JP3584594B2 - pH sensor and ion water generator - Google Patents

pH sensor and ion water generator Download PDF

Info

Publication number
JP3584594B2
JP3584594B2 JP03028696A JP3028696A JP3584594B2 JP 3584594 B2 JP3584594 B2 JP 3584594B2 JP 03028696 A JP03028696 A JP 03028696A JP 3028696 A JP3028696 A JP 3028696A JP 3584594 B2 JP3584594 B2 JP 3584594B2
Authority
JP
Japan
Prior art keywords
water
sensor
liquid
electrode
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03028696A
Other languages
Japanese (ja)
Other versions
JPH09222408A (en
Inventor
利彦 松田
毅 西田
茂 塚本
琢磨 佐藤
哲司 添田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP03028696A priority Critical patent/JP3584594B2/en
Publication of JPH09222408A publication Critical patent/JPH09222408A/en
Application granted granted Critical
Publication of JP3584594B2 publication Critical patent/JP3584594B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水道水、井戸水等の原水を電気分解して得られるアルカリ水および酸性水の様に気泡を含む液体のpH値を測定するpHセンサ及びイオン水生成器に関するものである。
【0002】
【従来の技術】
近年健康ブームを反映して、イオン水生成器が普及しつつある。このイオン水生成器は電解槽内で水道水などを電気分解し、陽極側に酸性イオン水を生成し、陰極側にアルカリイオン水を生成するものである。
【0003】
最近では生成されたイオン水のpH値を測定するためのpHセンサをイオン水生成器に配置した技術(実開平5−80587号公報)が提案され主流になりつつある。
【0004】
そこでこのpHセンサを備えた連続電解方式のイオン水生成器について説明する。図4は従来のイオン水生成器の概略全体図である。1は水道水などの原水管、2は水栓、3は水栓2と介して原水管1と接続されたイオン水生成器である。4は内部に活性炭や中空糸膜などを備えた浄水部、5はミネラルを原水中に付与し導電率を高めるミネラル供給部、6は通水を確認し後述の制御手段に制御開始の指示をする流量センサ、8は流量センサ6を経由してきた水を電気分解する電解槽7を2分する隔膜、9,10は隔膜8で2分して形成された各電極室に配置された電極板、11は電極板10側の水(電極板10が陽極の場合は酸性水)を排出する排水管、12は電極板9側の水(電極板9が陰極の場合はアルカリイオン水)を吐出する吐水管15の一部に設けられたpH検知部13に供給する接続管、14はpH検知部13に収容されたpHセンサ、16は電解槽7内の残留水や電極洗浄時のスケールが溶解した洗浄水を排出するための電磁弁、17は排水管11を介して電極板10側の水(電極板10が陽極の場合は酸性水)や電解槽7の滞留水や洗浄水を排出する放水管、19は電源投入用プラグ18からの交流を直流に変換する電源部、20はイオン水生成器3の動作を制御する制御手段、53はイオン水生成器3の操作状態を表示するとともに操作条件などを設定する操作表示部である。
【0005】
以上のように構成された従来のpHセンサとイオン水生成器について以下その動作を説明する。原水管1より水栓2を開いて通水された原水は浄水器4で原水中の残留塩素の臭いや一般細菌などの不純物が取り除かれ、ミネラル供給部5でグリセロリン酸カルシウムなどのミネラルが溶解され電解が容易な水に処理された後、流量センサ6を経て電解槽7に通水される。一方、電源投入用プラグ18よりAC電圧が印加され、電源部19で直流に変換後、電解槽7の電極板9と電極板10に供給される。これにより陽極室では酸性イオン水が生成されるとともに、陰極室においてはアルカリイオン水が生成され、通水しながら電極板9がマイナス電圧になるように電圧を印加すると、吐水管15よりアルカリイオン水が連続的に得られる。また電極板9がプラス電圧になるように電圧を印加すると、吐水管15より酸性水が連続的に得られる。電解槽7で生成されたイオン水のpH値をpHセンサ14により測定し、センサ出力値を制御手段20にフィードバックすることにより、所望のpH値のイオン水が得られる。
【0006】
【発明が解決しようとする課題】
ところで、イオン水生成器により生成されるイオン水は、電解槽で電気分解されるため、電気分解の際発生する酸素ガスや水素ガスが発生して微少量ではあるがこれらが気泡となってイオン水の中に混入されて電解槽から吐出される。そして電解槽の吐出側でこれらの気泡を含んだイオン水のpH値をpHセンサで測定する場合に、pHセンサのガラス電極部にこれらの気泡が付着してpHセンサの出力値が安定しないという問題があった。とくにガラス電極部を備えたpHセンサの場合には、ガラス電極部の表面のガラスがマイナスに帯電しているため、ここに原水中のカルシウムイオン等の成分が付着し、ガラス電極部の表面はわずかであるが析出物のある表面となって流入した気泡が付着し易くなり、気泡がいったんここに付着するとこれを核として合泡しさらに気泡が大きく成長していくという問題をかかえたものであった。気泡が成長するとガラス電極部を備えたpHセンサの出力値の安定が大きく損なわれてしまう。しかも気泡の付着は被測定液が微少量であるpHセンサであればあるほど影響が大きいため、微少量のpHセンサを実現する事実上の障害となっていた。
【0007】
そこで本発明は前記従来の問題点を解決するもので、被測定液に含まれた気泡がセンサの本体内に溜まるのを防止するとともに付着した気泡は効率よく除去でき、微少量の被測定液でpH値を安定して応答性よく測定できるpHセンサを提供することを目的とする。
【0008】
さらに本発明は、電気分解で発生する気泡を含んだイオン水のpH値を微少量でも安定して測定することができ、pHセンサが破損するようなことがあっても安全なイオン水生成器を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するために本発明のpHセンサは、入水部及び吐出部が接続され内部空間内にpH応答ガラス膜が収容された本体部を備え、入水部がpH応答ガラス膜の接線方向に設けられるとともに、吐出部がpH応答ガラス膜の接線方向で且つ入水部より上方に設けられ、入水部から流入した被測定液が内部空間内を旋回上昇して吐出部から吐出され、内部空間が10cm 3 以下の容積に構成されたことを特徴とする。
【0010】
この発明によれば、被測定液に含まれた気泡がセンサの本体内に溜まるのを防止するとともに付着した気泡は効率よく除去でき、微少量の被測定液でpH値を安定して測定できるpHセンサを得ることができる。
【0011】
【発明の実施の形態】
本発明の請求項1に記載の発明は、内部液を充填するとともにpH応答ガラス膜を備えたガラス電極部と、比較電極液を充填した比較電極部と、入水部及び吐出部が接続され内部空間内にpH応答ガラス膜が収容された本体部と、比較電極部に設けられ比較電極液と被測定液とを連通させる液絡部を備え、入水部がpH応答ガラス膜の接線方向に設けられるとともに、吐出部がpH応答ガラス膜の接線方向で且つ入水部より上方に設けられ、入水部から流入した被測定液が内部空間内を旋回上昇して吐出部から吐出され、内部空間が10cm 3 以下の容積に構成されたことを特徴とするpHセンサであり、被測定液に含まれた気泡がセンサの本体内に溜まるのを防止することができ、付着した気泡は効率よく除去することができる。
【0012】
また、内部空間が10cm3以下の容積を有しているため、微少量の被測定液で測定することができ、応答性に優れたものである。
【0013】
請求項に記載の発明は、電解槽と、電解槽に設けた一対の電極と、電解槽に接続された吐出路と、吐出路から分岐された排水路とを備え、排水路に請求項1または2記載のpHセンサを設けたイオン水生成器であり、電気分解で発生する気泡を含んだイオン水のpH値を微少量でも安定して測定することができ、pHセンサが破損するようなことがあっても安全である。
【0014】
以下本発明の実施の形態について図1、図2及び図3を用いて説明する。
(実施の形態1)
まず本発明の実施の形態1におけるpHセンサについて図面に基づいて詳細に説明する。図1は本発明の実施の形態1におけるpHセンサの概略断面図である。21はpHセンサ、22は被測定液の水素イオンに感応するpH応答ガラス膜40が接液部分に形成されたガラス電極部、23はAg/AgClからなる第1内部電極でpH=7.0の塩類溶液である内部液24に浸漬してある。pH応答ガラス膜40を構成するガラスはSiOを主成分としてLiOを25〜32%含む薄いガラスである。耐久性等の改善のためにCsOあるいはBaOと、La等も添加されている。LiOの代わりにNaOやKOを用いたものもある。25は不活性ガラスからなるチューブ状のガラス容器、29は比較電極部であり、比較電極室を備え内部に中性塩の溶液からなる比較電極液26が充填されるとともに、比較電極液26にはAg/AgClからなる第2内部電極27が浸漬されている。28は液絡部で多孔質セラミック等からなり被測定液と比較電極液26とを連通している。30は比較電極液26を補充する補充口で、31はpHセンサ21と制御手段34をつなぐ端子接続部、32は第1内部電極23に接続された第1出力端子で、33は第2内部電極に接続された第2出力端子で制御手段34に接続されている。
【0015】
被測定液にpH応答ガラス膜40が浸されると、被測定液の水素イオンがpH応答ガラス膜40表面に固定電荷相が形成され、被測定液と内部液24との間に起電力を発生する。一方被測定液は液絡部28によって比較電極液26と連通しており、比較電極液26に浸した第2内部電極27は被測定液に対して0電位となるので、第1出力端子32と第2出力端子33の間に被測定液の水素イオン濃度に比例したセンサ電圧が出力されるのである。このセンサ出力は次式で表される。
【0016】
E=α・0.059(pH0 −pH)+Cv
ただし、E:センサ電圧(V)
α:電極係数で0<α≦1
pH0 :内部液のpH値で、ここではpH0=7.0
pH :被測定液のpH値
Cv :電極固有の不斉電位差(V)
このpHセンサ21は内部液4のpH0を7.0としているので、被測定液のpHが中性(pH=7.0)であれば、不斉電位を別にするとセンサ電圧Eが0Vということになる。
【0017】
一方、被測定液のpHが酸性(pH<7.0)であれば不斉電位を別にしてセンサ電圧Eが正電圧となり、被測定液のpHがアルカリ性(pH>7.0)であれば不斉電位を別にしてセンサ電圧Eが負電圧になる。
【0018】
この出力されたセンサ電圧Eは必要に応じて増幅され、表示部にpH値表示したり、センサ電圧Eを制御手段34に伝達し、制御手段34は例えばイオン水生成器であれば電気分解の電圧を制御する制御機構を制御したりする。
【0019】
次に本発明の特徴部分の本体部35について説明する。本体部35は入水部37、吐出部38、内部空間39等から構成される。入水部37はpH応答ガラス膜40の接線方向に向けて設けられる。吐出部38もpH応答ガラス膜40の接線方向に向けられるとともに、入水部37より上方位置に設けられている。内部空間39はガラス電極部22を収容するととともに、概ね円筒状で実質10cm以下の容積を有しており、その中心軸線をpH応答ガラス膜40の容器の中心軸線と略一致させてあり、底部には入水部37が設けられる。この10cm以下の容積にすることにより(容積/流量を0.005〜0.01cc/min程度にするのが適当)、微小流量(とくに300cc/min以下)での測定の応答性を速くすることができるものである。このときあまりに流量を増すと流れの影響で応答性が悪くなり、不安定となる。そして入水部37と吐出部38とはそれぞれ内部空間39の中心軸線と直交する平面内に形成されている。入水部37から流入した被測定液が内部空間39内をpH応答ガラス膜40の表面に沿って円滑に旋回上昇するように、底部周辺にはわずかながらテーパ面が形成されている。旋回上昇後、被測定液は吐出部38から吐出される。36はガラス電極部22側と本体部35をロックするロック機構である。
【0020】
以上のように構成されたpHセンサ21について、以下その動作を説明する。pHを測定したい被測定液を入水部37より流入させる。流入された被測定液は内部空間39内に流入すると、ガラス電極部22のpH応答ガラス膜40の端部表面に沿って旋回しながら上昇する。被測定液が気泡を含む場合、接線速度が大きいため、含まれた気泡はガラス電極部22に付着するのを妨げられるし、付着した気泡は再び剥される。液絡部28近傍に気泡が溜まるのを防止することもできる。流速の遅い部分に気泡が溜まり易い傾向があるので被測定液の流入速度を上げれば気泡除去効率は向上する。このように接線方向から流入させるとガラス電極部22の周囲に速度ムラが生じない。とくに本実施の形態1においては、ガラス電極部22のpH応答ガラス膜40が球状であるため、中心軸線方向下側から流入すると球状部背面で流れが剥離し、背面に気泡が溜まり易くなるが、接線方向から流入させた場合このようなことが起こらない。流入速度自体を上げるほか、pH応答ガラス膜40の表面と内部空間39の内表面との間隔を狭くすれば、同様に被測定液の速度を上げることができる。この際この間隔を狭くしすぎると気泡の合泡が起こり易く気泡除去の妨げになるので、被測定液に含まれる気泡の大きさの1.5〜3倍にすることが望まれる。イオン水生成器で発生する酸素ガスや水素ガスの気泡は、概ね1mm以下であるから、イオン水生成器の場合にはこの間隔を1.5〜3mm程度に設定するのが適当である。
【0021】
ところでpH応答ガラス膜40の表面はマイナスに帯電しているため、被測定液中に含まれるカルシウムイオンやカリウムイオン等が析出する。この析出物はpH応答ガラス膜40の表面に付着し、気泡を付着させるもとになるものである。従ってこうした成分を含有する液体を測定する場合には、上記の間隔において流入速度を少々上げるのが望ましい。
【0022】
ガラス電極部22に沿って旋回上昇した被測定液はpHセンサ1の液絡部28に当たる。被測定液は液絡部28によって比較電極液26と連通しており電気的に接続されるから、比較電極液26に浸した第2内部電極27は被測定液と同電位となり、第1出力端子32と第2出力端子33の間に被測定液の水素イオン濃度に比例したセンサ電圧Eが出力される。こうして内部空間39内を流れる被測定液のpHを測定することができるものである。被測定液は気泡を含んだまま吐出部38より排出される。吐出部38が設けられている位置の下側で内部空間39の内表面に、被測定液の円滑な排出を促すテーパ面を付けることにより気泡除去効率をさらに向上することができる。
【0023】
なお、本実施の形態1においては、入水部37と吐出部38がそれぞれ内部空間39の中心軸線と直交する平面内に形成されている。しかし、内部空間39の中心軸線と直交以外の角度で交差する平面内に入水部37を設けるのでもかまわない。例えば入水部37がガラス電極部22のpH応答ガラス膜40表面の接線方向に向けて設けられるとともに、その延長が液絡部28方向に向くようにするのもよい。しかし吐出部38は内部空間39の中心軸線と直交する平面内に形成するのが適当である。このような本実施の形態1においては、内部空間39内に旋回上昇速度の大きいところと小さいところができ易く、この小さいところでは少し気泡の付着が生じ易くなるが、液絡部28に被測定液が当たる力を増加させることができ、電位測定の誤差を小さくすることができる。
【0024】
また本実施の形態1は内部空間が10cm以下の容積を有しているので、微少量の被測定液で測定できるとともに応答性に優れたものである。
【0025】
(実施の形態2)
つぎに本発明のpHセンサを設けたイオン水生成器について説明する。図2は本発明の実施の形態2におけるイオン水生成器の全体概略図、図3は本発明の実施の形態2におけるイオン水生成器のpHセンサの部分拡大図である。図2において、図4の従来のイオン水生成器と図1のpHセンサの説明で使用した符号と同符号を使用しているものは、基本的に図1及び図4での説明と重複するから、詳しい説明はそこに譲って省略する。
【0026】
1は水道水などの原水管、2は水栓、3は水栓2と介して原水管1と接続されたイオン水生成器である。4は内部に活性炭や中空糸膜などを備えた浄水部、5は導電率を高めるミネラル供給部、6は通水を確認し後述の制御手段に制御開始の指示をする流量センサ、8は電解槽7を2分する隔膜、9,10は隔膜8で2分して形成された各電極室に配置される電極板、11は電極板10側の水(電極板10が陽極の場合は酸性水)を排出する排水管、42は電極板9側の水(電極板9が陰極の場合はアルカリイオン水)を吐出する吐水の一部をpHセンサ21に供給する分岐管、15は電極板9側の水(電極板9が陰極の場合はアルカリイオン水)を吐出する吐出管、43はpHセンサ21を校正する校正液をpHセンサ21に注入する校正液注入部、44は電極洗浄時の洗浄水をpHセンサ21に供給する電磁弁、45は電極板9側の水(電極板9が陰極の場合はアルカリイオン水)の一部や電極洗浄時の洗浄水をpHセンサ21に供給する供給管、35はpHセンサ21の本体部、37は供給管45をpHセンサ21内の内部空間39に接続する入水部、22は水素イオンに感応するpH応答ガラス膜40を備えたガラス電極部、23はpH=7.0の塩類溶液である内部液24に浸漬してあるAg/AgClからなる第1内部電極、24は不活性ガラスからなるチューブ状のガラス容器、29は比較電極室、26は中性塩の溶液からなる比較電極液、27はAg/AgClからなる第2内部電極、31は多孔質セラミック等の液絡部、30は比較電極液26を補充する補充口である。31はpHセンサ21と制御手段34をつなぐ端子接続部、38は測定が終了した被測定液を排出する排出管47とpHセンサ21をつなぐ吐出部、46は内部空間39に残る被測定液を抜くための水抜き口、36はpHセンサ21をロックするためのロック機構である。48は水抜き口46と排出管47をつなぐ接続管、49,50は浄水モード時に排水を行なわないための節水電磁弁、51は電源投入用プラグ52からの交流を直流に変換する電源部、34はイオン水生成器3の動作を制御する制御手段、53はイオン水生成器3の操作状態を表示し操作条件などを設定する操作表示部である。
【0027】
以上のように構成されたイオン水生成器3について以下その動作を説明する。原水管1より水栓2を開いて通水された原水は浄水部4で原水中の残留塩素の臭いや一般細菌などの不純物が取り除かれ、流量センサ6を経て電解槽7に通水される。その際に電極板10に供給される水はミネラル供給部5でグリセロリン酸カルシウムなどのミネラルが溶解され電解が容易な水に処理される。流入した原水が一定量以上になると電源投入用プラグ52よりAC100V電圧が印加され、電源部51で直流に変換後電解槽7の電極板9と電極板10に供給され、電気分解が始まる。これにより陰極周辺にはアルカリイオン水が、陽極周辺には酸性イオン水が生成され、それぞれ電解槽7に接続した吐出管15と排水管11より流出される。このように通水しながら電極板9がマイナス電圧に、電極板10がプラス電圧なるように電圧を印加すると、生成されたアルカリイオン水の大部分は吐出管15を経て外部に吐出されるが、その一部の100〜500ml/分程度が吐出管15に設けた分岐管42と供給管45を経て入水部37よりpHセンサ21に流入する。流入したアルカリイオン水がこの場合の被測定液であるが、これがガラス電極部22のpH応答ガラス膜40の表面端部に当たってガラス電極に沿って旋回しながら上昇する。その際、アルカリイオン水には電気分解により発生した水素ガスが気泡として含まれているが、入水部37と吐出部38はpH応答ガラス膜40の表面の接線方向に向けて設けられるため、接線速度が大きく、含まれた気泡はガラス電極部22に付着するのを妨げられる。そしていったん付着しても気泡は再び剥される。アルカリ水の旋回上昇速度が速いほど気泡除去効率が向上するのが望ましいが、多量の捨て水をしなければならないのであまり大きくしない方がよい。そこでガラス電極部22のpH応答ガラス膜40と内部空間39の間隔を、気泡のガス径の1.5〜3倍程度にすると気泡の付着が少なくすることができる。ただ、水道水等の原水にカルシウム等の成分が多く含まれている場合には、これがpH応答ガラス膜40表面に析出して付着し気泡の付着がさらにすすむことになるから、カルシウム等を含む場合は入水部37から流入するアルカリイオン水の流速を少し上げるのが望ましい。なお内部空間39は概ね円筒状で、実質10cm以下の容積を有しているため、測定の応答性をよくすることができる。旋回しながら上昇したアルカリイオン水はpHセンサ21の液絡部28に衝突し、吐出部38より流出する。アルカリイオン水は水素ガスを混入させたまま、直接吐出部38より排出される。内部空間39の吐出部38の下側にテーパ面を付けることによりアルカリイオン水を円滑に吐出できる。pHセンサ21によりアルカリイオン水のpH濃度を検知して、センサ電圧を端子接続部31より制御手段34に送り、制御手段34は操作表示部53にpH濃度を表示させる。
【0028】
このように本実施の形態2のイオン水生成器は原水を連続して流入させ、電極板9,10に連続的に電圧を印加しておくことによりアルカリイオン水が連続して生成させることができるが、このとき生成されるアルカリイオン水のpH濃度の検知と表示を同時に連続的に行えるものである。また印加電圧を逆にして電極板9を陽極に、電極板10を陰極に印加すれば上述の説明とは逆に吐出管15からは酸性イオン水が吐出され、排水管11からはアルカリイオン水が排出されることになる。そしてこの場合pHセンサ21には酸性イオン水が流入し、pHセンサ21によって酸性イオン水のpH濃度の検知と表示ができることになる。
【0029】
また浄水が欲しいときには、節水電磁弁49,50を閉じことにより吐水管13からのみ浄水を吐出させることができる。ただし節水電磁弁のうち36を開けると浄水のpH濃度の検知とその表示もできるものである。
【0030】
さらに吐出管15に積算流量計を設け、この積算流量計で積算されたアルカリイオン水の流量を制御手段34に送って電解槽7とpHセンサ21を洗浄することができる。積算流量が予め設定された流量以上に達した場合、水栓2が閉じられると制御手段34は電極板9,10に印加されていた電流と逆の電流を印加して電気分解する。これを一定時間続け、電極板9、10が洗浄されると、制御手段34は電磁弁44を開き、電解室で生成された酸性イオン水をpHセンサ21を介して排出する。このとき本体部35に流入した酸性イオン水は、ガラス電極部22に付着したカルシウムや水垢等の凝集物を溶出し、pHセンサ21の洗浄も同時に行う。これによってガラス電極部22に付着した凝集物が除去され、イオン水中の気泡の付着はさらに防止することができるものである。
【0031】
このように本実施の形態2のイオン水生成器によれば、電気分解で発生する気泡を含んだイオン水のpH値を微少量であっても安定して応答性よく測定することができ、pHセンサが破損するようなことがあっても分岐管42にpHセンサ21を設け、吐出管15にはpHセンサ21を設けないから安全である。
【0032】
【発明の効果】
本発明のpHセンサは被測定液に含まれた気泡がセンサの本体内に溜まるのを防止することができ、たとえ付着しても付着した気泡は効率よく除去することができ、微少量の被測定液でもpH値を安定して測定できる。また応答性に優れたものである。
【0033】
さらに本発明のイオン水生成器は電気分解で発生する気泡を含んだイオン水のpH値を微少量でも安定して測定することができ、pHセンサが破損するようなことがあっても安全である。
【図面の簡単な説明】
【図1】本発明の実施の形態1におけるpHセンサの概略断面図
【図2】本発明の実施の形態2におけるイオン水生成器の全体概略図
【図3】本発明の実施の形態2におけるイオン水生成器のpHセンサの部分拡大図
【図4】従来のイオン水生成器の概略全体図
【符号の説明】
1 原水管
2 水栓
3 イオン水生成器
4 浄水部
5 ミネラル供給部
6 流量センサ
7 電解槽
8 隔膜
9,10 電極板
11 排水管
12 接続管
13 pH検知部
14,21 pHセンサ
15 吐出管
16,44 電磁弁
17 放水管
18,52 電源投入用プラグ
19,51 電源部
20,34 制御手段
22 ガラス電極部
23 第1内部電極
24 内部液
25 ガラス容器
26 比較電極液
27 第2内部電極
28 液絡部
29 比較電極部
30 補充口
31 端子接続部
32 第1出力端子
33 第2出力端子
35 本体部
36 ロック機構
37 入水部
38 吐出部
39 内部空間
40 pH応答ガラス膜
42 分岐管
43 校正液注入部
45 供給管
46 水抜き口
47 排出管
48 接続管
49,50 節水電磁弁
53 操作表示部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a pH sensor and an ion water generator for measuring the pH value of a liquid containing air bubbles such as alkaline water and acidic water obtained by electrolyzing raw water such as tap water and well water.
[0002]
[Prior art]
In recent years, ion water generators are becoming more popular, reflecting the health boom. This ion water generator electrolyzes tap water or the like in an electrolytic cell, generates acidic ion water on the anode side, and generates alkaline ion water on the cathode side.
[0003]
Recently, a technique (JP-A-5-80587) in which a pH sensor for measuring the pH value of the generated ionic water is disposed in the ionic water generator has been proposed and is becoming mainstream.
[0004]
Therefore, a continuous electrolysis type ion water generator equipped with this pH sensor will be described. FIG. 4 is a schematic overall view of a conventional ion water generator. 1 is a raw water pipe such as tap water, 2 is a faucet, and 3 is an ionic water generator connected to the raw water pipe 1 via a faucet 2. Reference numeral 4 denotes a water purification unit having an activated carbon or a hollow fiber membrane therein, 5 denotes a mineral supply unit for imparting minerals to raw water to increase conductivity, and 6 denotes water flow and instructs a control means described later to start control. 8 is a diaphragm that divides the electrolytic cell 7 that electrolyzes the water that has passed through the flow sensor 6 into two parts, and 9 and 10 are electrode plates that are arranged in each electrode chamber formed by dividing the diaphragm 8 into two parts. , 11 is a drain pipe for discharging water on the electrode plate 10 side (acidic water when the electrode plate 10 is an anode), and 12 is discharging water on the electrode plate 9 side (alkaline ion water when the electrode plate 9 is a cathode). A connection pipe for supplying to a pH detection unit 13 provided in a part of a water discharge pipe 15 for performing water supply, a pH sensor 14 accommodated in the pH detection unit 13, a residual water in the electrolytic tank 7 and a scale for cleaning the electrode are used. Solenoid valve for discharging dissolved washing water, 17 is an electrode via drain pipe 11 A water discharge pipe for discharging water on the 10 side (acidic water when the electrode plate 10 is an anode) or stagnant water or washing water in the electrolytic cell 7; 19, a power supply section for converting AC from a power supply plug 18 to DC; Reference numeral 20 denotes control means for controlling the operation of the ion water generator 3, and reference numeral 53 denotes an operation display unit for displaying an operation state of the ion water generator 3 and setting operation conditions and the like.
[0005]
The operation of the conventional pH sensor and ion water generator configured as described above will be described below. The raw water passed through the water tap 2 from the raw water pipe 1 is used to remove impurities such as residual chlorine odor and general bacteria in the raw water in the water purifier 4, and minerals such as calcium glycerophosphate are dissolved in the mineral supply unit 5. After the water is easily treated for electrolysis, the water is passed through the flow sensor 6 to the electrolytic cell 7. On the other hand, an AC voltage is applied from a power supply plug 18, converted into a direct current by a power supply unit 19, and then supplied to the electrode plates 9 and 10 of the electrolytic cell 7. As a result, acidic ionized water is generated in the anode chamber, and alkali ionized water is generated in the cathode chamber. Water is obtained continuously. When a voltage is applied so that the electrode plate 9 has a positive voltage, acidic water is continuously obtained from the water discharge pipe 15. The pH value of the ionic water generated in the electrolytic cell 7 is measured by the pH sensor 14, and the sensor output value is fed back to the control means 20, whereby ionic water having a desired pH value can be obtained.
[0006]
[Problems to be solved by the invention]
By the way, the ionic water generated by the ionic water generator is electrolyzed in the electrolytic cell, so that oxygen gas and hydrogen gas generated at the time of electrolysis are generated. It is mixed in water and discharged from the electrolytic cell. When the pH value of ionic water containing these bubbles is measured by the pH sensor on the discharge side of the electrolytic cell, the output value of the pH sensor is not stabilized because these bubbles adhere to the glass electrode portion of the pH sensor. There was a problem. In particular, in the case of a pH sensor having a glass electrode portion, since the glass on the surface of the glass electrode portion is negatively charged, components such as calcium ions in raw water adhere thereto, and the surface of the glass electrode portion becomes Although it is a slight surface with precipitates, the inflowing bubbles become easier to adhere, and once the bubbles adhere here, they form a bubble with the nucleus, and the bubbles grow larger further. there were. When the bubbles grow, the stability of the output value of the pH sensor having the glass electrode portion is greatly impaired. In addition, the adhesion of air bubbles has a greater effect as the pH of the liquid to be measured is smaller, so that it has been a practical obstacle to realize a small amount of pH sensor.
[0007]
Therefore, the present invention solves the above-mentioned conventional problems, and prevents bubbles contained in the liquid to be measured from accumulating in the main body of the sensor, and the attached air bubbles can be efficiently removed, and a very small amount of the liquid to be measured is It is an object of the present invention to provide a pH sensor capable of stably measuring the pH value with good responsiveness.
[0008]
Further, the present invention can stably measure the pH value of ionic water containing bubbles generated by electrolysis even in a very small amount, and is a safe ionic water generator even if the pH sensor is damaged. The purpose is to provide.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, a pH sensor of the present invention includes a main body in which a water input part and a discharge part are connected and a pH responsive glass film is housed in an internal space, and the water input part is tangential to the pH responsive glass film. together provided the discharge portion is provided above the and water inlet portion in a tangential direction of the pH response glass membrane, the measured fluid flowing from the water inlet portion is discharged to the internal space from the pivot rises and the discharge portion, the internal space It is characterized by having a volume of 10 cm 3 or less .
[0010]
ADVANTAGE OF THE INVENTION According to this invention, while preventing the bubble contained in the liquid to be measured from accumulating in the main body of the sensor, the attached air bubbles can be efficiently removed, and the pH value can be stably measured with a small amount of the liquid to be measured. A pH sensor can be obtained.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
The invention according to claim 1 of the present invention is characterized in that a glass electrode portion filled with an internal liquid and provided with a pH-responsive glass film, a comparative electrode portion filled with a comparative electrode solution, a water inlet portion and a discharge portion are connected to each other. A main body part in which a pH-responsive glass film is accommodated in the space, and a liquid junction part provided in the reference electrode part for communicating the reference electrode solution and the liquid to be measured, and a water inlet part is provided in a tangential direction of the pH-responsive glass film. together is, the discharge portion is provided above the and water inlet portion in a tangential direction of the pH response glass membrane, the measured fluid flowing from the water inlet portion is discharged to the internal space from the pivot rises and the discharge portion, 10 cm inner space A pH sensor characterized by having a volume of 3 or less, which can prevent bubbles contained in the liquid to be measured from accumulating in the main body of the sensor and efficiently remove attached bubbles. Can be.
[0012]
Further, since the inner space has a 10 cm 3 or less of the volume, can be measured in a very small amount of target solution, it is excellent in responsiveness.
[0013]
The invention according to claim 2 includes an electrolytic cell, a pair of electrodes provided in the electrolytic cell, a discharge path connected to the electrolytic cell, and a drainage path branched from the discharge path. An ion water generator provided with the pH sensor according to 1 or 2, which can stably measure the pH value of ion water containing bubbles generated by electrolysis even in a very small amount, so that the pH sensor is damaged. It ’s safe to do anything.
[0014]
Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1, 2 and 3. FIG.
(Embodiment 1)
First, a pH sensor according to Embodiment 1 of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic sectional view of the pH sensor according to Embodiment 1 of the present invention. 21 is a pH sensor, 22 is a glass electrode portion having a pH responsive glass film 40 sensitive to hydrogen ions of the liquid to be measured formed on the liquid contact portion, 23 is a first internal electrode made of Ag / AgCl, pH = 7.0. Is immersed in the internal solution 24 which is a salt solution of The glass constituting the pH responsive glass film 40 is a thin glass containing SiO 2 as a main component and containing 25 to 32% of LiO 2 . Cs 2 O or BaO, La 2 O 3, and the like are also added to improve durability and the like. Some use Na 2 O or K 2 O instead of LiO 2 . Reference numeral 25 denotes a tube-shaped glass container made of inert glass. Reference numeral 29 denotes a reference electrode unit, which has a reference electrode chamber and is filled with a reference electrode solution 26 made of a solution of a neutral salt. The second internal electrode 27 made of Ag / AgCl is immersed. Reference numeral 28 denotes a liquid junction made of porous ceramic or the like, and allows the liquid to be measured and the reference electrode liquid 26 to communicate with each other. 30 is a replenishing port for replenishing the reference electrode solution 26, 31 is a terminal connecting part connecting the pH sensor 21 and the control means 34, 32 is a first output terminal connected to the first internal electrode 23, and 33 is a second internal terminal. A second output terminal connected to the electrode is connected to the control means 34.
[0015]
When the pH-responsive glass film 40 is immersed in the solution to be measured, hydrogen ions of the solution to be measured form a fixed charge phase on the surface of the pH-responsive glass film 40, and an electromotive force is generated between the solution to be measured and the internal solution 24. appear. On the other hand, the liquid to be measured is in communication with the reference electrode liquid 26 through the liquid junction part 28, and the second internal electrode 27 immersed in the reference electrode liquid 26 has zero potential with respect to the liquid to be measured. A sensor voltage proportional to the hydrogen ion concentration of the liquid to be measured is output between the second output terminal 33 and the second output terminal 33. This sensor output is expressed by the following equation.
[0016]
E = α · 0.059 (pH0−pH) + Cv
Where E: sensor voltage (V)
α: 0 <α ≦ 1 in electrode coefficient
pH0: pH value of the internal solution, here, pH0 = 7.0
pH: pH value of the liquid to be measured Cv: Asymmetric potential difference (V) unique to the electrode
Since the pH of the internal liquid 4 of the pH sensor 21 is set to 7.0, if the pH of the liquid to be measured is neutral (pH = 7.0), the sensor voltage E is 0 V except for the asymmetric potential. become.
[0017]
On the other hand, if the pH of the liquid to be measured is acidic (pH <7.0), the sensor voltage E is positive except for the asymmetric potential, and the pH of the liquid to be measured is alkaline (pH> 7.0). For example, the sensor voltage E becomes a negative voltage except for the asymmetric potential.
[0018]
The output sensor voltage E is amplified as necessary, and the pH value is displayed on the display unit, or the sensor voltage E is transmitted to the control means 34. For example, if the ion water generator is used, the control means 34 For example, controlling a control mechanism for controlling voltage.
[0019]
Next, the main body 35, which is a characteristic part of the present invention, will be described. The main body 35 includes a water inlet 37, a discharge unit 38, an internal space 39, and the like. The water inlet 37 is provided in a direction tangential to the pH-responsive glass film 40. The discharge unit 38 is also directed in the tangential direction of the pH-responsive glass film 40 and is provided above the water inlet 37. The internal space 39 accommodates the glass electrode portion 22 and is substantially cylindrical and has a volume of substantially 10 cm 3 or less, and its central axis is substantially coincident with the central axis of the container of the pH-responsive glass film 40. A water inlet 37 is provided at the bottom. By setting the volume to 10 cm 3 or less (the volume / flow rate is suitably set to about 0.005 to 0.01 cc / min), the response of the measurement at a minute flow rate (especially 300 cc / min or less) is accelerated. Is what you can do. At this time, if the flow rate is excessively increased, the response becomes poor due to the influence of the flow, and the flow becomes unstable. The water inlet 37 and the outlet 38 are each formed in a plane orthogonal to the central axis of the internal space 39. A slightly tapered surface is formed around the bottom so that the liquid to be measured flowing from the water inlet 37 smoothly swirls and rises in the internal space 39 along the surface of the pH-responsive glass film 40. After the rotation, the liquid to be measured is discharged from the discharge unit 38. Reference numeral 36 denotes a lock mechanism that locks the glass electrode section 22 and the main body section 35.
[0020]
The operation of the pH sensor 21 configured as described above will be described below. The liquid to be measured whose pH is to be measured is caused to flow through the water inlet 37. When the liquid to be measured flows into the internal space 39, the liquid to be measured rises while swirling along the end surface of the pH-responsive glass film 40 of the glass electrode unit 22. When the liquid to be measured contains bubbles, the tangential velocity is high, so that the contained bubbles are prevented from adhering to the glass electrode portion 22, and the attached bubbles are peeled off again. Bubbles can be prevented from accumulating near the liquid junction 28. Since air bubbles tend to accumulate in a portion where the flow velocity is low, the air bubble removal efficiency is improved by increasing the inflow speed of the liquid to be measured. As described above, when the gas flows in from the tangential direction, the speed unevenness does not occur around the glass electrode portion 22. Particularly, in the first embodiment, since the pH-responsive glass film 40 of the glass electrode portion 22 is spherical, when flowing in from below the central axis direction, the flow separates on the rear surface of the spherical portion, and bubbles easily accumulate on the rear surface. This does not occur when the fluid is introduced from the tangential direction. In addition to increasing the inflow velocity itself, if the distance between the surface of the pH-responsive glass film 40 and the inner surface of the internal space 39 is reduced, the velocity of the liquid to be measured can be similarly increased. At this time, if the interval is too narrow, bubbles are apt to be formed, which hinders the removal of bubbles. Therefore, it is desired to make the size of the bubbles contained in the liquid to be measured 1.5 to 3 times. Since the bubbles of oxygen gas and hydrogen gas generated in the ion water generator are approximately 1 mm or less, it is appropriate to set this interval to about 1.5 to 3 mm in the case of the ion water generator.
[0021]
Meanwhile, since the surface of the pH-responsive glass film 40 is negatively charged, calcium ions, potassium ions, and the like contained in the liquid to be measured are precipitated. This precipitate adheres to the surface of the pH-responsive glass film 40 and causes air bubbles to adhere. Therefore, when measuring a liquid containing such components, it is desirable to slightly increase the inflow velocity in the above-mentioned interval.
[0022]
The liquid to be measured swirled up along the glass electrode portion 22 hits the liquid junction 28 of the pH sensor 1. Since the liquid to be measured communicates with and is electrically connected to the comparative electrode liquid 26 by the liquid junction 28, the second internal electrode 27 immersed in the comparative electrode liquid 26 has the same potential as the liquid to be measured, and the first output A sensor voltage E proportional to the hydrogen ion concentration of the liquid to be measured is output between the terminal 32 and the second output terminal 33. Thus, the pH of the liquid to be measured flowing in the internal space 39 can be measured. The liquid to be measured is discharged from the discharge section 38 while containing bubbles. Bubble removal efficiency can be further improved by forming a tapered surface on the inner surface of the internal space 39 below the position where the discharge unit 38 is provided, which promotes smooth discharge of the liquid to be measured.
[0023]
In the first embodiment, the water inlet 37 and the outlet 38 are each formed in a plane orthogonal to the central axis of the internal space 39. However, the water inlet 37 may be provided in a plane intersecting the central axis of the internal space 39 at an angle other than orthogonal. For example, the water inlet 37 may be provided in the tangential direction of the surface of the pH responsive glass film 40 of the glass electrode unit 22, and the extension thereof may be directed to the liquid junction 28. However, it is appropriate that the discharge portion 38 is formed in a plane orthogonal to the central axis of the internal space 39. In the first embodiment as described above, it is easy to form a portion where the swirl rise speed is high and a small portion in the internal space 39, and it is easy for air bubbles to adhere slightly in this small portion. Can be increased, and the error in the potential measurement can be reduced.
[0024]
In the first embodiment, since the internal space has a volume of 10 cm 3 or less, it can be measured with a very small amount of the liquid to be measured and has excellent responsiveness.
[0025]
(Embodiment 2)
Next, an ion water generator provided with the pH sensor of the present invention will be described. FIG. 2 is an overall schematic diagram of an ion water generator according to Embodiment 2 of the present invention, and FIG. 3 is a partially enlarged view of a pH sensor of the ion water generator according to Embodiment 2 of the present invention. In FIG. 2, the same reference numerals as those used in the description of the conventional ion water generator of FIG. 4 and the pH sensor of FIG. 1 are basically the same as those in FIGS. 1 and 4. Therefore, the detailed description is omitted here and omitted.
[0026]
1 is a raw water pipe such as tap water, 2 is a faucet, and 3 is an ionic water generator connected to the raw water pipe 1 via a faucet 2. Reference numeral 4 denotes a water purification unit having an activated carbon or a hollow fiber membrane therein, 5 a mineral supply unit for increasing electric conductivity, 6 a flow rate sensor for confirming water flow and instructing a control means described later to start control, and 8 for electrolysis. A diaphragm which divides the tank 7 into two parts, 9 and 10 are electrode plates disposed in each electrode chamber formed by dividing the tank 8 into two parts, and 11 is water on the electrode plate 10 side (acidic when the electrode plate 10 is an anode). A drain pipe for discharging water), a branch pipe 42 for supplying a part of water discharged from the electrode plate 9 side (alkaline ion water when the electrode plate 9 is a cathode) to the pH sensor 21, and a reference numeral 15 for the electrode plate. A discharge pipe for discharging water on the 9 side (alkaline ion water when the electrode plate 9 is a cathode), 43 is a calibration liquid injection section for injecting a calibration liquid for calibrating the pH sensor 21 into the pH sensor 21, and 44 is for electrode cleaning. An electromagnetic valve for supplying the washing water of the above to the pH sensor 21; A supply pipe for supplying a part of the alkaline ionized water when 9 is a cathode) or cleaning water for cleaning the electrode to the pH sensor 21, a main body 35 of the pH sensor 21, and a supply pipe 45 inside the pH sensor 21. A water inlet connected to the internal space 39, 22 is a glass electrode provided with a pH-responsive glass film 40 sensitive to hydrogen ions, 23 is Ag / Ag immersed in an internal liquid 24 which is a salt solution having a pH of 7.0. A first internal electrode made of AgCl; 24, a tubular glass container made of inert glass; 29, a reference electrode chamber; 26, a reference electrode solution made of a solution of a neutral salt; 27, a second interior made of Ag / AgCl; The electrode 31 is a liquid junction of porous ceramic or the like, and 30 is a replenishing port for replenishing the reference electrode solution 26. Reference numeral 31 denotes a terminal connecting portion connecting the pH sensor 21 and the control means 34, 38 denotes a discharge tube connecting the pH sensor 21 and a discharge pipe 47 for discharging the liquid to be measured after measurement, and 46 denotes a liquid to be measured remaining in the internal space 39. A drain port 36 for draining is a lock mechanism for locking the pH sensor 21. 48 is a connection pipe connecting the drain port 46 and the discharge pipe 47, 49 and 50 are water-saving solenoid valves for preventing drainage in the water purification mode, 51 is a power supply section for converting AC from a power supply plug 52 to DC, 34 is a control means for controlling the operation of the ion water generator 3, and 53 is an operation display section for displaying the operation state of the ion water generator 3 and setting operation conditions and the like.
[0027]
The operation of the ion water generator 3 configured as described above will be described below. The raw water passed through the raw water pipe 1 by opening the faucet 2 is subjected to removal of impurities such as residual chlorine odor and general bacteria in the raw water in the water purification section 4, and is passed through the flow rate sensor 6 to the electrolytic cell 7. . At this time, the mineral water such as calcium glycerophosphate is dissolved in the water supplied to the electrode plate 10 in the mineral supply part 5, and the water is easily processed into water. When the amount of raw water that has flowed in reaches a certain amount or more, a voltage of AC 100 V is applied from the power supply plug 52, converted into DC by the power supply unit 51, supplied to the electrode plates 9 and 10 of the electrolytic cell 7, and electrolysis starts. As a result, alkaline ionized water is generated around the cathode and acidic ionized water is generated around the anode, and are discharged from the discharge pipe 15 and the drain pipe 11 connected to the electrolytic cell 7, respectively. When a voltage is applied such that the electrode plate 9 has a negative voltage and the electrode plate 10 has a positive voltage while flowing water, most of the generated alkaline ionized water is discharged to the outside through the discharge pipe 15. About 100 to 500 ml / min of the part flows into the pH sensor 21 from the water inlet 37 via the branch pipe 42 and the supply pipe 45 provided in the discharge pipe 15. The inflowing alkaline ionized water is the liquid to be measured in this case, which hits the surface end of the pH-responsive glass film 40 of the glass electrode section 22 and rises while swirling along the glass electrode. At this time, the hydrogen gas generated by the electrolysis is contained as bubbles in the alkaline ionized water, but since the water inlet 37 and the discharger 38 are provided in the tangential direction of the surface of the pH-responsive glass film 40, the tangential The velocity is large, and the contained bubbles are prevented from adhering to the glass electrode portion 22. Once adhered, the bubbles are again stripped. It is desirable that the higher the rotation speed of the alkaline water, the higher the air bubble removal efficiency. However, it is necessary not to increase the amount of waste water since a large amount of water must be discarded. Therefore, if the distance between the pH-responsive glass film 40 of the glass electrode portion 22 and the internal space 39 is set to about 1.5 to 3 times the gas diameter of the bubbles, the adhesion of bubbles can be reduced. However, when raw water such as tap water contains a large amount of components such as calcium, it is deposited on the surface of the pH-responsive glass film 40 and adheres to the surface to further promote the attachment of air bubbles. In this case, it is desirable to slightly increase the flow rate of the alkaline ionized water flowing from the water inlet 37. Since the internal space 39 is substantially cylindrical and has a volume of substantially 10 cm 3 or less, the response of the measurement can be improved. The alkaline ionized water that rises while turning collides with the liquid junction 28 of the pH sensor 21 and flows out from the discharge unit 38. The alkaline ionized water is directly discharged from the discharge unit 38 with the hydrogen gas mixed therein. By providing a tapered surface below the discharge portion 38 of the internal space 39, the alkaline ionized water can be discharged smoothly. The pH concentration of the alkaline ionized water is detected by the pH sensor 21, and the sensor voltage is sent from the terminal connection unit 31 to the control unit 34, and the control unit 34 causes the operation display unit 53 to display the pH concentration.
[0028]
As described above, the ionized water generator of the second embodiment can continuously generate the alkaline ionized water by continuously flowing the raw water and continuously applying the voltage to the electrode plates 9 and 10. It is possible to simultaneously and continuously detect and display the pH concentration of the alkaline ionized water generated at this time. If the applied voltage is reversed and the electrode plate 9 is applied to the anode and the electrode plate 10 is applied to the cathode, the acidic ionic water is discharged from the discharge pipe 15 and the alkaline ionic water is discharged from the drain pipe 11, contrary to the above description. Will be discharged. In this case, the acidic ionic water flows into the pH sensor 21, and the pH sensor 21 can detect and display the pH concentration of the acidic ionic water.
[0029]
When water is desired, the water can be discharged only from the water discharge pipe 13 by closing the water-saving electromagnetic valves 49 and 50. However, when the water-saving electromagnetic valve 36 is opened, the pH concentration of the purified water can be detected and displayed.
[0030]
Further, an integrating flow meter is provided in the discharge pipe 15, and the flow rate of the alkaline ionized water integrated by the integrating flow meter can be sent to the control means 34 to clean the electrolytic cell 7 and the pH sensor 21. When the integrated flow rate reaches a predetermined flow rate or more, when the faucet 2 is closed, the control means 34 applies a current opposite to the current applied to the electrode plates 9 and 10 to perform electrolysis. This is continued for a certain time, and when the electrode plates 9 and 10 are washed, the control means 34 opens the electromagnetic valve 44 and discharges the acidic ion water generated in the electrolytic chamber via the pH sensor 21. At this time, the acidic ionized water flowing into the main body 35 elutes aggregates such as calcium and scale attached to the glass electrode portion 22, and the pH sensor 21 is washed at the same time. As a result, the aggregates attached to the glass electrode portion 22 are removed, and the attachment of bubbles in the ionized water can be further prevented.
[0031]
As described above, according to the ionized water generator of the second embodiment, it is possible to stably measure the pH value of the ionized water containing the bubbles generated by the electrolysis even with a very small amount with high responsiveness, Even if the pH sensor is damaged, the branch pipe 42 is provided with the pH sensor 21 and the discharge pipe 15 is not provided with the pH sensor 21, which is safe.
[0032]
【The invention's effect】
The pH sensor of the present invention can prevent bubbles contained in the liquid to be measured from accumulating in the main body of the sensor. The pH value can be stably measured even with a measurement solution. Also, it has excellent responsiveness.
[0033]
Furthermore, the ion water generator of the present invention can stably measure the pH value of ion water containing bubbles generated by electrolysis even in a very small amount, and is safe even if the pH sensor is damaged. is there.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a pH sensor according to Embodiment 1 of the present invention. FIG. 2 is an overall schematic view of an ion water generator according to Embodiment 2 of the present invention. FIG. Partial enlarged view of pH sensor of ion water generator [Figure 4] Schematic overall view of conventional ion water generator [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Raw water pipe 2 Water tap 3 Ionized water generator 4 Water purification section 5 Mineral supply section 6 Flow rate sensor 7 Electrolysis tank 8 Diaphragm 9,10 Electrode plate 11 Drain pipe 12 Connection pipe 13 pH detection section 14,21 pH sensor 15 Discharge pipe 16 , 44 Solenoid valve 17 Water discharge pipe 18, 52 Power supply plug 19, 51 Power supply section 20, 34 Control means 22 Glass electrode section 23 First internal electrode 24 Internal liquid 25 Glass container 26 Comparative electrode liquid 27 Second internal electrode 28 Liquid Entangled part 29 Comparative electrode part 30 Refill port 31 Terminal connection part 32 First output terminal 33 Second output terminal 35 Main body part 36 Lock mechanism 37 Water inlet part 38 Discharge part 39 Internal space 40 pH response glass film 42 Branch pipe 43 Injection of calibration liquid Part 45 supply pipe 46 drain port 47 discharge pipe 48 connection pipe 49, 50 water saving solenoid valve 53 operation display part

Claims (2)

内部液を充填するとともにpH応答ガラス膜を備えたガラス電極部と、比較電極液を充填した比較電極部と、入水部及び吐出部が接続され内部空間内に前記pH応答ガラス膜が収容された本体部と、前記比較電極部に設けられ前記比較電極液と被測定液とを連通させる液絡部を備え、前記入水部が前記pH応答ガラス膜の接線方向に設けられるとともに、前記吐出部が前記pH応答ガラス膜の接線方向で且つ前記入水部より上方に設けられ、前記入水部から流入した前記被測定液が前記内部空間内を旋回上昇して前記吐出部から吐出され、前記内部空間が10cm 3 以下の容積に構成されたことを特徴とするpHセンサ。A glass electrode part filled with an internal liquid and provided with a pH responsive glass film, a comparative electrode part filled with a comparative electrode liquid, a water inlet part and a discharge part were connected, and the pH responsive glass film was housed in the internal space. A main body part, a liquid junction part provided in the comparative electrode part for communicating the comparative electrode liquid and the liquid to be measured, and the water inlet part is provided in a tangential direction of the pH-responsive glass film, and the discharge part There wherein provided from above and the water inlet portion in a tangential direction of the pH response glass membrane, the test liquid which has flowed from the entering-water portion is discharged from the discharge portion rises swirling within the interior space, the A pH sensor, wherein the internal space has a volume of 10 cm 3 or less . 電解槽と、前記電解槽に設けられた一対の電極と、前記電解槽に接続された吐出路と、前記吐出路から分岐された排水路とを備え、前記排水路に請求項記載のpHセンサを設けたことを特徴とするイオン水生成器。An electrolyzer, a pair of electrodes provided in the electrolyzer, a discharge passage connected to the electrolysis bath, and a drainage passage branched from the discharge passage, wherein the drainage passage has a pH of 1. An ion water generator comprising a sensor.
JP03028696A 1996-02-19 1996-02-19 pH sensor and ion water generator Expired - Fee Related JP3584594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03028696A JP3584594B2 (en) 1996-02-19 1996-02-19 pH sensor and ion water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03028696A JP3584594B2 (en) 1996-02-19 1996-02-19 pH sensor and ion water generator

Publications (2)

Publication Number Publication Date
JPH09222408A JPH09222408A (en) 1997-08-26
JP3584594B2 true JP3584594B2 (en) 2004-11-04

Family

ID=12299485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03028696A Expired - Fee Related JP3584594B2 (en) 1996-02-19 1996-02-19 pH sensor and ion water generator

Country Status (1)

Country Link
JP (1) JP3584594B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPN661995A0 (en) 1995-11-16 1995-12-07 Memtec America Corporation Electrochemical cell 2
JP4758033B2 (en) * 2001-07-25 2011-08-24 東亜ディーケーケー株式会社 Pressure relief tool for pressurized composite electrode
JP4543884B2 (en) * 2004-11-04 2010-09-15 パナソニック電工株式会社 Alkaline ion water conditioner
JP2006343245A (en) * 2005-06-09 2006-12-21 Olympus Corp Dispenser and analyzer
JP2006343246A (en) * 2005-06-09 2006-12-21 Olympus Corp Dispenser and analyzer
JP4657838B2 (en) * 2005-07-12 2011-03-23 株式会社堀場製作所 Ion concentration measurement composite electrode and ion concentration monitor
JP4818715B2 (en) * 2005-12-27 2011-11-16 東亜ディーケーケー株式会社 Composite electrode and flow-type electrode device
KR100657584B1 (en) * 2006-04-25 2006-12-15 구성테크닉스 주식회사 System of electrode structure for tms of chimney or facilities of waste incineration
US20100051053A1 (en) * 2006-11-08 2010-03-04 Yuji Nishio Washing storage solution for glass electrode and the like
JP2008128975A (en) * 2006-11-24 2008-06-05 Matsushita Electric Works Ltd Method and instrument for measuring characteristics of liquid
CN109564144A (en) 2016-10-26 2019-04-02 株式会社岛津制作所 Circulate bottle and Autosampler
CN114787618A (en) * 2019-12-27 2022-07-22 株式会社堀场先进技术 Electrochemical measurement cell, electrochemical measurement device, and electrochemical measurement method

Also Published As

Publication number Publication date
JPH09222408A (en) 1997-08-26

Similar Documents

Publication Publication Date Title
JP3584594B2 (en) pH sensor and ion water generator
CN208328132U (en) Novel hypochlorite generator with online accurate proportion function
JP3577824B2 (en) pH sensor and ion water generator
KR100533706B1 (en) manufacturing apparatus of electrolyzed-reduced water
JPH09236570A (en) Ph sensor and ion water maker
JP3662692B2 (en) Electrolyzed water generator
JP3903524B2 (en) Electrolyzed water generator
JP3440674B2 (en) Ion water generator
JP3543365B2 (en) Ionized water generator and pH sensor cleaning method
JP3448834B2 (en) ORP sensor for anode water measurement
JP3633077B2 (en) pH sensor and ion water generator
JP2000009675A (en) Water quality detector
JP2000009676A (en) Water quality detector
JP3709051B2 (en) Electrolyzed water generator
JP3508409B2 (en) Electrolyzed water generator
JP3562153B2 (en) Alkaline ion water purifier
JP3648867B2 (en) Alkaline ion water conditioner
JP3539459B2 (en) ORP sensor device for measuring strong electrolyzed water and ORP measuring method for strong electrolyzed water
JPH09264868A (en) Ph sensor and ion water generator
JP2000093959A (en) Electrolyzed water generating apparatus
KR200339730Y1 (en) manufacturing apparatus of electrolyzed-reduced water
JP3638172B2 (en) Electrolyzed water generator
JPH07328639A (en) Oxidation potential water forming device
JPH09113477A (en) Orp sensor for strong electrolyte production unit
JPH0938650A (en) Production device for electrolytic water

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040726

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070813

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees