic capacitor for manufacturing a solid electrolytic capacitor by sequentially forming a dielectric oxide film and a conductive polymer layer on the surface of a capacitor element made of a valve metal,
After forming the conductive polymer layer by electrolytic polymerization, in the step of re-formation of the dielectric oxide film immersed in the re-formation solution by applying a re-formation voltage, a change in the current value of the leakage current flowing through the capacitor element A step of repeatedly raising and lowering the regenerated voltage until a peak current value appears in the solid electrolytic capacitor.
弁作用金属からなるコンデンサ素子の表面に、誘電体酸化皮膜と導電性高分子層とを順次形成して固体電解コンデンサを製造する固体電解コンデンサの製造方法であって、
電解重合により前記導電性高分子層を形成した後、再化成溶液内に浸漬した前記誘電体酸化皮膜を再化成電圧の印加により再化成する工程において、再化成電圧値に達するまでに前記漏れ電流の電流値の変化にピーク電流値が現れない場合には一旦再化成電圧を降圧し、その後、前記漏れ電流の電流値の変化にピーク電流値が現れるまで再化成電圧の昇圧と降圧とを繰返すことを特徴とする固体電解コンデンサの製造方法。
A method for manufacturing a solid electrolytic capacitor for manufacturing a solid electrolytic capacitor by sequentially forming a dielectric oxide film and a conductive polymer layer on the surface of a capacitor element made of a valve metal,
After forming the conductive polymer layer by electrolytic polymerization, in the step of re-formation of the dielectric oxide film immersed in the re-formation solution by applying a re-formation voltage, the leakage current until the re-formation voltage value is reached. If the peak current value does not appear in the change in the current value, the re-formed voltage is once lowered, and then the boosting and the step-down of the re-formed voltage are repeated until the peak current value appears in the change in the current value of the leakage current. A method for manufacturing a solid electrolytic capacitor, comprising:
前記再化成電圧を一旦降圧させて前記誘電体酸化皮膜の欠陥部に再化成溶液を浸透させ、前記再化成電圧を昇圧させて再化成を行うものであることを特徴とする請求項1又は2に記載の固体電解コンデンサ。3. The method according to claim 1, wherein the re-formation voltage is temporarily reduced to allow a re-formation solution to penetrate into a defective portion of the dielectric oxide film, and the re-formation voltage is increased to perform re-formation. 3. The solid electrolytic capacitor according to item 1. 再化成用電導度に調整した再化成溶液にコンデンサ素子を浸漬して再化成を行うことを特徴とする請求項1又は2に記載の固体電解コンデンサの製造方法。The method for producing a solid electrolytic capacitor according to claim 1, wherein the capacitor element is immersed in a re-formation solution adjusted to the re-formation conductivity to perform re-formation. 前記再化成電圧の電圧値は、コンデンサ素子の表面に前記誘電体酸化皮膜を化成させるための化成電圧値の70〜90%の範囲に設定することを特徴とする請求項1又は2に記載の固体電解コンデンサの製造方法。The voltage value of the re-formation voltage is set in a range of 70% to 90% of a formation voltage value for forming the dielectric oxide film on the surface of the capacitor element. Manufacturing method of solid electrolytic capacitor. 前記再化成電圧の昇圧速度は、0.1〜5V/minの範囲に設定することを特徴とする請求項1又は2に記載の固体電解コンデンサの製造方法。The method for manufacturing a solid electrolytic capacitor according to claim 1, wherein a step-up rate of the re-formation voltage is set in a range of 0.1 to 5 V / min.
JP2000308030A 2000-10-06 2000-10-06 Method for manufacturing solid electrolytic capacitor Expired - Fee Related JP3586182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000308030A JP3586182B2 (en) 2000-10-06 2000-10-06 Method for manufacturing solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000308030A JP3586182B2 (en) 2000-10-06 2000-10-06 Method for manufacturing solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2002118034A JP2002118034A (en) 2002-04-19
JP3586182B2 true JP3586182B2 (en) 2004-11-10

Family

ID=18788424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000308030A Expired - Fee Related JP3586182B2 (en) 2000-10-06 2000-10-06 Method for manufacturing solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP3586182B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11990503B2 (en) 2021-01-05 2024-05-21 Samsung Electronics Co., Ltd. Methods of fabricating capacitor and semiconductor device including the capacitor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8125768B2 (en) * 2009-10-23 2012-02-28 Avx Corporation External coating for a solid electrolytic capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11990503B2 (en) 2021-01-05 2024-05-21 Samsung Electronics Co., Ltd. Methods of fabricating capacitor and semiconductor device including the capacitor

Also Published As

Publication number Publication date
JP2002118034A (en) 2002-04-19

Similar Documents

Publication Publication Date Title
JP2765453B2 (en) Method for manufacturing solid electrolytic capacitor
KR100403936B1 (en) Fabrication method of solid electrolytic capacitor
JP2008053479A (en) Manufacturing method of solid electrolytic capacitor
JP3586182B2 (en) Method for manufacturing solid electrolytic capacitor
JP2003037024A (en) Method of manufacturing solid electrolytic capacitor
JP3361799B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPH08330191A (en) Solid electrolytic capacitor and its manufacture
JP3465076B2 (en) Solid electrolytic capacitors
JP3362600B2 (en) Manufacturing method of capacitor
JP3284993B2 (en) Solid electrolytic capacitor manufacturing method and solid electrolytic capacitor
JP3615388B2 (en) Method and apparatus for manufacturing solid electrolytic capacitor
JP3978544B2 (en) Solid electrolytic capacitor
JP2000353641A (en) Manufacture of solid electronic element
JP2001203128A (en) Method of manufacturing solid electrolytic capacitor
JP2003297672A (en) Method of manufacturing solid electrolytic capacitor
JP2001167981A (en) Solid electrolytic capacitor and manufacturing method therefor
JP3800913B2 (en) Manufacturing method of solid electrolytic capacitor
JPH10303080A (en) Method for manufacturing solid electrolytic capacitor
JP2004128035A (en) Method of manufacturing solid-state electrolytic capacitor
JP2765440B2 (en) Method for manufacturing solid electrolytic capacitor
JP2007305684A (en) Solid electrolytic capacitor and method for manufacturing the same
JP2003086462A (en) Manufacturing method for solid electrolytic capacitor
JP4660884B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2001102256A (en) Method for manufacturing solid electrolytic capacitor
JP2001135550A (en) Manufacturing method for solid state electrolytic capacitor

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20031222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040805

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees