JP3583570B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP3583570B2
JP3583570B2 JP31406996A JP31406996A JP3583570B2 JP 3583570 B2 JP3583570 B2 JP 3583570B2 JP 31406996 A JP31406996 A JP 31406996A JP 31406996 A JP31406996 A JP 31406996A JP 3583570 B2 JP3583570 B2 JP 3583570B2
Authority
JP
Japan
Prior art keywords
evaporator
compressor
refrigerator
defrost heater
liquid refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31406996A
Other languages
Japanese (ja)
Other versions
JPH10160327A (en
Inventor
覚 長谷川
敏行 白水
浩二 土橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP31406996A priority Critical patent/JP3583570B2/en
Publication of JPH10160327A publication Critical patent/JPH10160327A/en
Application granted granted Critical
Publication of JP3583570B2 publication Critical patent/JP3583570B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Defrosting Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は冷蔵庫に関し、特に冷凍サイクルにおける蒸発器の霜取を自動開始/自動終了で行うファン式冷凍冷蔵庫に関するものである。
【0002】
【従来の技術】
以下、一般的な従来の冷凍冷蔵庫について、図20乃至図22にしたがって説明する。
【0003】
図20は従来の冷凍冷蔵庫の蒸発器周辺の構造を示す断面図であり、図21は従来の冷凍冷蔵庫の冷凍サイクル説明図であり、図22は従来の冷凍冷蔵庫の蒸発器の霜取制御のタイムチャートの説明図である。
【0004】
図20において、1は蒸発器、2は除霜ヒータ、3は霜取終了検知センサー、4は冷気循環用ファンモータ、5は冷蔵室吐き出し冷気調整ダンパーである。
【0005】
図21において、1は蒸発器、8は圧縮機、9は凝縮器、10はドライヤ、11は絞り装置つまり減圧装置であるキャピラリーチューブ、12は吸い込み管のサクションパイプである。
【0006】
図22において、通常冷却運転中は、前記圧縮機8と冷却循環用ファンモータ4とは同期運転するよう制御されている。
【0007】
一般的には、前記圧縮機8の運転積算時間が設定時間に達すると、霜取を開始する。霜取は、前記圧縮機8の停止および前記冷却循環用ファンモータ4の停止と同時に前記除霜ヒータ2を通電し、該除霜ヒータ2により前記蒸発器1が加熱され、前記蒸発器1に付着した霜が溶けると前記蒸発器1の温度が上昇する。前記蒸発器1の温度が上昇し、前記蒸発器1近傍に取り付けられた前記霜取終了検知センサー3が設定温度に達すると前記除霜ヒータ2をOFFする。
【0008】
霜取後の前記蒸発器1の温度は20℃前後、蒸発圧力は4〜5kgf/cmabs程度まで上昇しており、このままでは前記圧縮機8の最始動時に過負荷となり始動不能となる。
【0009】
一般的には、前記除霜ヒータ2のOFF後、蒸発圧力低減のため数分のタイムセーフ時間を設けている。
【0010】
また、本出願人は特願平7−156400号において、図22に示す破線aのように、このタイムセーフ時間に前記冷却循環用ファンモータ4を運転し蒸発圧力低減することにより、さらに始動性を改善する制御を提案している。前記除霜ヒータ2のOFF後のタイムセーフ時間が終了すれば、前記圧縮機8と冷却循環用ファンモータ4とを同期運転し、通常冷却運転にもどる。
【0011】
さらに、本出願人は同じく特願平7−156400号において、図22に示す破線bのように、前記圧縮機8の再始動後は、前記圧縮機8への負担を減らすためや、冷媒流温の低減のために、数分間、前記冷却循環用ファンモータ4を停止する制御も提案している。
【0012】
前記蒸発器1の霜取は、前記蒸発器1を大容量の前記除霜ヒータ2で加熱して行われるため、霜取中の前記除霜ヒータ2の消費電力量が加算されるのみならず、霜取中に温度上昇した庫内温度を所定の庫内温度に冷すために過大な消費電力量を必要とする。
【0013】
このように、冷凍冷蔵庫の霜取は当該冷凍冷蔵庫の消費電力量を増大させる要因のひとつとなっており、効率の良い霜取、つまり小容量や短時間での霜取が要求されている。
【0014】
【発明が解決しようとする課題】
しかしながら、前記除霜ヒータ2の容量や通電時間は、前記除霜ヒータ2にて加熱した時の、前記蒸発器1についた霜の溶け具合と前記蒸発器1の温度と霜取終了検知センサー3の温度の相関により決められている。
【0015】
このため、霜取での庫内温度上昇や消費電力量の改善を求めるために、むやみに霜取時間の短縮つまり前記霜取終了検知センサー3の設定温度を下げることは、前記蒸発器1についた霜の溶け具合に分布が発生するといった霜取不良につながるため、前記霜取終了検知センサー3の設定温度はある程度余裕をもった値に設計する必要がある。
【0016】
さらに、前記圧縮機8の停止後は、前記凝縮器9中の高圧液冷媒がガス化し前記蒸発器1に流れ込んで当該蒸発器1周辺の温度にて冷却されて液化しており、冷凍サイクル中の冷媒のほとんどが前記蒸発器1内に溜まっていた。
【0017】
前記蒸発器1の霜取の際、前記除霜ヒータ2にて前記蒸発器1の温度を上昇させるためには、前記蒸発器1に付いた霜を溶かす熱量とともに、前記蒸発器1内に溜まっている液冷媒をガス化させたり温度を上昇させたりするための熱量が必要となっており、前記蒸発器1の霜取に大容量の除霜ヒータ2や長時間のヒータ通電時間が必要となる理由となっていた。
【0018】
これらは、霜取による庫内温度上昇や消費電力量の改善の障害となっていた。
【0019】
本発明は、上記課題に鑑み、効率の良い霜取を行い、霜取後の庫内温度上昇を抑えるとともに、消費電力量の低減が可能となる冷蔵庫の提供を目的とするものである。
【0020】
【課題を解決するための手段】
上記目的を達成するために、本発明の冷蔵庫は、ガス冷媒を圧縮する圧縮機と、圧縮したガス冷媒を液化させる凝縮器と、液化した液冷媒を減圧する減圧装置と、減圧した液冷媒をガス化させる蒸発器とを用いそれぞれを配管パイプで接続して構成される冷凍サイクルを備えるとともに、前記蒸発器の除霜ヒータを備えた冷蔵庫において、前記除霜ヒータの通電前に前記圧縮機を所定時間停止する制御装置を有し、前記除霜ヒータの通電前の圧縮機を停止する直前の所定時間の前記圧縮機の運転中にのみ前記冷凍サイクル内の流路抵抗を増大させる前記流路増大手段を有し、前記流路抵抗増大手段は、前記減圧装置に対して並列接続され、且つ流路抵抗が前記減圧装置に対して大きい他の減圧装置と、前記凝縮器にて液化した液冷媒を前記減圧装置および他の減圧装置のいずれか一方に導く切換弁と、前記除霜ヒータの通電前の前記圧縮機の運転中にのみ前記凝縮器にて液化した液冷媒を他の減圧装置に導くよう前記切替弁を制御する制御装置とを有することを特徴とするものである。
【0023】
また、本発明の冷蔵庫は、ガス冷媒を圧縮する圧縮機と、圧縮したガス冷媒を液化させる凝縮器と、液化した液冷媒を減圧する減圧装置と、減圧した液冷媒をガス化させる蒸発器とを用いそれぞれを配管パイプで接続して構成される冷凍サイクルを備えるとともに、前記蒸発器の除霜ヒータを備えた冷蔵庫において、前記除霜ヒータの通電前に前記圧縮機を所定時間停止する制御装置を有し、前記除霜ヒータの通電前の圧縮機を停止する直前の所定時間の前記圧縮機の運転中にのみ前記冷凍サイクル内の流路抵抗を増大させる前記流路増大手段を有し、前記流路抵抗増大手段が、前記減圧装置を加熱する加熱ヒータと、前記除霜ヒータの通電前の前記圧縮機の運転中にのみ前記加熱ヒータに通電する制御装置とを有することを特徴とするものである。
【0025】
また、本発明の冷蔵庫は、ガス冷媒を圧縮する圧縮機と、圧縮したガス冷媒を液化させる凝縮器と、液化した液冷媒を減圧する減圧装置と、減圧した液冷媒をガス化させる蒸発器とを用いそれぞれを配管パイプで接続して構成される冷凍サイクルを備えるとともに、前記蒸発器の除霜ヒータを備えた冷蔵庫において、前記除霜ヒータの通電時に前記蒸発器内部の液冷媒量を減少させる手段を有し、前記蒸発器内部の液冷媒量を減少させる手段が、前記減圧装置と蒸発器との間の配管パイプに対して並列接続されたレシーバタンクと、前記減圧装置にて減圧した液冷媒を前記配管パイプおよびレシーバタンクのいずれか一方に導く切換弁と、前記除霜ヒータの通電直前における前記圧縮機の運転中から前記除霜ヒータの通電終了間に前記減圧装置にて減圧した液冷媒を前記レシーバタンクに導くよう前記切替弁を制御する制御装置とを有することを特徴とするものである。
【0026】
また、本発明の冷蔵庫は、ガス冷媒を圧縮する圧縮機と、圧縮したガス冷媒を液化させる凝縮器と、液化した液冷媒を減圧する減圧装置と、減圧した液冷媒をガス化させる蒸発器とを用いそれぞれを配管パイプで接続して構成される冷凍サイクルを備えるとともに、前記蒸発器の除霜ヒータを備えた冷蔵庫において、前記除霜ヒータの通電時に前記蒸発器内部の液冷媒量を減少させる手段を有し、前記蒸発器内部の液冷媒量を減少させる手段が、前記蒸発器と庫内とを強制熱交換させる冷気循環用ファンモータと、前記除霜ヒータの通電直前に前記圧縮機を所定時間停止させるとともに、その間前記冷気循環用ファンモータを運転する制御装置を有することを特徴とするものである。
【0027】
さらに、本発明の冷蔵庫は、前記蒸発器にて熱交換された冷気の冷蔵室への吹き出し量を制御する冷蔵室ダンパーと、前記除霜ヒータの通電直前に前記圧縮機を所定時間停止させるとともに、その間前記冷気循環用ファンモータを運転する際に、前記冷蔵室ダンパーを開状態とする制御装置を有することを特徴とするものである。
【0028】
また、本発明の冷蔵庫は、ガス冷媒を圧縮する圧縮機と、圧縮したガス冷媒を液化させる凝縮器と、液化した液冷媒を減圧する減圧装置と、減圧した液冷媒をガス化させる蒸発器とを用いそれぞれを配管パイプで接続して構成される冷凍サイクルを備えるとともに、前記蒸発器の除霜ヒータを備えた冷蔵庫において、前記蒸発器にて熱交換された冷気の冷凍室への吹き出し量を制御する冷凍室ダンパーと、前記除霜ヒータの通電時に前記冷凍室ダンパーを閉状態とする制御装置とを有することを特徴とするものである。
【0029】
さらに、本発明の冷蔵庫は、前記蒸発器と庫内とを強制熱交換させる冷気循環用ファンモータと、前記除霜ヒータの通電時に前記冷気循環用ファンモータを運転する制御装置とを有することを特徴とするものである。
【0030】
上記構成によれば、本発明の冷蔵庫は、除霜ヒータの通電直前に圧縮機を所定時間停止することにより、圧縮機停止後の凝縮器から蒸発器に流入するガス冷媒の凝縮潜熱を霜取りに利用することができ、前記除霜ヒータの通電時間の短縮ができる。
【0032】
さらに、前記除霜ヒータの通電直前の圧縮機運転中に、流路抵抗が大きい前記他の減圧装置に冷媒流路を切り替えることができるため、前記凝縮器に溜まる高圧の液冷媒量比率を増やすことができる。これにより、通常冷却運転時は適正な絞り度により適正な圧力差が得られ、所定の冷却能力が得られるとともに、前記圧縮機停止後の凝縮器から蒸発器に流入するガス冷媒の凝縮潜熱量が増加し、霜取りへの利用の効果を向上することができる。
【0033】
また、前記除霜ヒータの通電直前の圧縮機運転中に、前記減圧装置を加熱する加熱ヒータに通電することにより、前記減圧装置の流路抵抗を増大させ、前記凝縮器に溜まる高圧な液冷媒量比率を増やすことができる。これにより、通常冷却運転時は適正な絞り度により適正な圧力差が得られ、所定の冷却能力が得られるとともに、前記圧縮機停止後の凝縮器から蒸発器に流入するガス冷媒の凝縮潜熱量が増加し、霜取りへの利用の効果を向上することができる。また、前記減圧装置の流路抵抗を増大させるための前記加熱ヒータは局部的なものであるため、ヒータ容量は前記除霜ヒータに比べ無視できる程度の小容量のものであり、前記減圧装置の流路抵抗を増大させるためのヒータ通電により霜取効率向上の効果が損なわれることはない。
【0035】
また、前記除霜ヒータの通電直前の圧縮機運転中から霜取終了までの間のみ、流路をレシーバタンクへ切り替えることができる。これにより、前記除霜ヒータ通電直前に、前記冷凍サイクル内の冷媒のほとんどがレシーバタンク内に溜めることができるとともに、前記除霜ヒータ通電中に凝縮器から蒸発器に流入することがないため、前記除霜ヒータの通電中における前記蒸発器内部の冷媒量を著しく減らすことができ、前記蒸発器の温度を上昇させるための必要熱量を著しく減少させることができ、前記除霜ヒータの通電時間の短縮ができる。
【0036】
また、前記圧縮機停止後に冷気循環用ファンモータを運転することにより、前記蒸発器内でのガス冷媒の凝縮を促進し凝縮潜熱を霜取りへ利用する効率を上げるとともに、前記ガス冷媒の凝縮が終了した後は、熱交換の促進により前記凝縮器の温度を上昇させ、蒸発器内部の冷媒比重を小さくすることができ、その後の前記除霜ヒータの通電中における前記蒸発器内部の冷媒重量を減らすことができ、前記蒸発器の温度を上昇させるための必要熱量を減少させることができ、前記除霜ヒータの通電時間の短縮ができる。
【0037】
さらに、前記冷気循環用ファンモータを運転する際に、前記冷蔵室ダンパーを開状態とすることにより、前記蒸発器内でのガス冷媒の凝縮を促進し凝縮潜熱を霜取りへ利用する効率を上げるとともに、前記ガス冷媒の凝縮が終了した後は、冷蔵室からの戻り空気によって前記蒸発器が熱交換されるため、前記冷気循環用ファンモータの運転による前記蒸発器の温度上昇が大きくなり、前記蒸発器内部の冷媒比重を更に小さくすることができ、その後の前記除霜ヒータの通電中における前記蒸発器内部の冷媒重量を減らす効果が向上でき、蒸発器の温度を上昇させるための必要熱量を減少させる効果が向上でき、前記除霜ヒータの通電時間の短縮ができる。
【0038】
また、除霜ヒータの通電時に前記冷凍室ダンパーを閉状態とすることにより、前記除霜ヒータの通電中に加熱された空気が庫内に移動し、庫内の冷たい空気が、加熱中の蒸発器室への流れ込む自然対流による冷気に流れを防止することができる。これにより、前記を上昇させるための必要熱量を著しく減少させることができ、前記除霜ヒータの通電時間の短縮ができる。
【0039】
さらに、前記除霜ヒータの通電時の前記冷気循環用ファンヒータを運転することにより、霜取中の加熱空気を冷凍室室内に吐き出すことなく、前記除霜ヒータの熱量が効率良く前記蒸発器に熱交換され、前記除霜ヒータの通電時間の短縮ができる。
【0040】
【発明の実施の形態】
以下、本発明の実施の形態にかかる冷蔵庫について、図面とともに説明する。図1は本発明の第1実施の形態にかかる冷凍冷蔵庫の冷凍サイクル説明図であり、図2は本発明の第1実施の形態にかかる冷凍冷蔵庫の蒸発器の霜取制御のタイムチャートの説明図である。
【0041】
本実施の形態にかかる冷凍冷蔵庫は、図1に示すように、冷媒を圧縮する圧縮機21と、ガス冷媒を液化させる凝縮器22と、減圧と冷媒循環量を制御を目的とした絞り装置つまり減圧装置であるキャピラリーチューブ23と、液冷媒を蒸発,ガス化させる蒸発器24と、それぞれを配管パイプで接続して構成される冷凍サイクルを有し、前記蒸発器24と庫内を強制熱交換させる冷気循環用ファンモータ25と、前記蒸発器24の除霜ヒータ26と、霜取終了を温度にて検知する霜取終了検知サーミスタ27と、前記圧縮機24,前記冷気循環用ファンモータ25,前記除霜ヒータ26の制御を行う制御装置28が設けられてなる。
【0042】
前記制御装置28による前記蒸発器24の霜取制御は、図2に示すように、前記圧縮機21の積算運転が設定の時間に達すると、前記圧縮機21を停止する。このとき、前記圧縮機21の運転中に前記凝縮器22に溜まっていた高圧液冷媒は前記圧縮機21の停止後、ガス化し蒸発器24に流れ込み該蒸発器24にて放熱し凝縮する。この凝縮潜熱にて前記蒸発器24の霜取が行われる。この蒸発器24での凝縮過程は数分で終了するためその後は前記除霜ヒータ26を通電し通常の霜取りを行なう。これによって、前記蒸発器24の霜取を行うための大容量の前記除霜ヒータ26の通電時間を短縮でき、低消費電力量化が実現できる。
【0043】
図3は本発明の第2実施の形態にかかる冷凍冷蔵庫の冷凍サイクル説明図であり、図4は本発明の第2実施の形態にかかる冷凍冷蔵庫の蒸発器の霜取制御のタイムチャートの説明図である。
【0044】
本実施の形態にかかる冷凍冷蔵庫は、図3に示すように、冷媒を圧縮する圧縮機31と、ガス冷媒を液化させる凝縮器32と、減圧と冷媒循環量を制御を目的とした絞り装置つまり減圧装置である第1キャピラリーチューブ33と、前記第1キャピラリーチューブ33に対して並列に接続され、且つ前記第1キャピラリーチューブ33よりも絞り抵抗を増大させた第2キャピラリーチューブ34と、液冷媒を蒸発,ガス化させる蒸発器35と、冷媒流路を第1キャピラリーチューブ33と第2キャピラリーチューブ33のいずれか一方に切り替える切替弁36と、それぞれを配管パイプで接続して構成される冷凍サイクルを有し、前記蒸発器35と庫内とを強制熱交換させる冷気循環用ファンモータ37と、前記蒸発器35の除霜ヒータ38と、霜取終了を温度にて検知する霜取終了検知サーミスタ39と、前記圧縮機31,前記冷気循環用ファンモータ37,除霜ヒータ38の制御を行う制御装置40が設けられてなる。
【0045】
前記制御装置40による前記蒸発器35の霜取制御は、図4に示すように、通常は前記第1キャピラリーチューブ33を冷媒流路として、圧縮機31の運転を行っている。前記圧縮機31の積算運転が設定の時間に達すると、冷媒流路が前記第2キャピラリーチューブ34となるように前記切替弁36を切り替える。これによって、前記圧縮機31の運転中の前記凝縮器32内の高圧液冷媒の溜まり量が増大する。冷媒流路を前記第2キャピラリーチューブ34とした前記圧縮機31の運転が設定時間の数十分を経過すると、前記圧縮機31を停止する。このとき、前記圧縮機31の運転中に前記凝縮器32に溜まっていた高圧液冷媒は前記圧縮機31の停止後、ガス化し前記蒸発器35に流れ込み当該蒸発器35にて放熱し凝縮する。この凝縮潜熱にて前記蒸発器35の霜取が行われる。
【0046】
本実施の形態にかかる冷凍冷蔵庫では、この蒸発器35に流入するガス冷媒の質量流量を通常より増大させているため、この凝縮潜熱での霜取りの効果がより増幅される。前記蒸発器35での凝縮過程は数分で終了するためその後は前記除霜ヒータ38を通電し通常の霜取りを行う。これによって、前記蒸発器35の霜取を行うための大容量の前記除霜ヒータ38の通電時間を短縮でき、低消費電力量化が実現できる。
【0047】
図5は本発明の第3実施の形態にかかる冷凍冷蔵庫の冷凍サイクル説明図であり、図6は本発明の第3実施の形態にかかる冷凍冷蔵庫の蒸発器の霜取制御のタイムチャートの説明図である。
【0048】
本実施の形態にかかる冷凍冷蔵庫は、図5に示すように、冷媒を圧縮する圧縮機51と、ガス冷媒を液化させる凝縮器52と、減圧と冷媒循環量を制御を目的とした絞り装置つまり減圧装置であるキャピラリーチューブ53と、前記キャピラリーチューブ53を加熱するように取り付けられた加熱ヒータ54と、液冷媒を蒸発,ガス化させる蒸発器55と、それぞれを配管パイプで接続して構成される冷凍サイクルを有し、前記蒸発器55と庫内を強制熱交換させる冷気循環用ファンモータ56と、前記蒸発器35の除霜ヒータ57と、霜取り終了を温度にて検知する霜取終了検知サーミスタ58と、前記圧縮機51,前記加熱ヒータ54,前記冷気循環用ファンモータ56,前記除霜ヒータ57の制御を行う制御装置59が設けられている。
【0049】
前記制御装置59による前記蒸発器55の霜取制御は、図6に示すように、通常は前記キャピラリーチューブ53を加熱する加熱ヒータ54をOFFの状態にし、前記キャピラリーチューブ53を冷媒流路として、前記圧縮機51の運転を行っている。前記圧縮機51の積算運転が設定の時間に達すると、前記キャピラリーチューブ53に取り付けられた加熱ヒータ54を通電する。これによって、前記キャピラリーチューブ53の冷媒流路抵抗が増大し、前記圧縮機51の運転中の前記凝縮器52内の高圧液冷媒の溜まり量が増大する。前記キャピラリーチューブ53に取り付けられた加熱ヒータ54を通電した状態での前記圧縮機51の運転が設定時間の数十分を経過すると、前記圧縮機51を停止する。このとき前記圧縮機51の運転中に前記凝縮器52に溜まっていた高圧液冷媒は前記圧縮機51の停止後、ガス化し前記蒸発器55に流れ込み当該蒸発器55にて放熱し凝縮する。この凝縮潜熱にて前記蒸発器55の霜取が行われる。
【0050】
本実施の形態にかかる冷凍冷蔵庫では、この蒸発器55に流入するガス冷媒の質量流量を通常より増大させているため、この凝縮潜熱での霜取の効果がより増幅される。前記蒸発器55での凝縮過程は数分で終了するためその後は前記除霜ヒータ57を通電し通常の霜取を行う。前記キャピラリーチューブ53を加熱する加熱ヒータ54は局部的に作用させるためのものであり、ヒータ容量は前記除霜ヒータ57に比べ無視できる程度のものである。これによって、前記蒸発器55の霜取を行うための大容量の前記除霜ヒータ57の通電時間を短縮でき、低消費電力量化が実現できる。
【0051】
図7は本発明の第4実施の形態にかかる冷凍冷蔵庫の冷凍サイクル説明図であり、図8は本発明の第4実施の形態にかかる冷凍冷蔵庫の蒸発器の霜取制御のタイムチャートの説明図である。
【0052】
本実施の形態にかかる冷凍冷蔵庫は、図7に示すように、冷媒を圧縮する圧縮機71と、ガス冷媒を液化させる凝縮器72と、減圧と冷媒循環量の制御を目的とした絞り装置つまり減圧装置であるキャピラリーチューブ73と、液冷媒を蒸発,ガス化させる蒸発器74と、前記キャピラリーチューブ73と蒸発器74との間の後述する配管パイプに対して並列接続されたレシーバタンク75と、冷媒流路を前記キャピラリーチューブ73と蒸発器74との間の配管パイプと前記レシーバタンク75とのいずれか一方へ切り替える切替弁76と、それぞれを配管接続し構成される冷凍サイクルを有し、前記蒸発器74と庫内を強制熱交換させる冷気循環用ファンモータ77と、前記蒸発器74の除霜ヒータ78と、霜取の終了を温度にて検知する霜取終了検知サーミスタ79と、前記圧縮機71,前記切換弁76,前記冷気循環用ファンモータ77,前記除霜ヒータ78の制御を行う制御装置80が設けられてなる。
【0053】
前記制御装置80による前記蒸発器74の霜取制御は、図8に示すように、通常は前記レシーバタンク75を通らない冷媒流路にて前記圧縮機71を運転している。前記圧縮機71の積算運転が設定の時間に達すると、冷媒流路が前記レシーバタンク75側となるように前記切替弁76を切り替える。これによって、圧縮された冷媒が前記レシーバタンク75内に溜まり、一方、前記蒸発器74内の冷媒は前記圧縮機71によって吸い込まれ、かつ冷媒の供給がないため、前記蒸発器74内は極端に冷媒の少ない状態となる。冷媒流路を前記レシーバタンク75側とした前記圧縮機71の運転が設定時間の数分を経過すると前記圧縮機71を停止し、前記除霜ヒータ78を通電する。このとき、前記蒸発器74内には冷媒が極めて少ない状態であるため、熱容量が小さく前記蒸発器74の温度を上げて霜取を行うための熱量は著しく減少させることができる。
【0054】
これによって、前記蒸発器74の霜取を行うための大容量の前記除霜ヒータ78の通電時間を短縮でき、低消費電力量化が実現できる。
【0055】
図9は本発明の第5実施の形態にかかる冷凍冷蔵庫の冷凍サイクル説明図であり、図10は本発明の第5実施の形態にかかる冷凍冷蔵庫の蒸発器の霜取制御のタイムチャートの説明図である。
【0056】
本実施の形態にかかる冷凍冷蔵庫は、図9に示すように、冷媒を圧縮する圧縮機91と、ガス冷媒を液化させる凝縮器92と、減圧と冷媒循環量を制御を目的とした絞り装置つまり減圧装置であるキャピラリチューブ93と、液冷媒を蒸発,ガス化させる蒸発器94と、それぞれを配管パイプで接続して構成される冷凍サイクルを有し、前記蒸発器94と庫内を強制熱交換させる冷気循環用ファンモータ95と、前記蒸発器94の除霜ヒータ96と、霜取り終了を温度にて検知する霜取終了検知サーミスタ97と、前記圧縮機91,前記冷気循環用ファンモータ95,除霜ヒータ96の制御を行う制御装置98が設けられてなる。
【0057】
前記制御装置98による前記蒸発器94の霜取制御は、図10に示すように、前記圧縮機91の積算運転が設定の時間に達すると、前記圧縮機91を停止するとともに、前記冷気循環用ファンモータ95を運転する。前記圧縮機91の運転中に前記凝縮器92に溜まっていた高圧液冷媒は前記圧縮機91の停止後、ガス化し前記蒸発器94に流れ込み当該蒸発器94にて放熱し凝縮するが、このとき、前記冷気循環用ファンモータ95を運転することにより、この凝縮過程を促進させるとともに、前記圧縮機91の停止中に前記冷気循環用ファンモータ95を運転することによって、前記蒸発器94の温度を上昇させ、当該蒸発器94内の液冷媒の比重を減少させることができる。
【0058】
前記圧縮機91を停止し、前記冷気循環用ファンモータ95を運転する時間が設定時間の数分を経過すると除霜ヒータ96を通電する。この時、前記蒸発器94内の冷媒重量が少ない状態であるため、熱容量が小さく前記蒸発器94の温度を上げて霜取を行うための熱量を減少させることができる。
【0059】
これによって、前記蒸発器94の霜取を行うための大容量の前記除霜ヒータ96の通電時間を短縮でき、低消費電力量化が実現できる。
【0060】
図11は本発明の第6実施の形態にかかる冷蔵庫の蒸発器周辺の構造を示す断面図であり、図12は本発明の第6実施の形態にかかる冷蔵庫の冷凍サイクル説明図であり、図13は本発明の第6実施の形態にかかる冷蔵庫の蒸発器の霜取制御のタイムチャートの説明図である。
【0061】
本実施の形態にかかる冷凍冷蔵庫は、図11及び図12に示すように、冷媒を圧縮する圧縮機111と、ガス冷媒を液化させる凝縮器112と、減圧と冷媒循環量を制御を目的とした絞り装置つまり減圧装置であるキャピラリチューブ113と、液冷媒を蒸発,ガス化させる蒸発器114と、それぞれ配管パイプで接続して構成される冷凍サイクルを有し、前記蒸発器114と庫内を強制熱交換させる冷気循環用ファンモータ115と、前記冷気循環用ファンモータ115によって冷蔵室側へ送られる冷気の量を調節する冷蔵室ダンパー116と、前記蒸発器114の除霜ヒータ117と、霜取り終了を温度にて検知する霜取終了検知サーミスタ118と、前記圧縮機111,前記冷気循環用ファンモータ115,前記冷蔵室ダンパー116,前記除霜ヒータ117の制御を行う制御装置119が設けられてなる。
【0062】
前記制御装置119による前記蒸発器114の霜取制御は、図13に示すように、前記圧縮機111の積算運転が設定の時間に達すると、前記圧縮機111を停止するとともに、前記冷蔵室ダンパー116を開状態とし、前記冷気循環用ファンモータ115を運転する。前記圧縮機111の運転中に前記凝縮器112に溜まっていた高圧液冷媒は前記圧縮機111の停止後、ガス化し前記蒸発器114に流れ込み当該蒸発器114にて放熱し凝縮するが、このとき、前記冷気循環用ファンモータ115を運転することにより、この凝縮過程を促進させるとともに、前記圧縮機111の停止中に前記冷蔵室ダンパー116を開状態とし、前記冷気循環用ファンモータ115を運転することによって、冷蔵室の戻り空気によって、前記蒸発器114の温度の上昇を促進させ、当該蒸発器114内の液冷媒の比重を減少させることができる。
【0063】
前記圧縮機111を停止し、前記冷気循環用ファンモータ115を運転する時間が設定時間の数分を経過すると除霜ヒータ117を通電する。この時、前記蒸発器114内の冷媒重量が少ない状態であるため、熱容量が小さく前記蒸発器114の温度を上げて霜取を行うための熱量を減少させることができる。
【0064】
これによって、前記蒸発器114の霜取を行うための大容量の前記除霜ヒータ117の通電時間を短縮でき、低消費電力量化が実現できる。
【0065】
図14は本発明の第7実施の形態にかかる冷蔵庫の蒸発器周辺の構造を示す断面図であり、図15は本発明の第7実施の形態にかかる冷蔵庫の冷凍サイクル説明図であり、図16は本発明の第7実施の形態にかかる冷蔵庫の蒸発器の霜取制御のタイムチャートの説明図である。
【0066】
本実施の形態にかかる冷凍冷蔵庫は、図14及び図15に示すように、冷媒を圧縮する圧縮機131と、ガス冷媒を液化させる凝縮器132と、減圧と冷媒循環量を制御を目的とした絞り装置つまり減圧装置であるキャピラリチューブ133と、液冷媒を蒸発,ガス化させる蒸発器134と、それぞれを配管パイプで接続して構成される冷凍サイクルを有し、前記蒸発器134と庫内を強制熱交換させる冷気循環用ファンモータ135と、前記冷気循環用ファンモータ135によって冷凍室側へ送られる冷気の量を調節する冷凍室ダンパー136と、前記蒸発器134の除霜ヒータ137と、霜取り終了を温度にて検知する霜取終了検知サーミスタ138と、前記圧縮機131,前記冷気循環用ファンモータ135,前記冷凍室ダンパー136,前記除霜ヒータ137の制御を行う制御装置139が設けられてなる。図中、140は冷蔵室ダンパーである。
【0067】
前記制御装置139による前記蒸発器134の霜取制御は、図16に示すように、前記圧縮機131の積算運転が設定の時間に達すると、前記圧縮機131を停止するとともに前記除霜ヒータ137を通電する。このとき、前記冷凍室ダンパー136および冷蔵室ダンパー140を閉状態とする。これによって、前記除霜ヒータ137の通電中に加熱された空気が冷凍室に流れ込み、冷凍室内の冷された空気が前記蒸発器134側へと流れ込む自然対流を防止することができ、前記除霜ヒータ137の熱量は前記蒸発器室内の閉空間のみにて消費され前記蒸発器134の温度を上昇させるための熱量を減少させることができる。
【0068】
これによって、前記蒸発器134の霜取を行うための大容量の前記除霜ヒータ137の通電時間を短縮でき、低消費電力量化が実現できる。
【0069】
図17は本発明の第8実施の形態にかかる冷蔵庫の蒸発器周辺の構造を示す断面図であり、図18は本発明の第8実施の形態にかかる冷蔵庫の冷凍サイクル説明図であり、図19は本発明の第8実施の形態にかかる冷蔵庫の蒸発器の霜取制御のタイムチャートの説明図である。
【0070】
本実施の形態にかかる冷凍冷蔵庫は、図17及び図18に示すように、冷媒を圧縮する圧縮機151と、ガス冷媒を液化させる凝縮器152と、減圧と冷媒循環量の制御を目的とした絞り装置つまり減圧装置であるキャピラリチューブ153と、液冷媒を蒸発,ガス化させる蒸発器154と、それぞれを配管パイプで接続して構成される冷凍サイクルを有し、前記蒸発器154と庫内を強制熱交換させる冷気循環用ファンモータ155と、前記冷気循環用ファンモータ155によって冷凍室側へ送られる冷気の量を調節する冷凍室ダンパー156と、前記蒸発器114の除霜ヒータ157と、霜取り終了を温度にて検知する霜取終了検知サーミスタ158と、前記圧縮機151,前記冷気循環用ファンモータ155,前記冷凍室ダンパー156,前記除霜ヒータ157の制御を行う制御装置159が設けられてなる。図中、160は冷蔵室ダンパーである。
【0071】
前記制御装置159による前記蒸発器154の霜取制御は、図19に示すように、前記圧縮機151の積算運転が設定の時間に達すると、前記圧縮機151を停止するとともに前記除霜ヒータ157を通電する。このとき、前記冷凍室ダンパー156および冷蔵室ダンパー160を閉状態とし、前記冷気循環用ファンモータ155を運転する。これによって、前記除霜ヒータ157の熱量はまんべんなく前記蒸発器154に伝えられ、前記除霜ヒータ157の効率が増大するとともに、前記冷凍室ダンパー156を閉状態としているため、前記冷気循環用ファンモータ155により撹拌される加熱空気が冷凍室内に吐き出され庫内温度が上昇することもない。
【0072】
これによって、前記蒸発器154の霜取を行うための大容量の前記除霜ヒータ157の通電時間を短縮でき、低消費電力量化が実現できる。
【0073】
【発明の効果】
以上説明したように、本発明によれば、除霜ヒータの通電直前に圧縮機を所定時間停止することにより、圧縮機停止後の凝縮器から蒸発器に流入するガス冷媒の凝縮潜熱を霜取りに利用することができ、前記除霜ヒータの通電時間の短縮ができる。
【0075】
さらに、前記除霜ヒータの通電直前の圧縮機運転中に、流路抵抗が大きい前記他の減圧装置に冷媒流路を切り替えることができるため、前記凝縮器に溜まる高圧の液冷媒量比率を増やすことができる。これにより、通常冷却運転時は適正な絞り度により適正な圧力差が得られ、所定の冷却能力が得られるとともに、前記圧縮機停止後の凝縮器から蒸発器に流入するガス冷媒の凝縮潜熱量が増加し、霜取りへの利用の効果を向上することができる。
【0076】
また、前記除霜ヒータの通電直前の圧縮機運転中に、前記減圧装置を加熱する加熱ヒータに通電することにより、前記減圧装置の流路抵抗を増大させ、前記凝縮器に溜まる高圧な液冷媒量比率を増やすことができる。これにより、通常冷却運転時は適正な絞り度により適正な圧力差が得られ、所定の冷却能力が得られるとともに、前記圧縮機停止後の凝縮器から蒸発器に流入するガス冷媒の凝縮潜熱量が増加し、霜取りへの利用の効果を向上することができる。また、前記減圧装置の流路抵抗を増大させるための前記加熱ヒータは局部的なものであるため、ヒータ容量は前記除霜ヒータに比べ無視できる程度の小容量のものであり、前記減圧装置の流路抵抗を増大させるためのヒータ通電により霜取効率向上の効果が損なわれることはない。
【0078】
また、前記除霜ヒータの通電直前の圧縮機運転中から霜取終了までの間のみ、流路をレシーバタンクへ切り替えることができる。これにより、前記除霜ヒータ通電直前に、前記冷凍サイクル内の冷媒のほとんどがレシーバタンク内に溜めることができるとともに、前記除霜ヒータ通電中に凝縮器から蒸発器に流入することがないため、前記除霜ヒータの通電中における前記蒸発器内部の冷媒量を著しく減らすことができ、前記蒸発器の温度を上昇させるための必要熱量を著しく減少させることができ、前記除霜ヒータの通電時間の短縮ができる。
【0079】
また、前記圧縮機停止後に冷気循環用ファンモータを運転することにより、前記蒸発器内でのガス冷媒の凝縮を促進し凝縮潜熱を霜取りへ利用する効率を上げるとともに、前記ガス冷媒の凝縮が終了した後は、熱交換の促進により前記凝縮器の温度を上昇させ、蒸発器内部の冷媒比重を小さくすることができ、その後の前記除霜ヒータの通電中における前記蒸発器内部の冷媒重量を減らすことができ、前記蒸発器の温度を上昇させるための必要熱量を減少させることができ、前記除霜ヒータの通電時間の短縮ができる。
【0080】
さらに、前記冷気循環用ファンモータを運転する際に、前記冷蔵室ダンパーを開状態とすることにより、前記蒸発器内でのガス冷媒の凝縮を促進し凝縮潜熱を霜取りへ利用する効率を上げるとともに、前記ガス冷媒の凝縮が終了した後は、冷蔵室からの戻り空気によって前記蒸発器が熱交換されるため、前記冷気循環用ファンモータの運転による前記蒸発器の温度上昇が大きくなり、前記蒸発器内部の冷媒比重を更に小さくすることができ、その後の前記除霜ヒータの通電中における前記蒸発器内部の冷媒重量を減らす効果が向上でき、蒸発器の温度を上昇させるための必要熱量を減少させる効果が向上でき、前記除霜ヒータの通電時間の短縮ができる。
【0081】
また、除霜ヒータの通電時に前記冷凍室ダンパーを閉状態とすることにより、前記除霜ヒータの通電中に加熱された空気が庫内に移動し、庫内の冷たい空気が、加熱中の蒸発器室への流れ込む自然対流による冷気に流れを防止することができる。これにより、前記を上昇させるための必要熱量を著しく減少させることができ、前記除霜ヒータの通電時間の短縮ができる。
【0082】
さらに、前記除霜ヒータの通電時の前記冷気循環用ファンヒータを運転することにより、霜取中の加熱空気を冷凍室室内に吐き出すことなく、前記除霜ヒータの熱量が効率良く前記蒸発器に熱交換され、前記除霜ヒータの通電時間の短縮ができる。
【図面の簡単な説明】
【図1】本発明の第1実施の形態にかかる冷蔵庫の冷凍サイクル説明図である。
【図2】本発明の第1実施の形態にかかる冷蔵庫の蒸発器の霜取制御のタイムチャートの説明図である。
【図3】本発明の第2実施の形態にかかる冷蔵庫の冷凍サイクル説明図である。
【図4】本発明の第2実施の形態にかかる冷蔵庫の蒸発器の霜取制御のタイムチャートの説明図である。
【図5】本発明の第3実施の形態にかかる冷蔵庫の冷凍サイクル説明図である。
【図6】本発明の第3実施の形態にかかる冷蔵庫の蒸発器の霜取制御のタイムチャートの説明図である。
【図7】本発明の第4実施の形態にかかる冷蔵庫の冷凍サイクル説明図である。
【図8】本発明の第4実施の形態にかかる冷蔵庫の蒸発器の霜取制御のタイムチャートの説明図である。
【図9】本発明の第5実施の形態にかかる冷蔵庫の冷凍サイクル説明図である。
【図10】本発明の第5実施の形態にかかる冷蔵庫の蒸発器の霜取制御のタイムチャートの説明図である。
【図11】本発明の第6実施の形態にかかる冷蔵庫の蒸発器周辺の構造を示す断面図である。
【図12】本発明の第6実施の形態にかかる冷蔵庫の冷凍サイクル説明図である。
【図13】本発明の第6実施の形態にかかる冷蔵庫の蒸発器の霜取制御のタイムチャートの説明図である。
【図14】本発明の第7実施の形態にかかる冷蔵庫の蒸発器周辺の構造を示す断面図である。
【図15】本発明の第7実施の形態にかかる冷蔵庫の冷凍サイクル説明図である。
【図16】本発明の第7実施の形態にかかる冷蔵庫の蒸発器の霜取制御のタイムチャートの説明図である。
【図17】本発明の第8実施の形態にかかる冷蔵庫の蒸発器周辺の構造を示す断面図である。
【図18】本発明の第8実施の形態にかかる冷蔵庫の冷凍サイクル説明図である。
【図19】本発明の第8実施の形態にかかる冷蔵庫の蒸発器の霜取制御のタイムチャートの説明図である。
【図20】従来の冷蔵庫の蒸発器周辺の構造を示す断面図である。
【図21】従来の冷蔵庫の冷凍サイクルの説明図である。
【図22】従来の冷蔵庫の蒸発器の霜取制御のタイムチャートの説明図である。
【符号の説明】
21 圧縮機
22 凝縮器
23 キャピラリーチューブ(減圧装置)
24 蒸発器
26 除霜ヒータ
28 制御装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a refrigerator, and more particularly, to a fan-type refrigerator which automatically starts / stops defrosting of an evaporator in a refrigeration cycle.
[0002]
[Prior art]
Hereinafter, a general conventional refrigerator-freezer will be described with reference to FIGS.
[0003]
FIG. 20 is a cross-sectional view showing the structure around the evaporator of the conventional refrigerator, FIG. 21 is an explanatory diagram of the refrigeration cycle of the conventional refrigerator, and FIG. It is an explanatory view of a time chart.
[0004]
In FIG. 20, 1 is an evaporator, 2 is a defrost heater, 3 is a defrosting end detection sensor, 4 is a fan motor for circulating cold air, and 5 is a cold air adjusting damper discharged from a refrigerator compartment.
[0005]
In FIG. 21, 1 is an evaporator, 8 is a compressor, 9 is a condenser, 10 is a dryer, 11 is a capillary tube which is a throttle device, ie, a pressure reducing device, and 12 is a suction pipe of a suction pipe.
[0006]
In FIG. 22, during the normal cooling operation, the compressor 8 and the cooling / circulating fan motor 4 are controlled to operate synchronously.
[0007]
Generally, when the cumulative operation time of the compressor 8 reaches a set time, defrosting is started. In the defrosting, the defrost heater 2 is energized at the same time when the compressor 8 stops and the cooling circulation fan motor 4 stops, and the evaporator 1 is heated by the defrost heater 2 and the evaporator 1 is heated. When the attached frost melts, the temperature of the evaporator 1 increases. When the temperature of the evaporator 1 rises and the defrosting end detection sensor 3 attached near the evaporator 1 reaches a set temperature, the defrost heater 2 is turned off.
[0008]
The temperature of the evaporator 1 after defrosting is around 20 ° C., and the evaporation pressure is 4 to 5 kgf / cm. 2 Since the pressure has risen to about abs, the compressor 8 is overloaded at the time of the maximum start and cannot be started.
[0009]
Generally, after the defrost heater 2 is turned off, a time safe time of several minutes is provided to reduce the evaporation pressure.
[0010]
Further, the applicant of the present application has disclosed in Japanese Patent Application No. 7-156400 that the cooling circulation fan motor 4 is operated during this time safe time to reduce the evaporating pressure as shown by the broken line a in FIG. To improve control. When the time safe time after turning off the defrost heater 2 ends, the compressor 8 and the cooling circulation fan motor 4 are operated synchronously to return to the normal cooling operation.
[0011]
Further, the applicant has also disclosed in Japanese Patent Application No. 7-156400, as shown by a broken line b in FIG. 22, after the compressor 8 is restarted, the load on the compressor 8 is reduced, In order to reduce the temperature, a control for stopping the cooling circulation fan motor 4 for several minutes has also been proposed.
[0012]
Since the defrosting of the evaporator 1 is performed by heating the evaporator 1 with the large-capacity defrosting heater 2, not only the power consumption of the defrosting heater 2 during defrosting is added, but also In addition, an excessive amount of power consumption is required to cool the internal temperature that has increased during defrosting to a predetermined internal temperature.
[0013]
As described above, defrosting of a refrigerator-freezer is one of the factors that increase the power consumption of the refrigerator-freezer, and efficient defrosting, that is, small-capacity and short-time defrosting is required.
[0014]
[Problems to be solved by the invention]
However, the capacity and energizing time of the defrost heater 2 depend on the degree of melting of the frost on the evaporator 1, the temperature of the evaporator 1, and the defrosting end detection sensor 3 when heated by the defrost heater 2. Is determined by the temperature correlation.
[0015]
For this reason, in order to seek a rise in the internal temperature and an improvement in power consumption during defrosting, it is necessary to shorten the defrosting time unnecessarily, that is, to lower the set temperature of the defrosting end detection sensor 3. It is necessary to design the set temperature of the frost removal completion detection sensor 3 to a value with a certain margin, since this may lead to poor frost removal such as distribution of frost melting.
