JP2765440B2 - Method for manufacturing solid electrolytic capacitor - Google Patents

Method for manufacturing solid electrolytic capacitor

Info

Publication number
JP2765440B2
JP2765440B2 JP5181473A JP18147393A JP2765440B2 JP 2765440 B2 JP2765440 B2 JP 2765440B2 JP 5181473 A JP5181473 A JP 5181473A JP 18147393 A JP18147393 A JP 18147393A JP 2765440 B2 JP2765440 B2 JP 2765440B2
Authority
JP
Japan
Prior art keywords
electrolytic capacitor
oxide film
conductive polymer
electrolyte
solid electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5181473A
Other languages
Japanese (ja)
Other versions
JPH0737764A (en
Inventor
公輔 天野
石川  仁志
正春 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP5181473A priority Critical patent/JP2765440B2/en
Publication of JPH0737764A publication Critical patent/JPH0737764A/en
Application granted granted Critical
Publication of JP2765440B2 publication Critical patent/JP2765440B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は導電性高分子を電解質と
する固体電解コンデンサの製造方法に関し、特にポリア
ニリンを電解質とする、漏れ電流が小さく、耐電圧特性
が優れた固体電解コンデンサの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a solid electrolytic capacitor using a conductive polymer as an electrolyte, and more particularly to a method for manufacturing a solid electrolytic capacitor using polyaniline as an electrolyte, which has a small leakage current and excellent withstand voltage characteristics. About.

【0002】[0002]

【従来の技術】固体電解コンデンサは、タンタルあるい
はアルミニウムなどの皮膜形成金属の多孔質形成体を第
1の電極(陽極)、その表面酸化皮膜を誘電体、その上
に形成される固体電解質を第2の電極(陰極)の一部と
する構造を有している。固体電解質は多孔質成形体内部
の誘電体全面と電極リード間を電気的に接続する役割を
果たしているので、この観点から、導電率の高い物質が
好ましい。一方、固体電解質には誘電体皮膜の欠陥に起
因する電気的短絡を修復する機能も必要とされる。その
結果、高導電率であるが、誘電体修復機能のない金属は
固体電解質として使用できず、短絡電流による熱などで
絶縁体に転移する二酸化マンガン等が用いられてきた。
2. Description of the Related Art A solid electrolytic capacitor comprises a first electrode (anode) formed of a film-forming metal such as tantalum or aluminum, a surface oxide film formed of a dielectric, and a solid electrolyte formed thereon formed of a first electrode (anode). It has a structure that is a part of the second electrode (cathode). Since the solid electrolyte plays a role of electrically connecting the entire surface of the dielectric inside the porous molded body and the electrode leads, a substance having high conductivity is preferable from this viewpoint. On the other hand, the solid electrolyte is also required to have a function of repairing an electrical short circuit caused by a defect in the dielectric film. As a result, a metal having high conductivity but without a dielectric repair function cannot be used as a solid electrolyte, and manganese dioxide or the like that transfers to an insulator by heat or the like due to short-circuit current has been used.

【0003】固体電解質となる二酸化マンガンは200
〜300℃の高温で硝酸マンガンの熱分解により形成さ
れる。このような高温での熱分解は数回繰り返し行われ
るため、誘電体となる表面酸化皮膜に損傷を与え、電解
コンデンサの耐電圧を低くし漏れ電流増大の原因とな
る。この問題を解決するために、二酸化マンガンを固体
電解質とする電解コンデンサの製造において、表面酸化
皮膜に固体電解質を形成した後、酸化皮膜を修復(再化
成)する工程の導入が必要であった。また、二酸化マン
ガンの導電率は約0.1S/cm程度であり、電解コン
デンサの固体電解質としては必ずしも十分とはいえな
い。そのため、最近では導電率が高く、室温で容易に形
成できるポリピロール、ポリアニリン、ポリチオフェ
ン、ポリパラフェニレン等の導電性高分子を固体電解質
とする電解コンデンサの開発が精力的に進められてい
る。導電性高分子の形成方法には大きく分けて電解重合
の方法と化学重合の方法の2通りある。絶縁性の酸化皮
膜を介して弁金属を陽極とし電解重合の方法により酸化
皮膜上に導電性高分子を形成することができない。そこ
で酸化皮膜表面にあらかじめ導電性を有するプレコート
層を形成した後、該プレコート層を電極として電解重合
により導電性高分子を形成する方法が提案されている。
この方法により、ポリピロールを固体電解質とする電解
コンデンサが開発されその一部は実用化されている(特
公平4−74853号公報)。後者は化学重合の方法に
より直接酸化皮膜上に導電性高分子を形成する方法であ
る。本発明者らは化学重合ポリアニリンを固体電解質と
する電解コンデンサを提案してきた(特願平4−206
227号明細書、特願平4−336865号明細書)。
[0003] Manganese dioxide as a solid electrolyte is 200
It is formed by thermal decomposition of manganese nitrate at high temperatures of ~ 300 ° C. Since thermal decomposition at such a high temperature is repeated several times, the surface oxide film serving as a dielectric is damaged, the withstand voltage of the electrolytic capacitor is lowered, and the leakage current is increased. In order to solve this problem, in the production of an electrolytic capacitor using manganese dioxide as a solid electrolyte, it was necessary to introduce a process of forming a solid electrolyte on a surface oxide film and then repairing (reforming) the oxide film. The conductivity of manganese dioxide is about 0.1 S / cm, which is not always sufficient as a solid electrolyte for an electrolytic capacitor. Therefore, recently, the development of an electrolytic capacitor using a conductive polymer such as polypyrrole, polyaniline, polythiophene, and polyparaphenylene as a solid electrolyte, which has high conductivity and can be easily formed at room temperature, has been vigorously advanced. The method for forming the conductive polymer can be roughly classified into two methods, namely, an electrolytic polymerization method and a chemical polymerization method. A conductive polymer cannot be formed on an oxide film by an electrolytic polymerization method using a valve metal as an anode through an insulating oxide film. Therefore, a method has been proposed in which a conductive prepolymer layer is formed on the surface of an oxide film in advance, and then the conductive polymer is formed by electrolytic polymerization using the precoat layer as an electrode.
By this method, an electrolytic capacitor using polypyrrole as a solid electrolyte has been developed and a part of it has been put to practical use (Japanese Patent Publication No. 4-74853). The latter is a method of forming a conductive polymer directly on an oxide film by a chemical polymerization method. The present inventors have proposed an electrolytic capacitor using chemically polymerized polyaniline as a solid electrolyte (Japanese Patent Application No. Hei 4-206).
227, Japanese Patent Application No. 4-336865).

【0004】[0004]

【発明が解決しようとする課題】導電性高分子は化学重
合の方法により形成された場合、室温で穏和な条件で形
成できるため、これを電解質とする固体電解コンデンサ
は高い耐電圧と優れた漏れ電流特性が期待できる。しか
し、本発明者らはモノマーの化学酸化により形成される
導電性高分子を電解質とする固体電解コンデンサについ
て検討を行い、その耐電圧と漏れ電流特性が必ずしも期
待通りのものではなく、二酸化マンガンを固体電解質と
する電解コンデンサの場合と同様に修復工程の導入が必
要であることがわかった。
When a conductive polymer is formed by a chemical polymerization method, it can be formed under mild conditions at room temperature. Therefore, a solid electrolytic capacitor using this as an electrolyte has a high withstand voltage. And excellent leakage current characteristics can be expected. However, the present inventors have conducted studied solid electrolytic capacitor of the conductive polymer formed by chemical oxidation of the monomer and the electrolyte, and not its withstand voltage and leakage current characteristics are not necessarily expected, manganese dioxide It was found that it was necessary to introduce a repairing step as in the case of an electrolytic capacitor using a solid electrolyte.

【0005】本発明の課題は、上記問題点を解決し導電
性高分子、特にポリアニリンの高い導電性が十分に活か
され高周波での等価直列抵抗が低い上、しかも耐電圧及
び漏れ電流特性の優れた電解コンデンサの製造方法を提
供することである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to make full use of the high conductivity of a conductive polymer, particularly polyaniline, to have a low equivalent series resistance at a high frequency and to have excellent withstand voltage and leakage current characteristics. To provide a method for manufacturing an electrolytic capacitor.

【0006】[0006]

【課題を解決するための手段】本発明者らは前記問題点
を解決するために多方面から検討を行なった。その結
果、導電性高分子、特にポリアニリンを電解質とする固
体電解コンデンサにおいて、耐電圧の低下及び漏れ電流
の増大は導電性高分子と電解コンデンサ酸化皮膜との接
合、あるいはドーパントの侵食等に起因するものではな
く、モノマーの酸化重合過程において起きていることが
わかった。そこで、モノマーの酸化重合過程において様
々な工夫をした。その結果、これまでの修復工程が不要
となるばかりでなく、従来よりはるかに高い耐電圧と小
さい漏れ電流を示す電解コンデンサを得る方法を見いだ
し本発明に至った。
Means for Solving the Problems The present inventors have conducted various studies to solve the above problems. As a result, in a solid electrolytic capacitor using a conductive polymer, particularly polyaniline as an electrolyte, a decrease in withstand voltage and an increase in leakage current are caused by bonding between the conductive polymer and an oxide film of the electrolytic capacitor or erosion of a dopant. However, it was found that it occurred during the oxidative polymerization of the monomer. Therefore, various measures were taken in the oxidation polymerization process of the monomer. As a result, the present inventors have found a method of obtaining not only the conventional repairing step but also a method of obtaining an electrolytic capacitor exhibiting a much higher withstand voltage and a smaller leakage current than the conventional one, and have reached the present invention.

【0007】すなわち、本発明は、皮膜形成金属の表面
酸化皮膜を誘電体とし、導電性高分子を酸化剤を用いた
モノマーの酸化重合、すなわち化学重合の方法により形
成し電解質とする固体電解コンデンサの製造方法におい
表面酸化皮膜に電荷を帯電させた状態で、酸化剤を
用いてモノマーを酸化重合させ、導電性高分子を形成す
ることを特徴とする固体電解コンデンサの製造方法であ
る。表面酸化皮膜への電荷の付与は、特に限定はされず
電解質を含む溶液中において表面酸化皮膜に電圧を印加
することによって行なうこともできる。
That is, the present invention uses a surface oxide film of a film-forming metal as a dielectric and a conductive polymer using an oxidizing agent.
Oxidative polymerization of the monomer, i.e., in the manufacturing method of a solid electrolytic capacitor according to the formed electrolyte by the method of chemical polymerization, in a state where electric charge on the surface oxide film, an oxidizing agent
A method for producing a solid electrolytic capacitor, comprising oxidizing and polymerizing a monomer to form a conductive polymer. The application of electric charge to the surface oxide film is not particularly limited, and may be performed by applying a voltage to the surface oxide film in a solution containing an electrolyte.

【0008】また、本発明は、固体電解質となる導電性
高分子が特にポリアニリン及びその誘電体である場合、
表面酸化皮膜へ付与する電荷がプラスの電荷であること
を特徴とする固体電解コンデンサの製造方法である。具
体的な方法として、表面酸化皮膜へのプラスの電荷の付
与は、電解質を含む溶液中において対電極を設け、皮膜
形成金属を陽極、対電極を陰極とし表面酸化皮膜に電圧
を印加することによって行う。
[0008] Further, the present invention provides a method for producing a solid electrolyte, particularly when the conductive polymer is polyaniline and its dielectric.
A method for manufacturing a solid electrolytic capacitor, wherein the charge applied to the surface oxide film is a positive charge. As a specific method, the application of a positive charge to the surface oxide film is performed by providing a counter electrode in a solution containing an electrolyte, applying a voltage to the surface oxide film using the film-forming metal as an anode and the counter electrode as a cathode. Do.

【0009】表面酸化皮膜への電荷の付与は電圧印加に
よって行われる場合において、印加電圧は特に限定され
ないが、安全性等を考慮した上、ペレットの種類に応じ
て設定すると良い。
In the case where the electric charge is applied to the surface oxide film by applying a voltage, the applied voltage is not particularly limited, but may be set according to the type of the pellet in consideration of safety and the like.

【0010】表面酸化皮膜への電荷の付与は電解質を含
む溶液中において電圧を印加することによって行われる
場合、用いる電解質溶液について特に限定されない。導
電性高分子を形成するための重合液(例えば、酸化剤、
またはモノマーを含む溶液、またはその両方を含む溶液
等)をそのまま活かしてもいいし、あるいはそれとは別
に電解質を含む溶液を用意しても良い。製造コスト等を
考慮して導電性高分子を形成するための重合液をそのま
ま活かしたほうが好ましい。また、重合液とは別の電解
質溶液を用いる場合、この溶液には電解コンデンサの諸
特性を損なうような物質(例えば、分解しやすい物質、
あるいは表面酸化皮膜に付着し固体電解質の抵抗を大き
くするような物質)が含まれないように注意する必要が
ある。
When the electric charge is applied to the surface oxide film by applying a voltage in a solution containing an electrolyte, the electrolyte solution to be used is not particularly limited. Polymerization liquid for forming a conductive polymer (for example, an oxidizing agent,
Or a solution containing monomers, or a solution containing both
Etc.) may be used as it is, or a solution containing an electrolyte may be separately prepared. It is preferable to utilize the polymerization solution for forming the conductive polymer as it is in consideration of the production cost and the like. In addition, when an electrolyte solution different from the polymerization solution is used, the solution may contain substances that impair the characteristics of the electrolytic capacitor (for example, substances that are easily decomposed,
Alternatively, care must be taken not to include a substance which adheres to the surface oxide film and increases the resistance of the solid electrolyte).

【0011】本発明において、酸化皮膜に電圧を印加し
ながら酸化剤を用いたモノマーを酸化重(化学重合)
行う。絶縁性の酸化皮膜を介して電解重合は起こらない
ので、本発明は電解重合により導電性高分子を形成する
方法と本質的に異なる。
In the present invention, a monomer using an oxidizing agent is subjected to oxidative polymerization (chemical polymerization) while applying a voltage to the oxide film. Since electrolytic polymerization does not occur via an insulating oxide film, the present invention is essentially different from the method of forming a conductive polymer by electrolytic polymerization.

【0012】本発明において皮膜形成金属とは、タンタ
ル、アルミニウム、ニオブ、チタン、ジルコニウム、マ
グネシウム、ケイ素などであり、圧延箔、微粉焼結物、
及び圧延箔のエッチング物などの形態で用いることがで
きる。
In the present invention, the film-forming metal includes tantalum, aluminum, niobium, titanium, zirconium, magnesium, silicon, etc.
It can be used in the form of an etched product of a rolled foil.

【0013】本発明の製造方法では、皮膜形成金属の酸
化皮膜表面に導電性高分子をモノマーの化学酸化により
形成した後に、水、あるいは他の適当な有機溶媒により
洗浄し、導電性に寄与しない酸化剤及び低分子量の部分
を取り除く。その後に、乾燥を行い通常の方法で引き出
し電極を設けてコンデンサに組み上げる。また、前記重
合操作及び組上げ各工程を繰り返し行うこともできる。
In the production method of the present invention, a conductive polymer is formed on the surface of the oxide film of the film-forming metal by chemical oxidation of the monomer, and then washed with water or another suitable organic solvent, so as not to contribute to conductivity. Remove oxidants and low molecular weight fractions. After that, drying is performed, a lead electrode is provided by a normal method, and the capacitor is assembled. Further, the above-mentioned polymerization operation and assembling steps can be repeated.

【0014】[0014]

【実施例】図1は本発明実施例により製作された固体電
解コンデンサの断面構造を模式的に示す図である。陽極
となる金属箔1の表面にエッチングを施し、ミクロな細
孔を多数形成してその表面積を大きくする。この表面の
細孔壁面に沿って金属酸化物の誘電体薄膜2を形成す
る。この誘電体薄膜2の表面に固体電解質、例えばポリ
アニリンの層3をその細孔の奥深くまでは入り込むよう
に形成する。この固体電解質の層3の反対側に陰極とな
る電極5(銀ペースト等)を取り付ける。電極5と固体
電解質の層3との間には接触を良好に保持するためにグ
ラファイト層4を用いることもできる。電極リード6お
よび7が取り付けられる。
FIG. 1 is a diagram schematically showing a sectional structure of a solid electrolytic capacitor manufactured according to an embodiment of the present invention. The surface of the metal foil 1 serving as an anode is etched to form a large number of micropores to increase the surface area. The metal oxide dielectric thin film 2 is formed along the pore wall surface of this surface. A layer 3 of a solid electrolyte, for example, polyaniline, is formed on the surface of the dielectric thin film 2 so as to penetrate deep into the pores. An electrode 5 (silver paste or the like) serving as a cathode is attached to the opposite side of the solid electrolyte layer 3. A graphite layer 4 may be used between the electrode 5 and the solid electrolyte layer 3 to maintain good contact. Electrode leads 6 and 7 are attached.

【0015】図2は電圧を印加することによって酸化皮
膜表面に電荷が付加される様子を示している。電解質を
含む溶液8において対電極9を設ける。皮膜形成金属1
を陽極、対電極を陰極とし酸化皮膜2表面にプラスの電
荷を印加しながらモノマーの酸化重合を行う。
FIG. 2 shows how charges are added to the oxide film surface by applying a voltage. A counter electrode 9 is provided in a solution 8 containing an electrolyte. Film forming metal 1
Is used as an anode and the counter electrode is used as a cathode while oxidative polymerization of the monomer is performed while applying a positive charge to the surface of the oxide film 2.

【0016】以上、実施例を挙げて本発明を具体的に説
明するが、本発明はこれらの実施例にのみ限定されるも
のではない。
As described above, the present invention will be described specifically with reference to examples, but the present invention is not limited to these examples.

【0017】(実施例1) 直径1.5mm、高さ2mm、グラム当たりの粉末CV
値(容量と化成電圧の積)20000の円柱状のタンタ
微粉末焼結体ペレットを0.05wt%リン酸水溶液
中で100Vで陽極酸化し、洗浄及び乾燥した。一方、
アニリンとパラトルエンスルホン酸が等モルで、アニリ
ン濃度が5wt%となる水/エタノール(体積比1:
1)溶液、及びニクロム酸アンモニウムとパラトルエン
スルホン酸のモル比が1:3で、0℃に保持している2
0wt%の酸化剤水溶液を用意した。続いて対電極を設
けてある0.1Mのパラトルエンスルホン酸溶液中にお
いて、皮膜形成金属を陽極、対電極を陰極とし上記タン
タルペレットに5Vの電圧を10秒間印加して帯電させ
た。帯電した電荷が放電しないように絶縁物等を介して
注意しながら上記ペレットを、室温でアニリンモノマー
溶液に30秒間浸漬して取り出した。10分後に、同様
にして前記アニリンモノマー含浸されたタンタルペレッ
トを酸化剤溶液に30秒間浸漬した。このペレットを空
気中でさらに30分間保持して重合を行なったところ、
黒色のポリアニリンを誘電体表面に形成できた。その
後、室温において0.5Mパラトルエンスルホン酸の水
/エタノール(1:1)溶液で洗浄、乾燥した。
Example 1 1.5 mm in diameter, 2 mm in height, powder CV per gram
A columnar tantalum fine powder sintered body pellet having a value (product of capacity and formation voltage) of 20000 was anodized at 100 V in a 0.05 wt% aqueous solution of phosphoric acid, washed and dried. on the other hand,
Water / ethanol (volume ratio 1: 1) where aniline and paratoluenesulfonic acid are equimolar and the aniline concentration is 5 wt%.
1) The solution and the molar ratio of ammonium dichromate to paratoluenesulfonic acid is 1: 3 and kept at 0 ° C. 2
A 0 wt% oxidizing agent aqueous solution was prepared. Subsequently, in a 0.1 M p-toluenesulfonic acid solution provided with a counter electrode, the film-forming metal was used as an anode, and the counter electrode was used as a cathode. To prevent the charged electric charge from discharging ,
Carefully transfer the pellet to room temperature at room temperature.
It was immersed in the solution for 30 seconds and taken out. Ten minutes later, the tantalum pellet impregnated with the aniline monomer was immersed in an oxidizing agent solution for 30 seconds in the same manner. When the polymerization was carried out by holding the pellets in the air for another 30 minutes,
Black polyaniline could be formed on the dielectric surface. Thereafter, the resultant was washed with a 0.5 M solution of paratoluenesulfonic acid in water / ethanol (1: 1) at room temperature and dried.

【0018】上記タンタルペレットへの帯電、アニリン
とパラトルエンスルホン酸との混合溶液の充填、酸化剤
溶液との接触、重合、洗浄及び乾燥を5回繰り返した
後、銀ペーストを付け陰極リードを引き出し、エポキシ
樹脂で封止してコンデンサを完成した。
After repeating the charging of the tantalum pellets, filling of a mixed solution of aniline and paratoluenesulfonic acid, contacting with an oxidizing agent solution, polymerization, washing and drying, the silver paste is attached and the cathode lead is pulled out. And sealed with epoxy resin to complete the capacitor.

【0019】(実施例2) アニリンとパラトルエンスルホン酸が等モルで、アニリ
ン濃度が5wt%となる水/エタノール(体積比1:
1)溶液、及びニクロム酸アンモニウムとパラトルエン
スルホン酸のモル比が1:3で、0℃に保持している2
0wt%の酸化剤水溶液を用意し、その両方にそれぞれ
対電極を設けておいた。実施例1のエッチングして酸化
皮膜を形成したタンタルペレットを用いて、皮膜形成金
属を陽極、対電極を陰極とし表面酸化皮膜に5Vの電圧
を印加しながらまずタンタルペレットを室温でアニリン
モノマー溶液に30秒間浸漬して取り出した。10分後
に、同様にして5Vの電圧を印加しながら、前記アニリ
ンモノマーが含浸されたタンタルペレットを酸化剤溶液
に30秒間浸漬した。このペレットを空気中でさらに3
0分間保持して重合を行なったところ、黒色のポリアニ
リンを誘電体表面に形成できた。その後、室温において
0.5Mパラトルエンスルホン酸の水/エタノール
(1:1)溶液で洗浄、乾燥した。
Example 2 Water / ethanol (aniline concentration: 5 wt%, aniline and paratoluenesulfonic acid in equimolar ratio, volume ratio 1: 1)
1) The solution and the molar ratio of ammonium dichromate to paratoluenesulfonic acid is 1: 3 and kept at 0 ° C. 2
A 0 wt% oxidizing agent aqueous solution was prepared, and a counter electrode was provided for each of them. First, the tantalum pellet was added to the aniline monomer solution at room temperature while applying a voltage of 5 V to the surface oxide film using the film-forming metal as the anode and the counter electrode as the cathode using the tantalum pellet formed by etching to form an oxide film in Example 1. It was immersed for 30 seconds and taken out. After 10 minutes, the tantalum pellet impregnated with the aniline monomer was immersed in the oxidizing agent solution for 30 seconds while applying a voltage of 5 V in the same manner. The pellet is further added in air for 3
When polymerization was carried out for 0 minute, black polyaniline could be formed on the dielectric surface. Thereafter, the resultant was washed with a 0.5 M solution of paratoluenesulfonic acid in water / ethanol (1: 1) at room temperature and dried.

【0020】上記アニリンとパラトルエンスルホン酸と
の混合溶液の充填、酸化剤溶液との接触、重合、洗浄及
び乾燥を5回繰り返した後、銀ペーストを付け陰極リー
ドを引き出し、エポキシ樹脂で封止してコンデンサを完
成した。
After the filling of the mixed solution of aniline and paratoluenesulfonic acid, the contact with the oxidizing agent solution, the polymerization, the washing and the drying are repeated five times, the silver paste is applied and the cathode lead is pulled out and sealed with epoxy resin. And completed the capacitor.

【0021】(比較例1)実施例1のエッチングして酸
化皮膜を形成したタンタルペレットを用いて、酸化皮膜
に電圧を印加させず、それ以外は実施例2と同様に電解
コンデンサを作製した。
(Comparative Example 1) An electrolytic capacitor was manufactured in the same manner as in Example 2 except that no voltage was applied to the oxide film using the tantalum pellets of Example 1 on which an oxide film was formed by etching.

【0022】(実施例3)エッチングによって表面積を
ほぼ20倍に拡大した膜厚200μm、1×0.5cm
2 のアルミニウム箔を0.1%ほう酸アンモニウム水溶
液中で120Vで陽極酸化し、洗浄及び乾燥した。その
後に、実施例2と同様な方法でアニリンの重合、洗浄、
及び乾燥を繰り返し、リードを引き出してコンデンサを
完成させた。
(Embodiment 3) A film thickness of 200 μm, 1 × 0.5 cm in which the surface area is enlarged almost 20 times by etching.
2 of the aluminum foil was anodized by 120V in a 0.1% ammonium borate solution, washed and dried. Thereafter, polymerization, washing, and the like of aniline were performed in the same manner as in Example 2.
The drying was repeated, and the leads were pulled out to complete the capacitor.

【0023】(比較例2)実施例3のエッチングして酸
化皮膜を形成したアルミニウム箔を用いて、酸化皮膜に
電圧を印加せずに、それ以外は実施例2と同様に電解コ
ンデンサを作製した。
(Comparative Example 2) An electrolytic capacitor was manufactured in the same manner as in Example 2 except that no voltage was applied to the oxide film using the aluminum foil of Example 3 on which an oxide film was formed by etching. .

【0024】(実施例4)ドデシルベンゼンスルホン酸
第2鉄の35%メタノール溶液を−50℃に保ち攪拌し
ながら、溶液中のドデシルベンゼンスルホン酸第2鉄の
モル数に対して3倍量のモル数のピロールを適下してド
デシルベンゼンスルホン酸第2鉄とピロールの混合溶液
を作製した。
Example 4 A 35% methanol solution of ferric dodecylbenzenesulfonate was kept at -50.degree. C. while stirring, and the amount was 3 times the number of moles of ferric dodecylbenzenesulfonate in the solution. A mixed solution of ferric dodecylbenzenesulfonate and pyrrole was prepared by appropriately lowering the number of moles of pyrrole.

【0025】次に、上記混合溶液に対電極を設け、実施
例1のエッチングして酸化皮膜を形成したタンタルペレ
ットを用いて、皮膜形成金属を陽極、対電極を陰極とし
酸化皮膜に5Vの電圧を印加しながらタンタルペレット
を前記−50℃のドデシルベンゼンスルホン酸第2鉄と
ピロールの混合溶液に30秒間浸漬した。その後、更に
空気中、室温で30分間保持してピロールを重合させた
ところ、黒色のポリピロールを誘電体表面に形成でき
た。その後、メタノール洗浄を行い乾燥した。
Next, a counter electrode was provided in the above mixed solution, and using the etched tantalum pellets of Example 1 to form an oxide film, the film-forming metal was used as an anode, the counter electrode was used as a cathode, and a voltage of 5 V was applied to the oxide film. The tantalum pellet was immersed in the mixed solution of ferric dodecylbenzenesulfonate and pyrrole at −50 ° C. for 30 seconds while applying the pressure. Thereafter, when the pyrrole was polymerized by further holding in the air at room temperature for 30 minutes, black polypyrrole was formed on the dielectric surface. Then, it was washed with methanol and dried.

【0026】上記のドデシルベンゼンスルホン酸第2鉄
とピロールの混合溶液の充填、重合、洗浄及び乾燥を3
回繰り返した後、銀ペーストを付け陰極リードを引き出
し、エポキシ樹脂で封止してコンデンサを完成した。
Filling, polymerization, washing and drying of the above mixed solution of ferric dodecylbenzenesulfonate and pyrrole are performed in three steps.
After repetition, silver paste was applied and the cathode lead was pulled out and sealed with epoxy resin to complete the capacitor.

【0027】(比較例3)実施例1のエッチングして酸
化皮膜を形成したタンタルペレットを用いて、酸化皮膜
に電圧を印加せずに、それ以外は実施例4と同様に電解
コンデンサを作製した。
(Comparative Example 3) An electrolytic capacitor was produced in the same manner as in Example 4 except that no voltage was applied to the oxide film by using the tantalum pellets on which an oxide film was formed by etching, as in Example 1. .

【0028】実施例1〜4及び比較例1〜3において、
得られた電解コンデンサの容量出現率(C/Co、電解
質溶液中における容量をCoとする)、100kHzで
の等価値列抵抗(ESR)及び漏れ電流(LC)を表1
に示す。また、1例として実施例2の電解コンデンサに
おける漏れ電流と電圧の関係を図3に示す。表1及び図
3からわかるように、本発明の方法で作製した電解コン
デンサは高周波数での等価値列抵抗が小さい上、耐電圧
が高く、漏れ電流が小さいものであった。
In Examples 1 to 4 and Comparative Examples 1 to 3,
Table 1 shows the capacity appearance ratio (C / Co, the capacity in the electrolyte solution is Co), the equivalent column resistance (ESR) at 100 kHz, and the leakage current (LC) of the obtained electrolytic capacitor.
Shown in FIG. 3 shows the relationship between the leakage current and the voltage in the electrolytic capacitor according to the second embodiment as an example. As can be seen from Table 1 and FIG. 3, the electrolytic capacitor manufactured by the method of the present invention had low equivalent column resistance at high frequencies, high withstand voltage, and low leakage current.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【発明の効果】以上説明したように、本発明は、酸化皮
膜表面に電荷を帯電させた状態で導電性高分子を形成す
ることを特徴とする固体電解コンデンサの製造方法であ
る。その結果、導電性高分子、特にポリアニリンの高い
導電性が十分に活かされ高周波における等価値列抵抗が
低い上、しかも耐電圧及び漏れ電流特性の優れた電解コ
ンデンサの製造方法を提供することができ、その効果は
大きい。
As described above, the present invention is a method for manufacturing a solid electrolytic capacitor, characterized in that a conductive polymer is formed while an electric charge is charged on an oxide film surface. As a result, it is possible to provide a method for producing an electrolytic capacitor in which the high conductivity of a conductive polymer, particularly polyaniline, is sufficiently utilized, the equivalent column resistance at high frequencies is low, and the withstand voltage and the leakage current characteristics are excellent. The effect is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例により製作される固体電解コン
デンサの断面構造を模式的に示す図である。
FIG. 1 is a diagram schematically showing a cross-sectional structure of a solid electrolytic capacitor manufactured according to an embodiment of the present invention.

【図2】電圧を印加することによって酸化皮膜表面に電
荷が付加される様子を示す図である。
FIG. 2 is a diagram showing a state in which a charge is added to an oxide film surface by applying a voltage.

【図3】実施例2の電解コンデンサにおける漏れ電流と
電圧の関係を示す図である。
FIG. 3 is a diagram showing a relationship between a leakage current and a voltage in the electrolytic capacitor of Example 2.

【符号の説明】[Explanation of symbols]

1 皮膜形成金属箔 2 誘電体薄膜 3 固体電解質である導電性高分子の層 4 グラファイト層 5 電極 6、7 電極リード 8 対電極 9 電解質溶液 DESCRIPTION OF SYMBOLS 1 Film forming metal foil 2 Dielectric thin film 3 Layer of conductive polymer which is a solid electrolyte 4 Graphite layer 5 Electrode 6, 7 Electrode lead 8 Counter electrode 9 Electrolyte solution

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01G 9/028 C08G 73/00 H01G 9/00──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) H01G 9/028 C08G 73/00 H01G 9/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】皮膜形成金属の表面酸化皮膜を誘電体と
し、導電性高分子を酸化剤を用いたモノマーの酸化重合
の方法により形成し電解質とする固体電解コンデンサの
製造方法において前記誘電体に電荷を帯電させた状態
酸化剤を用いてモノマーを酸化重合させることによっ
導電性高分子を形成すること特徴とする固体電解コン
デンサの製造方法。
1. A method for manufacturing a solid electrolytic capacitor in which a surface oxide film of a film-forming metal is used as a dielectric, and a conductive polymer is formed by an oxidative polymerization method of a monomer using an oxidizing agent and used as an electrolyte. , depending on the oxidizing polymerization of monomers using an oxidizing agent in a state where electric charge in the dielectric
A method for producing a solid electrolytic capacitor, comprising forming a conductive polymer by heating.
【請求項2】電解質を含む溶液中において誘電体に電圧
を印加することによって前記誘電体への電荷の付与を行
なうことを特徴とする請求項1記載の固体電解コンデン
サの製造方法。
2. The method for manufacturing a solid electrolytic capacitor according to claim 1, wherein a charge is applied to said dielectric by applying a voltage to said dielectric in a solution containing an electrolyte.
【請求項3】固体電解質となる導電性高分子としてポリ
アニリン、もしくはその誘導体が主成分であることを特
徴とする請求項1記載の固体電解コンデンサの製造方
法。
3. The method for producing a solid electrolytic capacitor according to claim 1, wherein polyaniline or a derivative thereof is a main component as the conductive polymer serving as a solid electrolyte.
JP5181473A 1993-07-22 1993-07-22 Method for manufacturing solid electrolytic capacitor Expired - Fee Related JP2765440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5181473A JP2765440B2 (en) 1993-07-22 1993-07-22 Method for manufacturing solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5181473A JP2765440B2 (en) 1993-07-22 1993-07-22 Method for manufacturing solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH0737764A JPH0737764A (en) 1995-02-07
JP2765440B2 true JP2765440B2 (en) 1998-06-18

Family

ID=16101375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5181473A Expired - Fee Related JP2765440B2 (en) 1993-07-22 1993-07-22 Method for manufacturing solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2765440B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4642257B2 (en) * 2001-03-09 2011-03-02 日本ケミコン株式会社 Solid electrolytic capacitor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2810418B2 (en) * 1989-06-20 1998-10-15 三洋電機株式会社 Method for manufacturing solid electrolytic capacitor

Also Published As

Publication number Publication date
JPH0737764A (en) 1995-02-07

Similar Documents

Publication Publication Date Title
JP3157748B2 (en) Solid electrolytic capacitor using conductive polymer and method for manufacturing the same
JP2765462B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP3705306B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2580980B2 (en) Tantalum solid electrolytic capacitor and method of manufacturing the same
WO1997041577A1 (en) Solid electrolyte capacitor and its manufacture
JPH07135126A (en) Solid electrolytic capacitor and its manufacture
JPH07130579A (en) Manufacture of solid electrolytic capacitor
JP2765440B2 (en) Method for manufacturing solid electrolytic capacitor
JP3362600B2 (en) Manufacturing method of capacitor
JP2001110685A (en) Solid electrolytic capacitor
JP2570600B2 (en) Method for manufacturing solid electrolytic capacitor
JP2001284174A (en) Solid electrolytic capacitor and its manufacturing method
JP4774664B2 (en) Manufacturing method of solid electrolytic capacitor
JP3603920B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP4720075B2 (en) Manufacturing method of solid electrolytic capacitor
JP3891304B2 (en) Manufacturing method of solid electrolytic capacitor
JP4363022B2 (en) Manufacturing method of solid electrolytic capacitor
JP4442361B2 (en) Manufacturing method of solid electrolytic capacitor
JP4720074B2 (en) Manufacturing method of solid electrolytic capacitor
JP4378908B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2003289019A (en) Manufacturing method for solid electrolytic capacitor
JP5015382B2 (en) Manufacturing method of solid electrolytic capacitor
JP4084862B2 (en) Manufacturing method of solid electrolytic capacitor
JPH10303080A (en) Method for manufacturing solid electrolytic capacitor
JPH10321474A (en) Solid electrolytic capacitor and its manufacture

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980303

LAPS Cancellation because of no payment of annual fees