JP3583175B2 - Lubricating oil for compression refrigerators - Google Patents

Lubricating oil for compression refrigerators Download PDF

Info

Publication number
JP3583175B2
JP3583175B2 JP28334994A JP28334994A JP3583175B2 JP 3583175 B2 JP3583175 B2 JP 3583175B2 JP 28334994 A JP28334994 A JP 28334994A JP 28334994 A JP28334994 A JP 28334994A JP 3583175 B2 JP3583175 B2 JP 3583175B2
Authority
JP
Japan
Prior art keywords
carbon atoms
hydrocarbon group
general formula
lubricating oil
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28334994A
Other languages
Japanese (ja)
Other versions
JPH08193196A (en
Inventor
達哉 江川
泰宏 川口
泉 寺田
延晃 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP28334994A priority Critical patent/JP3583175B2/en
Publication of JPH08193196A publication Critical patent/JPH08193196A/en
Application granted granted Critical
Publication of JP3583175B2 publication Critical patent/JP3583175B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【産業上の利用分野】
本発明は新規な圧縮型冷凍機用潤滑油に関し、さらに詳しくは、環境汚染で問題となっている冷媒のクロロフルオロカーボン、例えばジクロロフルオロメタン(以下、フロン12と称する。)などの代替となりうるハイドロフルオロカーボン、例えば1,1,1,2−テトラフルオロエタン,ジフルオロメタン,ペンタフルオロエタン(以下、それぞれフロン134a,フロン32,フロン125と称する。)などの水素含有フロン化合物〔ここで、フロン化合物とは、クロロフルオロカーボン(CFC),ハイドロフルオロカーボン(HFC)及びハイドロクロロフルオロカーボン(HCFC)を総称する。〕、更にはアンモニアとの相溶性が良好で、安定性及び潤滑性能に優れ、かつ吸湿性が低い上、温度80℃での体積固有抵抗が1012Ω・cm以上であるポリビニルエーテル系圧縮型冷凍機用潤滑油に関するものである。
【0002】
【従来の技術】
一般に、圧縮型冷凍機は圧縮機,凝縮器,膨張弁,蒸発器から構成され、冷媒と潤滑油の混合液体がこの密閉された系内を循環する構造となっている。このような圧縮型冷凍機においては、装置の種類にもよるが、一般に、圧縮機内では高温,冷却器内では低温となるので、冷媒と潤滑油は低温から高温まで幅広い温度範囲及び幅広い冷媒/冷凍機油比率で相分離することなく、この系内を循環することが必要である。もし、冷凍機の運転中に相分離が生じると、装置の寿命や効率に著しい悪影響を及ぼす。例えば、圧縮機部分で冷媒と潤滑油の相分離が生じると、可動部が潤滑不良となって、焼き付きなどを起こして装置の寿命を著しく短くし、一方蒸発器内で相分離が生じると、粘度の高い潤滑油が存在するため熱交換の効率低下をもたらす。
【0003】
また、冷凍機用潤滑油は、冷凍機の可動部分を潤滑する目的で用いられることから、潤滑性能も当然重要となる。特に、圧縮機内は高温となるため、潤滑に必要な油膜を保持できる粘度が重要となる。必要とされる粘度は使用する圧縮機の種類,使用条件により異なるが、通常、冷媒と混合する前の潤滑油の粘度(動粘度)は、40℃で5〜1000cStが好ましい。これより粘度が低いと油膜が薄くなり潤滑不良を起こしやすく、高いと熱交換の効率が低下する。
また、電気冷蔵庫においてはモーターとコンプレッサーが一体となっているため、その潤滑油には高い電気絶縁性が要求される。一般的には、80℃での体積固有抵抗が1012Ω・cm以上が要求され、これより低いと漏電の恐れがある。さらに、潤滑油には低吸湿性及び高い安定性が要求される。例えば、吸湿性が高い場合、水が有機材と反応し、スラッジの原因となる化合物が生成する可能性がある。また、加水分解などで有機酸を生じるとその量にもよるが、装置の腐蝕や摩耗を起こし易くなる。
【0004】
従来、圧縮型冷凍機の冷媒としては、フロン12が多く用いられ、また潤滑油としては、前記の要求特性を満たす種々の鉱油や合成油が用いられてきた。しかしながら、フロン12は、オゾン層を破壊するなど環境汚染をもたらすおそれがあることから、最近、世界的にその規制が厳しくなりつつある。そのため、新しい冷媒としてフロン134a,フロン32,フロン125などに代表される水素含有フロン化合物が注目されるようになってきた。この水素含有フロン化合物、特にフロン134a,フロン32,フロン125は、オゾン層を破壊するおそれが少ない上に、従来の冷凍機の構造をほとんど変更することなく、フロン12と代替が可能であるなど、圧縮型冷凍機用冷媒として好ましいものである。
圧縮型冷凍機の冷媒として、フロン12の代わりに前記フロン134a,フロン32,フロン125及びそれらの混合物が採用されると、潤滑油としては、当然、このフロン134a,フロン32,フロン125などの水素含有フロン化合物との相溶性に優れ、かつ前記の要求性能を満たしうる潤滑性能に優れたものが要求される。しかし、従来のフロン12と共に用いられてきた潤滑油は、フロン134a,フロン32,フロン125などの水素含有フロン化合物との相溶性が良好でないため、これらの化合物に適した新しい潤滑油が必要となる。この場合、特にフロン12の代替に際し、装置の構造をほとんど変化させないことが要望されており、潤滑油のために、現装置の構造を大きく変化させることは望ましいことではない。
【0005】
フロン134aと相溶性を有する潤滑油としては、例えばポリオキシアルキレングリコール系が知られている。例えば「リサーチ・ディスクロ−ジャー(Research Disclosure)」, 第17463号(1978年10月),米国特許第4755316号明細書,特開平1−256594号公報,特開平1−259093号公報,特開平1−259094号公報,特開平1−271491号公報,特開平2−43290号公報,特開平2−84491号公報,特開平2−132176〜132178号公報,特開平2−132179号公報,特開平2−173195号公報,特開平2−180986〜180987号公報,特開平2−182780〜182781号公報,特開平2−242888号公報,特開平2−258895号公報,特開平2−269195号公報,特開平2−272097号公報,特開平2−305893号公報,特開平3−28296号公報,特開平3−33193号公報,特開平3−103496〜103497号公報,特開平3−50297号公報,特開平3−52995号公報,特開平3−70794〜70795号公報,特開平3−79696号公報,特開平3−106992号公報,特開平3−109492号公報,特開平3−121195号公報,特開平3−205492号公報,特開平3−231992号公報,特開平3−231994号公報,特開平4−15295号公報,特開平4−39394号公報,特開平4−41591〜41592号公報などが挙げられる。しかし、ポリオキシアルキレングリコール系は一般に体積固有抵抗が低く、80℃で1012Ω・cm以上の値を満足する例は未だ示されていない。
【0006】
ポリオキシアルキレングリコールの他に、フロン134aと相溶性を有する化合物として、エステル系としては英国特許公開第2216541号公報,WO6979(1990)号公報,特開平2−276894号公報,特開平3−128992号公報,特開平3−88892号公報,特開平3−179091号公報,特開平3−252497号公報,特開平3−275799号公報,特開平4−4294号公報,特開平4−20597号公報,米国特許第5021179号明細書などが挙げられる。しかし、エステル系潤滑油はその構造上加水分解によりカルボン酸を生成することが避けられず、そのため装置の腐蝕を起こす。例えば、自動車用空調機にはゴムホースが用いられており、そこから水分の混入があるので用いることができない。また、電気冷蔵庫においては、その使用中に水分の混入する恐れはないが、潤滑油が交換されることなく長時間使用されるので、製造時に混入した水分はそのほとんどが加水分解に供されるため問題となる。これらの問題のため、エステル系潤滑油を圧縮型冷凍機に使用する場合には、現装置又は製造装置の大幅な改良が必要であり好ましくない。ここで、耐加水分解性のよいエステル系冷凍機油として、特開平3−275799号公報にエポキシ化合物を含有することを特徴とする冷凍機油組成物が示されているが、該冷凍機油組成物の耐加水分解性はエポキシ基が水と反応しアルコールとなるためであり、水の量が多い場合は冷凍機油組成物の性状が大きく変わる恐れがあり、水の量が少ない場合においても生成したアルコールはエステル交換反応をおこすため冷凍機油組成物が大きく変わる恐れがあり好ましくない。
【0007】
また、カーボネート系潤滑油としては、特開平3−149295号公報,欧州特許421298号公報,特開平3−217495号公報,特開平3−247695号公報,特開平4−18490号公報,特開平4−63893号公報などが挙げられる。しかし、上記カーボネート系においてもエステル系の場合と同様に加水分解の問題は避けられない。
このように、フロン134a, フロン32,フロン125などの水素含有フロン化合物との相溶性が充分に良好で、安定性,潤滑性能に優れ、吸湿性が低く、かつ80℃で体積固有抵抗が1012Ω・cm以上を有する圧縮型冷凍機用潤滑油は、未だ見出されていないのが現状であり、その開発が強く望まれている。
【0008】
【発明が解決しようとする課題】
本発明はこのような要望にこたえ、特に環境汚染で問題となっている冷媒のフロン12あるいは他の分解しにくいフロン化合物の代替となりうるフロン134a,フロン32,フロン125などの水素含有フロン化合物あるいはアンモニアとの相溶性が、全使用温度範囲にわたって良好であるとともに、安定性及び潤滑性に優れ、吸湿性が低く、かつ80℃での体積固有抵抗が1012Ω・cm以上である圧縮型冷凍機用潤滑油を提供することを目的としてなされたものである。
【0009】
【課題を解決するための手段】
本発明者らは、前記の好ましい性質を有する圧縮型冷凍機用潤滑油を開発すべく鋭意研究を重ねた結果、特定の構造を有するポリビニルエーテル系化合物又は特定の構造を有し、かつ炭素/酸素モル比が所定の範囲にあるポリビニルエーテル系化合物を主成分とする潤滑油により、その目的を達成しうることを見出した。本発明はかかる知見に基づいて完成したものである。
すなわち、本発明は、一般式(I)
【0010】
【化7】

Figure 0003583175
【0011】
〔式中、R,R及びRは、それぞれ水素原子又は炭素数1〜8の炭化水素基を示し、それらはたがいに同一でも異なっていてもよく、Rは炭素数1〜10の二価の炭化水素基又は炭素数2〜20の二価のエーテル結合酸素含有炭化水素基、Rは炭素数1〜20の炭化水素基、mはその平均値が0〜10の数を示し、R〜Rは構成単位毎に同一であってもそれぞれ異なっていてもよく、またROが複数ある場合には、複数のROは同一でも異なっていてもよい。〕
で表される構成単位を有し、かつ炭素/酸素モル比が4.2〜7.0であるポリビニルエーテル系化合物(1)を主成分とする圧縮型冷凍機用潤滑油(1)、(a)一般式(I)で表される構成単位と、(b)一般式(II)
【0012】
【化8】
Figure 0003583175
【0013】
〔式中、R〜Rは、それぞれ水素原子又は炭素数1〜20の炭化水素基を示し、それらはたがいに同一でも異なっていてもよく、またR〜Rは構成単位毎に同一であってもそれぞれ異なっていてもよい。〕
で表される構成単位とを有し、かつ炭素/酸素モル比が4.2〜7.0であるブロック又はランダム共重合体からなるポリビニルエーテル系化合物(3)を主成分とする圧縮型冷凍機用潤滑油(3)、及び(A)一般式(I)で表される構成単位を有し、かつ炭素/酸素モル比が4.2〜7.0であるであるポリビニルエーテル系化合物(1)、及び(B)(a)一般式(I)で表される構成単位と(b)一般式(II)で表される構成単位とを有し、かつ炭素/酸素モル比が4.2〜7.0であるブロック又はランダム共重合体からなるポリビニルエーテル系化合物(3)の混合物を主成分とする圧縮型冷凍機用潤滑油(4)を提供するものである。
【0014】
本発明の圧縮型冷凍機用潤滑油(1)は、上記一般式(I)で表される構成単位を有するポリビニルエーテル系化合物(1)を主成分とするものである。
上記一般式(I)におけるR,R及びRはそれぞれ水素原子又は炭素数1〜8の炭化水素基を示し、それらはたがいに同一でも異なっていてもよい。ここで炭化水素基とは、具体的にはメチル基,エチル基,n−プロピル基,イソプロピル基,n−ブチル基,イソブチル基,sec−ブチル基,tert−ブチル基,各種ペンチル基,各種ヘキシル基,各種ヘプチル基,各種オクチル基のアルキル基、シクロペンチル基,シクロヘキシル基,各種メチルシクロヘキシル基,各種エチルシクロヘキシル基,各種ジメチルシクロヘキシル基などのシクロアルキル基、フェニル基,各種メチルフェニル基,各種エチルフェニル基,各種ジメチルフェニル基のアリール基、ベンジル基,各種フェニルエチル基,各種メチルベンジル基のアリールアルキル基を示す。なお、これらのR,R及びRの各々としては、特に水素原子が好ましい。
【0015】
一方、一般式(I)中のRは、炭素数1〜10の二価の炭化水素基又は炭素数2〜20の二価のエーテル結合酸素含有炭化水素基を示すが、ここで炭素数1〜10の二価の炭化水素基とは、具体的にはメチレン基;エチレン基;フェニルエチレン基;1,2−プロピレン基;2−フェニル−1,2−プロピレン基;1,3−プロピレン基;各種ブチレン基;各種ペンチレン基;各種ヘキシレン基;各種ヘプチレン基;各種オクチレン基;各種ノニレン基;各種デシレン基の二価の脂肪族基、シクロヘキサン;メチルシクロヘキサン;エチルシクロヘキサン;ジメチルシクロヘキサン;プロピルシクロヘキサンなどの脂環式炭化水素に2個の結合部位を有する脂環式基、各種フェニレン基;各種メチルフェニレン基;各種エチルフェニレン基;各種ジメチルフェニレン基;各種ナフチレン基などの二価の芳香族炭化水素基、トルエン;キシレン;エチルベンゼンなどのアルキル芳香族炭化水素のアルキル基部分と芳香族部分にそれぞれ一価の結合部位を有するアルキル芳香族基、キシレン;ジエチルベンゼンなどのポリアルキル芳香族炭化水素のアルキル基部分に結合部位を有するアルキル芳香族基などがある。これらの中で炭素数2から4の脂肪族基が特に好ましい。
【0016】
また、炭素数2〜20の二価のエーテル結合酸素含有炭化水素基の具体例としては、メトキシメチレン基;メトキシエチレン基;メトキシメチルエチレン基;1,1−ビスメトキシメチルエチレン基;1,2−ビスメトキシメチルエチレン基;エトキシメチルエチレン基;(2−メトキシエトキシ)メチルエチレン基;(1−メチル−2−メトキシ)メチルエチレン基などを好ましく挙げることができる。なお、一般式(I)におけるmはROの繰り返し数を示し、その平均値が0〜10、好ましくは0〜5の範囲の数である。ROが複数ある場合には、複数のROは同一でも異なっていてもよい。
【0017】
さらに、一般式(I)におけるRは炭素数1〜20の炭化水素基を示すが、この炭化水素基とは、具体的にはメチル基,エチル基,n−プロピル基,イソプロピル基,n−ブチル基,イソブチル基,sec−ブチル基,tert−ブチル基,各種ペンチル基,各種ヘキシル基,各種ヘプチル基,各種オクチル基,各種ノニル基,各種デシル基のアルキル基、シクロペンチル基,シクロヘキシル基,各種メチルシクロヘキシル基,各種エチルシクロヘキシル基,各種プロピルシクロヘキシル基,各種ジメチルシクロヘキシル基などのシクロアルキル基、フェニル基,各種メチルフェニル基,各種エチルフェニル基,各種ジメチルフェニル基,各種プロピルフェニル基,各種トリメチルフェニル基,各種ブチルフェニル基,各種ナフチル基などのアリール基、ベンジル基,各種フェニルエチル基,各種メチルベンジル基,各種フェニルプロピル基,各種フェニルブチル基のアリールアルキル基などを示す。
なお、該R〜Rは構成単位毎に同一であっても異なっていてもよい。即ち本発明の潤滑油を構成するポリビニルエーテル系化合物はR〜Rのいずれかまたは全部が構成単位毎に異なる共重合体を含むものである。
【0018】
本発明の圧縮型冷凍機用潤滑油(2)は、上記一般式(I)で表される構成単位を有し、かつRが炭素数1〜3の炭化水素基である構成単位及び該Rが炭素数3〜20、好ましくは3〜10、更に好ましくは3〜8の炭化水素基である構成単位を含む共重合体からなるポリビニルエーテル系化合物(2)を主成分とするものである。但し、上記二種の構成単位におけるRが同一の基であるものは含まない。上記一般式(I)におけるR〜R及びmとしては、いずれも前記ポリビニルエーテル系化合物(1)の場合と同様のものが挙げられるが、Rで表される炭素数1〜3の炭化水素基としては、エチル基が特に好ましく用いられ、またRで表される炭素数3〜20の炭化水素基としてはイソブチル基が特に好ましく用いられる。本発明において用いられるポリビニルエーテル系化合物は、上記Rが炭素数1〜3の炭化水素基である構成単位とRが炭素数3〜20の炭化水素基である構成単位を、モル比で5:95〜95:5、更に20:80〜90:10の割合で含むことが好ましい。かかるモル比が上記範囲を逸脱する場合は冷媒との相溶性が不十分であり、吸湿性が高い。
【0019】
前記一般式(I)で表される構成単位を有するポリビニルエーテル系化合物は共重合体にすることにより、相溶性を満足しつつ潤滑性、絶縁性、吸湿性等を向上させることができる効果がある。この際、原料となるモノマーの種類、開始剤の種類並びに共重合体の比率を選ぶことにより、油剤の上記性能を目的レベルに合わせることが可能となる。従って、冷凍システムあるいは空調システムにおけるコンプレッサーの型式、潤滑部の材質及び冷凍能力や冷媒の種類等により異なる潤滑性、相溶性等の要求に応じた油剤を自在に得ることができるという効果がある。
本発明の圧縮型冷凍機用潤滑油(1)及び(2)のそれぞれに用いられるポリビニルエーテル系化合物(1)及び(2)は、いずれも上記一般式(I)で表される構成単位を有するものであるが、その繰り返し数(すなわち重合度)は、所望する動粘度に応じて適宜選択すればよいが、通常は温度40℃における動粘度が好ましくは5〜1,000cSt,更に好ましくは7〜300cStになるように選ばれる。また、該ポリビニルエーテル系化合物(1)は、その炭素/酸素モル比が4.2〜7.0の範囲にあることが必要である。このモル比が4.2未満では、吸湿性が高く、7.0を超えると、フロンとの相溶性が低下する。
【0020】
また、本発明の圧縮型冷凍機用潤滑油(3)は、(a)上記一般式(I)で表される構成単位と(b)前記一般式(II) で表される構成単位とを有するブロック又はランダム共重合体からなるポリビニルエーテル系化合物(3)を主成分とするものである。
該一般式(II) において、R〜Rは、それぞれ水素原子又は炭素数1〜20の炭化水素基を示し、それらはたがいに同一でも異なっていてもよい。ここで、炭素数1〜20の炭化水素基としては、上記一般式(I)におけるRと同様のものを挙げることができる。また、R〜Rは構成単位毎に同一であってもそれぞれ異なっていてもよい。
【0021】
該一般式(I)で表される構成単位と一般式(II) で表される構成単位とを有するブロック又はランダム共重合体からなるポリビニルエーテル系化合物(3)の重合度は、所望する動粘度に応じて適宜選択すればよいが、通常は温度40℃における動粘度が好ましくは5〜1,000cSt,更に好ましくは7〜300cStになるように選ばれる。また、このポリビニルエーテル系化合物は、その炭素/酸素モル比が4.2〜7.0の範囲にあることが必要である。このモル比が4.2未満では、吸湿性が高く、7.0を超えると、フロンとの相溶性が低下する。
【0022】
さらに、本発明の圧縮型冷凍機用潤滑油(4)は、(A)上記ポリビニルエーテル系化合物(1)と(B)上記ポリビニルエーテル系化合物(3)との混合物を主成分とするものである。
本発明の潤滑油に用いられるポリビニルエーテル系化合物(1)及び(3)は、それぞれ対応するビニルエーテル系モノマーの重合、及び対応するオレフィン性二重結合を有する炭化水素モノマーと対応するビニルエーテル系モノマーとの共重合により製造することができる。ここで用いることのできるビニルエーテル系モノマーは、一般式(VIII)
【0023】
【化9】
Figure 0003583175
【0024】
〔式中、R,R,R,R,R及びmは、前記と同じである。〕
で表されるものである。このビニルエーテル系モノマーとしては、上記ポリビニルエーテル系化合物(1),(2)に対応する各種のものがあるが、例えばビニルメチルエーテル;ビニルエチルエーテル;ビニル−n−プロピルエーテル;ビニル−イソプロピルエーテル;ビニル−n−ブチルエーテル;ビニル−イソブチルエーテル;ビニル−sec−ブチルエーテル;ビニル−tert−ブチルエーテル;ビニル−n−ペンチルエーテル;ビニル−n−ヘキシルエーテル;ビニル−2−メトキシエチルエーテル;ビニル−2−エトキシエチルエーテル;ビニル−2−メトキシ−1−メチルエチルエーテル;ビニル−2−メトキシ−2−メチルエーテル;ビニル−3,6−ジオキサヘプチルエーテル;ビニル−3,6,9−トリオキサデシルエーテル;ビニル−1,4−ジメチル−3,6−ジオキサヘプチルエーテル;ビニル−1,4,7−トリメチル−3,6,9−トリオキサデシルエーテル;ビニル−2,6−ジオキサ−4−ヘプチルエーテル;ビニル−2,6,9−トリオキサ−4−デシルエーテル;1−メトキシプロペン;1−エトキシプロペン;1−n−プロポキシプロペン;1−イソプロポキシプロペン;1−n−ブトキシプロペン;1−イソブトキシプロペン;1−sec−ブトキシプロペン;1−tert−ブトキシプロペン;2−メトキシプロペン;2−エトキシプロペン;2−n−プロポキシプロペン;2−イソプロポキシプロペン;2−n−ブトキシプロペン;2−イソブトキシプロペン;2−sec−ブトキシプロペン;2−tert−ブトキシプロペン;1−メトキシ−1−ブテン;1−エトキシ−1−ブテン;1−n−プロポキシ−1−ブテン;1−イソプロポキシ−1−ブテン;1−n−ブトキシ−1−ブテン;1−イソブトキシ−1−ブテン;1−sec−ブトキシ−1−ブテン;1−tert−ブトキシ−1−ブテン;2−メトキシ−1−ブテン;2−エトキシ−1−ブテン;2−n−プロポキシ−1−ブテン;2−イソプロポキシ−1−ブテン;2−n−ブトキシ−1−ブテン;2−イソブトキシ−1−ブテン;2−sec−ブトキシ−1−ブテン;2−tert−ブトキシ−1−ブテン;2−メトキシ−2−ブテン;2−エトキシ−2−ブテン;2−n−プロポキシ−2−ブテン;2−イソプロポキシ−2−ブテン;2−n−ブトキシ−2−ブテン;2−イソブトキシ−2−ブテン;2−sec−ブトキシ−2−ブテン;2−tert−ブトキシ−2−ブテンなどが挙げられる。これらのビニルエーテル系モノマーは公知の方法により製造することができる。
【0025】
また、オレフィン性二重結合を有する炭化水素モノマーは、一般式(IX)
【0026】
【化10】
Figure 0003583175
【0027】
〔式中、R〜Rは、前記と同じである。〕
で表されるものであり、該モノマーとしては、例えばエチレン,プロピレン,各種ブテン,各種ペンテン,各種ヘキセン,各種ヘプテン,各種オクテン,ジイソブチレン,トリイソブチレン,スチレン,各種アルキル置換スチレンなどが挙げられる。
本発明の潤滑油に主成分として用いられるポリビニルエーテル系化合物としては、次の末端構造を有するもの、すなわちその一つの末端が、一般式(III) 又は(IV)
【0028】
【化11】
Figure 0003583175
【0029】
〔式中、R11,R21及びR31は、それぞれ水素原子又は炭素数1〜8の炭化水素基を示し、R11,R21及びR31はたがいに同一でも異なっていてもよく、R61,R71,R81及びR91は、それぞれ水素原子又は炭素数1〜20の炭化水素基を示し、R61,R71,R81及びR91はたがいに同一でも異なっていてもよい。R41は炭素数1〜10の二価の炭化水素基又は炭素数2〜20の二価のエーテル結合酸素含有炭化水素基、R51は炭素数1〜20の炭化水素基、nはその平均値が0〜10の数を示し、R41Oが複数ある場合には、複数のR41Oは同一でも異なっていてもよい。〕
で表され、かつ残りの末端が一般式(V)又は(VI)
【0030】
【化12】
Figure 0003583175
【0031】
〔式中、R12,R22及びR32は、それぞれ水素原子又は炭素数1〜8の炭化水素基を示し、R12,R22及びR32はたがいに同一でも異なっていてもよく、R62,R72,R82及びR92は、それぞれ水素原子又は炭素数1〜20の炭化水素基を示し、R62,R72,R82及びR92はたがいに同一でも異なっていてもよい。R42は炭素数1〜10の二価の炭化水素基又は炭素数2〜20の二価のエーテル結合酸素含有炭化水素基、R52は炭素数1〜20の炭化水素基、pはその平均値が0〜10の数を示し、R42Oが複数ある場合には、複数のR42Oは同一でも異なっていてもよい。〕
で表される構造を有するもの、及びその一つの末端が、上記一般式(III) 又は(IV)で表され、かつ残りの末端が一般式(VII)
【0032】
【化13】
Figure 0003583175
【0033】
〔式中、R13,R23及びR33は、それぞれ水素原子又は炭素数1〜8の炭化水素基を示し、それらはたがいに同一でも異なっていてもよい。〕
で表される構造を有するものが好ましい。
【0034】
このようなポリビニルエーテル系化合物の中で、特に次に挙げるものが本発明の圧縮型冷凍機用潤滑油の主成分として好適である。
(1)その一つの末端が一般式(III)又は(IV)で表され、かつ残りの末端が一般式(V)又は(VI)で表される構造を有し、一般式(I)におけるR,R及びRが共に水素原子、mが0〜4の数、Rが炭素数2〜4の二価の炭化水素基及びRが炭素数1〜20の炭化水素基であるもの。
(2)一般式(I)で表される構成単位のみを有するものであって、その一つの末端が一般式(III) で表され、かつ残りの末端が一般式(V)で表される構造を有し、一般式(I)におけるR,R及びRが共に水素原子、mが0〜4の数、Rが炭素数2〜4の二価の炭化水素基及びRが炭素数1〜20の炭化水素基であるもの。
(3)その一つの末端が一般式(III) 又は(IV)で表され、かつ残りの末端が一般式(VII)で表される構造を有し、一般式(I)におけるR,R及びRが共に水素原子、mが0〜4の数、Rが炭素数2〜4の二価の炭化水素基及びRが炭素数1〜20の炭化水素基であるもの。
(4)一般式(I)で表される構成単位のみを有するものであって、その一つの末端が一般式(III) で表され、かつ残りの末端が一般式(VII)で表される構造を有し、一般式(I)におけるR,R及びRが共に水素原子、mが0〜4の数、Rが炭素数2〜4の二価の炭化水素基及びRが炭素数1〜20の二価の炭化水素基及びRが炭素数1〜20の炭化水素基であるもの。
(5)上記(1)〜(4)の各々であって、一般式(I)におけるRが炭素数1〜3の炭化水素基である構成単位と該Rが炭素数3〜20の炭化水素基である構成単位を有するもの。
【0035】
ポリビニルエーテル系化合物は、前記したモノマーをラジカル重合,カチオン重合,放射線重合などによって製造することができる。例えばビニルエーテル系モノマーについては、以下に示す方法を用いて重合することにより、所望の粘度の重合物が得られる。
重合の開始には、ブレンステッド酸類,ルイス酸類又は有機金属化合物類に対して、水,アルコール類,フェノール類,アセタール類又はビニルエーテル類とカルボン酸との付加物を組み合わせたものを使用することができる。
ブレンステッド酸類としては、例えばフッ化水素酸,塩化水素酸,臭化水素酸,ヨウ化水素酸,硝酸,硫酸,トリクロロ酢酸,トリフルオロ酢酸などが挙げられる。ルイス酸類としては、例えば三フッ化ホウ素,三塩化アルミニウム,三臭化アルミニウム,四塩化スズ,二塩化亜鉛,塩化第二鉄などが挙げられ、これらのルイス酸類の中では、特に三フッ化ホウ素が好適である。また、有機金属化合物としては、例えばジエチル塩化アルミニウム,エチル塩化アルミニウム,ジエチル亜鉛などが挙げられる。
【0036】
これらと組み合わせる水,アルコール類,フェノール類,アセタール類又はビニルエーテル類とカルボン酸との付加物は任意のものを選択することができる。ここで、アルコール類としては、例えばメタノール,エタノール,プロパノール,イソプロパノール,ブタノール,イソブタノール,sec−ブタノール,tert−ブタノール,各種ペンタノール,各種ヘキサノール,各種ヘプタノール,各種オクタノールなどの炭素数1〜20の飽和脂肪族アルコール、アリルアルコールなどの炭素数3〜10の不飽和脂肪族アルコールなどが挙げられる。
ビニルエーテル類とカルボン酸との付加物を使用する場合のカルボン酸としては、例えば酢酸;プロピオン酸;n−酪酸;イソ酪酸;n−吉草酸;イソ吉草酸;2−メチル酪酸;ピバル酸;n−カプロン酸;2,2−ジメチル酪酸;2−メチル吉草酸;3−メチル吉草酸;4−メチル吉草酸;エナント酸;2−メチルカプロン酸;カプリル酸;2−エチルカプロン酸;2−n−プロピル吉草酸;n−ノナン酸;3,5,5−トリメチルカプロン酸;カプリル酸;ウンデカン酸などが挙げられる。
【0037】
また、ビニルエーテル類は重合に用いるものと同一のものであってもよいし、異なるものであってもよい。このビニルエーテル類と該カルボン酸との付加物は、両者を混合して0〜100℃程度の温度で反応させることにより得られ、蒸留などにより分離し、反応に用いることができるが、そのまま分離することなく反応に用いることもできる。
ポリマーの重合開始末端は、水,アルコール類,フェノール類を使用した場合は水素が結合し、アセタール類を使用した場合は水素又は使用したアセタール類から一方のアルコキシ基が脱離したものとなる。またビニルエーテル類とカルボン酸との付加物を使用した場合には、ビニルエーテル類とカルボン酸との付加物からカルボン酸部分由来のアルキルカルボニルオキシ基が脱離したものとなる。
【0038】
一方、停止末端は、水,アルコール類,フェノール類,アセタール類を使用した場合には、アセタール,オレフィン又はアルデヒドとなる。またビニルエーテル類とカルボン酸との付加物の場合は、ヘミアセタールのカルボン酸エステルとなる。
このようにして得られたポリマーの末端は、公知の方法により所望の基に変換することができる。この所望の基としては、例えば飽和の炭化水素,エーテル,アルコール,ケトン,ニトリル,アミドなどの残基を挙げることができるが、飽和の炭化水素,エーテル及びアルコールの残基が好ましい。
【0039】
一般式(VIII) で表されるビニルエーテル系モノマーの重合は、原料や開始剤の種類にもよるが、−80〜150℃の間で開始することができ、通常は−80〜50℃の範囲の温度で行うことができる。また、重合反応は反応開始後10秒から10時間程度で終了する。
この重合反応における分子量の調節については、上記一般式(VIII) で表されるビニルエーテル系モノマーに対し、水,アルコール類,フェノール類,アセタール類及びビニルエーテル類とカルボン酸との付加物の量を多くすることで平均分子量の低いポリマーが得られる。さらに上記ブレンステッド酸類やルイス酸類の量を多くすることで平均分子量の低いポリマーが得られる。
この重合反応は、通常溶媒の存在下に行われる。該溶媒については、反応原料を必要量溶解し、かつ反応に不活性なものであればよく特に制限はないが、例えばヘキサン,ベンゼン,トルエンなどの炭化水素系、及びエチルエーテル,1,2−ジメトキシエタン,テトラヒドロフランなどのエーテル系の溶媒を好適に使用することができる。なお、この重合反応はアルカリを加えることによって停止することができる。重合反応終了後、必要に応じて通常の分離・精製方法を施すことにより、目的とする一般式(I)で表される構成単位を有するポリビニルエーテル系化合物が得られる。
【0040】
本発明の圧縮型冷凍機用潤滑油(1),(3)及び(4)の各々に主成分として用いるポリビニルエーテル系化合物は、前記したように炭素/酸素モル比が4.2〜7.0の範囲にあることが必要であるが、原料モノマーの炭素/酸素モル比を調節することにより、該モル比が前記範囲にあるポリマーを製造することができる。すなわち、炭素/酸素モル比が大きいモノマーの比率が大きければ、炭素/酸素モル比の大きなポリマーが得られ、炭素/酸素モル比の小さいモノマーの比率が大きければ、炭素/酸素モル比の小さなポリマーが得られる。
また、上記ビニルエーテル系モノマーの重合方法で示したように、開始剤として使用する水,アルコール類,フェノール類,アセタール類及びビニルエーテル類とカルボン酸との付加物と、モノマー類との組合せによっても可能である。重合するモノマーより炭素/酸素モル比が大きいアルコール類,フェノール類などを開始剤として使用すれば、原料モノマーより炭素/酸素モル比の大きなポリマーが得られ、一方、メタノールやメトキシエタノールなどの炭素/酸素モル比の小さなアルコール類を用いれば、原料モノマーより炭素/酸素モル比の小さなポリマーが得られる。
【0041】
さらに、ビニルエーテル系モノマーとオレフィン性二重結合を有する炭化水素モノマーとを共重合させる場合には、ビニルエーテル系モノマーの炭素/酸素モル比より炭素/酸素モル比の大きなポリマーが得られるが、その割合は、使用するオレフィン性二重結合を有する炭化水素モノマーの比率やその炭素数により調節することができる。
本発明の冷凍機用潤滑油は、上記ポリビニルエーテル系化合物を主成分とするものである。冷媒と混合する前の潤滑油の動粘度は、40℃で5〜1,000cSt,更に7〜300cStであることが好ましい。また、このポリマーの平均分子量は、通常150〜2,000である。なお、上記動粘度範囲外のポリマーでも、他の動粘度のポリマーと混合することで、上記動粘度範囲内に粘度調整することも可能である。
【0042】
本発明の圧縮型冷凍機用潤滑油としては、これを構成するポリビニルエーテル系化合物の分子中におけるアセタール構造及び/又はアルデヒド構造の含有量が少ないものが好ましく使用される。即ち、該ポリビニルエーテル系化合物中におけるアセタール基等の存在が劣化を促進させるため、これらの基を全体当量として15ミリ当量/kg以下、更に10ミリ当量/kg以下含むものが好ましく使用できる。上記当量が15ミリ当量/kgを超える場合は、得られる潤滑油の安定性が悪くなる。本発明において、アセタール基当量とはH−NMRを使用してp−キシレンを内部標準物質として用い、アセタール基のメチンプロトンとp−キシレンの芳香族環水素の積分比から算出したものであり、上記アセタール基の水素量が試料1kg中に1g(1モル)存在する場合を1当量/kgとして示した。また、アルデヒド基当量も同様にH−NMRを用いて求めることができる。
【0043】
本発明の冷凍機用潤滑油は、上記ポリビニルエーテル系化合物を単独で用いてもよく、又二種以上組み合わせて用いてもよい。更に、他の潤滑油と混合して用いることもできる。
本発明の冷凍機用潤滑油(1),(3)及び(4)は、いずれも炭素/酸素モル比が4.2〜7.0の範囲にあり、このモル比が4.2未満では、吸湿性が高く、7.0を超えると、フロンとの相溶性が低下する。
また、本発明の冷凍機用潤滑油には、従来の潤滑油に使用されている各種添加剤、例えば耐荷重添加剤,塩素捕捉剤,酸化防止剤,金属不活性化剤,消泡剤,清浄分散剤,粘度指数向上剤,油性剤,耐摩耗添加剤,極圧剤,防錆剤,腐食防止剤,流動点降下剤などを所望に応じて添加することができる。
【0044】
上記耐荷重添加剤としては、モノスルフィド類,ポリスルフィド類,スルホキシド類,スルホン類,チオスルフィネート類,硫化油脂,チオカーボネート類,チオフェン類,チアゾール類,メタンスルホン酸エステル類などの有機硫黄化合物系のもの、リン酸モノエステル類,リン酸ジエステル類,リン酸トリエステル類(トリクレジルホスフェート)などのリン酸エステル系のもの、亜リン酸モノエステル類,亜リン酸ジエステル類,亜リン酸トリエステル類などの亜リン酸エステル系のもの、チオリン酸トリエステル類などのチオリン酸エステル系のもの、高級脂肪酸,ヒドロキシアリール脂肪酸類,含カルボン酸多価アルコールエステル類,アクリル酸エステル類などの脂肪酸エステル系のもの、塩素化炭化水素類,塩素化カルボン酸誘導体などの有機塩素系のもの、フッ素化脂肪族カルボン酸類,フッ素化エチレン樹脂,フッ素化アルキルポリシロキサン類,フッ素化黒鉛などの有機フッ素化系のもの、高級アルコールなどのアルコール系のもの、ナフテン酸塩類(ナフテン酸鉛),脂肪酸塩類(脂肪酸鉛),チオリン酸塩類(ジアルキルジチオリン酸亜鉛),チオカルバミン酸塩類,有機モリブデン化合物,有機スズ化合物,有機ゲルマニウム化合物,ホウ酸エステルなどの金属化合物系のものがある。
【0045】
塩素捕捉剤としては、グリシジルエーテル基含有化合物、エポキシ化脂肪酸モノエステル類、エポキシ化油脂、エポキシシクロアルキル基含有化合物などがある。酸化防止剤としては、フェノール類(2,6−ジターシャリーブチル−p−クレゾール)、芳香族アミン類(α−ナフチルアミン)などがある。金属不活性化剤としては、ベンゾトリアゾール誘導体などがある。消泡剤としては、シリコーンオイル(ジメチルポリシロキサン)、ポリメタクリレート類などがある。清浄分散剤としてはスルホネート類、フェネート類、コハク酸イミド類などがある。粘度指数向上剤としては、ポリメタクリレート、ポリイソブチレン、エチレン−プロピレン共重合体、スチレン−ジエン水素化共重合体などがある。
【0046】
また、本発明の潤滑油は、冷媒との相溶性に優れるとともに、潤滑性能に優れることから、圧縮型冷凍機用の潤滑油として用いられる。従来の潤滑油と異なり、水素含有フロン化合物、具体的には1,1,1,2−テトラフルオロエタン(フロン134a);1,1−ジフルオロエタン(フロン152a);トリフルオロメタン(フロン23);ジフルオロメタン(フロン32);ペンタフルオロエタン(フロン125)などのハイドロフルオロカーボン、1,1−ジクロロ−2,2,2−トリフルオロエタン(フロン123);1−クロロ−1,1−ジフルオロエタン(フロン142b);クロロジフルオロメタン(フロン22)などのハイドロクロロフルオロカーボン、又はアンモニアとの相溶性が良好である。
また、本発明においては上記冷媒の混合冷媒にも使用することもできる。更に冷媒との相溶性を改善する目的で、他の圧縮型冷凍機用潤滑油に混合して使用することもできる。
本発明は、上記具体的に明示された発明のみならず、開示される本発明を規定する組成、条件等の各要件のいずれか又はそのすべてを任意に組み合わせた発明をいずれも包含するものである。
【0047】
【実施例】
更に、実施例により本発明を詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。
調製例1
〔触媒の調製〕
(1)展開済みラネーニッケル〔川研ファインケミカル(株)製,M300T〕100g(含水状態)をフラスコに取り上澄み液を除いたのち、無水エタノール200gを加えよく撹拌した。静置後上澄み液を除き、再び無水エタノール200gを加えよく撹拌した。この操作を5回行った。
(2)ゼネライト〔東ソー(株)製,HSZ330HUA〕30gを真空乾燥器で150℃、1時間乾燥した。この際油回転式真空ポンプを用いて真空乾燥器内を減圧とした。
(3)SUS−316L製2リットルオートクレーブに、上記(1)で調製したラネーニッケル(エタノールで湿った状態)30g,ヘキサン350g,上記(2)で得られたゼオライト30g,アセトアルデヒドジエチルアセタール50gを入れた。オートクレーブ内に水素を導入し、水素圧10kg/cmとし、約30秒間撹拌したのち脱圧した。水素圧を35kg/cmに保ち撹拌しながら30分で130℃に昇温し、さらに130℃で30分反応した。反応終了後室温まで冷却し常圧まで減圧した。30分静置し触媒を沈降させ反応液をデカンテーションで除いた。
【0048】
製造例1
滴下ロート、冷却管、撹拌機を取り付けた5リットルガラス製フラスコにトルエン700g,イソブタノール222g(3.0モル),三フッ化ホウ素ジエチルエーテル錯体5.0gを入れた。滴下ロートにイソブチルビニルエーテル2,000g(20.0モル)を入れ、氷水浴で冷却し反応液を約30℃に保ちながら2時間15分かけ滴下した。滴下終了後さらに5分間撹拌した。反応混合物を洗浄槽に移し、3wt%水酸化ナトリウム水溶液500ミリリットルで2回洗浄し、さらに、水500ミリリットルで3回洗浄した。ロータリーエバポレターを用い減圧下溶媒及び未反応原料を除去し粗製品2,102gを得た。
調製例1で調製した触媒入りのSUS−316L製2リットルオートクレーブに粗製品1,000gを入れた。オートクレーブ内に水素を導入し、水素圧10kg/cmとし、約30秒間撹拌したのち脱圧した。再びオートクレーブ内に水素を導入し、水素圧10kg/cmとし、約30秒間撹拌したのち脱圧した。水素圧を35kg/cmに保ち撹拌しながら30分で140℃に昇温し、さらに140℃で2時間反応した。反応終了後室温まで冷却し常圧まで減圧した。ヘキサン500ミリリットルを加え希釈したのち、ろ紙を用いてろ過を行った。3リットル洗浄槽に移し、3wt%水酸化ナトリウム水溶液300ミリリットルで3回洗浄、次いで蒸留水300ミリリットルで5回洗浄した。ロータリーエバポレターを用い減圧下、ヘキサン,水分などを除去した。収量は845gであった。
NMR、IR測定の結果、ポリマーの末端構造の一方が(A)であり、もう一方の大部分が(B)であり、(C)が少量含まれていた。
【0049】
【化14】
Figure 0003583175
【0050】
製造例2
滴下ロート、冷却管、撹拌機を取り付けた5リットルガラス製フラスコにトルエン400g,イソブタノール200g(2.7モル),三フッ化ホウ素ジエチルエーテル錯体3.6gを入れた。滴下ロートにイソブチルビニルエーテル1,200g(12.0モル)を入れ、氷水浴で冷却し反応液を約30℃に保ちながら1時間13分かけ滴下した。滴下終了後さらに5分間撹拌した。反応混合物を洗浄槽に移し、3wt%水酸化ナトリウム水溶液300ミリリットルで2回洗浄し、さらに、水300ミリリットルで3回洗浄した。ロータリーエバポレターを用い減圧下溶媒及び未反応原料を除去し粗製品1,323gを得た。
調製例1で調製した触媒入りのSUS−316L製2リットルオートクレーブに粗製品1,100gを入れた。オートクレーブ内に水素を導入し、水素圧10kg/cmとし、約30秒間撹拌したのち脱圧した。再びオートクレーブ内に水素を導入し、水素圧10kg/cmとし、約30秒間撹拌したのち脱圧した。水素圧を35kg/cmに保ち撹拌しながら30分で140℃に昇温し、さらに140℃で2時間反応した。反応終了後室温まで冷却し常圧まで減圧した。ヘキサン500ミリリットルを加え希釈したのち、ろ紙を用いてろ過を行った。3リットル洗浄槽に移し、3wt%水酸化ナトリウム水溶液300ミリリットルで2回洗浄、次いで蒸留水300ミリリットルで5回洗浄した。ロータリーエバポレターを用い減圧下、ヘキサン,水分などを除去した。収量は767gであった。NMR、IR測定の結果、ポリマーの末端構造の一方が(A)であり、もう一方の大部分が(B)であり、(C)が少量含まれていた。
【0051】
製造例3
滴下ロート、冷却管、撹拌機を取り付けた5リットルガラス製フラスコにトルエン650g,アセトアルデヒドジエチルアセタール271.4g(2.3モル),三フッ化ホウ素ジエチルエーテル錯体5.0gを入れた。滴下ロートにイソブチルビニルエーテル1,000g(10.0モル),エチルビニルエーテル554.4g(7.7モル)を入れ、氷水浴で冷却し反応液を約30℃に保ちながら1時間47分かけ滴下した。滴下終了後さらに5分間撹拌した。反応混合物を洗浄槽に移し、3wt%水酸化ナトリウム水溶液300ミリリットルで2回洗浄し、さらに、水300ミリリットルで3回洗浄した。ロータリーエバポレターを用い減圧下溶媒及び未反応原料を除去し粗製品1,769gを得た。
調製例1で調製した触媒入りのSUS−316L製2リットルオートクレーブに粗製品1,000gを入れた。オートクレーブ内に水素を導入し、水素圧10kg/cmとし、約30秒間撹拌したのち脱圧した。再びオートクレーブ内に水素を導入し、水素圧10kg/cmとし、約30秒間撹拌したのち脱圧した。水素圧を35kg/cmに保ち撹拌しながら30分で140℃に昇温し、さらに140℃で2時間反応した。反応終了後室温まで冷却し常圧まで減圧した。ヘキサン500ミリリットルを加え希釈したのち、ろ紙を用いてろ過を行った。3リットル洗浄槽に移し、3wt%水酸化ナトリウム水溶液300ミリリットルで3回洗浄、次いで蒸留水300ミリリットルで5回洗浄した。ロータリーエバポレターを用い減圧下、ヘキサン,水分などを除去した。収量は820gであった。NMR、IR測定の結果、ポリマーの末端構造の一方が(A)又は(D)であり、もう一方の大部分が(B)又は(E)であり、(C)が少量含まれていた。
【0052】
【化15】
Figure 0003583175
【0053】
製造例4
滴下ロート、冷却管、撹拌機を取り付けた5リットルガラス製フラスコにトルエン650g,アセトアルデヒドジエチルアセタール236g(2.0モル),三フッ化ホウ素ジエチルエーテル錯体4.0gを入れた。滴下ロートにイソブチルビニルエーテル1,100g(11.0モル),エチルビニルエーテル648g(9.0モル)を入れ、氷水浴で冷却し反応液を約30℃に保ちながら1時間57分かけ滴下した。滴下終了後さらに5分間撹拌した。反応混合物を洗浄槽に移し、3wt%水酸化ナトリウム水溶液500ミリリットルで2回洗浄し、さらに、水500ミリリットルで3回洗浄した。ロータリーエバポレターを用い減圧下溶媒及び未反応原料を除去し粗製品1,936gを得た。
調製例1で調製した触媒入りのSUS−316L製2リットルオートクレーブに粗製品1,000gを入れた。オートクレーブ内に水素を導入し、水素圧10kg/cmとし、約30秒間撹拌したのち脱圧した。再びオートクレーブ内に水素を導入し、水素圧10kg/cmとし、約30秒間撹拌したのち脱圧した。水素圧を35kg/cmに保ち撹拌しながら30分で140℃に昇温し、さらに140℃で2時間反応した。反応終了後室温まで冷却し常圧まで減圧した。ヘキサン500ミリリットルを加え希釈したのち、ろ紙を用いてろ過を行った。3リットル洗浄槽に移し、3wt%水酸化ナトリウム水溶液300ミリリットルで3回洗浄、次いで蒸留水300ミリリットルで5回洗浄した。ロータリーエバポレターを用い減圧下、ヘキサン,水分などを除去した。収量は859gであった。NMR、IR測定の結果、ポリマーの末端構造の一方が(A)又は(D)であり、もう一方の大部分が(B)又は(E)であり、(C)が少量含まれていた。
【0054】
製造例5
滴下ロート、冷却管、撹拌機を取り付けた5リットルガラス製フラスコにトルエン700g,アセトアルデヒドジエチルアセタール236g(2.0モル),三フッ化ホウ素ジエチルエーテル錯体4.0gを入れた。滴下ロートにイソブチルビニルエーテル500g(5.0モル),エチルビニルエーテル936g(13.0モル)を入れ、氷水浴で冷却し反応液を約30℃に保ちながら1時間45分かけ滴下した。滴下終了後さらに5分間撹拌した。反応混合物を洗浄槽に移し、3wt%水酸化ナトリウム水溶液500ミリリットルで2回洗浄し、さらに、水500ミリリットルで3回洗浄した。ロータリーエバポレターを用い減圧下溶媒及び未反応原料を除去し粗製品1,617gを得た。
調製例1で調製した触媒入りのSUS−316L製2リットルオートクレーブに粗製品1,000gを入れた。オートクレーブ内に水素を導入し、水素圧10kg/cmとし、約30秒間撹拌したのち脱圧した。再びオートクレーブ内に水素を導入し、水素圧10kg/cmとし、約30秒間撹拌したのち脱圧した。水素圧を35kg/cmに保ち撹拌しながら30分で140℃に昇温し、さらに140℃で2時間反応した。反応終了後室温まで冷却し常圧まで減圧した。ヘキサン500ミリリットルを加え希釈したのち、ろ紙を用いてろ過を行った。3リットル洗浄槽に移し、3wt%水酸化ナトリウム水溶液300ミリリットルで3回洗浄、次いで蒸留水300ミリリットルで5回洗浄した。ロータリーエバポレターを用い減圧下、ヘキサン,水分などを除去した。収量は845gであった。NMR、IR測定の結果、ポリマーの末端構造の一方が(A)又は(D)であり、もう一方の大部分が(B)又は(E)であり、(C)が少量含まれていた。
【0055】
製造例6
滴下ロート、冷却管、撹拌機を取り付けた5リットルガラス製フラスコにトルエン450g,アセトアルデヒドジエチルアセタール181.7g(1.54モル),三フッ化ホウ素ジエチルエーテル錯体2.8gを入れた。滴下ロートにイソブチルビニルエーテル1,050g(10.5モル),エチルビニルエーテル141.1g(1.96モル)を入れ、氷水浴で冷却し反応液を約30℃に保ちながら1時間18分かけ滴下した。滴下終了後さらに5分間撹拌した。反応混合物を洗浄槽に移し、3wt%水酸化ナトリウム水溶液300ミリリットルで2回洗浄し、さらに、水300ミリリットルで3回洗浄した。ロータリーエバポレターを用い減圧下溶媒及び未反応原料を除去し粗製品1,347gを得た。
調製例1で調製した触媒入りのSUS−316L製2リットルオートクレーブに粗製品1,000gを入れた。オートクレーブ内に水素を導入し、水素圧10kg/cmとし、約30秒間撹拌したのち脱圧した。再びオートクレーブ内に水素を導入し、水素圧10kg/cmとし、約30秒間撹拌したのち脱圧した。水素圧を35kg/cmに保ち撹拌しながら30分で140℃に昇温し、さらに140℃で2時間反応した。反応終了後室温まで冷却し常圧まで減圧した。ヘキサン500ミリリットルを加え希釈したのち、ろ紙を用いてろ過を行った。3リットル洗浄槽に移し、3wt%水酸化ナトリウム水溶液300ミリリットルで3回洗浄、次いで蒸留水300ミリリットルで5回洗浄した。ロータリーエバポレターを用い減圧下、ヘキサン,水分などを除去した。収量は845gであった。NMR、IR測定の結果、ポリマーの末端構造の一方が(A)又は(D)であり、もう一方の大部分が(B)又は(E)であり、(C)が少量含まれていた。
【0056】
製造例7
滴下ロート、冷却管、撹拌機を取り付けた5リットルガラス製フラスコにトルエン450g,アセトアルデヒドジエチルアセタール159g(1.35モル),三フッ化ホウ素ジエチルエーテル錯体3.0gを入れた。滴下ロートにイソブチルビニルエーテル400g(4.0モル),エチルビニルエーテル767g(10.65モル)を入れ、氷水浴で冷却し反応液を約27℃に保ちながら1時間35分かけ滴下した。滴下終了後さらに5分間撹拌した。反応混合物を洗浄槽に移し、3wt%水酸化ナトリウム水溶液300ミリリットルで2回洗浄し、さらに、水300ミリリットルで3回洗浄した。ロータリーエバポレターを用い減圧下溶媒及び未反応原料を除去し粗製品1,287gを得た。
調製例1で調製した触媒入りのSUS−316L製2リットルオートクレーブに粗製品1,000gを入れた。オートクレーブ内に水素を導入し、水素圧10kg/cmとし、約30秒間撹拌したのち脱圧した。再びオートクレーブ内に水素を導入し、水素圧10kg/cmとし、約30秒間撹拌したのち脱圧した。水素圧を35kg/cmに保ち撹拌しながら30分で140℃に昇温し、さらに140℃で2時間反応した。反応終了後室温まで冷却し常圧まで減圧した。ヘキサン500ミリリットルを加え希釈したのち、ろ紙を用いてろ過を行った。3リットル洗浄槽に移し、3wt%水酸化ナトリウム水溶液300ミリリットルで3回洗浄、次いで蒸留水300ミリリットルで5回洗浄した。ロータリーエバポレターを用い減圧下、ヘキサン,水分などを除去した。収量は902gであった。NMR、IR測定の結果、ポリマーの末端構造の一方が(A)又は(D)であり、もう一方の大部分が(B)又は(E)であり、(C)が少量含まれていた。
【0057】
製造例8
滴下ロート、冷却管、撹拌機を取り付けた5リットルガラス製フラスコにトルエン400g,アセトアルデヒドジエチルアセタール140g(1.2モル),三フッ化ホウ素ジエチルエーテル錯体2.5gを入れた。滴下ロートにイソブチルビニルエーテル750g(7.5モル),エチルビニルエーテル454g(6.3モル)を入れ、氷水浴で冷却し反応液を約28℃に保ちながら1時間39分かけ滴下した。滴下終了後5分間撹拌した。反応混合物を洗浄槽に移し、3wt%水酸化ナトリウム水溶液300ミリリットルで2回洗浄し、さらに、水300ミリリットルで3回洗浄した。ロータリーエバポレターを用い減圧下溶媒及び未反応原料を除去し粗製品1,322gを得た。
調製例1で調製した触媒入りのSUS−316L製2リットルオートクレーブに粗製品1,000gを入れた。オートクレーブ内に水素を導入し、水素圧10kg/cmとし、約30秒間撹拌したのち脱圧した。再びオートクレーブ内に水素を導入し、水素圧10kg/cmとし、約30秒間撹拌したのち脱圧した。水素圧を35kg/cmに保ち撹拌しながら30分で140℃に昇温し、さらに140℃で2時間反応した。反応終了後室温まで冷却し常圧まで減圧した。ヘキサン500ミリリットルを加え希釈したのち、ろ紙を用いてろ過を行った。3リットル洗浄槽に移し、3wt%水酸化ナトリウム水溶液300ミリリットルで3回洗浄、次いで蒸留水300ミリリットルで5回洗浄した。ロータリーエバポレターを用い減圧下、ヘキサン,水分などを除去した。収量は878gであった。NMR、IR測定の結果、ポリマーの末端構造の一方が(A)又は(D)であり、もう一方の大部分が(B)又は(E)であり、(C)が少量含まれていた。
【0058】
製造例9
滴下ロート、冷却管、攪拌機を取り付けた5リットルガラス製フラスコにトルエン450g,アセトアルデヒドジエチルアセタール198g(1.68モル),三フッ化ホウ素ジエチルエーテル錯体2.8gを入れた。滴下ロートにイソブチルビニルエーテル1,050g(10.5モル),エチルビニルエーテル131g(1.82モル)を入れ、氷水浴で冷却し反応液を約30℃に保ちながら1時間14分かけ滴下した。滴下終了後さらに5分間攪拌した。反応混合物を洗浄槽に移し、3wt%水酸化ナトリウム水溶液300ミリリットルで2回洗浄し、さらに、水300ミリリットルで3回洗浄した。ロータリーエバボレターを用い減圧下溶媒及び未反応原料を除去し粗製品1,347gを得た。
調製例1で調製した触媒入りのSUS−316L製2リットルオートクレーブに粗製品1,000gを入れた。オートクレーブ内に水素を導入し、水素圧10kg/cmとし、約30秒間攪拌したのち脱圧した。再びオートクレーブ内に水素を導入し、水素圧10kg/cmとし、約30秒間攪拌したのち脱圧した。水素圧を35kg/cmに保ち攪拌しながら30分で140℃に昇温し、さらに140℃で2時間反応した。反応終了後室温まで冷却し常圧まで減圧した。ヘキサン500ミリリットルを加え希釈したのち、ろ紙を用いてろ過を行った。3リットル洗浄槽に移し、3wt%水酸化ナトリウム水溶液300ミリリットルで3回洗浄、次いで蒸留水300ミリリットルで5回洗浄した。ロータリーエバボレターを用い減圧下、ヘキサン,水分などを除去した。収量は847gであった。NMR、IR測定の結果、ポリマーの末端構造の一方が(A)又は(D)であり、もう一方の大部分が(B)又は(E)であり、(C)が少量含まれていた。
【0059】
製造例10
滴下ロート、冷却管、攪拌機を取り付けた5リットルガラス製フラスコにトルエン450g, 2−エチルヘキサノール182g(1.4モル),三フッ化ホウ素ジエチルエーテル錯体2.8gを入れた。滴下ロートにエチルビニルエーテル1,008g(14.0モル)入れ、氷水浴で冷却し反応液を約25℃に保ちながら1時間30分かけ滴下した。滴下終了後さらに5分間攪拌した。反応混合物を洗浄槽に移し、3wt%水酸化ナトリウム水溶液300ミリリットルで2回洗浄し、さらに水300ミリリットルで3回洗浄した。ロータリーエバボレターを用い減圧下溶媒及び未反応原料を除去し粗製品1,143gを得た。
調製例1で調製した触媒入りのSUS−316L製2リットルオートクレーブに粗製品1000gを入れた。オートクレーブ内に水素を導入し、水素圧10kg/cmとし、約30秒間攪拌したのち脱圧した。再びオートクレーブ内に水素を導入し、水素圧10kg/cmとし、約30秒間攪拌したのち脱圧した。水素圧を35kg/cmに保ち攪拌しながら30分で140℃に昇温し、さらに140℃で2時間反応した。反応終了後室温まで冷却し常圧まで減圧した。ヘキサン500ミリリットルを加え希釈したのち、ろ紙を用いてろ過を行った。3リットル洗浄槽に移し、3wt%水酸化ナトリウム水溶液300ミリリットルで3回洗浄、次いで蒸留水300ミリリットルで5回洗浄した。ロータリーエバボレターを用い減圧下、ヘキサン,水分などを除去した。収量は867gであった。NMR、IR測定の結果、ポリマーの末端構造の一方が(D)又は(F)であり、もう一方の大部分が(E)又は(G)であり、(C)が少量含まれていた。
【0060】
【化16】
Figure 0003583175
【0061】
製造例11
滴下ロート、冷却管、攪拌機を取り付けた5リットルガラス製フラスコにトルエン450g,イソノニルアルコール202g(1.4モル),三フッ化ホウ素ジエチルエーテル錯体2.5gを入れた。滴下ロートにエチルビニルエーテル1,008g(14.0モル)を入れ、氷水浴で冷却し反応液を約25℃に保ちながら1時間38分かけ滴下した。滴下終了後さらに5分間攪拌した。反応混合物を洗浄槽に移し、3wt%水酸化ナトリウム水溶液300ミリリットルで2回洗浄し、さらに、水300ミリリットルで3回洗浄した。ロータリーエバボレターを用い減圧下溶媒及び未反応原料を除去し粗製品1,154gを得た。
調製例1で調製した触媒入りのSUS−316L製2リットルオートクレーブに粗製品1,000gを入れた。オートクレーブ内に水素を導入し、水素圧10kg/cmとし、約30秒間攪拌したのち脱圧した。再びオートクレーブ内に水素を導入し、水素圧10kg/cmとし、約30秒間攪拌したのち脱圧した。水素圧を35kg/cmに保ち攪拌しながら30分で140℃に昇温し、さらに140℃で2時間反応した。反応終了後室温まで冷却し常圧まで減圧した。ヘキサン300ミリリットルを加え希釈したのち、ろ紙を用いてろ過を行った。3リットル洗浄槽に移し、3wt%水酸化ナトリウム水溶液500ミリリットルで3回洗浄、次いで蒸留水300ミリリットルで5回洗浄した。ロータリーエバボレターを用い減圧下、ヘキサン,水分などを除去した。収量は880gであった。NMR、IR測定の結果、ポリマーの末端構造の一方が(D)又は(H)であり、もう一方の大部分が(E)又は(I)であり、(C)が少量含まれていた。
【0062】
【化17】
Figure 0003583175
【0063】
製造例12
滴下ロート、冷却管、攪拌機を取り付けた5リットルガラス製フラスコにトルエン400g,メタノール57.6g(1.8モル),三フッ化ホウ素ジエチルエーテル錯体2.5gを入れた。滴下ロートにイソブチルビニルエーテル1,200g(12.0モル)を入れ、氷水浴で冷却し反応液を約30℃に保ちながら1時間23分かけ滴下した。滴下終了後さらに5分間攪拌した。反応混合物を洗浄槽に移し、3wt%水酸化ナトリウム水溶液300ミリリットルで2回洗浄し、さらに水300ミリリットルで3回洗浄した。ロータリーエバボレターを用い減圧下溶媒及び未反応原料を除去し粗製品1,236gを得た。
調製例1で調製した触媒入りのSUS−316L製2リットルオートクレーブに粗製品1,000gを入れた。オートクレーブ内に水素を導入し、水素圧10kg/cmとし、約30秒間攪拌したのち脱圧した。再びオートクレーブ内に水素を導入し、水素圧10kg/cmとし、約30秒間攪拌したのち脱圧した。水素圧を35kg/cmに保ち攪拌しながら30分で140℃に昇温し、さらに140℃で2時間反応した。反応終了後室温まで冷却し常圧まで減圧した。ヘキサン500ミリリットルを加え希釈したのち、ろ紙を用いてろ過を行った。3リットル洗浄槽に移し、3wt%水酸化ナトリウム水溶液300ミリリットルで3回洗浄、次いで蒸留水300ミリリットルで5回洗浄した。ロータリーエバボレターを用い減圧下、ヘキサン,水分などを除去した。収量は820gであった。NMR、IR測定の結果、ポリマーの末端構造の一方が(A)又は(J)であり、もう一方の大部分が(B)又は(K)、であり(C)が少量含まれていた。
【0064】
【化18】
Figure 0003583175
【0065】
製造例13
滴下ロート、冷却管、攪拌機を取り付けた5リットルガラス製フラスコにトルエン400g,2−メトキシエタノール136.8g(1.8モル),三フッ化ホウ素ジエチルエーテル錯体3.0gを入れた。滴下ロートにイソブチルビニルエーテル1,200g(12.0モル)を入れ、氷水浴で冷却し反応液を約30℃に保ちながら1時間23分かけ滴下した。滴下終了後さらに5分間攪拌した。反応混合物を洗浄槽に移し、3wt%水酸化ナトリウム水溶液300ミリリットルで2回洗浄し、さらに水300ミリリットルで3回洗浄した。ロータリーエバボレターを用い減圧下溶媒及び未反応原料を除去し粗製品1,315gを得た。
調製例1で調製した触媒入りのSUS−316L製2リットルオートクレーブに粗製品1,000gを入れた。オートクレーブ内に水素を導入し、水素圧10kg/cmとし、約30秒間攪拌したのち脱圧した。再びオートクレーブ内に水素を導入し、水素圧10kg/cmとし、約30秒間攪拌したのち脱圧した。水素圧を35kg/cmに保ち攪拌しながら30分で140℃に昇温し、さらに140℃で2時間反応した。反応終了後室温まで冷却し常圧まで減圧した。ヘキサン500ミリリットルを加え希釈したのち、ろ紙を用いてろ過を行った。3リットル洗浄槽に移し、3wt%水酸化ナトリウム水溶液300ミリリットルで3回洗浄、次いで蒸留水300ミリリットルで5回洗浄した。ロータリーエバボレターを用い減圧下、ヘキサン,水分などを除去した。収量は818gであった。NMR、IR測定の結果、ポリマーの末端構造の一方が(A)又は(L)であり、もう一方の大部分が(B)又は(M)であり、(C)が少量含まれていた。
【0066】
【化19】
Figure 0003583175
【0067】
製造例14(比較製造例1)
滴下ロート、冷却管、攪拌機を取り付けた5リットルガラス製フラスコにトルエン1,000g, エタノール195g(4.24モル),三フッ化ホウ素ジエチルエーテル錯体5.0gを入れた。滴下ロートにエチルビニルエーテル3,005g(41.7モル)を入れ、氷水浴で冷却し反応液を約25℃に保ちながら3時間30分かけ滴下した。滴下終了後さらに5分間攪拌した。反応混合物を洗浄槽に移し、3wt%水酸化ナトリウム水溶液1,000ミリリットルで3回洗浄し、さらに、水1,000ミリリットルで3回洗浄した。ロータリーエバボレターを用い減圧下溶媒及び未反応原料を除去し粗製品3,041gを得た。
調製例1で調製した触媒入りのSUS−316L製2リットルオートクレーブに粗製品1,000gを入れた。オートクレーブ内に水素を導入し、水素圧10kg/cmとし、約30秒間攪拌したのち脱圧した。再びオートクレーブ内に水素を導入し、水素圧10kg/cmとし、約30秒間攪拌したのち脱圧した。水素圧を35kg/cmに保ち攪拌しながら30分で140℃に昇温し、さらに140℃で2時間反応した。反応終了後室温まで冷却し常圧まで減圧した。ヘキサン500ミリリットルを加え希釈したのち、ろ紙を用いてろ過を行った。3リットル洗浄槽に移し、3wt%水酸化ナトリウム水溶液500ミリリットルで3回洗浄、次いで蒸留水500ミリリットルで3回洗浄した。ロータリーエバボレターを用い減圧下、ヘキサン,水分などを除去した。収量は870gであった。NMR、IR測定の結果、ポリマーの末端構造の一方が(D)であり、もう一方の大部分が(E)であり、(C)が少量含まれていた。
【0068】
製造例15(比較製造例2)
ディーンシュターク管、冷却管、攪拌機を取り付けた5リットルのガラス製フラスコに、ペンタエリスリトール1091g及びn−ヘキサン酸3,909gを加えて攪拌しながら昇温した。溶液の温度が200℃となったところで3時間保持し、さらに220℃に昇温した後、10時間保持した。この間に反応が開始し水が生成した。反応終了後、反応液を150℃まで降温し、減圧下未反応のn−ヘキサン酸の大部分量を回収した。残った液を洗浄槽に移し、ヘキサン2リットルに溶解させた後、3wt%水酸化ナトリウム水溶液1,500ミリリットルで3回洗浄し、さらに水1,500ミリリットルで3回洗浄した。さらに、イオン交換樹脂を800g加えて3時間攪拌した。イオン交換樹脂をろ別した後、ヘキサンをロータリーエバポレーターを用い減圧下で除去した。得られたポリオールエステル系の潤滑油の収量は3,390gであった。
【0069】
製造例16
ゼオライト(東ソー社製、商品名:HSZ620HOA)を用いた以外は調製例1と同様に調製した触媒入りのSUS−316L製2リットルオートクレーブに製造例3と同様にして得られた粗製品600gを入れた。オートクレーブ内に水素を導入し、水素圧20kg/cmとし、約30秒間撹拌したのち脱圧した。再びオートクレーブ内に水素を導入し、水素圧20kg/cmとし、約30秒間撹拌したのち脱圧した。この操作を更に1回行ったのち、水素圧を35kg/cmとし撹拌しながら30分で150℃に昇温し、さらに150℃で2時間反応した。昇温中及び昇温後反応がおこり、水素圧の減少が認められた。なお、昇温に伴う圧力の増加、反応に伴う圧力の減少は適時減圧、加圧して水素圧を35kg/cmとして反応を行った。反応終了後室温まで冷却し常圧まで減圧した。1時間静置し触媒を沈降させ、反応液をデカンテーションで除いた。触媒をヘキサン100ミリリットルで2回洗浄し、洗浄液は反応液と合わせ、ろ紙を用いてろ過を行った。洗浄槽に移し、5%水酸化ナトリウム水溶液500ミリリットルで3回洗浄、次いで蒸留水500ミリリットルで5回洗浄した。ロータリーエバポレーターを用い、減圧下ヘキサン、水分等を除去し、ポリビニルエーテル化合物497gを得た。
【0070】
製造例17
反応時間を5時間とした以外は製造例16と同様の操作を行い、ポリビニルエーテル化合物496gを得た。
製造例18
ゼオライトにHSZ630HOA(東ソー社製)を用いた以外は製造例16と同様の方法により、ポリビニルエーテル化合物497gを得た。
【0071】
実施例1
製造例1で得られた本発明の潤滑油について、動粘度,フロン134aとの相溶性,体積固有抵抗,加水分解安定性,吸湿性を測定するとともに、元素分析を行った。得られた結果を第1表に示す。
(1)動粘度
JIS K2283−1983に準じ、ガラス製毛管式粘度計を用いて測定した。
(2)相溶性試験
フロン134a(1,1,1,2−テトラフルオロエタン)に対し、所定量の試料を耐圧ガラスアンプルに加え、これを真空配管及びフロン134aガス配管に接続した。アンプルを室温で真空脱気後、液体窒素で冷却して所定量のフロン134aを採取した。次いで、アンプルを封じ、恒温槽中で低温側の相溶性については、室温から−50℃まで徐々に冷却することで、一方、高温側の相溶性については、室温から+90℃まで徐々に加熱することで相分離が始まる温度を測定した。低温側では相分離温度が低いほど、また高温側では相分離温度が高いほど好ましい。フロン32,フロン125についても、フロン134aの場合と同様に測定した。なお、フロン32については、低温側だけを測定し、フロン125については、−50℃から+50℃の範囲を測定した。また、R−407cについては室温で液体の状態でアンプルに封入し、−40℃から+40℃の範囲を測定した。
(3)体積固有抵抗
試料を、減圧下(0.3〜0.8mmHg)100℃で1時間乾燥させた後、80℃の恒温槽中の体積固有抵抗測定用の液体セルに封入した。40分間80℃の恒温槽に保持したのち、アドバンテスト社製R8340超絶縁計を用い、印加電圧250Vで測定した。
(4)加水分解安定性
容量250ミリリットルの耐圧製ビンに試料75g,水25g及び銅(13mm×50mm)を入れ、容器内を窒素雰囲気とした。回転式恒温槽中、温度102℃で192時間保持した。テスト終了後、試料油の外観,全酸価及び銅片の状態を観察した。なお、試料油の試験前の全酸価はすべて0.01mgKOH/gであった。
(5)吸湿性
試料油20gをガラス製の50ccサンプルビンに入れ、湿度・温度を一定に制御したデシケーターに入れ、その重量変化を測定した。増加した重量が吸湿した水分に相当する。温度はデシケーターを恒温槽に入れることにより30℃に制御した。湿度はデシケーターの底に硫酸アンモニウム飽和水と硫酸アンモニウム粉末を入れることにより81%に制御した。
(6)元素分析
パーキンエルマー 2400−CHN装置により測定した。
【0072】
実施例2〜16及び比較例1,2
製造例2〜15で得られた潤滑油について、実施例1と同様にして動粘度,フロンとの相溶性,体積固有抵抗,加水分解安定性,吸湿性を測定するとともに、元素分析を行った。また、製造例3及び16〜18で得られた潤滑油について下記に示す方法でシールドチューブ試験を行った。得られた結果を第1表に示す。
シールドチューブ試験
ガラス管に、触媒:Fe,Cu,Alを入れ、更にR134a/油/空気/水=1g/4cc/50torr/0.04ccの割合で充填し、封管する。175℃で14日間保持した後、油外観、光透過度、触媒外観、全酸価、スラッジ有無の評価を行った。光透過度は可視光による透過率を測定した(レファレンス:製造例3の新油)。またスラッジ有無はシールドチューブ試験後、−40℃で1時間保持し、油中スラッジの有無を調べた。
【0073】
【表1】
Figure 0003583175
【0074】
【表2】
Figure 0003583175
【0075】
【表3】
Figure 0003583175
【0076】
【表4】
Figure 0003583175
【0077】
【表5】
Figure 0003583175
【0078】
【表6】
Figure 0003583175
【0079】
【表7】
Figure 0003583175
【0080】
【表8】
Figure 0003583175
【0081】
【表9】
Figure 0003583175
【0082】
【表10】
Figure 0003583175
【0083】
【発明の効果】
本発明の潤滑油は、特に環境汚染で問題となっている冷媒のフロン12あるいは他の分解しにくいフロン化合物の代替となりうるフロン134a,フロン32,フロン125などの水素含有フロン化合物やアンモニアとの相溶性が、全使用温度範囲にわたって良好であるとともに、吸湿性が低く、安定性及び潤滑性能に優れ、かつ80℃での体積固有抵抗が1012Ω・cm以上であって、圧縮型冷凍機用潤滑油として用いられる。[0001]
[Industrial applications]
The present invention relates to a novel lubricating oil for a compression refrigerator, and more particularly, to a hydro that can be a substitute for chlorofluorocarbon, for example, dichlorofluoromethane (hereinafter referred to as Freon 12), which is a refrigerant which is a problem due to environmental pollution. A hydrogen-containing Freon compound such as a fluorocarbon, for example, 1,1,1,2-tetrafluoroethane, difluoromethane, pentafluoroethane (hereinafter referred to as Freon 134a, Freon 32, and Freon 125, respectively) Is a general term for chlorofluorocarbon (CFC), hydrofluorocarbon (HFC) and hydrochlorofluorocarbon (HCFC). Furthermore, it has good compatibility with ammonia, excellent stability and lubricating performance, low hygroscopicity, and a volume resistivity at a temperature of 80 ° C. of 10 12 The present invention relates to a polyvinyl ether-based lubricating oil for a compression refrigerator having a resistance of Ω · cm or more.
[0002]
[Prior art]
In general, a compression refrigerator includes a compressor, a condenser, an expansion valve, and an evaporator, and has a structure in which a mixed liquid of refrigerant and lubricating oil circulates in the closed system. In such a compression type refrigerator, although it depends on the type of the apparatus, generally, the temperature in the compressor is high and the temperature in the cooler is low. It is necessary to circulate through this system without phase separation at the refrigerating machine oil ratio. If phase separation occurs during operation of the refrigerator, the life and efficiency of the apparatus will be significantly adversely affected. For example, when phase separation of refrigerant and lubricating oil occurs in the compressor part, the moving parts become poorly lubricated, causing seizures and the like, and significantly shortening the life of the device.On the other hand, when phase separation occurs in the evaporator, Due to the presence of a lubricating oil having a high viscosity, the heat exchange efficiency is reduced.
[0003]
In addition, since lubricating oil for refrigerators is used for lubricating movable parts of the refrigerator, lubrication performance is naturally important. In particular, since the temperature inside the compressor becomes high, a viscosity capable of holding an oil film required for lubrication is important. The required viscosity varies depending on the type of compressor used and the operating conditions, but usually the viscosity (kinematic viscosity) of the lubricating oil before mixing with the refrigerant is preferably 5 to 1000 cSt at 40 ° C. If the viscosity is lower than this, the oil film becomes thin and poor lubrication is likely to occur, and if it is higher, the efficiency of heat exchange decreases.
Further, in an electric refrigerator, since a motor and a compressor are integrated, high electrical insulation is required for the lubricating oil. Generally, the volume resistivity at 80 ° C. is 10 12 Ω · cm or more is required. Further, lubricating oils are required to have low hygroscopicity and high stability. For example, in the case of high hygroscopicity, water may react with the organic material, and a compound causing sludge may be generated. Further, when an organic acid is generated by hydrolysis or the like, the corrosion or abrasion of the device is easily caused, depending on the amount thereof.
[0004]
Conventionally, Freon 12 is often used as a refrigerant for a compression refrigerator, and various mineral oils or synthetic oils satisfying the above-mentioned required characteristics have been used as a lubricating oil. However, Freon 12 has a possibility of causing environmental pollution such as destruction of the ozone layer, and thus its regulation has recently become stricter worldwide. For this reason, hydrogen-containing Freon compounds typified by Freon 134a, Freon 32, Freon 125 and the like have been attracting attention as new refrigerants. This hydrogen-containing Freon compound, particularly Freon 134a, Freon 32 and Freon 125, has a low risk of destruction of the ozone layer, and can be replaced with Freon 12 without substantially changing the structure of a conventional refrigerator. It is preferable as a refrigerant for a compression refrigerator.
When the Freon 134a, Freon 32, Freon 125 and a mixture thereof are adopted instead of Freon 12 as the refrigerant of the compression refrigerator, the lubricating oil naturally includes Freon 134a, Freon 32, Freon 125 and the like. What has excellent compatibility with a hydrogen-containing Freon compound and excellent lubrication performance that can satisfy the above-mentioned required performance is required. However, since the lubricating oil used together with the conventional Freon 12 has poor compatibility with hydrogen-containing Freon compounds such as Freon 134a, Freon 32 and Freon 125, a new lubricating oil suitable for these compounds is needed. Become. In this case, it is demanded that the structure of the device is hardly changed, especially when the CFC 12 is replaced, and it is not desirable to greatly change the structure of the current device for lubricating oil.
[0005]
As a lubricating oil compatible with Freon 134a, for example, a polyoxyalkylene glycol type is known. For example, "Research Disclosure", No. 17463 (October 1978), U.S. Pat. No. 4,755,316, JP-A-1-256594, JP-A-1-259909, and JP-A-1259909. JP-A-1-259094, JP-A-1-271149, JP-A-2-43290, JP-A-2-84491, JP-A-2-132176-132178, JP-A-2-132179, JP-A-2-132179 JP-A-2-173195, JP-A-2-18098-180987, JP-A-2-182780-181821, JP-A-2-242888, JP-A-2-258895, JP-A-2-269195, JP-A-2-272097, JP-A-2-305893 JP-A-3-28296, JP-A-3-33193, JP-A-3-103496-103497, JP-A-3-50297, JP-A-3-52995, JP-A-3-70794-70795 JP-A-3-79696, JP-A-3-106992, JP-A-3-109492, JP-A-3-121195, JP-A-3-205492, and JP-A-3-231992 JP-A-3-231994, JP-A-4-15295, JP-A-4-39394, JP-A-4-41591-41592, and the like. However, polyoxyalkylene glycols generally have a low specific volume resistivity, 12 An example satisfying a value of Ω · cm or more has not yet been shown.
[0006]
In addition to polyoxyalkylene glycol, as a compound having compatibility with Freon 134a, esters such as British Patent Publication No. 2216541, WO6979 (1990), JP-A-2-276894, and JP-A-3-1288992 can be used. JP, JP-A-3-88892, JP-A-3-179909, JP-A-3-252497, JP-A-3-275799, JP-A-4-4294, JP-A-4-20597 And U.S. Pat. No. 5,021,179. However, ester-based lubricating oils cannot avoid the formation of carboxylic acid due to hydrolysis due to their structure, and thus cause corrosion of equipment. For example, a rubber hose is used in an air conditioner for an automobile, and cannot be used because water is mixed therein. In addition, in an electric refrigerator, there is no danger of water being mixed during use, but since the lubricating oil is used for a long time without being replaced, most of the water mixed during production is subjected to hydrolysis. This is a problem. Due to these problems, when an ester-based lubricating oil is used in a compression refrigerator, it is necessary to greatly improve the existing apparatus or the manufacturing apparatus, which is not preferable. Here, as an ester-based refrigerating machine oil having good hydrolysis resistance, JP-A-3-275799 discloses a refrigerating machine oil composition characterized by containing an epoxy compound. The hydrolysis resistance is due to the reaction of the epoxy group with water to form an alcohol.If the amount of water is large, the properties of the refrigerating machine oil composition may change significantly, and the alcohol generated even when the amount of water is small. Is not preferable because a refrigerating machine oil composition may greatly change due to transesterification.
[0007]
Examples of carbonate-based lubricating oils include JP-A-3-149295, EP-A-421298, JP-A-3-217495, JP-A-3-247695, JP-A-4-18490, and JP-A-4-18490. -63893. However, the problem of hydrolysis is unavoidable in the carbonate system as in the case of the ester system.
Thus, the compatibility with hydrogen-containing Freon compounds such as Freon 134a, Freon 32 and Freon 125 is sufficiently good, excellent in stability and lubricating performance, low in hygroscopicity, and low in volume resistivity at 80 ° C. 12 At present, lubricating oils for compression refrigerators having Ω · cm or more have not been found yet, and their development is strongly desired.
[0008]
[Problems to be solved by the invention]
In response to such demands, the present invention has been developed in consideration of, in particular, a hydrogen-containing Freon compound such as Freon 134a, Freon 32, or Freon 125, which can be a substitute for Freon 12 or other Freon compounds which are difficult to decompose, which is a problem due to environmental pollution. It has good compatibility with ammonia over the entire operating temperature range, excellent stability and lubricity, low hygroscopicity, and a volume resistivity at 80 ° C. of 10 12 An object of the present invention is to provide a lubricating oil for a compression-type refrigerator having a resistance of Ω · cm or more.
[0009]
[Means for Solving the Problems]
The present inventors have intensively studied to develop a lubricating oil for a compression type refrigerator having the above-mentioned preferable properties, and as a result, a polyvinyl ether-based compound having a specific structure or a specific structure, It has been found that a lubricating oil containing a polyvinyl ether-based compound having an oxygen molar ratio within a predetermined range as a main component can achieve the object. The present invention has been completed based on such findings.
That is, the present invention provides a compound represented by the general formula (I):
[0010]
Embedded image
Figure 0003583175
[0011]
[Wherein, R 1 , R 2 And R 3 Represents a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, each of which may be the same or different; 4 Is a divalent hydrocarbon group having 1 to 10 carbon atoms or a divalent ether-bonded oxygen-containing hydrocarbon group having 2 to 20 carbon atoms, R 5 Represents a hydrocarbon group having 1 to 20 carbon atoms; m represents a number having an average value of 0 to 10; 1 ~ R 5 May be the same or different for each structural unit. 4 When there are a plurality of Os, a plurality of Rs 4 O may be the same or different. ]
And a lubricating oil for a compression refrigerator mainly comprising a polyvinyl ether compound (1) having a structural unit represented by the following formula and having a carbon / oxygen molar ratio of 4.2 to 7.0. (1), (a) A structural unit represented by general formula (I), and (b) a general formula (II)
[0012]
Embedded image
Figure 0003583175
[0013]
[Wherein, R 6 ~ R 9 Represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, each of which may be the same or different; 6 ~ R 9 May be the same or different for each structural unit. ]
And a compression type refrigeration comprising, as a main component, a polyvinyl ether-based compound (3) comprising a block or a random copolymer having a structural unit represented by the formula: and a carbon / oxygen molar ratio of 4.2 to 7.0. Mechanical lubricating oil (3), and (A) a polyvinyl ether-based compound having a structural unit represented by the general formula (I) and having a carbon / oxygen molar ratio of 4.2 to 7.0 ( (1) and (B) (a) having a structural unit represented by the general formula (I) and (b) a structural unit represented by the general formula (II), and having a carbon / oxygen molar ratio of 4. An object of the present invention is to provide a lubricating oil (4) for a compression type refrigerator mainly comprising a mixture of a polyvinyl ether compound (3) comprising a block copolymer or a random copolymer having a ratio of 2 to 7.0.
[0014]
The lubricating oil (1) for a compression refrigerator according to the present invention contains, as a main component, a polyvinyl ether compound (1) having a structural unit represented by the general formula (I).
R in the above general formula (I) 1 , R 2 And R 3 Represents a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, which may be the same or different. Here, the hydrocarbon group is specifically a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, various pentyl groups, various hexyl groups. Groups, various heptyl groups, various octyl alkyl groups, cyclopentyl groups, cyclohexyl groups, various methylcyclohexyl groups, various ethylcyclohexyl groups, various dimethylcyclohexyl groups, and other cycloalkyl groups, phenyl groups, various methylphenyl groups, various ethylphenyl Groups, aryl groups of various dimethylphenyl groups, benzyl groups, various phenylethyl groups, and arylalkyl groups of various methylbenzyl groups. Note that these R 1 , R 2 And R 3 Is particularly preferably a hydrogen atom.
[0015]
On the other hand, R in the general formula (I) 4 Represents a divalent hydrocarbon group having 1 to 10 carbon atoms or a divalent ether-bonded oxygen-containing hydrocarbon group having 2 to 20 carbon atoms, wherein a divalent hydrocarbon group having 1 to 10 carbon atoms and Are methylene group; ethylene group; phenylethylene group; 1,2-propylene group; 2-phenyl-1,2-propylene group; 1,3-propylene group; various butylene groups; various pentylene groups; Hexylene group; various heptylene groups; various octylene groups; various nonylene groups; divalent aliphatic groups of various decylene groups; cyclohexane; methylcyclohexane; ethylcyclohexane; dimethylcyclohexane; two alicyclic hydrocarbons such as propylcyclohexane; Alicyclic group having a binding site, various phenylene groups; various methylphenylene groups; various ethylphenylene groups; various dimethylphenylene groups Divalent aromatic hydrocarbon groups such as various naphthylene groups; toluene; xylene; alkyl aromatic groups having monovalent bonding sites in the alkyl group portion and the aromatic portion of the alkyl aromatic hydrocarbon such as ethylbenzene, xylene; Examples thereof include an alkyl aromatic group having a binding site in an alkyl group portion of a polyalkyl aromatic hydrocarbon such as diethylbenzene. Among these, an aliphatic group having 2 to 4 carbon atoms is particularly preferred.
[0016]
Specific examples of the divalent ether-bonded oxygen-containing hydrocarbon group having 2 to 20 carbon atoms include a methoxymethylene group; a methoxyethylene group; a methoxymethylethylene group; a 1,1-bismethoxymethylethylene group; -Bismethoxymethylethylene group; ethoxymethylethylene group; (2-methoxyethoxy) methylethylene group; (1-methyl-2-methoxy) methylethylene group, and the like. In the general formula (I), m is R 4 O represents the number of repetitions, and the average value is a number in the range of 0 to 10, preferably 0 to 5. R 4 When there are a plurality of Os, a plurality of Rs 4 O may be the same or different.
[0017]
Further, R in the general formula (I) 5 Represents a hydrocarbon group having 1 to 20 carbon atoms, and specific examples of the hydrocarbon group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and a sec-butyl group. Groups, tert-butyl groups, various pentyl groups, various hexyl groups, various heptyl groups, various octyl groups, various nonyl groups, various decyl alkyl groups, cyclopentyl groups, cyclohexyl groups, various methylcyclohexyl groups, various ethylcyclohexyl groups, Various cycloalkyl groups such as various propylcyclohexyl groups and various dimethylcyclohexyl groups, phenyl groups, various methylphenyl groups, various ethylphenyl groups, various dimethylphenyl groups, various propylphenyl groups, various trimethylphenyl groups, various butylphenyl groups, various naphthyl groups Groups such as aryl groups, benzyl groups, Niruechiru group shown, various methylbenzyl groups, various phenylpropyl groups, and arylalkyl groups various phenylbutyl groups.
The R 1 ~ R 5 May be the same or different for each structural unit. That is, the polyvinyl ether compound constituting the lubricating oil of the present invention is represented by R 1 ~ R 5 Any or all of these include copolymers that differ for each structural unit.
[0018]
The lubricating oil (2) for a compression refrigerator according to the present invention has a structural unit represented by the above general formula (I), 5 Is a hydrocarbon group having 1 to 3 carbon atoms; 5 Is a polyvinyl ether compound (2) composed of a copolymer containing a structural unit that is a hydrocarbon group having 3 to 20, preferably 3 to 10, and more preferably 3 to 8 carbon atoms. However, R in the above two types of structural units 5 Does not include the same group. R in the above general formula (I) 1 ~ R 6 And m are the same as those in the case of the polyvinyl ether compound (1). 5 As the hydrocarbon group having 1 to 3 carbon atoms represented by, an ethyl group is particularly preferably used. 5 As the hydrocarbon group having 3 to 20 carbon atoms represented by, an isobutyl group is particularly preferably used. The polyvinyl ether-based compound used in the present invention has the above-mentioned R 5 Is a structural unit in which is a hydrocarbon group having 1 to 3 carbon atoms, and R 5 Is preferably a hydrocarbon unit having 3 to 20 carbon atoms in a molar ratio of 5:95 to 95: 5, more preferably 20:80 to 90:10. When the molar ratio deviates from the above range, the compatibility with the refrigerant is insufficient and the hygroscopicity is high.
[0019]
By using a copolymer as the polyvinyl ether-based compound having the structural unit represented by the general formula (I), it is possible to improve lubricity, insulation, hygroscopicity and the like while satisfying compatibility. is there. At this time, the above-described performance of the oil agent can be adjusted to a target level by selecting the type of the monomer as the raw material, the type of the initiator, and the ratio of the copolymer. Therefore, there is an effect that it is possible to freely obtain an oil agent according to requirements such as lubricity and compatibility depending on the type of the compressor, the material of the lubricating part, the refrigerating capacity, the type of the refrigerant and the like in the refrigeration system or the air conditioning system.
The polyvinyl ether-based compounds (1) and (2) used for the compression type refrigerator lubricating oils (1) and (2) of the present invention each have a structural unit represented by the general formula (I). Although the number of repetitions (that is, the degree of polymerization) may be appropriately selected according to the desired kinematic viscosity, the kinematic viscosity at a temperature of 40 ° C. is usually preferably 5 to 1,000 cSt, more preferably It is chosen to be between 7 and 300 cSt. The polyvinyl ether compound (1) needs to have a carbon / oxygen molar ratio in the range of 4.2 to 7.0. If the molar ratio is less than 4.2, the hygroscopicity is high, and if it exceeds 7.0, the compatibility with Freon decreases.
[0020]
Further, the lubricating oil (3) for a compression type refrigerator of the present invention comprises (a) a structural unit represented by the general formula (I) and (b) a structural unit represented by the general formula (II). Having a block or a random copolymer as a main component.
In the general formula (II), R 6 ~ R 9 Represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, which may be the same or different. Here, the hydrocarbon group having 1 to 20 carbon atoms is represented by R in the above general formula (I). 5 The same can be mentioned. Also, R 6 ~ R 9 May be the same or different for each structural unit.
[0021]
The degree of polymerization of the polyvinyl ether-based compound (3) comprising a block or random copolymer having the structural unit represented by the general formula (I) and the structural unit represented by the general formula (II) has a desired degree of polymerization. The kinematic viscosity at a temperature of 40 ° C. is usually selected so as to be preferably 5 to 1,000 cSt, more preferably 7 to 300 cSt. Further, the polyvinyl ether-based compound needs to have a carbon / oxygen molar ratio in a range of 4.2 to 7.0. If the molar ratio is less than 4.2, the hygroscopicity is high, and if it exceeds 7.0, the compatibility with Freon decreases.
[0022]
Further, the lubricating oil (4) for a compression type refrigerator of the present invention comprises, as a main component, a mixture of (A) the polyvinyl ether compound (1) and (B) the polyvinyl ether compound (3). is there.
The polyvinyl ether-based compounds (1) and (3) used in the lubricating oil of the present invention are obtained by polymerizing the corresponding vinyl ether-based monomer, respectively, and the corresponding hydrocarbon monomer having an olefinic double bond and the corresponding vinyl ether-based monomer. Can be produced by copolymerization of The vinyl ether-based monomer that can be used here has the general formula (VIII)
[0023]
Embedded image
Figure 0003583175
[0024]
[Wherein, R 1 , R 2 , R 3 , R 4 , R 5 And m are the same as described above. ]
It is represented by As the vinyl ether-based monomer, there are various ones corresponding to the above-mentioned polyvinyl ether-based compounds (1) and (2). For example, vinyl methyl ether; vinyl ethyl ether; vinyl-n-propyl ether; vinyl-isopropyl ether; Vinyl-n-butyl ether; Vinyl-isobutyl ether; Vinyl-sec-butyl ether; Vinyl-tert-butyl ether; Vinyl-n-pentyl ether; Vinyl-n-hexyl ether; Vinyl-2-methoxyethyl ether; Vinyl-2-ethoxy Ethyl ether; vinyl-2-methoxy-1-methylethyl ether; vinyl-2-methoxy-2-methyl ether; vinyl-3,6-dioxaheptyl ether; vinyl-3,6,9-trioxadecyl ether; Vinyl-1, -Dimethyl-3,6-dioxaheptyl ether; vinyl-1,4,7-trimethyl-3,6,9-trioxadecyl ether; vinyl-2,6-dioxa-4-heptyl ether; vinyl-2, 1,9-trioxa-4-decyl ether; 1-methoxypropene; 1-ethoxypropene; 1-n-propoxypropene; 1-isopropoxypropene; 1-n-butoxypropene; 1-isobutoxypropene; -Butoxypropene; 1-tert-butoxypropene; 2-methoxypropene; 2-ethoxypropene; 2-n-propoxypropene; 2-isopropoxypropene; 2-n-butoxypropene; 2-isobutoxypropene; -Butoxypropene; 2-tert-butoxypropene; 1-methoxy-1-bu 1-ethoxy-1-butene; 1-n-propoxy-1-butene; 1-isopropoxy-1-butene; 1-n-butoxy-1-butene; 1-isobutoxy-1-butene; -Butoxy-1-butene; 1-tert-butoxy-1-butene; 2-methoxy-1-butene; 2-ethoxy-1-butene; 2-n-propoxy-1-butene; 2-isopropoxy-1- 2-butene; 2-n-butoxy-1-butene; 2-isobutoxy-1-butene; 2-sec-butoxy-1-butene; 2-tert-butoxy-1-butene; 2-methoxy-2-butene; 2-ethoxy-butene; 2-n-propoxy-2-butene; 2-isopropoxy-2-butene; 2-n-butoxy-2-butene; 2-isobutoxy-2-butene; 2-sec-butoxy -2-butene; 2-tert-butoxy-2-butene and the like. These vinyl ether monomers can be produced by a known method.
[0025]
The hydrocarbon monomer having an olefinic double bond is represented by the general formula (IX):
[0026]
Embedded image
Figure 0003583175
[0027]
[Wherein, R 6 ~ R 9 Is the same as above. ]
The monomers include, for example, ethylene, propylene, various butenes, various pentenes, various hexenes, various heptenes, various octenes, diisobutylene, triisobutylene, styrene, various alkyl-substituted styrenes, and the like.
As the polyvinyl ether compound used as a main component in the lubricating oil of the present invention, those having the following terminal structure, that is, one terminal of which has the general formula (III) or (IV)
[0028]
Embedded image
Figure 0003583175
[0029]
[Wherein, R 11 , R 21 And R 31 Represents a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, 11 , R 21 And R 31 Each may be the same or different, and R 61 , R 71 , R 81 And R 91 Represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, 61 , R 71 , R 81 And R 91 They may be the same or different. R 41 Is a divalent hydrocarbon group having 1 to 10 carbon atoms or a divalent ether-bonded oxygen-containing hydrocarbon group having 2 to 20 carbon atoms, R 51 Represents a hydrocarbon group having 1 to 20 carbon atoms; n represents a number having an average value of 0 to 10; 41 When there are a plurality of Os, a plurality of Rs 41 O may be the same or different. ]
And the remaining terminal is represented by the general formula (V) or (VI)
[0030]
Embedded image
Figure 0003583175
[0031]
[Wherein, R 12 , R 22 And R 32 Represents a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, 12 , R 22 And R 32 Each may be the same or different, and R 62 , R 72 , R 82 And R 92 Represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, 62 , R 72 , R 82 And R 92 They may be the same or different. R 42 Is a divalent hydrocarbon group having 1 to 10 carbon atoms or a divalent ether-bonded oxygen-containing hydrocarbon group having 2 to 20 carbon atoms, R 52 Is a hydrocarbon group having 1 to 20 carbon atoms; p is a number having an average value of 0 to 10; 42 When there are a plurality of Os, a plurality of Rs 42 O may be the same or different. ]
And one end thereof is represented by the above general formula (III) or (IV), and the other end is represented by the general formula (VII)
[0032]
Embedded image
Figure 0003583175
[0033]
[Wherein, R Thirteen , R 23 And R 33 Represents a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, which may be the same or different. ]
Those having a structure represented by
[0034]
Among such polyvinyl ether compounds, the following compounds are particularly suitable as the main components of the lubricating oil for compression refrigerators of the present invention.
(1) One terminal has a structure represented by the general formula (III) or (IV) and the other terminal has a structure represented by the general formula (V) or (VI); R 1 , R 2 And R 3 Are both hydrogen atoms, m is a number of 0 to 4, R 4 Is a divalent hydrocarbon group having 2 to 4 carbon atoms and R 5 Is a hydrocarbon group having 1 to 20 carbon atoms.
(2) having only the structural unit represented by the general formula (I), one terminal of which is represented by the general formula (III), and the other terminal represented by the general formula (V) Having the structure represented by the general formula (I) 1 , R 2 And R 3 Are both hydrogen atoms, m is a number of 0 to 4, R 4 Is a divalent hydrocarbon group having 2 to 4 carbon atoms and R 5 Is a hydrocarbon group having 1 to 20 carbon atoms.
(3) one end of which has a structure represented by the general formula (III) or (IV) and the other end has a structure represented by the general formula (VII); 1 , R 2 And R 3 Are both hydrogen atoms, m is a number of 0 to 4, R 4 Is a divalent hydrocarbon group having 2 to 4 carbon atoms and R 5 Is a hydrocarbon group having 1 to 20 carbon atoms.
(4) It has only the structural unit represented by the general formula (I), one end of which is represented by the general formula (III), and the other end is represented by the general formula (VII) Having the structure represented by the general formula (I) 1 , R 2 And R 3 Are both hydrogen atoms, m is a number of 0 to 4, R 4 Is a divalent hydrocarbon group having 2 to 4 carbon atoms and R 5 Is a divalent hydrocarbon group having 1 to 20 carbon atoms and R 5 Is a hydrocarbon group having 1 to 20 carbon atoms.
(5) In each of the above (1) to (4), R in the general formula (I) 5 Is a hydrocarbon group having 1 to 3 carbon atoms; 5 Has a structural unit of a hydrocarbon group having 3 to 20 carbon atoms.
[0035]
The polyvinyl ether-based compound can be produced by subjecting the above-described monomer to radical polymerization, cationic polymerization, radiation polymerization, or the like. For example, a vinyl ether-based monomer is polymerized by the following method to obtain a polymer having a desired viscosity.
For the initiation of the polymerization, a combination of Brönsted acids, Lewis acids or organometallic compounds with an adduct of water, alcohols, phenols, acetals or vinyl ethers with a carboxylic acid may be used. it can.
Examples of Bronsted acids include hydrofluoric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, nitric acid, sulfuric acid, trichloroacetic acid, trifluoroacetic acid and the like. Examples of the Lewis acids include boron trifluoride, aluminum trichloride, aluminum tribromide, tin tetrachloride, zinc dichloride, and ferric chloride. Among these Lewis acids, boron trifluoride is particularly preferred. Is preferred. Examples of the organometallic compound include diethyl aluminum chloride, ethyl aluminum chloride, and diethyl zinc.
[0036]
Any combination of water, alcohols, phenols, acetals or vinyl ethers and adducts of carboxylic acids with these can be selected arbitrarily. Here, examples of alcohols include those having 1 to 20 carbon atoms such as methanol, ethanol, propanol, isopropanol, butanol, isobutanol, sec-butanol, tert-butanol, various pentanols, various hexanols, various heptanols, and various octanols. Examples thereof include unsaturated aliphatic alcohols having 3 to 10 carbon atoms, such as saturated aliphatic alcohols and allyl alcohol.
When an adduct of a vinyl ether and a carboxylic acid is used, examples of the carboxylic acid include acetic acid; propionic acid; n-butyric acid; isobutyric acid; n-valeric acid; isovaleric acid; 2-methylbutyric acid; -Caproic acid; 2,2-dimethylbutyric acid; 2-methylvaleric acid; 3-methylvaleric acid; 4-methylvaleric acid; enanthic acid; 2-methylcaproic acid; caprylic acid; 2-ethylcaproic acid; -Propylvaleric acid; n-nonanoic acid; 3,5,5-trimethylcaproic acid; caprylic acid; undecanoic acid and the like.
[0037]
The vinyl ethers may be the same as those used for the polymerization, or may be different. The adduct of the vinyl ether and the carboxylic acid can be obtained by mixing the two and reacting at a temperature of about 0 to 100 ° C., separated by distillation or the like, and used for the reaction, but separated as it is. It can also be used for the reaction without.
When water, alcohols, or phenols are used, hydrogen bonds to the polymerization start terminal of the polymer, and when an acetal is used, one of the alkoxy groups is eliminated from hydrogen or the used acetal. When an adduct of a vinyl ether and a carboxylic acid is used, an alkylcarbonyloxy group derived from the carboxylic acid moiety is eliminated from the adduct of the vinyl ether and the carboxylic acid.
[0038]
On the other hand, when water, alcohols, phenols, and acetals are used, the terminal ends are acetal, olefin, or aldehyde. In the case of an adduct of a vinyl ether and a carboxylic acid, the carboxylic acid ester of hemiacetal is obtained.
The terminal of the polymer thus obtained can be converted to a desired group by a known method. Examples of the desired group include residues of saturated hydrocarbons, ethers, alcohols, ketones, nitriles, amides and the like, and preferred are residues of saturated hydrocarbons, ethers and alcohols.
[0039]
The polymerization of the vinyl ether-based monomer represented by the general formula (VIII) can be started at -80 to 150 ° C, and usually in the range of -80 to 50 ° C, depending on the type of the raw material and the initiator. Temperature. The polymerization reaction is completed in about 10 seconds to 10 hours after the start of the reaction.
With respect to the adjustment of the molecular weight in this polymerization reaction, the amount of water, alcohols, phenols, acetal, and adducts of vinyl ethers and carboxylic acids is increased with respect to the vinyl ether monomer represented by the general formula (VIII). By doing so, a polymer having a low average molecular weight can be obtained. Further, by increasing the amount of the Bronsted acids or Lewis acids, a polymer having a low average molecular weight can be obtained.
This polymerization reaction is usually performed in the presence of a solvent. The solvent is not particularly limited as long as it dissolves a required amount of a reaction raw material and is inert to the reaction, but is not particularly limited. For example, hydrocarbon solvents such as hexane, benzene, and toluene, and ethyl ether, 1,2- Ether solvents such as dimethoxyethane and tetrahydrofuran can be suitably used. This polymerization reaction can be stopped by adding an alkali. After the completion of the polymerization reaction, the desired polyvinyl ether compound having the structural unit represented by the general formula (I) can be obtained by performing a usual separation / purification method as required.
[0040]
As described above, the polyvinyl ether compound used as a main component in each of the lubricating oils (1), (3) and (4) for a compression refrigerator according to the present invention has a carbon / oxygen molar ratio of 4.2 to 7.0. It is necessary that the molar ratio is in the range of 0, but by adjusting the carbon / oxygen molar ratio of the raw material monomer, a polymer having the molar ratio in the above range can be produced. That is, if the ratio of the monomer having a large carbon / oxygen molar ratio is large, a polymer having a large carbon / oxygen molar ratio is obtained, and if the ratio of the monomer having a small carbon / oxygen molar ratio is large, a polymer having a small carbon / oxygen molar ratio is obtained. Is obtained.
Further, as shown in the polymerization method of the vinyl ether-based monomer, it is also possible to use water, alcohols, phenols, acetals, and an adduct of a vinyl ether with a carboxylic acid and a monomer in combination with the monomer used as the initiator. It is. If an alcohol or phenol having a higher carbon / oxygen molar ratio than the monomer to be polymerized is used as the initiator, a polymer having a higher carbon / oxygen molar ratio than the starting monomer can be obtained, while a carbon / oxygen such as methanol or methoxyethanol can be obtained. If an alcohol having a small oxygen molar ratio is used, a polymer having a smaller carbon / oxygen molar ratio than the raw material monomer can be obtained.
[0041]
Further, when a vinyl ether monomer and a hydrocarbon monomer having an olefinic double bond are copolymerized, a polymer having a carbon / oxygen molar ratio larger than that of the vinyl ether monomer is obtained. Can be adjusted by the ratio of the hydrocarbon monomer having an olefinic double bond to be used and the carbon number thereof.
The lubricating oil for refrigerators of the present invention contains the above polyvinyl ether-based compound as a main component. The kinematic viscosity of the lubricating oil before mixing with the refrigerant is preferably 5 to 1,000 cSt at 40 ° C., and more preferably 7 to 300 cSt. The average molecular weight of this polymer is usually from 150 to 2,000. In addition, even if the polymer is out of the kinematic viscosity range, the viscosity can be adjusted within the kinematic viscosity range by mixing with a polymer having another kinematic viscosity.
[0042]
As the lubricating oil for a compression refrigerator of the present invention, those having a small content of an acetal structure and / or an aldehyde structure in a molecule of a polyvinyl ether compound constituting the lubricating oil are preferably used. That is, since the presence of acetal groups and the like in the polyvinyl ether-based compound promotes deterioration, those containing these groups as a total equivalent of 15 meq / kg or less, more preferably 10 meq / kg or less can be preferably used. If the above equivalents exceed 15 meq / kg, the stability of the resulting lubricating oil will be poor. In the present invention, the acetal group equivalent is 1 It was calculated from the integral ratio between the methine proton of the acetal group and the aromatic ring hydrogen of p-xylene using p-xylene as an internal standard substance using H-NMR, and the hydrogen content of the acetal group was 1 kg for the sample. The case where 1 g (1 mol) was present therein was shown as 1 equivalent / kg. Also, the aldehyde group equivalent 1 It can be determined using 1 H-NMR.
[0043]
The lubricating oil for refrigerator of the present invention may use the above-mentioned polyvinyl ether-based compound alone or in combination of two or more. Further, it can be used by mixing with another lubricating oil.
The refrigerator lubricating oils (1), (3) and (4) of the present invention all have a carbon / oxygen molar ratio in the range of 4.2 to 7.0, and if the molar ratio is less than 4.2, If the hygroscopicity is higher than 7.0, the compatibility with Freon decreases.
Further, the lubricating oil for refrigerators of the present invention includes various additives used in conventional lubricating oils, such as load-bearing additives, chlorine scavengers, antioxidants, metal deactivators, defoamers, Detergents, viscosity index improvers, oil agents, anti-wear additives, extreme pressure agents, rust inhibitors, corrosion inhibitors, pour point depressants, etc. can be added as desired.
[0044]
Examples of the load-bearing additive include organic sulfur compounds such as monosulfides, polysulfides, sulfoxides, sulfones, thiosulfinates, sulfurized fats and oils, thiocarbonates, thiophenes, thiazoles, and methanesulfonic acid esters. , Phosphoric acid esters such as phosphoric acid monoesters, phosphoric acid diesters, phosphoric acid triesters (tricresyl phosphate), phosphite monoesters, phosphite diesters, phosphorous acid Phosphites such as acid triesters, thiophosphates such as thiophosphate triesters, higher fatty acids, hydroxyaryl fatty acids, carboxylic acid-containing polyhydric alcohol esters, acrylic acid esters, etc. Fatty acid esters, chlorinated hydrocarbons, chlorinated carboxylic acids Organic chlorinated compounds such as conductors, fluorinated aliphatic carboxylic acids, fluorinated ethylene resins, fluorinated alkylpolysiloxanes, organic fluorinated compounds such as fluorinated graphite, alcoholic compounds such as higher alcohols, naphthenes Metal compounds such as acid salts (lead naphthenate), fatty acid salts (lead fatty acid), thiophosphates (zinc dialkyldithiophosphate), thiocarbamates, organic molybdenum compounds, organic tin compounds, organic germanium compounds, and borate esters There are things.
[0045]
Examples of the chlorine scavenger include glycidyl ether group-containing compounds, epoxidized fatty acid monoesters, epoxidized oils and fats, and epoxycycloalkyl group-containing compounds. Examples of the antioxidant include phenols (2,6-di-tert-butyl-p-cresol) and aromatic amines (α-naphthylamine). Examples of the metal deactivator include a benzotriazole derivative. Examples of the antifoaming agent include silicone oil (dimethylpolysiloxane) and polymethacrylates. Detergents include sulfonates, phenates, succinimides and the like. Examples of the viscosity index improver include polymethacrylate, polyisobutylene, an ethylene-propylene copolymer, and a styrene-diene hydrogenated copolymer.
[0046]
Further, the lubricating oil of the present invention has excellent compatibility with a refrigerant and excellent lubricating performance, and thus is used as a lubricating oil for a compression refrigerator. Unlike conventional lubricating oils, hydrogen-containing Freon compounds, specifically 1,1,1,2-tetrafluoroethane (Freon 134a); 1,1-difluoroethane (Freon 152a); trifluoromethane (Freon 23); difluoro Methane (Freon 32); hydrofluorocarbon such as pentafluoroethane (Freon 125), 1,1-dichloro-2,2,2-trifluoroethane (Freon 123); 1-chloro-1,1-difluoroethane (Freon 142b) ); Good compatibility with hydrochlorofluorocarbons such as chlorodifluoromethane (Freon 22) or ammonia.
Further, in the present invention, it can be used as a mixed refrigerant of the above-mentioned refrigerants. Further, for the purpose of improving the compatibility with the refrigerant, it can be used by being mixed with other lubricating oils for compression refrigerators.
The present invention encompasses not only the invention specifically described above, but also any invention in which any or all of the requirements such as the composition and conditions defining the disclosed invention are arbitrarily combined. is there.
[0047]
【Example】
Further, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.
Preparation Example 1
(Preparation of catalyst)
(1) 100 g (water-containing state) of developed Raney nickel (M300T, manufactured by Kawaken Fine Chemicals Co., Ltd.) was placed in a flask, the supernatant was removed, and then 200 g of absolute ethanol was added and stirred well. After standing, the supernatant was removed, and 200 g of absolute ethanol was added again and stirred well. This operation was performed five times.
(2) 30 g of generalite (HSZ330HUA, manufactured by Tosoh Corporation) was dried at 150 ° C. for 1 hour in a vacuum dryer. At this time, the inside of the vacuum dryer was depressurized using an oil rotary vacuum pump.
(3) Into a 2-liter autoclave made of SUS-316L, 30 g of Raney nickel (wet with ethanol) prepared in the above (1), 350 g of hexane, 30 g of the zeolite obtained in the above (2), and 50 g of acetaldehyde diethyl acetal were put. . Hydrogen is introduced into the autoclave, and hydrogen pressure is 10 kg / cm. 2 After stirring for about 30 seconds, the pressure was released. Hydrogen pressure 35kg / cm 2 The temperature was raised to 130 ° C. in 30 minutes while stirring, and further reacted at 130 ° C. for 30 minutes. After completion of the reaction, the resultant was cooled to room temperature and reduced to normal pressure. After allowing to stand for 30 minutes, the catalyst was settled and the reaction solution was removed by decantation.
[0048]
Production Example 1
700 g of toluene, 222 g (3.0 mol) of isobutanol, and 5.0 g of boron trifluoride diethyl ether complex were placed in a 5-liter glass flask equipped with a dropping funnel, a condenser, and a stirrer. 2,000 g (20.0 mol) of isobutyl vinyl ether was put into the dropping funnel, cooled in an ice-water bath, and the reaction solution was added dropwise over 2 hours and 15 minutes while maintaining the reaction solution at about 30 ° C. After the addition, the mixture was further stirred for 5 minutes. The reaction mixture was transferred to a washing tank, washed twice with 500 ml of a 3 wt% sodium hydroxide aqueous solution, and further washed three times with 500 ml of water. The solvent and unreacted raw materials were removed under reduced pressure using a rotary evaporator to obtain 2,102 g of a crude product.
In a 2-liter autoclave made of SUS-316L containing a catalyst and prepared in Preparation Example 1, 1,000 g of the crude product was put. Hydrogen is introduced into the autoclave, and hydrogen pressure is 10 kg / cm. 2 After stirring for about 30 seconds, the pressure was released. Hydrogen was introduced again into the autoclave, and the hydrogen pressure was 10 kg / cm. 2 After stirring for about 30 seconds, the pressure was released. Hydrogen pressure 35kg / cm 2 The temperature was raised to 140 ° C. in 30 minutes while stirring, and the reaction was further performed at 140 ° C. for 2 hours. After completion of the reaction, the resultant was cooled to room temperature and reduced to normal pressure. After adding and diluting 500 ml of hexane, filtration was performed using a filter paper. It was transferred to a 3 liter washing tank, washed three times with 300 ml of a 3 wt% aqueous sodium hydroxide solution, and then washed five times with 300 ml of distilled water. Hexane, water and the like were removed under reduced pressure using a rotary evaporator. The yield was 845 g.
As a result of NMR and IR measurements, one of the terminal structures of the polymer was (A), the other was mostly (B), and a small amount of (C) was contained.
[0049]
Embedded image
Figure 0003583175
[0050]
Production Example 2
A 5-liter glass flask equipped with a dropping funnel, a condenser, and a stirrer was charged with 400 g of toluene, 200 g (2.7 mol) of isobutanol, and 3.6 g of a boron trifluoride diethyl ether complex. 1,200 g (12.0 mol) of isobutyl vinyl ether was put into the dropping funnel, and the mixture was cooled in an ice-water bath and added dropwise over 1 hour and 13 minutes while maintaining the reaction solution at about 30 ° C. After the addition, the mixture was further stirred for 5 minutes. The reaction mixture was transferred to a washing tank, washed twice with 300 ml of a 3 wt% aqueous sodium hydroxide solution, and further washed three times with 300 ml of water. Using a rotary evaporator, the solvent and unreacted raw materials were removed under reduced pressure to obtain 1,323 g of a crude product.
The crude product (1,100 g) was placed in the SUS-316L 2-liter autoclave containing the catalyst prepared in Preparation Example 1. Hydrogen is introduced into the autoclave, and hydrogen pressure is 10 kg / cm. 2 After stirring for about 30 seconds, the pressure was released. Hydrogen was introduced again into the autoclave, and the hydrogen pressure was 10 kg / cm. 2 After stirring for about 30 seconds, the pressure was released. Hydrogen pressure 35kg / cm 2 The temperature was raised to 140 ° C. in 30 minutes while stirring, and the reaction was further performed at 140 ° C. for 2 hours. After completion of the reaction, the resultant was cooled to room temperature and reduced to normal pressure. After adding and diluting 500 ml of hexane, filtration was performed using a filter paper. It was transferred to a 3 liter washing tank, washed twice with 300 ml of a 3 wt% aqueous sodium hydroxide solution, and then washed five times with 300 ml of distilled water. Hexane, water and the like were removed under reduced pressure using a rotary evaporator. The yield was 767 g. As a result of NMR and IR measurements, one of the terminal structures of the polymer was (A), the other was mostly (B), and a small amount of (C) was contained.
[0051]
Production Example 3
A 5-liter glass flask equipped with a dropping funnel, a condenser, and a stirrer was charged with 650 g of toluene, 271.4 g (2.3 mol) of acetaldehyde diethyl acetal, and 5.0 g of a boron trifluoride diethyl ether complex. To the dropping funnel, 1,000 g (10.0 mol) of isobutyl vinyl ether and 554.4 g (7.7 mol) of ethyl vinyl ether were added, and the mixture was cooled in an ice water bath and added dropwise over 1 hour and 47 minutes while maintaining the reaction solution at about 30 ° C. . After the addition, the mixture was further stirred for 5 minutes. The reaction mixture was transferred to a washing tank, washed twice with 300 ml of a 3 wt% aqueous sodium hydroxide solution, and further washed three times with 300 ml of water. Using a rotary evaporator, the solvent and unreacted raw materials were removed under reduced pressure to obtain 1,769 g of a crude product.
In a 2-liter autoclave made of SUS-316L containing a catalyst and prepared in Preparation Example 1, 1,000 g of the crude product was put. Hydrogen is introduced into the autoclave, and hydrogen pressure is 10 kg / cm. 2 After stirring for about 30 seconds, the pressure was released. Hydrogen was introduced again into the autoclave, and the hydrogen pressure was 10 kg / cm. 2 After stirring for about 30 seconds, the pressure was released. Hydrogen pressure 35kg / cm 2 The temperature was raised to 140 ° C. in 30 minutes while stirring, and the reaction was further performed at 140 ° C. for 2 hours. After completion of the reaction, the resultant was cooled to room temperature and reduced to normal pressure. After adding and diluting 500 ml of hexane, filtration was performed using a filter paper. It was transferred to a 3 liter washing tank, washed three times with 300 ml of a 3 wt% aqueous sodium hydroxide solution, and then washed five times with 300 ml of distilled water. Hexane, water and the like were removed under reduced pressure using a rotary evaporator. The yield was 820 g. As a result of NMR and IR measurements, one of the terminal structures of the polymer was (A) or (D), the other was mostly (B) or (E), and a small amount of (C) was contained.
[0052]
Embedded image
Figure 0003583175
[0053]
Production Example 4
A 5-liter glass flask equipped with a dropping funnel, a condenser, and a stirrer was charged with 650 g of toluene, 236 g (2.0 mol) of acetaldehyde diethyl acetal, and 4.0 g of a boron trifluoride diethyl ether complex. 1,100 g (11.0 mol) of isobutyl vinyl ether and 648 g (9.0 mol) of ethyl vinyl ether were put into a dropping funnel, and the mixture was cooled in an ice-water bath and added dropwise over 1 hour and 57 minutes while keeping the reaction solution at about 30 ° C. After the addition, the mixture was further stirred for 5 minutes. The reaction mixture was transferred to a washing tank, washed twice with 500 ml of a 3 wt% sodium hydroxide aqueous solution, and further washed three times with 500 ml of water. The solvent and unreacted raw materials were removed under reduced pressure using a rotary evaporator to obtain 1,936 g of a crude product.
In a 2-liter autoclave made of SUS-316L containing a catalyst and prepared in Preparation Example 1, 1,000 g of the crude product was put. Hydrogen is introduced into the autoclave, and hydrogen pressure is 10 kg / cm. 2 After stirring for about 30 seconds, the pressure was released. Hydrogen was introduced again into the autoclave, and the hydrogen pressure was 10 kg / cm. 2 After stirring for about 30 seconds, the pressure was released. Hydrogen pressure 35kg / cm 2 The temperature was raised to 140 ° C. in 30 minutes while stirring, and the reaction was further performed at 140 ° C. for 2 hours. After completion of the reaction, the resultant was cooled to room temperature and reduced to normal pressure. After adding and diluting 500 ml of hexane, filtration was performed using a filter paper. It was transferred to a 3 liter washing tank, washed three times with 300 ml of a 3 wt% aqueous sodium hydroxide solution, and then washed five times with 300 ml of distilled water. Hexane, water and the like were removed under reduced pressure using a rotary evaporator. The yield was 859 g. As a result of NMR and IR measurements, one of the terminal structures of the polymer was (A) or (D), the other was mostly (B) or (E), and a small amount of (C) was contained.
[0054]
Production Example 5
700 g of toluene, 236 g (2.0 mol) of acetaldehyde diethyl acetal, and 4.0 g of boron trifluoride diethyl ether complex were placed in a 5-liter glass flask equipped with a dropping funnel, a cooling tube, and a stirrer. 500 g (5.0 mol) of isobutyl vinyl ether and 936 g (13.0 mol) of ethyl vinyl ether were put into a dropping funnel, and the mixture was cooled in an ice-water bath and added dropwise over 1 hour and 45 minutes while keeping the reaction solution at about 30 ° C. After the addition, the mixture was further stirred for 5 minutes. The reaction mixture was transferred to a washing tank, washed twice with 500 ml of a 3 wt% sodium hydroxide aqueous solution, and further washed three times with 500 ml of water. The solvent and unreacted raw materials were removed under reduced pressure using a rotary evaporator to obtain 1,617 g of a crude product.
In a 2-liter autoclave made of SUS-316L containing a catalyst and prepared in Preparation Example 1, 1,000 g of the crude product was put. Hydrogen is introduced into the autoclave, and hydrogen pressure is 10 kg / cm. 2 After stirring for about 30 seconds, the pressure was released. Hydrogen was introduced again into the autoclave, and the hydrogen pressure was 10 kg / cm. 2 After stirring for about 30 seconds, the pressure was released. Hydrogen pressure 35kg / cm 2 The temperature was raised to 140 ° C. in 30 minutes while stirring, and further reacted at 140 ° C. for 2 hours. After completion of the reaction, the resultant was cooled to room temperature and reduced to normal pressure. After adding and diluting 500 ml of hexane, filtration was performed using a filter paper. It was transferred to a 3 liter washing tank, washed three times with 300 ml of a 3 wt% aqueous sodium hydroxide solution, and then washed five times with 300 ml of distilled water. Hexane, water and the like were removed under reduced pressure using a rotary evaporator. The yield was 845 g. As a result of NMR and IR measurements, one of the terminal structures of the polymer was (A) or (D), the other was mostly (B) or (E), and a small amount of (C) was contained.
[0055]
Production Example 6
450 g of toluene, 181.7 g (1.54 mol) of acetaldehyde diethyl acetal, and 2.8 g of boron trifluoride diethyl ether complex were placed in a 5-liter glass flask equipped with a dropping funnel, a condenser, and a stirrer. 1,050 g (10.5 mol) of isobutyl vinyl ether and 141.1 g (1.96 mol) of ethyl vinyl ether were put into a dropping funnel, and the mixture was cooled in an ice-water bath and added dropwise over 1 hour and 18 minutes while maintaining the reaction solution at about 30 ° C. . After the addition, the mixture was further stirred for 5 minutes. The reaction mixture was transferred to a washing tank, washed twice with 300 ml of a 3 wt% aqueous sodium hydroxide solution, and further washed three times with 300 ml of water. The solvent and unreacted raw materials were removed using a rotary evaporator under reduced pressure to obtain 1,347 g of a crude product.
In a 2-liter autoclave made of SUS-316L containing a catalyst and prepared in Preparation Example 1, 1,000 g of the crude product was put. Hydrogen is introduced into the autoclave, and hydrogen pressure is 10 kg / cm. 2 After stirring for about 30 seconds, the pressure was released. Hydrogen was introduced again into the autoclave, and the hydrogen pressure was 10 kg / cm. 2 After stirring for about 30 seconds, the pressure was released. Hydrogen pressure 35kg / cm 2 The temperature was raised to 140 ° C. in 30 minutes while stirring, and the reaction was further performed at 140 ° C. for 2 hours. After completion of the reaction, the resultant was cooled to room temperature and reduced to normal pressure. After adding and diluting 500 ml of hexane, filtration was performed using a filter paper. It was transferred to a 3 liter washing tank, washed three times with 300 ml of a 3 wt% aqueous sodium hydroxide solution, and then washed five times with 300 ml of distilled water. Hexane, water and the like were removed under reduced pressure using a rotary evaporator. The yield was 845 g. As a result of NMR and IR measurements, one of the terminal structures of the polymer was (A) or (D), the other was mostly (B) or (E), and a small amount of (C) was contained.
[0056]
Production Example 7
A 5-liter glass flask equipped with a dropping funnel, a condenser, and a stirrer was charged with 450 g of toluene, 159 g (1.35 mol) of acetaldehyde diethyl acetal, and 3.0 g of a boron trifluoride diethyl ether complex. 400 g (4.0 mol) of isobutyl vinyl ether and 767 g (10.65 mol) of ethyl vinyl ether were put into the dropping funnel, and the mixture was cooled in an ice-water bath and added dropwise over 1 hour and 35 minutes while maintaining the reaction solution at about 27 ° C. After the addition, the mixture was further stirred for 5 minutes. The reaction mixture was transferred to a washing tank, washed twice with 300 ml of a 3 wt% aqueous sodium hydroxide solution, and further washed three times with 300 ml of water. The solvent and unreacted raw materials were removed using a rotary evaporator under reduced pressure to obtain 1,287 g of a crude product.
In a 2-liter autoclave made of SUS-316L containing a catalyst and prepared in Preparation Example 1, 1,000 g of the crude product was put. Hydrogen is introduced into the autoclave, and hydrogen pressure is 10 kg / cm. 2 After stirring for about 30 seconds, the pressure was released. Hydrogen was introduced again into the autoclave, and the hydrogen pressure was 10 kg / cm. 2 After stirring for about 30 seconds, the pressure was released. Hydrogen pressure 35kg / cm 2 The temperature was raised to 140 ° C. in 30 minutes while stirring, and the reaction was further performed at 140 ° C. for 2 hours. After completion of the reaction, the resultant was cooled to room temperature and reduced to normal pressure. After adding and diluting 500 ml of hexane, filtration was performed using a filter paper. It was transferred to a 3 liter washing tank, washed three times with 300 ml of a 3 wt% aqueous sodium hydroxide solution, and then washed five times with 300 ml of distilled water. Hexane, water and the like were removed under reduced pressure using a rotary evaporator. The yield was 902 g. As a result of NMR and IR measurements, one of the terminal structures of the polymer was (A) or (D), the other was mostly (B) or (E), and a small amount of (C) was contained.
[0057]
Production Example 8
A 5-liter glass flask equipped with a dropping funnel, a condenser, and a stirrer was charged with 400 g of toluene, 140 g (1.2 mol) of acetaldehyde diethyl acetal, and 2.5 g of boron trifluoride diethyl ether complex. 750 g (7.5 mol) of isobutyl vinyl ether and 454 g (6.3 mol) of ethyl vinyl ether were put into the dropping funnel, and the mixture was cooled in an ice-water bath and added dropwise over 1 hour and 39 minutes while maintaining the reaction solution at about 28 ° C. After completion of the dropwise addition, the mixture was stirred for 5 minutes. The reaction mixture was transferred to a washing tank, washed twice with 300 ml of a 3 wt% aqueous sodium hydroxide solution, and further washed three times with 300 ml of water. Using a rotary evaporator, the solvent and unreacted raw materials were removed under reduced pressure to obtain 1,322 g of a crude product.
In a 2-liter autoclave made of SUS-316L containing a catalyst and prepared in Preparation Example 1, 1,000 g of the crude product was put. Hydrogen is introduced into the autoclave, and hydrogen pressure is 10 kg / cm. 2 After stirring for about 30 seconds, the pressure was released. Hydrogen was introduced again into the autoclave, and the hydrogen pressure was 10 kg / cm. 2 After stirring for about 30 seconds, the pressure was released. Hydrogen pressure 35kg / cm 2 The temperature was raised to 140 ° C. in 30 minutes while stirring, and the reaction was further performed at 140 ° C. for 2 hours. After completion of the reaction, the resultant was cooled to room temperature and reduced to normal pressure. After adding and diluting 500 ml of hexane, filtration was performed using a filter paper. It was transferred to a 3 liter washing tank, washed three times with 300 ml of a 3 wt% aqueous sodium hydroxide solution, and then washed five times with 300 ml of distilled water. Hexane, water and the like were removed under reduced pressure using a rotary evaporator. The yield was 878 g. As a result of NMR and IR measurements, one of the terminal structures of the polymer was (A) or (D), the other was mostly (B) or (E), and a small amount of (C) was contained.
[0058]
Production Example 9
A 5-liter glass flask equipped with a dropping funnel, a condenser, and a stirrer was charged with 450 g of toluene, 198 g (1.68 mol) of acetaldehyde diethyl acetal, and 2.8 g of a boron trifluoride diethyl ether complex. 1,050 g (10.5 mol) of isobutyl vinyl ether and 131 g (1.82 mol) of ethyl vinyl ether were put into the dropping funnel, and the mixture was cooled in an ice-water bath and added dropwise over 1 hour and 14 minutes while keeping the reaction solution at about 30 ° C. After completion of the dropwise addition, the mixture was further stirred for 5 minutes. The reaction mixture was transferred to a washing tank, washed twice with 300 ml of a 3 wt% aqueous sodium hydroxide solution, and further washed three times with 300 ml of water. The solvent and unreacted raw materials were removed under reduced pressure using a rotary evaporator to obtain 1,347 g of a crude product.
In a 2-liter autoclave made of SUS-316L containing a catalyst and prepared in Preparation Example 1, 1,000 g of the crude product was put. Hydrogen is introduced into the autoclave, and hydrogen pressure is 10 kg / cm. 2 After stirring for about 30 seconds, the pressure was released. Hydrogen was introduced again into the autoclave, and the hydrogen pressure was 10 kg / cm. 2 After stirring for about 30 seconds, the pressure was released. Hydrogen pressure 35kg / cm 2 The temperature was raised to 140 ° C. in 30 minutes while stirring, and the reaction was further performed at 140 ° C. for 2 hours. After completion of the reaction, the mixture was cooled to room temperature and reduced to normal pressure. After diluting with 500 ml of hexane, filtration was performed using a filter paper. It was transferred to a 3 liter washing tank, washed three times with 300 ml of a 3 wt% aqueous sodium hydroxide solution, and then washed five times with 300 ml of distilled water. Hexane, water and the like were removed under reduced pressure using a rotary evaporator. The yield was 847 g. As a result of NMR and IR measurements, one of the terminal structures of the polymer was (A) or (D), the other was mostly (B) or (E), and a small amount of (C) was contained.
[0059]
Production Example 10
A 5-liter glass flask equipped with a dropping funnel, a condenser, and a stirrer was charged with 450 g of toluene, 182 g (1.4 mol) of 2-ethylhexanol, and 2.8 g of a boron trifluoride diethyl ether complex. 1,008 g (14.0 mol) of ethyl vinyl ether was put into the dropping funnel, cooled in an ice-water bath, and added dropwise over 1 hour and 30 minutes while keeping the reaction solution at about 25 ° C. After completion of the dropwise addition, the mixture was further stirred for 5 minutes. The reaction mixture was transferred to a washing tank, washed twice with 300 ml of a 3 wt% aqueous sodium hydroxide solution, and further washed three times with 300 ml of water. Using a rotary evaporator, the solvent and unreacted raw materials were removed under reduced pressure to obtain 1,143 g of a crude product.
The crude product (1000 g) was placed in the SUS-316L 2-liter autoclave containing the catalyst prepared in Preparation Example 1. Hydrogen is introduced into the autoclave, and hydrogen pressure is 10 kg / cm. 2 After stirring for about 30 seconds, the pressure was released. Hydrogen was introduced again into the autoclave, and the hydrogen pressure was 10 kg / cm. 2 After stirring for about 30 seconds, the pressure was released. Hydrogen pressure 35kg / cm 2 The temperature was raised to 140 ° C. in 30 minutes with stirring, and further reacted at 140 ° C. for 2 hours. After completion of the reaction, the resultant was cooled to room temperature and reduced to normal pressure. After diluting with 500 ml of hexane, filtration was performed using a filter paper. It was transferred to a 3 liter washing tank, washed three times with 300 ml of a 3 wt% aqueous sodium hydroxide solution, and then washed five times with 300 ml of distilled water. Hexane, water and the like were removed under reduced pressure using a rotary evaporator. The yield was 867 g. As a result of NMR and IR measurements, one of the terminal structures of the polymer was (D) or (F), the other was mostly (E) or (G), and a small amount of (C) was contained.
[0060]
Embedded image
Figure 0003583175
[0061]
Production Example 11
A 5-liter glass flask equipped with a dropping funnel, a condenser, and a stirrer was charged with 450 g of toluene, 202 g (1.4 mol) of isononyl alcohol, and 2.5 g of boron trifluoride diethyl ether complex. 1,008 g (14.0 mol) of ethyl vinyl ether was put into the dropping funnel, and the mixture was cooled in an ice water bath, and the reaction solution was added dropwise over 1 hour and 38 minutes while maintaining the reaction solution at about 25 ° C. After completion of the dropwise addition, the mixture was further stirred for 5 minutes. The reaction mixture was transferred to a washing tank, washed twice with 300 ml of a 3 wt% aqueous sodium hydroxide solution, and further washed three times with 300 ml of water. The solvent and unreacted raw materials were removed using a rotary evaporator under reduced pressure to obtain 1,154 g of a crude product.
In a 2-liter autoclave made of SUS-316L containing a catalyst and prepared in Preparation Example 1, 1,000 g of the crude product was put. Hydrogen is introduced into the autoclave, and hydrogen pressure is 10 kg / cm. 2 After stirring for about 30 seconds, the pressure was released. Hydrogen was introduced again into the autoclave, and the hydrogen pressure was 10 kg / cm. 2 After stirring for about 30 seconds, the pressure was released. Hydrogen pressure 35kg / cm 2 The temperature was raised to 140 ° C. in 30 minutes with stirring, and further reacted at 140 ° C. for 2 hours. After completion of the reaction, the resultant was cooled to room temperature and reduced to normal pressure. After diluting with 300 ml of hexane, the mixture was filtered using filter paper. It was transferred to a 3 liter washing tank and washed three times with 500 ml of a 3 wt% aqueous sodium hydroxide solution, and then washed five times with 300 ml of distilled water. Hexane, water and the like were removed under reduced pressure using a rotary evaporator. The yield was 880 g. As a result of NMR and IR measurements, one of the terminal structures of the polymer was (D) or (H), the other was mostly (E) or (I), and a small amount of (C) was contained.
[0062]
Embedded image
Figure 0003583175
[0063]
Production Example 12
400 g of toluene, 57.6 g (1.8 mol) of methanol, and 2.5 g of boron trifluoride diethyl ether complex were placed in a 5-liter glass flask equipped with a dropping funnel, a condenser, and a stirrer. 1,200 g (12.0 mol) of isobutyl vinyl ether was put into the dropping funnel, and the mixture was cooled in an ice water bath, and the reaction solution was added dropwise over 1 hour and 23 minutes while maintaining the reaction solution at about 30 ° C. After completion of the dropwise addition, the mixture was further stirred for 5 minutes. The reaction mixture was transferred to a washing tank, washed twice with 300 ml of a 3 wt% aqueous sodium hydroxide solution, and further washed three times with 300 ml of water. The solvent and unreacted raw materials were removed under reduced pressure using a rotary evaporator to obtain 1,236 g of a crude product.
In a 2-liter autoclave made of SUS-316L containing a catalyst and prepared in Preparation Example 1, 1,000 g of the crude product was put. Hydrogen is introduced into the autoclave, and hydrogen pressure is 10 kg / cm. 2 After stirring for about 30 seconds, the pressure was released. Hydrogen was introduced again into the autoclave, and the hydrogen pressure was 10 kg / cm. 2 After stirring for about 30 seconds, the pressure was released. Hydrogen pressure 35kg / cm 2 The temperature was raised to 140 ° C. in 30 minutes with stirring, and further reacted at 140 ° C. for 2 hours. After completion of the reaction, the resultant was cooled to room temperature and reduced to normal pressure. After adding and diluting 500 ml of hexane, filtration was performed using a filter paper. It was transferred to a 3 liter washing tank, washed three times with 300 ml of a 3 wt% aqueous sodium hydroxide solution, and then washed five times with 300 ml of distilled water. Hexane, water and the like were removed under reduced pressure using a rotary evaporator. The yield was 820 g. As a result of NMR and IR measurements, one of the terminal structures of the polymer was (A) or (J), the other was mostly (B) or (K), and a small amount of (C) was contained.
[0064]
Embedded image
Figure 0003583175
[0065]
Production Example 13
400 g of toluene, 136.8 g (1.8 mol) of 2-methoxyethanol, and 3.0 g of boron trifluoride diethyl ether complex were placed in a 5-liter glass flask equipped with a dropping funnel, a cooling tube, and a stirrer. 1,200 g (12.0 mol) of isobutyl vinyl ether was put into the dropping funnel, and the mixture was cooled in an ice water bath, and the reaction solution was added dropwise over 1 hour and 23 minutes while maintaining the reaction solution at about 30 ° C. After completion of the dropwise addition, the mixture was further stirred for 5 minutes. The reaction mixture was transferred to a washing tank, washed twice with 300 ml of a 3 wt% aqueous sodium hydroxide solution, and further washed three times with 300 ml of water. Using a rotary evaporator, the solvent and unreacted raw materials were removed under reduced pressure to obtain 1,315 g of a crude product.
In a 2-liter autoclave made of SUS-316L containing a catalyst and prepared in Preparation Example 1, 1,000 g of the crude product was put. Hydrogen is introduced into the autoclave, and hydrogen pressure is 10 kg / cm. 2 After stirring for about 30 seconds, the pressure was released. Hydrogen was introduced again into the autoclave, and the hydrogen pressure was 10 kg / cm. 2 After stirring for about 30 seconds, the pressure was released. Hydrogen pressure 35kg / cm 2 The temperature was raised to 140 ° C. in 30 minutes with stirring, and further reacted at 140 ° C. for 2 hours. After completion of the reaction, the resultant was cooled to room temperature and reduced to normal pressure. After adding and diluting 500 ml of hexane, filtration was performed using a filter paper. It was transferred to a 3 liter washing tank, washed three times with 300 ml of a 3 wt% aqueous sodium hydroxide solution, and then washed five times with 300 ml of distilled water. Hexane, water and the like were removed under reduced pressure using a rotary evaporator. The yield was 818 g. As a result of NMR and IR measurement, one of the terminal structures of the polymer was (A) or (L), the other was mostly (B) or (M), and a small amount of (C) was contained.
[0066]
Embedded image
Figure 0003583175
[0067]
Production Example 14 (Comparative Production Example 1)
In a 5-liter glass flask equipped with a dropping funnel, a cooling tube, and a stirrer, 1,000 g of toluene, 195 g (4.24 mol) of ethanol, and 5.0 g of boron trifluoride diethyl ether complex were placed. 3,005 g (41.7 mol) of ethyl vinyl ether was put into the dropping funnel, cooled in an ice water bath, and the reaction solution was added dropwise over 3 hours and 30 minutes while maintaining the reaction solution at about 25 ° C. After completion of the dropwise addition, the mixture was further stirred for 5 minutes. The reaction mixture was transferred to a washing tank and washed three times with 1,000 ml of a 3 wt% aqueous sodium hydroxide solution, and further washed three times with 1,000 ml of water. The solvent and unreacted raw materials were removed under reduced pressure using a rotary evaporator to obtain 3,041 g of a crude product.
In a 2-liter autoclave made of SUS-316L containing a catalyst and prepared in Preparation Example 1, 1,000 g of the crude product was put. Hydrogen is introduced into the autoclave, and hydrogen pressure is 10 kg / cm. 2 After stirring for about 30 seconds, the pressure was released. Hydrogen was introduced again into the autoclave, and the hydrogen pressure was 10 kg / cm. 2 After stirring for about 30 seconds, the pressure was released. Hydrogen pressure 35kg / cm 2 The temperature was raised to 140 ° C. in 30 minutes with stirring, and further reacted at 140 ° C. for 2 hours. After completion of the reaction, the resultant was cooled to room temperature and reduced to normal pressure. After adding and diluting 500 ml of hexane, filtration was performed using a filter paper. It was transferred to a 3 liter washing tank and washed three times with 500 ml of a 3 wt% sodium hydroxide aqueous solution, and then washed three times with 500 ml of distilled water. Hexane, water and the like were removed under reduced pressure using a rotary evaporator. The yield was 870 g. As a result of NMR and IR measurements, one of the terminal structures of the polymer was (D), the other was mostly (E), and a small amount of (C) was contained.
[0068]
Production Example 15 (Comparative Production Example 2)
To a 5-liter glass flask equipped with a Dean-Stark tube, a cooling tube and a stirrer were added 1091 g of pentaerythritol and 3,909 g of n-hexanoic acid, and the mixture was heated while stirring. When the temperature of the solution reached 200 ° C., the temperature was maintained for 3 hours, and further raised to 220 ° C., and then maintained for 10 hours. During this time, the reaction started and water was generated. After the completion of the reaction, the temperature of the reaction solution was lowered to 150 ° C., and most of the unreacted n-hexanoic acid was recovered under reduced pressure. The remaining liquid was transferred to a washing tank, dissolved in 2 liters of hexane, washed three times with 1,500 ml of a 3 wt% aqueous sodium hydroxide solution, and further washed three times with 1,500 ml of water. Further, 800 g of ion exchange resin was added and stirred for 3 hours. After filtering off the ion-exchange resin, hexane was removed under reduced pressure using a rotary evaporator. The yield of the obtained polyol ester-based lubricating oil was 3,390 g.
[0069]
Production Example 16
600 g of a crude product obtained in the same manner as in Production Example 3 was placed in a 2-liter autoclave made of SUS-316L containing a catalyst prepared in the same manner as in Preparation Example 1 except that zeolite (trade name: HSZ620HOA, manufactured by Tosoh Corporation) was used. Was. Hydrogen is introduced into the autoclave and the hydrogen pressure is 20 kg / cm 2 After stirring for about 30 seconds, the pressure was released. Hydrogen was introduced again into the autoclave, and the hydrogen pressure was 20 kg / cm. 2 After stirring for about 30 seconds, the pressure was released. After performing this operation once more, the hydrogen pressure was increased to 35 kg / cm. 2 The temperature was raised to 150 ° C. in 30 minutes while stirring, and further reacted at 150 ° C. for 2 hours. Reaction occurred during and after the temperature increase, and a decrease in hydrogen pressure was observed. The pressure increase due to the temperature rise and the pressure decrease due to the reaction are reduced and pressurized as appropriate to increase the hydrogen pressure to 35 kg / cm. 2 The reaction was performed as follows. After completion of the reaction, the resultant was cooled to room temperature and reduced to normal pressure. The mixture was allowed to stand for 1 hour to settle the catalyst, and the reaction solution was removed by decantation. The catalyst was washed twice with 100 ml of hexane, the washing solution was combined with the reaction solution, and filtered using filter paper. It was transferred to a washing tank and washed three times with 500 ml of a 5% aqueous sodium hydroxide solution, and then washed five times with 500 ml of distilled water. Using a rotary evaporator, hexane, water and the like were removed under reduced pressure to obtain 497 g of a polyvinyl ether compound.
[0070]
Production Example 17
Except that the reaction time was changed to 5 hours, the same operation as in Production Example 16 was performed to obtain 496 g of a polyvinyl ether compound.
Production Example 18
497 g of a polyvinyl ether compound was obtained in the same manner as in Production Example 16 except that HSZ630HOA (manufactured by Tosoh Corporation) was used as the zeolite.
[0071]
Example 1
For the lubricating oil of the present invention obtained in Production Example 1, kinematic viscosity, compatibility with Freon 134a, volume resistivity, hydrolysis stability, and hygroscopicity were measured, and elemental analysis was performed. Table 1 shows the obtained results.
(1) Kinematic viscosity
It measured using the glass capillary viscometer according to JISK2283-1983.
(2) Compatibility test
A predetermined amount of a sample was added to Freon 134a (1,1,1,2-tetrafluoroethane) to a pressure-resistant glass ampule, and this was connected to a vacuum pipe and Freon 134a gas pipe. After the ampoule was degassed in vacuum at room temperature, it was cooled with liquid nitrogen to collect a predetermined amount of Freon 134a. Next, the ampoule is sealed, and the compatibility on the low temperature side is gradually cooled from room temperature to −50 ° C. in a thermostat, while the compatibility on the high temperature side is gradually heated from room temperature to + 90 ° C. Thus, the temperature at which phase separation started was measured. The lower the phase separation temperature on the low temperature side, and the higher the phase separation temperature on the high temperature side, the better. Freon 32 and Freon 125 were measured in the same manner as Freon 134a. In addition, about Freon 32, only the low temperature side was measured, and about Freon 125, the range of -50 degreeC to +50 degreeC was measured. Further, R-407c was sealed in an ampoule in a liquid state at room temperature, and the range of -40 ° C to + 40 ° C was measured.
(3) Volume resistivity
The sample was dried at 100 ° C. for 1 hour under reduced pressure (0.3 to 0.8 mmHg), and then sealed in a liquid cell for measuring volume resistivity in a constant temperature bath at 80 ° C. After being kept in a constant temperature bath at 80 ° C. for 40 minutes, the measurement was performed at an applied voltage of 250 V using an R8340 super-insulation meter manufactured by Advantest.
(4) Hydrolytic stability
75 g of a sample, 25 g of water and copper (13 mm × 50 mm) were placed in a pressure-resistant bottle having a capacity of 250 ml, and the inside of the container was set to a nitrogen atmosphere. It was kept at a temperature of 102 ° C. for 192 hours in a rotary thermostat. After the test, the appearance of the sample oil, the total acid value and the state of the copper pieces were observed. In addition, all the acid values before the test of the sample oil were all 0.01 mgKOH / g.
(5) hygroscopicity
20 g of the sample oil was placed in a 50 cc sample bottle made of glass, placed in a desiccator in which humidity and temperature were controlled to be constant, and the weight change was measured. The increased weight corresponds to the moisture absorbed. The temperature was controlled at 30 ° C. by placing the desiccator in a thermostat. Humidity was controlled at 81% by adding ammonium sulfate saturated water and ammonium sulfate powder to the bottom of the desiccator.
(6) Elemental analysis
It was measured with a Perkin Elmer 2400-CHN device.
[0072]
Examples 2 to 16 and Comparative Examples 1 and 2
For the lubricating oils obtained in Production Examples 2 to 15, kinematic viscosity, compatibility with Freon, volume resistivity, hydrolysis stability, and hygroscopicity were measured and elemental analysis was performed in the same manner as in Example 1. . Further, a shield tube test was performed on the lubricating oils obtained in Production Example 3 and 16 to 18 by the following method. Table 1 shows the obtained results.
Shield tube test
A glass tube is charged with catalysts: Fe, Cu, Al, and further filled with R134a / oil / air / water = 1 g / 4 cc / 50 torr / 0.04 cc and sealed. After holding at 175 ° C. for 14 days, oil appearance, light transmittance, catalyst appearance, total acid value, and presence or absence of sludge were evaluated. The light transmittance measured the transmittance by visible light (Reference: New oil of Production Example 3). After the shield tube test, the presence or absence of sludge was maintained at −40 ° C. for 1 hour, and the presence or absence of sludge in oil was examined.
[0073]
[Table 1]
Figure 0003583175
[0074]
[Table 2]
Figure 0003583175
[0075]
[Table 3]
Figure 0003583175
[0076]
[Table 4]
Figure 0003583175
[0077]
[Table 5]
Figure 0003583175
[0078]
[Table 6]
Figure 0003583175
[0079]
[Table 7]
Figure 0003583175
[0080]
[Table 8]
Figure 0003583175
[0081]
[Table 9]
Figure 0003583175
[0082]
[Table 10]
Figure 0003583175
[0083]
【The invention's effect】
The lubricating oil of the present invention can be used with a hydrogen-containing Freon compound such as Freon 134a, Freon 32, Freon 125 or the like, which can be a substitute for Freon 12 or other Freon compounds which are difficult to decompose, which are particularly problematic due to environmental pollution. Compatibility is good over the entire operating temperature range, low in hygroscopicity, excellent in stability and lubricating performance, and has a volume resistivity at 80 ° C. of 10 12 It is Ω · cm or more and is used as a lubricating oil for compression refrigerators.

Claims (17)

一般式(I)
Figure 0003583175
〔式中、R,R及びRはそれぞれ水素原子又は炭素数1〜8の炭化水素基を示し、それらはたがいに同一でも異なっていてもよく、Rは炭素数1〜10の二価の炭化水素基又は炭素数2〜20の二価のエーテル結合酸素含有炭化水素基、Rは炭素数1〜20の炭化水素基、mはその平均値が0〜10の数を示し、R〜Rは構成単位毎に同一であってもそれぞれ異なっていてもよく、またROが複数ある場合には、複数のROは同一でも異なっていてもよい。〕
で表される構成単位を有し、かつ炭素/酸素モル比が4.2〜7.0であるポリビニルエーテル系化合物を主成分とする圧縮型冷凍機用潤滑油。
General formula (I)
Figure 0003583175
[Wherein, R 1 , R 2 and R 3 each represent a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, which may be the same or different, and R 4 has 1 to 10 carbon atoms. A divalent hydrocarbon group or a divalent ether-bonded oxygen-containing hydrocarbon group having 2 to 20 carbon atoms, R 5 is a hydrocarbon group having 1 to 20 carbon atoms, and m is a number having an average value of 0 to 10; , when R 1 to R 5 may be the same or different may be the same for each structural unit, also with multiple R 4 O is a plurality of R 4 O may be the same or different. ]
A lubricating oil for a compression refrigerator mainly comprising a polyvinyl ether compound having a structural unit represented by the following formula and having a carbon / oxygen molar ratio of 4.2 to 7.0.
ポリビニルエーテル系化合物がアセタール基及びアルデヒド基からなる基の少なくとも一種を当量として15ミリ当量/kg以下含むことを特徴とする請求項1記載の潤滑油。2. The lubricating oil according to claim 1, wherein the polyvinyl ether compound contains at least one of an acetal group and an aldehyde group in an amount equivalent to 15 meq / kg or less. (a)請求項1記載の一般式(I)で表される構成単位と、(b)一般式(II)
Figure 0003583175
〔式中、R〜Rは、それぞれ水素原子又は炭素数1〜20の炭化水素基を示し、それらはたがいに同一であっても異なっていてもよく、またR〜Rは構成単位毎に同一であってもそれぞれ異なっていてもよい。〕
で表される構成単位とを有し、かつ炭素/酸素モル比が4.2〜7.0 であるブロック又はランダム共重合体からなるポリビニルエーテル系化合物を主成分とする圧縮型冷凍機用潤滑油。
(A) a structural unit represented by the general formula (I) according to claim 1, and (b) a general formula (II)
Figure 0003583175
[Wherein, R 6 to R 9 each represent a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, which may be the same or different, and R 6 to R 9 each have a structure It may be the same or different for each unit. ]
A lubricating oil for a compression refrigerating machine comprising a polyvinyl ether-based compound comprising a block or random copolymer having a constitutional unit represented by the following formula and having a carbon / oxygen molar ratio of 4.2 to 7.0.
(A)請求項1記載の一般式(I)で表される構成単位を有し、かつ炭素/酸素モル比が4.2〜7.0であるポリビニルエーテル系化合物、及び(B)(a)請求項1記載の一般式(I)で表される構成単位と(b)請求項記載の一般式(II)で表される構成単位とを有し、かつ炭素/酸素モル比が4.2〜7.0であるブロック又はランダム共重合体からなるポリビニルエーテル系化合物の混合物を主成分とする圧縮型冷凍機用潤滑油。(A) a polyvinyl ether compound having a structural unit represented by the general formula (I) according to claim 1 and having a carbon / oxygen molar ratio of 4.2 to 7.0, and (B) (a) ) Having a structural unit represented by the general formula (I) according to claim 1 and (b) a structural unit represented by the general formula (II) according to claim 3 , and having a carbon / oxygen molar ratio of 4 Lubricating oil for a compression refrigerator mainly comprising a mixture of polyvinyl ether compounds comprising a block or random copolymer having a molecular weight of 0.2 to 7.0. ポリビニルエーテル系化合物が少なくとも、一般式(I)におけるRが炭素数1〜3の炭化水素基である構成単位及び該Rが炭素数3〜20の炭化水素基である構成単位を有する(但し、上記2種の構成単位のRは同一ではない)ことを特徴とする請求項1記載の潤滑油。The polyvinyl ether compound has at least a structural unit in which R 5 in the general formula (I) is a hydrocarbon group having 1 to 3 carbon atoms and a structural unit in which R 5 is a hydrocarbon group having 3 to 20 carbon atoms ( However, R 5 of the two structural units are not the same) the lubricating oil of claim 1, wherein a. ポリビニルエーテル系化合物がアセタール基及びアルデヒド基からなる基の少なくとも一種を当量として15ミリ当量/kg以下含むことを特徴とする請求項記載の潤滑油。The lubricating oil according to claim 5, wherein the polyvinyl ether-based compound contains at least one of a group consisting of an acetal group and an aldehyde group in an amount equivalent to 15 meq / kg or less. ポリビニルエーテル系化合物が、その一つの末端が一般式(III) 又は(IV)
Figure 0003583175
〔式中、R11,R21及びR31は、それぞれ水素原子又は炭素数1〜8の炭化水素基を示し、R11,R21及びR31はたがいに同一でも異なっていてもよく、R61,R71,R81及びR91は、それぞれ水素原子又は炭素数1〜20の炭化水素基を示し、R61,R71,R81及びR91はたがいに同一でも異なっていてもよい。R41は炭素数1〜10の二価の炭化水素基又は炭素数2〜20の二価のエーテル結合酸素含有炭化水素基、R51は炭素数1〜20の炭化水素基、nはその平均値が0〜10の数を示し、R41Oが複数ある場合には、複数のR41Oは同一でも異なっていてもよい。〕
で表され、かつ残りの末端が一般式(V)又は(VI)
Figure 0003583175
(式中、R12,R22及びR32は、それぞれ水素原子又は炭素数1〜8の炭化水素基を示し、R12,R22及びR32はたがいに同一でも異なっていてもよく、R62,R72,R82及びR92は、それぞれ水素原子又は炭素数1〜20の炭化水素基を示し、R62,R72,R82及びR92はたがいに同一でも異なっていてもよい。R42は炭素数1〜10の二価の炭化水素基又は炭素数2〜20の二価のエーテル結合酸素含有炭化水素基、R52は炭素数1〜20の炭化水素基、pはその平均値が0〜10の数を示し、R42Oが複数ある場合には、複数のR42Oは同一でも異なっていてもよい。〕
で表される構造を有するものである請求項記載の潤滑油。
Polyvinyl ether compound, one end of which is represented by the general formula (III) or (IV)
Figure 0003583175
[Wherein, R 11 , R 21 and R 31 each represent a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, and R 11 , R 21 and R 31 may be the same or different from each other; 61 , R 71 , R 81 and R 91 each represent a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, and R 61 , R 71 , R 81 and R 91 may be the same or different. R 41 is a divalent hydrocarbon group having 1 to 10 carbon atoms or a divalent ether-bonded oxygen-containing hydrocarbon group having 2 to 20 carbon atoms, R 51 is a hydrocarbon group having 1 to 20 carbon atoms, and n is an average thereof. value represents the number of 0, when R 41 O is plural, plural R 41 O may be the same or different. ]
And the remaining terminal is represented by the general formula (V) or (VI)
Figure 0003583175
(Wherein, R 12 , R 22 and R 32 each represent a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, and R 12 , R 22 and R 32 may be the same or different from each other; 62 , R 72 , R 82 and R 92 each represent a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, and R 62 , R 72 , R 82 and R 92 may be the same or different. R 42 is a divalent hydrocarbon group having 1 to 10 carbon atoms or a divalent ether-bonded oxygen-containing hydrocarbon group having 2 to 20 carbon atoms; R 52 is a hydrocarbon group having 1 to 20 carbon atoms; value represents the number of 0, when R 42 O is plural, plural R 42 O may be the same or different.]
The lubricating oil of claim 1, wherein in those having a structure represented by.
温度40℃における動粘度が5〜1,000cStである請求項記載の潤滑油。The lubricating oil of claim 1, wherein kinematic viscosity at 40 ° C. is 5~1,000CSt. 一般式(I)におけるR,R及びRが共に水素原子、mが0〜4の数及びRが炭素数2〜4の二価の炭化水素基である請求項記載の潤滑油。 R 1 in the general formula (I), R 2 and R 3 are both hydrogen atoms, m is the number and R 4 0-4 of claim 1, wherein a divalent hydrocarbon group having 2 to 4 carbon atoms lubricating oil. ポリビニルエーテル系化合物が、その一つの末端が請求項記載の一般式(III)で表され、かつ残りの末端が請求項記載の一般式(V)で表される構造を有し、一般式(I)におけるR,R及びRが共に水素原子、mが0〜4の数及びRが炭素数2〜4の二価の炭化水素基である請求項記載の潤滑油。Polyvinyl ether compound has a structure in which its one end is represented by the general formula of claim 7, wherein (III), and the remaining end is represented by the general formula of claim 7, wherein (V), generally wherein R 1 in (I), R 2 and R 3 are both hydrogen atoms, lubricant m is claim 1, wherein the number and R 4 of 0-4 is a divalent hydrocarbon group having 2 to 4 carbon atoms . ポリビニルエーテル化合物が、その一つの末端が請求項記載の一般式(III)又は(IV)で表され、かつ残りの末端が一般式(VII)
Figure 0003583175
〔式中、R13,R23及びR33は、それぞれ水素原子又は炭素数1〜8の炭化水素基を示し、それらはたがいに同一でも異なっていてもよい。〕
で表される構造を有するものである請求項記載の潤滑油。
The polyvinyl ether compound has one terminal represented by the general formula (III) or (IV) according to claim 7 and the other terminal represented by the general formula (VII)
Figure 0003583175
Wherein R 13 , R 23 and R 33 each represent a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, which may be the same or different. ]
The lubricating oil of claim 1, wherein in those having a structure represented by.
一般式(I)におけるR,R及びRが共に水素原子、mが0〜4及びRが炭素数2〜4の二価の炭化水素基である請求項記載の潤滑油。 R 1, R 2 and R 3 are both hydrogen atoms, m is 0-4 and R 4 is the lubricating oil of claim 1, wherein a divalent hydrocarbon group having 2 to 4 carbon atoms in the general formula (I). ポリビニルエーテル系化合物が、その一つの末端が請求項記載の一般式(III) で表され、かつ残りの末端が請求項11記載の一般式(VII)で表される構造を有し、一般式(I)におけるR,R及びRが共に水素原子、mが0〜4の数及びRが炭素数2〜4の二価の炭化水素基である請求項記載の潤滑油。Polyvinyl ether compound has a structure in which its one end is represented by the general formula of claim 7, wherein (III), and the remaining end is represented by the general formula of claim 11 wherein (VII), General wherein R 1 in (I), R 2 and R 3 are both hydrogen atoms, lubricant m is claim 1, wherein the number and R 4 of 0-4 is a divalent hydrocarbon group having 2 to 4 carbon atoms . 圧縮型冷凍機が、冷媒として水素含有フロンを用いたものである請求項記載の潤滑油。Compression refrigerating machine, the lubricating oil of claim 1, wherein one using a hydrogen-containing chlorofluorocarbon as the refrigerant. 圧縮型冷凍機が、冷媒としてハイドロフルオロカーボンを用いたものである請求項記載の潤滑油。Compression refrigerating machine, according to claim 1 lubricating oils described are those using hydrofluorocarbon as refrigerant. 圧縮型冷凍機が、冷媒としてハイドロクロロフルオロカーボンを用いたものである請求項記載の潤滑油。Compression refrigerating machine, the lubricating oil of claim 1, wherein those with hydrochlorofluorocarbon as the refrigerant. 圧縮型冷凍機が、冷媒としてアンモニアを用いたものである請求項記載の潤滑油。Compression refrigerating machine, the lubricating oil of claim 1, wherein those using ammonia as a refrigerant.
JP28334994A 1993-12-03 1994-11-17 Lubricating oil for compression refrigerators Expired - Lifetime JP3583175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28334994A JP3583175B2 (en) 1993-12-03 1994-11-17 Lubricating oil for compression refrigerators

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP5-303736 1993-12-03
JP30373693 1993-12-03
JP6-280371 1994-11-15
JP28037194 1994-11-15
JP28334994A JP3583175B2 (en) 1993-12-03 1994-11-17 Lubricating oil for compression refrigerators

Publications (2)

Publication Number Publication Date
JPH08193196A JPH08193196A (en) 1996-07-30
JP3583175B2 true JP3583175B2 (en) 2004-10-27

Family

ID=27336730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28334994A Expired - Lifetime JP3583175B2 (en) 1993-12-03 1994-11-17 Lubricating oil for compression refrigerators

Country Status (1)

Country Link
JP (1) JP3583175B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4112645B2 (en) * 1996-02-05 2008-07-02 出光興産株式会社 Lubricating oil for compression type refrigerators
JP4603117B2 (en) * 1999-12-28 2010-12-22 出光興産株式会社 Refrigerating machine oil composition for natural refrigerants
JP4836305B2 (en) * 2000-02-16 2011-12-14 ダイキン工業株式会社 Refrigeration equipment
JP5039251B2 (en) * 2000-08-23 2012-10-03 出光興産株式会社 Lubricating oil composition for refrigerator and working fluid composition for refrigerator using the same
CN101248163B (en) * 2005-08-31 2013-02-06 出光兴产株式会社 Refrigerating machine oil composition
JP5357426B2 (en) * 2005-09-07 2013-12-04 出光興産株式会社 Lubricating oil for refrigerating machine, refrigeration equipment and mixed liquid
MY149404A (en) * 2005-10-17 2013-08-30 Idemitsu Kosan Co Polyvinyl ether compound
EP2075317B1 (en) * 2006-09-29 2015-11-04 Idemitsu Kosan Co., Ltd. Lubricant for compression refrigerating machine
WO2008041508A1 (en) * 2006-09-29 2008-04-10 Idemitsu Kosan Co., Ltd. Lubricant for compression refrigerating machine and refrigerating apparatus using the same
EP2075318B1 (en) * 2006-09-29 2013-06-26 Idemitsu Kosan Co., Ltd. Lubricant for compression refrigerating machine
CN101517051B (en) * 2006-09-29 2014-02-12 出光兴产株式会社 Lubricating oil for compression-type refrigerator and refrigeration device using same
EP2067844A4 (en) * 2006-09-29 2011-05-04 Idemitsu Kosan Co Lubricant for compression refrigerating machine and refrigerating apparatus using the same
EP2071011B1 (en) * 2006-09-29 2014-11-05 Idemitsu Kosan Co., Ltd. Lubricant for compression refrigerating machine
WO2008120536A1 (en) * 2007-03-29 2008-10-09 Nippon Oil Corporation Refrigerator oil composition and working fluid composition for refrigerating machine
JP5290533B2 (en) * 2007-03-29 2013-09-18 Jx日鉱日石エネルギー株式会社 Working fluid composition for refrigerator
JP5241263B2 (en) * 2008-02-15 2013-07-17 出光興産株式会社 Lubricating oil composition for refrigerator
JP6122861B2 (en) * 2012-09-28 2017-04-26 出光興産株式会社 Lubricating oil for compression type refrigerators

Also Published As

Publication number Publication date
JPH08193196A (en) 1996-07-30

Similar Documents

Publication Publication Date Title
JP5302184B2 (en) Lubricating oil for compression type refrigerator and refrigeration apparatus using the same
KR100264536B1 (en) Polyvinyl ethereal compound and its preparation
JP5357426B2 (en) Lubricating oil for refrigerating machine, refrigeration equipment and mixed liquid
JP3173684B2 (en) Lubricating oil for compression refrigerators
JP3583175B2 (en) Lubricating oil for compression refrigerators
KR100405447B1 (en) Lubricants for Compressed Refrigerators
JP5069120B2 (en) Lubricating oil for compression type refrigerators
KR102124305B1 (en) Lubricant for compression type refrigerating machines
JP5379485B2 (en) Lubricating oil for compression type refrigerator and refrigeration apparatus using the same
JP5379486B2 (en) Lubricating oil for compression type refrigerator and refrigeration apparatus using the same
US8894875B2 (en) Lubricant for compression refrigerating machine and refrigerating apparatus using the same
US8916060B2 (en) Lubricant for compression refrigerating machine and refrigerating apparatus using the same
US8409464B2 (en) Lubricant for compression refrigerating machine and refrigerating apparatus using the same
US5518643A (en) Lubricating oil containing a polyvinyl ether compound for compression-type refrigerators
JPWO2008041550A1 (en) Lubricating oil for compression type refrigerator and refrigeration apparatus using the same
JPH04275397A (en) Lubricating oil for compression-type refrigerating machine and production thereof
KR100264423B1 (en) Lubricating oil for compression-type refrigerators comprising an improved polyvinyl ether compound

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040728

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070806

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 9

EXPY Cancellation because of completion of term