[0016]
Further, after the compressor 8 is stopped, the high-pressure liquid refrigerant in the condenser 9 is gasified, flows into the evaporator 1, is cooled and liquefied at a temperature around the evaporator 1, and is liquefied during the refrigeration cycle. Almost all of the refrigerant in the evaporator 1 was stored in the evaporator 1.
[0017]
In order to raise the temperature of the evaporator 1 by the defrost heater 2 during the defrosting of the evaporator 1, the heat accumulated in the evaporator 1 together with the amount of heat for melting the frost attached to the evaporator 1. The amount of heat required to gasify the liquid refrigerant or increase the temperature is required, and the defrosting of the evaporator 1 requires a large-capacity defrost heater 2 and a long heater energizing time. Had become a reason.
[0018]
These have been obstacles to an increase in the internal temperature and an improvement in power consumption due to defrosting.
[0019]
The present invention has been made in view of the above problems, and has as its object to provide a refrigerator capable of performing efficient defrosting, suppressing a rise in the internal temperature after defrosting, and reducing power consumption.
[0020]
[Means for Solving the Problems]
In order to achieve the above object, the present invention Cold The storage uses a compressor that compresses the gas refrigerant, a condenser that liquefies the compressed gas refrigerant, a decompression device that decompresses the liquefied liquid refrigerant, and an evaporator that gasifies the decompressed liquid refrigerant. A refrigerator provided with a refrigeration cycle connected by piping pipes and provided with a defrost heater for the evaporator, wherein the energization of the defrost heater is performed. before A control device for stopping the compressor for a predetermined time; The flow increasing means for increasing the flow resistance in the refrigeration cycle only during the operation of the compressor for a predetermined time immediately before stopping the compressor before the defrost heater is energized; The path resistance increasing means is connected in parallel to the pressure reducing device, and another pressure reducing device whose flow path resistance is larger than the pressure reducing device, and the liquid refrigerant liquefied in the condenser to the pressure reducing device and the other. A switching valve for leading to any one of the pressure reducing devices, and controlling the switching valve to guide the liquid refrigerant liquefied in the condenser to another pressure reducing device only during operation of the compressor before the defrost heater is energized. Control device It is characterized by the following.
[0023]
Also The present invention Cold The warehouse is A compressor that compresses a gas refrigerant, a condenser that liquefies the compressed gas refrigerant, a decompression device that decompresses the liquefied liquid refrigerant, and an evaporator that gasifies the decompressed liquid refrigerant are connected by piping pipes. A refrigerator having a refrigeration cycle configured as described above, and a control device for stopping the compressor for a predetermined time before energizing the defrost heater, wherein the defrost heater The flow path increasing means for increasing the flow path resistance in the refrigeration cycle only during the operation of the compressor for a predetermined time immediately before stopping the compressor before energization of, The flow path resistance increasing means includes a heater for heating the decompression device, and a control device for energizing the heater only during operation of the compressor before energizing the defrost heater. Things.
[0025]
Also The present invention Cold The warehouse is A compressor that compresses a gas refrigerant, a condenser that liquefies the compressed gas refrigerant, a decompression device that decompresses the liquefied liquid refrigerant, and an evaporator that gasifies the decompressed liquid refrigerant are connected by piping pipes. A refrigerator having a refrigeration cycle configured as described above, and a refrigerator provided with a defrost heater of the evaporator, comprising means for reducing the amount of liquid refrigerant inside the evaporator when the defrost heater is energized, Means for reducing the amount of liquid refrigerant inside the evaporator is a receiver connected in parallel to a piping pipe between the pressure reducing device and the evaporator. Bata And the liquid refrigerant decompressed by the decompression device is supplied to the piping pipe and the receiver. Bata A switching valve that guides the liquid refrigerant that has been depressurized by the decompression device during the operation of the compressor immediately before energization of the defrost heater to the end of energization of the defrost heater. Bata And a control device for controlling the switching valve so as to guide the switching valve.
[0026]
Also The present invention Cold The warehouse is A compressor that compresses a gas refrigerant, a condenser that liquefies the compressed gas refrigerant, a decompression device that decompresses the liquefied liquid refrigerant, and an evaporator that gasifies the decompressed liquid refrigerant are connected by piping pipes. A refrigerator having a refrigeration cycle configured as described above, and a refrigerator provided with a defrost heater of the evaporator, comprising means for reducing the amount of liquid refrigerant inside the evaporator when the defrost heater is energized, Means for reducing the amount of liquid refrigerant inside the evaporator is a fan motor for cooling air for forcibly exchanging heat between the evaporator and the inside of the refrigerator, and stopping the compressor for a predetermined time immediately before energizing the defrost heater. And a controller for operating the cool air circulation fan motor during that time.
[0027]
further The present invention Cold The warehouse is ,Previous A refrigerating compartment damper for controlling an amount of cold air heat-exchanged by the evaporator to the refrigerating compartment; and a compressor for a predetermined time immediately before the defrost heater is energized, and a fan motor for circulating the cold air during that time. And a control device for opening the refrigerator compartment damper when the vehicle is operated.
[0028]
Also The present invention Cold The storage uses a compressor that compresses the gas refrigerant, a condenser that liquefies the compressed gas refrigerant, a decompression device that decompresses the liquefied liquid refrigerant, and an evaporator that gasifies the decompressed liquid refrigerant. A refrigerator having a refrigeration cycle connected by piping pipes and having a defrosting heater for the evaporator, wherein the refrigerator controls the amount of cold air that has been heat-exchanged by the evaporator to be blown out to the freezer. It is characterized by having a damper and a control device for closing the freezer compartment damper when the defrost heater is energized.
[0029]
further The present invention Cold The warehouse is ,Previous A cooling air circulation fan motor for forcibly exchanging heat between the evaporator and the interior of the refrigerator, and a control device for operating the cooling air circulation fan motor when the defrost heater is energized.
[0030]
According to the above configuration, the present invention Cold The storage stops the compressor for a predetermined time immediately before the energization of the defrost heater. By Further, the latent heat of condensation of the gas refrigerant flowing into the evaporator from the condenser after the compressor is stopped can be used for defrosting, and the energization time of the defrost heater can be reduced.
[0032]
Further Before During the compressor operation immediately before energization of the defrost heater, the refrigerant flow path can be switched to the other pressure reducing device having a large flow path resistance, so that the ratio of the high-pressure liquid refrigerant amount stored in the condenser can be increased. it can. Thereby, during the normal cooling operation, an appropriate pressure difference is obtained with an appropriate throttle degree, a predetermined cooling capacity is obtained, and the latent heat of condensation of the gas refrigerant flowing into the evaporator from the condenser after the compressor is stopped. And the effect of use for defrosting can be improved.
[0033]
Also During the operation of the compressor immediately before the defrost heater is energized, the heater for heating the decompression device is energized to increase the flow path resistance of the decompression device, thereby increasing the amount of high-pressure liquid refrigerant accumulated in the condenser. The ratio can be increased. Thereby, during the normal cooling operation, an appropriate pressure difference is obtained with an appropriate throttle degree, a predetermined cooling capacity is obtained, and the latent heat of condensation of the gas refrigerant flowing into the evaporator from the condenser after the compressor is stopped. And the effect of use for defrosting can be improved. Further, since the heater for increasing the flow path resistance of the decompression device is a local heater, the heater capacity is as small as negligible compared to the defrost heater, The effect of improving the defrosting efficiency is not impaired by energizing the heater to increase the flow path resistance.
[0035]
Also, Only during the period from the compressor operation immediately before the defrost heater is energized to the end of defrosting, the flow path is received. Bata Link. Thereby, just before energization of the defrost heater, most of the refrigerant in the refrigeration cycle can be stored in the receiver tank, and does not flow into the evaporator from the condenser during energization of the defrost heater. The amount of refrigerant inside the evaporator during energization of the defrost heater can be significantly reduced, the amount of heat required to raise the temperature of the evaporator can be significantly reduced, and the energization time of the defrost heater can be reduced. Can be shortened.
[0036]
Also By operating the cooling air circulation fan motor after stopping the compressor, the efficiency of utilizing the condensation latent heat for defrosting by promoting the condensation of the gas refrigerant in the evaporator is increased, and the condensation of the gas refrigerant is completed. After that, the temperature of the condenser is increased by promoting heat exchange, the specific gravity of the refrigerant inside the evaporator can be reduced, and the weight of the refrigerant inside the evaporator during energization of the defrost heater after that can be reduced. Therefore, the amount of heat required to raise the temperature of the evaporator can be reduced, and the energization time of the defrost heater can be reduced.
[0037]
further, When operating the cool air circulation fan motor, the refrigerator compartment damper is opened. Ruko By this, while promoting the condensation of the gas refrigerant in the evaporator and increasing the efficiency of utilizing the latent heat of condensation for defrosting, after the condensation of the gas refrigerant is completed, the evaporator is returned from the refrigerator compartment by the return air from the refrigerator. Since heat is exchanged, the temperature rise of the evaporator due to the operation of the fan motor for cooling air is increased, and the specific gravity of the refrigerant inside the evaporator can be further reduced. The effect of reducing the weight of the refrigerant inside the evaporator can be improved, the effect of reducing the amount of heat required to raise the temperature of the evaporator can be improved, and the energization time of the defrost heater can be reduced.
[0038]
Also When the defrost heater is energized, the freezer compartment damper is closed. By In addition, the air heated during the energization of the defrost heater moves into the refrigerator, and the cold air in the refrigerator can be prevented from flowing into the cool air due to natural convection flowing into the evaporator room during heating. Thus, the amount of heat required to raise the temperature can be significantly reduced, and the energization time of the defrost heater can be shortened.
[0039]
further Operating the cooling air circulation fan heater when the defrost heater is energized By In addition, the amount of heat of the defrost heater is efficiently exchanged with the evaporator without discharging the heated air during defrosting into the freezer compartment, so that the energization time of the defrost heater can be reduced.
[0040]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a refrigerator according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory view of a refrigerating cycle of a refrigerator according to a first embodiment of the present invention, and FIG. 2 is a time chart of defrost control of an evaporator of the refrigerator according to the first embodiment of the present invention. FIG.
[0041]
As shown in FIG. 1, the refrigerator-freezer according to the present embodiment includes a compressor 21 for compressing a refrigerant, a condenser 22 for liquefying a gas refrigerant, and a throttle device for controlling the pressure reduction and the amount of circulating refrigerant. It has a capillary tube 23 as a decompression device, an evaporator 24 for evaporating and gasifying liquid refrigerant, and a refrigeration cycle configured by connecting each with a piping pipe. A cooling air circulation fan motor 25, a defrost heater 26 of the evaporator 24, a defrosting completion detecting thermistor 27 for detecting the completion of defrosting by temperature, the compressor 24, the cooling air circulation fan motor 25, A control device 28 for controlling the defrost heater 26 is provided.
[0042]
As shown in FIG. 2, the defrosting control of the evaporator 24 by the control device 28 stops the compressor 21 when the integrated operation of the compressor 21 reaches a set time. At this time, the high-pressure liquid refrigerant accumulated in the condenser 22 during the operation of the compressor 21 is turned into a gas after the compressor 21 is stopped, flows into the evaporator 24, and radiates and condenses the heat in the evaporator 24. The evaporator 24 is defrosted by the latent heat of condensation. Since the condensation process in the evaporator 24 is completed within a few minutes, the defrost heater 26 is energized thereafter to perform normal defrosting. Thereby, the energization time of the large-capacity defrost heater 26 for defrosting the evaporator 24 can be reduced, and low power consumption can be realized.
[0043]
FIG. 3 is an explanatory diagram of a refrigerating cycle of a refrigerator according to a second embodiment of the present invention, and FIG. 4 is a time chart of defrost control of an evaporator of the refrigerator according to the second embodiment of the present invention. FIG.
[0044]
As shown in FIG. 3, the refrigerator-freezer according to the present embodiment includes a compressor 31 for compressing a refrigerant, a condenser 32 for liquefying a gas refrigerant, and a throttle device for controlling the pressure reduction and the amount of circulating refrigerant. A first capillary tube 33 which is a decompression device; a second capillary tube 34 connected in parallel with the first capillary tube 33 and having a greater restriction resistance than the first capillary tube 33; A refrigerating cycle configured by connecting an evaporator 35 for evaporating and gasifying, a switching valve 36 for switching the refrigerant flow path to one of the first capillary tube 33 and the second capillary tube 33, and a pipe connected to each other. A fan motor 37 for circulating cool air for forcibly exchanging heat between the evaporator 35 and the inside of the refrigerator, and a defrost heater 38 for the evaporator 35 A frost end detection thermistor 39 for detecting the defrost completion at a temperature, the compressor 31, the cold air circulating fan motor 37, the control device 40 is provided for controlling the defrosting heater 38.
[0045]
As shown in FIG. 4, the defrosting control of the evaporator 35 by the control device 40 normally operates the compressor 31 using the first capillary tube 33 as a refrigerant flow path. When the integrated operation of the compressor 31 reaches a set time, the switching valve 36 is switched so that the refrigerant flow path becomes the second capillary tube 34. As a result, the accumulated amount of the high-pressure liquid refrigerant in the condenser 32 during the operation of the compressor 31 increases. When the operation of the compressor 31 in which the refrigerant channel is the second capillary tube 34 has elapsed for several tens of minutes, the compressor 31 is stopped. At this time, the high-pressure liquid refrigerant accumulated in the condenser 32 during the operation of the compressor 31 is turned into a gas after the compressor 31 is stopped, flows into the evaporator 35, and dissipates heat at the evaporator 35 to condense. The evaporator 35 is defrosted by the latent heat of condensation.
[0046]
In the refrigerator according to the present embodiment, since the mass flow rate of the gas refrigerant flowing into the evaporator 35 is increased more than usual, the effect of defrosting by the latent heat of condensation is further amplified. Since the condensation process in the evaporator 35 is completed in a few minutes, the defrost heater 38 is energized thereafter to perform normal defrosting. Thus, the energizing time of the large-capacity defrost heater 38 for defrosting the evaporator 35 can be reduced, and low power consumption can be realized.
[0047]
FIG. 5 is an explanatory diagram of a refrigerating cycle of a refrigerator according to a third embodiment of the present invention. FIG. 6 is a time chart of defrost control of an evaporator of the refrigerator according to the third embodiment of the present invention. FIG.
[0048]
As shown in FIG. 5, the refrigerator-freezer according to the present embodiment includes a compressor 51 for compressing a refrigerant, a condenser 52 for liquefying a gas refrigerant, and a throttling device for controlling the pressure reduction and the refrigerant circulation amount. A capillary tube 53 as a decompression device, a heater 54 attached to heat the capillary tube 53, and an evaporator 55 for evaporating and gasifying the liquid refrigerant are connected to each other by a piping pipe. It has a refrigeration cycle, a fan motor 56 for circulating cool air for forcibly exchanging heat between the evaporator 55 and the inside of the refrigerator, a defrost heater 57 for the evaporator 35, and a defrosting end detecting thermistor for detecting the end of defrosting by temperature 58, and a control device 59 for controlling the compressor 51, the heater 54, the cooling air circulation fan motor 56, and the defrost heater 57 are provided.
[0049]
As shown in FIG. 6, the defrosting control of the evaporator 55 by the control device 59 normally turns off the heater 54 for heating the capillary tube 53, and uses the capillary tube 53 as a refrigerant flow path. The operation of the compressor 51 is performed. When the cumulative operation of the compressor 51 reaches a set time, the heater 54 attached to the capillary tube 53 is energized. As a result, the refrigerant flow path resistance of the capillary tube 53 increases, and the amount of accumulated high-pressure liquid refrigerant in the condenser 52 during operation of the compressor 51 increases. When the operation of the compressor 51 in a state where the heater 54 attached to the capillary tube 53 is energized exceeds a set time of several ten minutes, the compressor 51 is stopped. At this time, the high-pressure liquid refrigerant accumulated in the condenser 52 during the operation of the compressor 51 is turned into a gas after the compressor 51 is stopped, flows into the evaporator 55, and radiates and condenses the heat in the evaporator 55. The evaporator 55 is defrosted by the latent heat of condensation.
[0050]
In the refrigerator-freezer according to the present embodiment, since the mass flow rate of the gas refrigerant flowing into the evaporator 55 is increased more than usual, the effect of defrosting with the latent heat of condensation is further amplified. Since the condensation process in the evaporator 55 is completed in a few minutes, the defrost heater 57 is energized thereafter to perform normal defrosting. The heater 54 for heating the capillary tube 53 is for locally acting, and has a negligible heater capacity as compared with the defrost heater 57. Thus, the energization time of the large-capacity defrost heater 57 for defrosting the evaporator 55 can be reduced, and low power consumption can be realized.
[0051]
FIG. 7 is an explanatory diagram of a refrigerating cycle of a refrigerator according to a fourth embodiment of the present invention. FIG. 8 is a time chart of defrost control of an evaporator of the refrigerator of the refrigerator according to the fourth embodiment of the present invention. FIG.
[0052]
As shown in FIG. 7, the refrigerator-freezer according to the present embodiment includes a compressor 71 for compressing a refrigerant, a condenser 72 for liquefying a gas refrigerant, and a throttling device for controlling the pressure reduction and the refrigerant circulation amount. A capillary tube 73 serving as a decompression device, an evaporator 74 for evaporating and gasifying the liquid refrigerant, a receiver tank 75 connected in parallel to a piping pipe described later between the capillary tube 73 and the evaporator 74, A switching pipe 76 for switching a refrigerant flow path to one of a pipe pipe between the capillary tube 73 and the evaporator 74 and the receiver tank 75; A fan motor 77 for circulating cold air for forcibly exchanging heat with the evaporator 74, a defrost heater 78 of the evaporator 74, and detecting the end of defrosting by temperature. A frost end detection thermistor 79, the compressor 71, the switching valve 76, the cold air circulating fan motor 77, formed by the control device 80 is provided for controlling the defrosting heater 78.
[0053]
The defrosting control of the evaporator 74 by the controller 80 operates the compressor 71 in a refrigerant flow path that does not normally pass through the receiver tank 75 as shown in FIG. When the cumulative operation of the compressor 71 reaches a set time, the switching valve 76 is switched so that the refrigerant flow path is on the receiver tank 75 side. As a result, the compressed refrigerant accumulates in the receiver tank 75, while the refrigerant in the evaporator 74 is sucked in by the compressor 71 and there is no supply of the refrigerant. It becomes a state where the amount of the refrigerant is small. When the operation of the compressor 71 in which the refrigerant flow path is set to the receiver tank 75 side exceeds several minutes of a set time, the compressor 71 is stopped and the defrost heater 78 is energized. At this time, since the amount of refrigerant in the evaporator 74 is extremely small, the heat capacity is small and the amount of heat required to increase the temperature of the evaporator 74 to perform defrosting can be significantly reduced.
[0054]
Thereby, the energizing time of the large-capacity defrost heater 78 for performing defrosting of the evaporator 74 can be shortened, and low power consumption can be realized.
[0055]
FIG. 9 is an explanatory diagram of a refrigerating cycle of a refrigerator according to a fifth embodiment of the present invention. FIG. 10 is a time chart of defrost control of an evaporator of the refrigerator according to the fifth embodiment of the present invention. FIG.
[0056]
As shown in FIG. 9, the refrigerator-freezer according to the present embodiment includes a compressor 91 for compressing a refrigerant, a condenser 92 for liquefying a gas refrigerant, and a throttling device for controlling the pressure reduction and the amount of circulating refrigerant. It has a capillary tube 93 as a decompression device, an evaporator 94 for evaporating and gasifying the liquid refrigerant, and a refrigeration cycle configured by connecting each with a piping pipe. A cooling air circulation fan motor 95, a defrost heater 96 of the evaporator 94, a defrosting completion detecting thermistor 97 for detecting the completion of defrosting by temperature, the compressor 91, the cooling air circulation fan motor 95, A control device 98 for controlling the frost heater 96 is provided.
[0057]
As shown in FIG. 10, the defrosting control of the evaporator 94 by the control device 98 stops the compressor 91 when the integrated operation of the compressor 91 reaches a set time, and performs the cooling air circulation. The fan motor 95 is operated. During the operation of the compressor 91, the high-pressure liquid refrigerant accumulated in the condenser 92 is gasified after the compressor 91 stops, flows into the evaporator 94, releases heat in the evaporator 94, and condenses. By operating the cool air circulation fan motor 95, this condensation process is promoted, and by operating the cool air circulation fan motor 95 while the compressor 91 is stopped, the temperature of the evaporator 94 is reduced. The specific gravity of the liquid refrigerant in the evaporator 94 can be reduced by raising the liquid refrigerant.
[0058]
When the compressor 91 is stopped and the operation time of the cool air circulation fan motor 95 exceeds a set time of several minutes, the defrost heater 96 is energized. At this time, since the weight of the refrigerant in the evaporator 94 is small, the heat capacity is small, and the amount of heat for defrosting by increasing the temperature of the evaporator 94 can be reduced.
[0059]
Thereby, the energization time of the large-capacity defrost heater 96 for defrosting the evaporator 94 can be shortened, and low power consumption can be realized.
[0060]
FIG. 11 is a sectional view showing a structure around an evaporator of a refrigerator according to a sixth embodiment of the present invention, and FIG. 12 is an explanatory diagram of a refrigeration cycle of the refrigerator according to the sixth embodiment of the present invention. 13 is an explanatory diagram of a time chart of defrost control of the evaporator of the refrigerator according to the sixth embodiment of the present invention.
[0061]
As shown in FIGS. 11 and 12, the refrigerator-freezer according to the present embodiment aims at controlling the compressor 111 for compressing the refrigerant, the condenser 112 for liquefying the gas refrigerant, and the pressure reduction and the refrigerant circulation amount. It has a capillary tube 113 which is a throttle device, that is, a decompression device, an evaporator 114 for evaporating and gasifying the liquid refrigerant, and a refrigeration cycle which is connected by piping pipes respectively. A fan motor 115 for circulating cool air for exchanging heat, a damper 116 for controlling the amount of cool air sent to the refrigerator compartment by the fan motor 115 for circulating cool air, a defrost heater 117 for the evaporator 114, and a defrost end. 118, the compressor 111, the fan motor 115 for circulating cool air, and the refrigerator compartment damper 116. Controller 119 is provided for controlling the defrosting heater 117.
[0062]
As shown in FIG. 13, the defrosting control of the evaporator 114 by the control device 119 stops the compressor 111 when the integrated operation of the compressor 111 reaches a set time, and the refrigerating chamber damper. 116 is opened, and the cooling air circulation fan motor 115 is operated. During the operation of the compressor 111, the high-pressure liquid refrigerant accumulated in the condenser 112 is gasified after the compressor 111 is stopped, flows into the evaporator 114, releases heat in the evaporator 114, and condenses. By operating the cool air circulation fan motor 115, this condensation process is accelerated, and the refrigerator compartment damper 116 is opened while the compressor 111 is stopped to operate the cool air circulation fan motor 115. Thereby, the return air of the refrigerator can promote the rise of the temperature of the evaporator 114, and can reduce the specific gravity of the liquid refrigerant in the evaporator 114.
[0063]
When the compressor 111 is stopped and the operation time of the cooling air circulation fan motor 115 exceeds a set time of several minutes, the defrost heater 117 is energized. At this time, since the weight of the refrigerant in the evaporator 114 is small, the heat capacity is small, and the amount of heat for defrosting by increasing the temperature of the evaporator 114 can be reduced.
[0064]
Thereby, the energization time of the large-capacity defrost heater 117 for defrosting the evaporator 114 can be shortened, and low power consumption can be realized.
[0065]
FIG. 14 is a cross-sectional view showing the structure around the evaporator of the refrigerator according to the seventh embodiment of the present invention, and FIG. 15 is an explanatory diagram of a refrigeration cycle of the refrigerator according to the seventh embodiment of the present invention. FIG. 16 is an explanatory diagram of a time chart of defrost control of the evaporator of the refrigerator according to the seventh embodiment of the present invention.
[0066]
As shown in FIGS. 14 and 15, the refrigerator-freezer according to the present embodiment aims at controlling the compressor 131 for compressing the refrigerant, the condenser 132 for liquefying the gas refrigerant, and controlling the pressure reduction and the refrigerant circulation amount. It has a refrigerating cycle configured by connecting a capillary tube 133 which is a throttle device, that is, a pressure reducing device, an evaporator 134 for evaporating and gasifying the liquid refrigerant with a pipe, and connects the evaporator 134 and the inside of the refrigerator. A cooling air fan motor 135 for forcibly exchanging heat; a freezing room damper 136 for adjusting the amount of cool air sent to the freezing room by the cooling air fan motor 135; a defrost heater 137 for the evaporator 134; A defrosting end detecting thermistor 138 for detecting the end by temperature; the compressor 131; the cooling air fan motor 135; , The control unit 139 is provided for controlling the defrosting heater 137. In the figure, reference numeral 140 denotes a refrigerator compartment damper.
[0067]
As shown in FIG. 16, the defrosting control of the evaporator 134 by the control device 139 stops the compressor 131 and stops the defrost heater 137 when the integration operation of the compressor 131 reaches a set time. Is turned on. At this time, the freezer compartment damper 136 and the refrigerator compartment damper 140 are closed. Accordingly, it is possible to prevent natural convection in which the air heated during energization of the defrost heater 137 flows into the freezing room and the cooled air in the freezing room flows toward the evaporator 134 side. The amount of heat of the heater 137 is consumed only in the closed space in the evaporator chamber, and the amount of heat for raising the temperature of the evaporator 134 can be reduced.
[0068]
Accordingly, the energizing time of the large-capacity defrost heater 137 for defrosting the evaporator 134 can be reduced, and low power consumption can be realized.
[0069]
FIG. 17 is a sectional view showing the structure around the evaporator of the refrigerator according to the eighth embodiment of the present invention, and FIG. 18 is an explanatory diagram of a refrigeration cycle of the refrigerator according to the eighth embodiment of the present invention. 19 is an explanatory diagram of a time chart of defrost control of the evaporator of the refrigerator according to the eighth embodiment of the present invention.
[0070]
As shown in FIGS. 17 and 18, the refrigerator-freezer according to the present embodiment aims at controlling a compressor 151 for compressing a refrigerant, a condenser 152 for liquefying a gas refrigerant, and controlling the pressure reduction and the circulation amount of the refrigerant. It has a capillary tube 153 that is a throttle device, that is, a decompression device, an evaporator 154 that evaporates and gasifies the liquid refrigerant, and a refrigeration cycle configured by connecting each with a piping pipe. A cooling air circulation fan motor 155 for forcibly exchanging heat, a freezing room damper 156 for adjusting the amount of cold air sent to the freezing room by the cooling air circulation fan motor 155, a defrost heater 157 of the evaporator 114, A defrosting end detecting thermistor 158 for detecting the end by temperature; the compressor 151; the fan motor 155 for circulating cool air; , The control unit 159 is provided for controlling the defrosting heater 157. In the figure, reference numeral 160 denotes a refrigerator compartment damper.
[0071]
As shown in FIG. 19, the defrosting control of the evaporator 154 by the control device 159 stops the compressor 151 and stops the defrost heater 157 when the integrated operation of the compressor 151 reaches a set time. Is turned on. At this time, the freezer compartment damper 156 and the refrigerator compartment damper 160 are closed, and the cool air circulation fan motor 155 is operated. As a result, the amount of heat of the defrost heater 157 is evenly transmitted to the evaporator 154, and the efficiency of the defrost heater 157 is increased, and the freezing chamber damper 156 is closed. The heated air stirred by 155 is discharged into the freezing room, and the temperature in the refrigerator does not rise.
[0072]
Thus, the energizing time of the large-capacity defrost heater 157 for defrosting the evaporator 154 can be reduced, and low power consumption can be realized.
[0073]
【The invention's effect】
As explained above, Clearly According to this, the compressor is stopped for a predetermined time immediately before the defrost heater is energized. By Further, the latent heat of condensation of the gas refrigerant flowing into the evaporator from the condenser after the compressor is stopped can be used for defrosting, and the energization time of the defrost heater can be reduced.
[0075]
Further Before During the compressor operation immediately before energization of the defrost heater, the refrigerant flow path can be switched to the other pressure reducing device having a large flow path resistance, so that the ratio of the high-pressure liquid refrigerant amount stored in the condenser can be increased. it can. Thereby, during the normal cooling operation, an appropriate pressure difference is obtained with an appropriate throttle degree, a predetermined cooling capacity is obtained, and the latent heat of condensation of the gas refrigerant flowing into the evaporator from the condenser after the compressor is stopped. And the effect of use for defrosting can be improved.
[0076]
Also During the operation of the compressor immediately before the defrost heater is energized, the heater for heating the decompression device is energized to increase the flow path resistance of the decompression device, thereby increasing the amount of high-pressure liquid refrigerant accumulated in the condenser. The ratio can be increased. Thereby, during the normal cooling operation, an appropriate pressure difference is obtained with an appropriate throttle degree, a predetermined cooling capacity is obtained, and the latent heat of condensation of the gas refrigerant flowing into the evaporator from the condenser after the compressor is stopped. And the effect of use for defrosting can be improved. Further, since the heater for increasing the flow path resistance of the decompression device is a local heater, the heater capacity is as small as negligible compared to the defrost heater, The effect of improving the defrosting efficiency is not impaired by energizing the heater to increase the flow path resistance.
[0078]
Also, Only during the period from the compressor operation immediately before the defrost heater is energized to the end of defrosting, the flow path is received. Bata Link. Thereby, just before energization of the defrost heater, most of the refrigerant in the refrigeration cycle can be stored in the receiver tank, and does not flow into the evaporator from the condenser during energization of the defrost heater. The amount of refrigerant inside the evaporator during energization of the defrost heater can be significantly reduced, the amount of heat required to raise the temperature of the evaporator can be significantly reduced, and the energization time of the defrost heater can be reduced. Can be shortened.
[0079]
Also By operating the cooling air circulation fan motor after stopping the compressor, the efficiency of utilizing the condensation latent heat for defrosting by promoting the condensation of the gas refrigerant in the evaporator is increased, and the condensation of the gas refrigerant is completed. After that, the temperature of the condenser is increased by promoting heat exchange, the specific gravity of the refrigerant inside the evaporator can be reduced, and the weight of the refrigerant inside the evaporator during energization of the defrost heater after that can be reduced. Therefore, the amount of heat required to raise the temperature of the evaporator can be reduced, and the energization time of the defrost heater can be reduced.
[0080]
further, When operating the cool air circulation fan motor, the refrigerator compartment damper is opened. Ruko By this, while promoting the condensation of the gas refrigerant in the evaporator and increasing the efficiency of utilizing the latent heat of condensation for defrosting, after the condensation of the gas refrigerant is completed, the evaporator is returned from the refrigerator compartment by the return air from the refrigerator. Since heat is exchanged, the temperature rise of the evaporator due to the operation of the fan motor for cooling air is increased, and the specific gravity of the refrigerant inside the evaporator can be further reduced. The effect of reducing the weight of the refrigerant inside the evaporator can be improved, the effect of reducing the amount of heat required to raise the temperature of the evaporator can be improved, and the energization time of the defrost heater can be reduced.
[0081]
Also When the defrost heater is energized, the freezer compartment damper is closed. By In addition, the air heated during the energization of the defrost heater moves into the refrigerator, and the cold air in the refrigerator can be prevented from flowing into the cool air due to natural convection flowing into the evaporator room during heating. Thus, the amount of heat required to raise the temperature can be significantly reduced, and the energization time of the defrost heater can be shortened.
[0082]
further Operating the cooling air circulation fan heater when the defrost heater is energized By In addition, the amount of heat of the defrost heater is efficiently exchanged with the evaporator without discharging the heated air during defrosting into the freezer compartment, so that the energization time of the defrost heater can be reduced.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a refrigeration cycle of a refrigerator according to a first embodiment of the present invention.
FIG. 2 is an explanatory diagram of a time chart of defrost control of the evaporator of the refrigerator according to the first embodiment of the present invention.
FIG. 3 is an explanatory diagram of a refrigeration cycle of a refrigerator according to a second embodiment of the present invention.
FIG. 4 is an explanatory diagram of a time chart of defrost control of an evaporator of a refrigerator according to a second embodiment of the present invention.
FIG. 5 is an explanatory diagram of a refrigeration cycle of a refrigerator according to a third embodiment of the present invention.
FIG. 6 is an explanatory diagram of a time chart of defrost control of an evaporator of a refrigerator according to a third embodiment of the present invention.
FIG. 7 is an explanatory diagram of a refrigeration cycle of a refrigerator according to a fourth embodiment of the present invention.
FIG. 8 is an explanatory diagram of a time chart of defrost control of an evaporator of a refrigerator according to a fourth embodiment of the present invention.
FIG. 9 is an explanatory diagram of a refrigeration cycle of a refrigerator according to a fifth embodiment of the present invention.
FIG. 10 is an explanatory diagram of a time chart of defrost control of an evaporator of a refrigerator according to a fifth embodiment of the present invention.
FIG. 11 is a sectional view showing a structure around an evaporator of a refrigerator according to a sixth embodiment of the present invention.
FIG. 12 is an explanatory diagram of a refrigeration cycle of a refrigerator according to a sixth embodiment of the present invention.
FIG. 13 is an explanatory diagram of a time chart of defrost control of an evaporator of a refrigerator according to a sixth embodiment of the present invention.
FIG. 14 is a sectional view showing a structure around an evaporator of a refrigerator according to a seventh embodiment of the present invention.
FIG. 15 is an explanatory diagram of a refrigeration cycle of a refrigerator according to a seventh embodiment of the present invention.
FIG. 16 is an explanatory diagram of a time chart of defrost control of the evaporator of the refrigerator according to the seventh embodiment of the present invention.
FIG. 17 is a cross-sectional view illustrating a structure around an evaporator of a refrigerator according to an eighth embodiment of the present invention.
FIG. 18 is an explanatory diagram of a refrigeration cycle of a refrigerator according to an eighth embodiment of the present invention.
FIG. 19 is an explanatory diagram of a time chart of defrost control of an evaporator of a refrigerator according to an eighth embodiment of the present invention.
FIG. 20 is a cross-sectional view showing a structure around an evaporator of a conventional refrigerator.
FIG. 21 is an explanatory diagram of a refrigeration cycle of a conventional refrigerator.
FIG. 22 is an explanatory diagram of a time chart of a conventional defrosting control of an evaporator of a refrigerator.
[Explanation of symbols]
21 Compressor
22 Condenser
23 Capillary tube (decompression device)
24 evaporator
26 Defrost heater
28 Controller

Claims (7)

ガス冷媒を圧縮する圧縮機と、圧縮したガス冷媒を液化させる凝縮器と、液化した液冷媒を減圧する減圧装置と、減圧した液冷媒をガス化させる蒸発器とを用いそれぞれを配管パイプで接続して構成される冷凍サイクルを備えるとともに、前記蒸発器の除霜ヒータを備えた冷蔵庫において、前記除霜ヒータの通電前に前記圧縮機を所定時間停止する制御装置を有し、
前記除霜ヒータの通電前の圧縮機を停止する直前の所定時間の前記圧縮機の運転中にのみ前記冷凍サイクル内の流路抵抗を増大させる前記流路増大手段を有し、前記流路抵抗増大手段は、前記減圧装置に対して並列接続され、且つ流路抵抗が前記減圧装置に対して大きい他の減圧装置と、前記凝縮器にて液化した液冷媒を前記減圧装置および他の減圧装置のいずれか一方に導く切換弁と、前記除霜ヒータの通電前の前記圧縮機の運転中にのみ前記凝縮器にて液化した液冷媒を他の減圧装置に導くよう前記切替弁を制御する制御装置とを有することを特徴とする冷蔵庫。
A compressor that compresses a gas refrigerant, a condenser that liquefies the compressed gas refrigerant, a decompression device that decompresses the liquefied liquid refrigerant, and an evaporator that gasifies the decompressed liquid refrigerant are connected by piping pipes. together to comprise a refrigeration cycle configured by, in the above refrigerator having a defrosting heater of the evaporator, have a control device for the stop compressor for a predetermined time before the energization of the defrost heater,
The flow path increasing means for increasing the flow path resistance in the refrigeration cycle only during the operation of the compressor for a predetermined time immediately before stopping the compressor before energizing the defrost heater; The increasing means is connected in parallel to the pressure reducing device, and has another flow reducing device having a flow path resistance larger than that of the pressure reducing device, and a liquid refrigerant liquefied in the condenser, the pressure reducing device and another pressure reducing device. And a control for controlling the switching valve to guide the liquid refrigerant liquefied in the condenser to another pressure reducing device only during the operation of the compressor before the defrost heater is energized. A refrigerator comprising: an apparatus ;
ガス冷媒を圧縮する圧縮機と、圧縮したガス冷媒を液化させる凝縮器と、液化した液冷媒を減圧する減圧装置と、減圧した液冷媒をガス化させる蒸発器とを用いそれぞれを配管パイプで接続して構成される冷凍サイクルを備えるとともに、前記蒸発器の除霜ヒータを備えた冷蔵庫において、前記除霜ヒータの通電前に前記圧縮機を所定時間停止する制御装置を有し、
前記除霜ヒータの通電前の圧縮機を停止する直前の所定時間の前記圧縮機の運転中にのみ前記冷凍サイクル内の流路抵抗を増大させる前記流路増大手段を有し、
前記流路抵抗増大手段は、前記減圧装置を加熱する加熱ヒータと、前記除霜ヒータの通電前の前記圧縮機の運転中にのみ前記加熱ヒータに通電する制御装置とを有することを特徴とする冷蔵庫。
A compressor that compresses a gas refrigerant, a condenser that liquefies the compressed gas refrigerant, a decompression device that decompresses the liquefied liquid refrigerant, and an evaporator that gasifies the decompressed liquid refrigerant are connected by piping pipes. In the refrigerator provided with a refrigeration cycle configured as described above, in a refrigerator equipped with a defrost heater of the evaporator, a control device for stopping the compressor for a predetermined time before energizing the defrost heater,
The flow path increasing means for increasing the flow path resistance in the refrigeration cycle only during the operation of the compressor for a predetermined time immediately before stopping the compressor before energizing the defrost heater,
The flow path resistance increasing means includes a heater that heats the decompression device, and a control device that energizes the heater only during operation of the compressor before energizing the defrost heater. refrigerator.
ガス冷媒を圧縮する圧縮機と、圧縮したガス冷媒を液化させる凝縮器と、液化した液冷媒を減圧する減圧装置と、減圧した液冷媒をガス化させる蒸発器とを用いそれぞれを配管パイプで接続して構成される冷凍サイクルを備えるとともに、前記蒸発器の除霜ヒータを備えた冷蔵庫において、前記除霜ヒータの通電時に前記蒸発器内部の液冷媒量を減少させる手段を有し、
前記蒸発器内部の液冷媒量を減少させる手段は、前記減圧装置と蒸発器との間の配管パイプに対して並列接続されたレシーバタンクと、前記減圧装置にて減圧した液冷媒を前記配管パイプおよびレシーバタンクのいずれか一方に導く切換弁と、前記除霜ヒータの通電直前における前記圧縮機の運転中から前記除霜ヒータの通電終了間に前記減圧装置にて減圧した液冷媒を前記レシーバタンクに導くよう前記切替弁を制御する制御装置とを有することを特徴とする冷蔵庫。
A compressor that compresses a gas refrigerant, a condenser that liquefies the compressed gas refrigerant, a decompression device that decompresses the liquefied liquid refrigerant, and an evaporator that gasifies the decompressed liquid refrigerant are connected by piping pipes. A refrigerator having a refrigeration cycle configured as described above, and a refrigerator provided with a defrost heater of the evaporator, comprising means for reducing the amount of liquid refrigerant inside the evaporator when the defrost heater is energized,
Said means for reducing the evaporator inside of the liquid refrigerant amount, the pressure reducing device and the receiver bata linked in parallel connected to the piping pipe between the evaporator, the pipe a liquid refrigerant decompressed by the pressure reducing device and pipe and receiver Bata any switching valve that leads to one of the tank, the liquid refrigerant decompressed by the pressure reducing device between the ends energization of the defrost heater from within the operation of the compressor immediately before the energization of the defrost heater wherein Refrigerator, characterized in that it comprises a controller for controlling the switching valve to direct the receiver butter tank.
ガス冷媒を圧縮する圧縮機と、圧縮したガス冷媒を液化させる凝縮器と、液化した液冷媒を減圧する減圧装置と、減圧した液冷媒をガス化させる蒸発器とを用いそれぞれを配管パイプで接続して構成される冷凍サイクルを備えるとともに、前記蒸発器の除霜ヒータを備えた冷蔵庫において、前記除霜ヒータの通電時に前記蒸発器内部の液冷媒量を減少させる手段を有し、
前記蒸発器内部の液冷媒量を減少させる手段は、前記蒸発器と庫内とを強制熱交換させる冷気循環用ファンモータと、前記除霜ヒータの通電直前に前記圧縮機を所定時間停止させるとともに、その間前記冷気循環用ファンモータを運転する制御装置を有することを特徴とする冷蔵庫。
A compressor that compresses a gas refrigerant, a condenser that liquefies the compressed gas refrigerant, a decompression device that decompresses the liquefied liquid refrigerant, and an evaporator that gasifies the decompressed liquid refrigerant are connected by piping pipes. A refrigerator having a refrigeration cycle configured as described above, and a refrigerator provided with a defrost heater of the evaporator, comprising means for reducing the amount of liquid refrigerant inside the evaporator when the defrost heater is energized,
The means for reducing the amount of liquid refrigerant inside the evaporator includes a fan motor for cooling air for forcibly exchanging heat between the evaporator and the inside of the refrigerator, and stopping the compressor for a predetermined time immediately before energizing the defrost heater. A refrigerator for operating the fan motor for circulating cool air during that time.
前記蒸発器にて熱交換された冷気の冷蔵室への吹き出し量を制御する冷蔵室ダンパーと、前記除霜ヒータの通電直前に前記圧縮機を所定時間停止させるとともに、その間前記冷気循環用ファンモータを運転する際に、前記冷蔵室ダンパーを開状態とする制御装置を有することを特徴とする請求項記載の冷蔵庫。A refrigerating compartment damper for controlling an amount of cold air heat-exchanged by the evaporator to the refrigerating compartment, and the compressor being stopped for a predetermined time immediately before energization of the defrost heater, during which the fan motor for circulating the cold air. 5. The refrigerator according to claim 4 , further comprising a control device for opening the refrigerator compartment damper when the refrigerator is operated. ガス冷媒を圧縮する圧縮機と、圧縮したガス冷媒を液化させる凝縮器と、液化した液冷媒を減圧する減圧装置と、減圧した液冷媒をガス化させる蒸発器とを用いそれぞれを配管パイプで接続して構成される冷凍サイクルを備えるとともに、前記蒸発器の除霜ヒータを備えた冷蔵庫において、
前記蒸発器にて熱交換された冷気の冷凍室への吹き出し量を制御する冷凍室ダンパーと、前記除霜ヒータの通電時に前記冷凍室ダンパーを閉状態とする制御装置とを有することを特徴とする冷蔵庫。
A compressor that compresses a gas refrigerant, a condenser that liquefies the compressed gas refrigerant, a decompression device that decompresses the liquefied liquid refrigerant, and an evaporator that gasifies the decompressed liquid refrigerant are connected by piping pipes. A refrigerator including a refrigeration cycle configured as described above and a defrost heater of the evaporator.
A freezer compartment damper that controls the amount of cold air that has been heat-exchanged by the evaporator to the freezer compartment, and a control device that closes the freezer compartment damper when the defrost heater is energized, Refrigerator.
前記蒸発器と庫内とを強制熱交換させる冷気循環用ファンモータと、前記除霜ヒータの通電時に前記冷気循環用ファンモータを運転する制御装置とを有することを特徴とする請求項記載の冷蔵庫。A cold air circulating fan motor for forced heat exchange with said evaporator and the refrigerator, according to claim 6, characterized in that it comprises a controller for operating the cold air circulating fan motor when energized the defrost heater refrigerator.
JP31406996A 1996-11-26 1996-11-26 refrigerator Expired - Fee Related JP3583570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31406996A JP3583570B2 (en) 1996-11-26 1996-11-26 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31406996A JP3583570B2 (en) 1996-11-26 1996-11-26 refrigerator

Publications (2)

Publication Number Publication Date
JPH10160327A JPH10160327A (en) 1998-06-19
JP3583570B2 true JP3583570B2 (en) 2004-11-04

Family

ID=18048861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31406996A Expired - Fee Related JP3583570B2 (en) 1996-11-26 1996-11-26 refrigerator

Country Status (1)

Country Link
JP (1) JP3583570B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2781860A3 (en) * 2013-03-22 2015-10-28 Lg Electronics Inc. Refrigerator

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6205800B1 (en) * 1999-05-12 2001-03-27 Carrier Corporation Microprocessor controlled demand defrost for a cooled enclosure
JP4310947B2 (en) * 2001-09-06 2009-08-12 三菱電機株式会社 Control device for refrigerator
JP4644271B2 (en) * 2008-06-09 2011-03-02 日立アプライアンス株式会社 refrigerator
JP5033258B2 (en) * 2011-09-20 2012-09-26 日立アプライアンス株式会社 refrigerator
JP5604543B2 (en) * 2013-02-28 2014-10-08 日立アプライアンス株式会社 refrigerator
JP2015025566A (en) * 2013-07-24 2015-02-05 パナソニック株式会社 Refrigerator
EP3483528B1 (en) * 2016-07-06 2021-05-05 Mitsubishi Electric Corporation Refrigeration cycle system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2781860A3 (en) * 2013-03-22 2015-10-28 Lg Electronics Inc. Refrigerator

Also Published As

Publication number Publication date
JPH10160327A (en) 1998-06-19

Similar Documents

Publication Publication Date Title
AU699381B2 (en) Tandem refrigeration system
JP3538021B2 (en) Refrigerator cooling operation control device
US20130192280A1 (en) Refrigerator and defrosting method thereof
WO1995013510A9 (en) Tandem refrigeration system
JP2010532462A (en) High temperature gas defrosting method and apparatus
JP2002504661A (en) Refrigerator equipped with a cooler in each of the refrigerator compartment and the freezer compartment
US10012424B2 (en) Refrigeration apparatus
JP3124876B2 (en) refrigerator
US20060179858A1 (en) Refrigerator
JP3583570B2 (en) refrigerator
JP3611447B2 (en) refrigerator
JP2000304397A (en) Cold and warm storage cabinet
JP4248726B2 (en) Hot gas defrosting type refrigerator-freezer
JP4168727B2 (en) refrigerator
JP3404313B2 (en) refrigerator
JP3430160B2 (en) refrigerator
CN112856889B (en) Refrigerator and control method thereof
JP3954835B2 (en) refrigerator
JP4684067B2 (en) Cooling storage
WO2023284589A1 (en) Refrigerator
JP2003214681A (en) Defrosting controller for freezer
KR20060023367A (en) Defrosting apparatus of refrigerator and method for controlling the same
JP3342130B2 (en) Refrigeration equipment
JP2002195734A (en) Refrigerator-freezer
JPH04194564A (en) Refrigerator

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040729

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees