JP3581918B2 - Nozzle touch mechanism of injection molding machine - Google Patents

Nozzle touch mechanism of injection molding machine Download PDF

Info

Publication number
JP3581918B2
JP3581918B2 JP27421998A JP27421998A JP3581918B2 JP 3581918 B2 JP3581918 B2 JP 3581918B2 JP 27421998 A JP27421998 A JP 27421998A JP 27421998 A JP27421998 A JP 27421998A JP 3581918 B2 JP3581918 B2 JP 3581918B2
Authority
JP
Japan
Prior art keywords
nut
bearing
ball
sleeve
heating cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27421998A
Other languages
Japanese (ja)
Other versions
JP2000061984A (en
Inventor
光造 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Machinery and Metal Co Ltd
Original Assignee
Toyo Machinery and Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Machinery and Metal Co Ltd filed Critical Toyo Machinery and Metal Co Ltd
Priority to JP27421998A priority Critical patent/JP3581918B2/en
Publication of JP2000061984A publication Critical patent/JP2000061984A/en
Application granted granted Critical
Publication of JP3581918B2 publication Critical patent/JP3581918B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/1777Nozzle touch mechanism

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Transmission Devices (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、射出成形機のノズルタツチ機構に関し、詳細には、ノズルの固定金型への接触・離間をボールねじを利用して行うようになった射出成形機のノズルタツチ機構の改良に関する。
【0002】
【従来の技術】
射出成形機のノズルタツチ機構において、型締装置の固定プラテンと射出装置の加熱筒ハウジングとをボールねじで駆動連結し、ボールねじを駆動機構で駆動することにより、射出時には加熱筒ハウジングを前進させてノズルを固定金型に押圧接触し、射出後には加熱筒ハウジングを後退させてノズルを固定金型から離間させるようになったものが各種知られている。ところで、ボールねじは、ボールねじ軸とボールナツトとからなり、一方が固定プラテンに他方が加熱筒ハウジングに軸方向に移動しないように取付けられるとともに、一方が固定され他方が回転自在に設けられるが、ボールナツトが加熱筒ハウジングに回転自在に取付けられたものとして図4〜6に示すものが提案されている。
【0003】
図4〜6に示すノズルタツチ機構は、インラインスクリユ式の射出成形機に適用されたもので、前端が固定プラテン51に固定され、加熱筒ハウジング52に形成されたナツト取付穴56に挿通されたボールねじ軸59と、このボールねじ軸59に螺合しナツト取付穴56に回転自在に取付けられたボールナツト60とからなる2組のボールねじ58を備え、各ボールナツト60を駆動機構65で回転駆動することにより加熱筒ハウジング52を進退させ、加熱筒ハウジング52に取付けられた加熱筒53のノズル54を固定金型(図示せず)に接触・離間させるようになっている。このノズルタツチ機構において、各ボールナツト60は前端にフランジ部61を有し、後端側に締付ナツト62を係合するようになっており、2個の円錐ころ軸受63,64を介してナツト取付穴56に装着されている。すなわち、ナツト取付穴56の中間には図6に示すように軸受用突起57が設けられており、前方の円錐ころ軸受63がボールナツトのフランジ部61と軸受用突起57の前面とで挟持され、後方の円錐ころ軸受64が軸受用突起57の後面とボールナツトの締付ナツト62とで挟持されている。これにより、各ボールナツト60が回転自在で軸方向にがたつかないように加熱筒ハウジング52に取付けられている。
【0004】
駆動機構65は、減速機付モータ(ギアードモータ)66の駆動軸67の回転を駆動ギア68を介して一方の被動ギア69に伝達し、アイドラギア70を介して他方の被動ギア69に伝達し、各被動ギア69を同一回転させるようになっている。各被動ギア69は、各ボールナツト60の後端面にボルト結合され、各ボールナツト60を一体に回転させるようになっている。アイドラギア70は、図5に示すように外周歯を有する環状ギアで、各被動ギア69に噛合するように内周の上下2個所が鋳物製の支持金71で支持されている。なお、図4〜6における符号55は、加熱筒53内に回転かつ進退自在に設けられたスクリユー、72はノズルタツチ位置検知器である。ノズルタツチ位置検知器72は、駆動軸67に連結軸73と補助軸74を介して取付けられたスリツト板75と、加熱筒ハウジング52の前方に突出して設けられたフオトセンサ76とからなり、駆動軸67の回転数を計測して加熱筒ハウジング52の移動量を測定するようになっている。前方とは、図4における加熱筒ハウジング52の左方向をいう。
【0005】
【発明が解決しようとする課題】
前記従来のノズルタツチ機構については、ボールナツト60の取付作業に熟練を要するという問題点がある。ボールナツト60を取付ける際、前方の円錐ころ軸受63を加熱筒ハウジング52の前方から、後方の円錐ころ軸受64を後方から挿入し、各円錐ころ軸受63,64をナツト取付穴の軸受用突起57に当接するように装着する。そして、ボールナツト60を加熱筒ハウジング52の前方から各円錐ころ軸受63,64に嵌合し、ボールナツト60の後端側に締付ナツト62を螺合して締付けることにより通常行なわれる。ところで、ボールナツト60は、軸方向にがたつきがないように加熱筒ハウジング52に取付けられていることが必要であり、そのため各円錐ころ軸受63,64が軸方向にがたつかないように均等な締付力で取付けられていなければならない。また、各円すいころ軸受63,64は、締付ナツト62の操作により各インナーレースが移動され、この移動により各ころを介してアウターレースが軸受用突起57に押付けられ、これにより締付状態に取付けられる。ところが、各円錐ころ軸受63,64のインナーレース、アウターレース等が同一条件で移動するとは限らないため、各種の調整操作をしながら締付ナツト62の締付トルクを調整せねばならない。しかも、ボールナツト60及び各円錐ころ軸受63,64がナツト取付穴57内に装着され、各円錐ころ軸受63,64の締付状態を目視できない状態で前記各操作をせねばならない。その結果、締付ナツト62の締付トルクの調整作業は作業者の勘に依存せざるを得ず、高度の熟練が要求されるため、だれでもが精度良く取付けることが困難な状況である。
【0006】
また、ボールねじの交換作業が繁雑で長時間を要するという問題点がある。ボールねじ58を取外す際、ボールねじ軸59の前端を固定プラテン51から取外し、ボールナツト60から被動ギア69及び締付ナツト62を取外し、加熱筒ハウジング52の前方からボールナツト60と前方の円錐ころ軸受63を、また後方から後方の円錐ころ軸受64を取外すことにより通常行なわれている。このように、ボールナツト60、締付ナツト62及び円錐ころ軸受63,64をナツト取付穴57内で分解し、しかも異なる方向から取外さねばならないため、取外作業が繁雑になっている。また、ボールねじ60の取付作業は、前記のようにボールナツト60の取付けに高度の熟練を要するとともに、円錐ころ軸受63,64、ボールナツト60、締付ナツト62をナツト取付穴57内で順次組み付けることにより行なわれるため、繁雑になっている。以上のように、ボールねじ58の取付及び取外の各作業において、各構成部品60,62,63,64,69をナット取付穴57内で順次組み付け又は分解せねばならず、ボールねじ58の交換作業が繁雑で長時間を要している。
【0007】
さらに、駆動機構65回りの環境を汚染し、駆動機構65の潤滑油管理が繁雑であるという問題点がある。駆動機構の各被動ギア69間に設けられたアイドラギア70が支持金で案内支持されているが、このアイドラギア70の摩耗やカジリを防止するために支持金71にグリスを塗布することが必要とされている。ところが、このグリスがアイドラギア71に付着し、アイドラギア71の回転で周囲に飛散し、アイドラギア71回りの環境を甚だしく汚染している。また、グリスの飛散による消耗が激しいため、グリスを頻繁にしかも飛散し難いように塗布せねばならず、潤滑油管理が繁雑になっている。
【0008】
本発明は、前記従来の問題点を解消すべくなされたもので、その課題は、ボールねじを熟練を要せず精度良く取付け、しかもボールねじを簡単かつ迅速に交換し得る射出成形機のノズルタツチ機構を提供することにある。また、複数のボールねじを採用するものにあっては、被動ギア間に設置されるアイドラギアを無給油で案内支持し得る射出成形機のノズルタツチ機構を提供することにある。
【0009】
【課題を解決するための手段】
前記課題を解決するために、本発明では、ナツト取付穴を前方が小径部で後方が大径部となる円筒状に形成し、軸受を後端にフランジ部を有し前端側に締付ナツトを係合するようになったスリーブの外周に装着し、締付ナツトとフランジ部とで挟持して取付けるとともに、スリーブが回転自在でスリーブのフランジ部が後方に突出するようにナツト取付穴の大径部の前壁と加熱筒ハウジングの後壁に取付けられた軸受押圧部材とで軸方向に挟持して取付け、ボールナツトをスリーブに一体に取付けるようになっている。これにより、ボールナツトの取付時には、予め軸受をスリーブに一体に組み付け、又はスリーブにさらにボールナツトを一体に組み付けてナツトユニツトとし、このナツトユニツトをナツト取付穴に後方から装着して取付け得る。その際、軸受は、インナーレースがスリーブのフランジ部に締付ナツトで押付けて取付けられ、アウターレースがナツト取付穴の大径部の前壁に軸受押圧部材で押付けて取付けられるため、従来のように予圧設定をする必要がない。ボールナツトの取外時には、軸受とスリーブ又は軸受とスリーブとボールナツトとがナツトユニツトとして一体化されていることから、軸受押圧部材を加熱筒ハウジングから取外すことにより、こられを一緒にナツト取付穴から後方に離脱させ得る。
【0010】
スリーブのフランジ部は、駆動機構の被動ギアが一体に形成された被動ギア兼フランジ部になっていることが好ましい。これにより、スリーブに軸受又はボールナツトを装着することにより、被動ギアを含めてコンパクトに組み付けられたナツトユニツトとし得る。
【0011】
軸受は、スリーブの外周にフランジ部側から順に取付けられた小径の軸受、大径の軸受及び小径の軸受からなり、締付ナツト側の小径の軸受がナツト取付穴の小径部に装着され、大径の軸受がナツト取付穴の大径部に装着され、軸受押圧部材がフランジ部側の小径の軸受の外周に装着されていてもよい。その際、大径の軸受は、アンギユラ玉軸受又は円錐ころ軸受を2個採用し、互いが軸方向に変位しないように逆向に組み合わされていることが好ましく、ボールナツトの前進時には一方の軸受でナツト取付穴の大径部の前壁を押し、後退時には他方の軸受で軸受押圧部材を押すことにより、加熱筒ハウジングをボールナツトと軸方向にずれないように一体に移動することができる。
【0012】
複数のボールねじが採用されたノズルタツチ機構については、被動ギア間に設けられた環状ギアからなるアイドラギアを深溝玉軸受で内周の2個所以上を支持し、アイドラギアをころがり接触により支持し得るようになっている。これにより、グリス等の潤滑剤を必要とせず、アイドラギアの摩耗やカジリ等を防止し得る。
【0013】
【発明の実施の形態】
本発明の実施の形態を図1〜3に基づいて詳細に説明する。図1はインラインスクリユ式の射出成形機に適用されたノズルタツチ機構の概念的な説明図で、ノズルタツチ時における状態を一部切断して示す平面図である。図2は図1のA−A矢視図で、ノズルタツチ機構の駆動系を示す。図3は図1の要部拡大図で、ボールナツトの取付構造を示す。図1〜3において、1は型締装置の固定プラテンで、機台(図示せず)上に固定設置され、図1における左側の面に固定金型(図示せず)が取付けられている。2は射出装置の加熱筒ハウジングで、機台(図示せず)上に固定プラテン1に対向して進退自在に設置されている。3は加熱筒で、先端にノズル4を有し、内部にスクリユ5が回転かつ進退自在に配設されており、先端のノズル4が固定プラテン1に対向するように後端部が加熱筒ハウジング2に挿入して固定保持され、加熱筒ハウジング2と一体に進退するようになっている。なお、図1における加熱筒ハウジング2の左方向が前方である。
【0014】
図1〜3に示すノズルタツチ機構は、固定プラテン1と加熱筒ハウジング2とを2組のボールねじ6で駆動連結し、各ボールねじ6を駆動機構7で駆動するようになっている。各ボールねじ6は、互いに螺合するボールねじ軸8とボールナツト9とからなり、加熱筒3の両側に対称に2組設けられている。各ボールねじ軸8は、加熱筒ハウジング2に設けられたナツト取付穴10に挿通して加熱筒3に平行に延設され、回転しないように前端が取付板11で固定プラテン1に取付けられている。ナツト取付穴10は、ボールナツト9を取付けるためのもので、加熱筒ハウジング2における加熱筒3の両側に対称で平行に2個設けられ、前方が小径部12で後方が大径部13となる段差を有する円筒状で、小径部12の前方を塞ぐ前壁14にボールねじ軸8を挿通する円形穴15が形成されている。
【0015】
ボールナツト9は、ボールねじ軸8に螺合して回転するようにナツト取付穴10に回転自在に取付けられている。すなわち、ボールナツト9は、後端にフランジ部16を有しており、このフランジ部16がスリーブ17の後端のフランジ部18にボルト結合され、スリーブ17に一体に取付けられている。スリーブのフランジ部18は、外周歯を有しており、後述する駆動機構の駆動ギア26と噛合する被動ギアにもなり、いわゆる被動ギアが一体に形成された被動ギア兼フランジ部になっている。スリーブ17の前端外周には締付ナツト19が係合するようにねじ部が形成されており、フランジ部18の側から順に小径の玉軸受からなる第1軸受20、大径のアンギユラ玉軸受からなる第2及び第3の軸受21,22、小径の玉軸受からなる第4軸受23が嵌合され、各軸受20,21,22,23のインナーレースを締付ナツト19とフランジ部18とで軸方向に挾持することによりスリーブ17に一体に取付けられている。スリーブ17は、締付ナツト19側が前方となり、フランジ部18が後方から突出するようにナツト取付穴10に装着されている。スリーブ17の外周に取付けられた各軸受20,21,22.23は、締付ナツト19側の第4軸受23がナツト取付穴の小径部12に、第2及び第3の軸受21,22がナツト取付穴の大径部13にそれぞれ嵌合し、フランジ部18側の第1軸受20がナツト取付穴10の後端から突出した状態に取付けられている。フランジ部18側の第1軸受20の外周には軸受押圧部材24が嵌合されており、この軸受押圧部材24は加熱筒ハウジング2の後壁にボルト結合されている。軸受押圧部材24の内周側には前方に突出して押圧部が形成されており、この押圧部がナツト取付穴10の後端に係合するとともに第2軸受21のアウターレースに当接し、第2及び第3の軸受21,22をナツト取付穴の大径部13の前壁とで軸方向に挟持している。なお、第2及び第3の軸受21,22は、図3に示すように互いに逆向きに取付けられており、ボールナツト9の前進時には後方の第2軸受21が、後退時には前方の第3軸受22が軸方向の力を受け持つようになっている。また、軸受押圧部材24は、環状の一体構造になっているが、2分割構造であってもよい。以上のように、ボールナツト9がナツト取付穴10に回転自在で軸方向にがたつかないように装着されていることから、回転することによりボールねじ軸8に沿って移動し、加熱筒ハウジング2を進退させることになる。
【0016】
駆動機構7は、ボールねじ6を駆動するためのものであり、電動モータ(減速機付モータ)25、駆動ギア26、外周歯を有するスリーブのフランジ部18及びアイドラギア27からなっている。電動モータ25は、一方のナツト取付穴10の近傍において加熱筒ハウジング2に一体に取付けられ、制御装置(図示せず)により射出前及び射出後に作動するように制御されている。駆動ギア26は、電動モータの駆動軸28に取付けられるとともに、一方のスリーブのフランジ部18に形成された外周歯に噛合して設けられている。アイドラギア27は、図2に示すように外周歯を有する環状ギアで、各スリーブのフランジ部18に噛合するように内周の上下3個所が深溝玉軸受29で案内支持されている。以上により、駆動機構7は、電動モータ25の作動により駆動ギア26を介して一方のスリーブのフランジ部18を回転し、この回転をアイドラギア27を介して他方のスリーブのフランジ部18に伝達し、各スリーブ17を同一方向に同一速度で回転させることになる。これにより、各ボールナツト9が各スリーブ17と一体に回転し各ボールねじ軸8に沿って同一速度で移動し、加熱筒ハウジング2を進退させることになる。
【0017】
なお、30はノズルタツチ位置検知器であるエンコーダで、ナツト取付穴10の側方に位置するように電動モータの駆動軸28にカツプリング31と連結軸32を介して取付けられている。このエンコーダ30は、電動モータの駆動軸28の回転数を計測するようになっている。ノズル4が固定金型(図示せず)に当接すると電動モータ25が空転し、エンコーダ30からの出力が出なくなる。その期間が所定時間を超えたところで電動モータ25を停止するようになっている。
【0018】
図1〜3に示すノズルタツチ機構は、前記のように構成されており、その作用を射出成形機の動作との関連において次に説明する。射出前に加熱筒ハウジング2を前進させてノズル4を固定金型(図示ぜず)に押圧接触させる。すなわち、型締装置からの型締完了信号により電動モータ25が作動し、駆動ギア26を介して一方のスリーブのフランジ部18を回転し、アイドラギア27を介して他方のスリーブのフランジ部18を回転する。各スリーブのフランジ部18の回転により、各ボールナツト9が同一回転し各ボールねじ軸8に沿って前進し、加熱筒ハウジング2を固定プラテン1に接近する方向に移動させる。この間、電動モータの駆動軸28の回転数がエンコーダ30で計測されており、エンコーダ30の出力が所定時間変化しなくなった時に電動モータ25が停止する。これにより、加熱筒ハウジング2が停止し、ノズル4を固定金型(図示せず)に押圧接触させる。射出後は、加熱筒ハウジング2を後退させてノズル4を固定金型(図示せず)から切り離し、ノズルバツクさせる。すなわち、可塑化終了信号及び冷却完了信号により電動モータ25が逆回転し、スリーブのフランジ部18及びボールナツト9を逆回転させ、エンコーダ30による計測値が設定値に達した時に電動モータ25が停止する。この間、ボールナツト9がボールねじ軸8に沿って後退し、加熱筒ハウジング2を固定プラテン1から遠ざかる方向に移動しノズルバツクさせ、ノズル4を固定金型(図示せず)から切り離す。
【0019】
ところで、加熱筒ハウジング2は、ボールナツト9の前進時にはスリーブ17と第2及び第3の軸受21,22を介してナツト取付穴の大径部13の前壁を押すことにより前進させられ、後退時にはスリーブと第2及び第3の軸受21,22を介して軸受押圧部材24を押すことにより後退させられる。その際、ボールナツト9とスリーブ17、スリーブ17と第2及び第3の軸受21,22、第2及び第3の軸受21,22と軸受押圧部材24のそれぞれにおいて軸方向にがたつきがなく、ボールナツト9と加熱筒ハウジング2とが軸方向にがたつきがないことから、加熱筒ハウジング2がボールナツト9と一体に進退し、ノズル4の接触・離間を繰り返し高精度で行い得る。また、アイドラギア27が深溝玉軸受29でころがり接触して案内支持され、深溝玉軸受29の案内面にグリス等の潤滑剤を供給する必要がないため、潤滑剤の飛散による環境汚染、潤滑剤の管理等の問題を発生することがなく、メンテナンスフリーで運転し得る。
【0020】
次に、ボールねじ6の取付作業におけるボールナツト9の取付方法を説明する。スリーブ17の外周に第1軸受20を嵌着し、第1軸受20の外周に軸受押圧部材24を嵌着し、第1軸受20に隣接して第2軸受21を、そして第3軸受22、第4軸受23を順次嵌着し、スリーブ17の前端に締付ナツト19を係合して締付ける。なお、第2軸受21と第3軸受22は、アンギユラ玉軸受であることから、互いに逆向きにして嵌着される。これにより、各軸受20,21,22,23が締付ナツト19とフランジ部18とで軸方向に挾持され、スリーブ17と各軸受20,21,22,23とが一体に組み付けられる。しかる後、スリーブ17にボールナツト9を嵌着し、フランジ部18にボールナツトのフランジ部16をボルト結合する。これにより、スリーブ17、各軸受20,21,22,23及びボールナツト9が一体化されたナツトユニツトに組み付けられる。このナツトユニツトをナツト取付穴10に後方から挿入し、締付ナツト19側の第4軸受23をナツト取付穴の小径部12に嵌合し、第3軸受22をナツト取付穴の大径部13の前壁に当接するように嵌合する。その際、スリーブのフランジ部18側の第1軸受20及びフランジ部18がナツト取付穴10から突出しており、この状態で軸受押圧部材24を加熱筒ハウジング2の後壁にボルト結合する。これにより、ナツトユニツトは、大径の第2及び第3の軸受21,22がナツト取付穴の大径部13の前壁と軸受押圧部材24とで軸方向に挟持され、ボールナツト9がナツト取付穴10に回転自在で軸方向にがたつかないように加熱筒ハウジング2に一体に取付けられる。なお、スリーブ17と各軸受20,21,22,23を一体に組み付けたものをナツト取付穴10に取付けた後、ボールナツト9をスリーブ17に取付けてもよい。以上のように、予めスリーブ17と各軸受20,21,22,23、又はスリーブ17と各軸受20,21,22,23とボールナツト9とを一体に組み付けてナツトユニツトとし、このナツトユニツトをナツト取付穴10に挿入し、軸受押圧部材24を加熱筒ハウジング2にボルト結合することにより、ボールナツト9をナツト取付穴10に取付け得るため、格別の熟練を要することなく取付け得る。
【0021】
一方、ボールねじ6の取外作業は、次のようにして行なわれる。ボールねじ軸8の前端を固定プラテン1から取外し、軸受押圧部材24と加熱筒ハウジング2とのボルト結合を解除し、ボールナツト9をナツトユニツトごとボールねじ軸8と共にナツト取付穴10から引き抜き又は押し出して取外す。なお、ボールナツト9とスリーブ17とのボルト結合を解除し、ボールナツト9をスリーブ17から離脱させた後、軸受押圧部材24と加熱筒ハウジング2とのボルト結合を解除し、スリーブ17と各軸受20,21,22,23とを一体に取外すようにしてもよい。以上のように、ボールねじ6の取外作業は、ボールナツト9がスリーブ17、軸受20,21,22,23、軸受押圧部材24等と一体化されたナツトユニットになっており、ナツト取付穴10内で分解する必要がなく、しかもナツト取付穴10の後方に引き抜き又は押し出すことにより取外し得るため、ボールナツト9をボールねじ軸8と共にナツト取付穴10から簡単かつ迅速に取外し得る。
【0022】
【発明の効果】
本発明によれば、次の各効果を奏する。
▲1▼ ナツト取付穴が前方を小径部とし後方を大径部とする円筒状で、ボールナツトがスリーブと軸受とを介してナツト取付穴に取付けるようになっていることから、予め軸受とスリーブとを一体に組み付け、又は軸受とスリーブとボールナツトとを一体に組み付けてナツトユニツトとし、このナツトユニツトをナツト取付穴に装着してボールナツトを加熱筒ハウジングに一体に取付け得る。その際、軸受は、インナーレースがスリーブのフランジ部と締付ナツトとで軸方向に挟持されてスリーブに一体に取付けられ、アウタレースがナツト取付穴の大径部の前壁と軸受押圧部材とで軸方向に挟持されて加熱筒ハウジングに一体に取付けられるため、従来のように軸受の締付トルクを微妙に調節する必要がない。従って、ボールナツトの取付作業に格別の熟練を要せず、だれでもが簡単かつ迅速にしかも精度良く取付け得る。
▲2▼ ボールねじの取外作業において、軸受押圧部材のボルト結合を解除することにより、ボールナツトをスリーブ、軸受、軸受押圧部材等と一緒にナツト取付穴から取外し得るため、簡単かつ迅速に行い得る。従って、ボールねじの交換作業をより簡単かつ迅速に行い得る。
▲3▼ ナツト取付穴が前方を小径部とし後方を大径部とする円筒状に形成されていることから、ボールねじ軸を挿通する円形穴を有する前壁を設け得る。これにより、ボールねじ及び各軸受に供給されたグリス等の潤滑剤の飛散を防止し得るため、エンコーダ等のノズルタツチ位置検知器をナツト取付穴の側方に設けることができ、電動モータの駆動軸にほぼ直結して取付け得る。その結果、ノズルタツチ位置検知器の測定精度を高め、ノズルタツチ動作をより高精度で行い得る。
▲4▼ スリーブの締付ナツト側に小径の玉軸受を取付け、この玉軸受をナツト取付穴の小径部に嵌合させることにより、ボールねじ軸と直交する方向に対してもがたつきがないようにボールナツトを加熱筒ハウジングに取付け得る。これにより、ノズルタツチ動作をより高精度で行うことが可能になった。
▲5▼ スリーブの後端のフランジ部に外周歯を形成し、駆動機構の被動ギアをスリーブと一体化することにより、駆動機構の構造を簡素化し得るとともに、ボールねじの交換作業をより簡単かつ迅速に行い得る。
▲6▼ 複数のボールねじを採用するものについては、環状ギアからなるアイドラギアを深溝玉軸受で案内支持することにより、無給油であってもアイドラギアの摩耗、カジリ等を生じることなく運転し得る。これにより、駆動機構の潤滑剤管理を不要とし、潤滑剤による環境汚染等を防止し得る。
【図面の簡単な説明】
【図1】本発明の実施形態の概念的な説明図で、ノズルタツチ時における状態を1部を切断して示す平面図である。
【図2】図1のA−A矢視図である。
【図3】図1の要部拡大図である。
【図4】従来技術の概念的な説明図で、ノズルタツチ時における状態を1部を切断して示す平面図である。
【図5】図4のB−B矢視図である。
【図6】図4の要部拡大図である。
【符号の説明】
1 固定プラテン 2 加熱筒ハウジング
3 加熱筒 4 ノズル
6 ボールねじ 7 駆動機構
8 ボールねじ軸 9 ボールナツト
10 ナツト取付穴 12 ナツト取付穴の小径部
13 ナツト取付穴の大径部 14 ナツト取付穴の前壁
16 ボールナツトのフランジ部
17 スリーブ 18 スリーブのフランジ部
19 スリーブの締付ナツト 20 第1軸受(小径の玉軸受)
21 第2軸受(大径のアンギユラ玉軸受)
22 第3軸受(大径のアンギユラ玉軸受)
23 第4軸受(小径の玉軸受) 24 軸受押圧部材
25 電動モータ(減速機付モータ)
26 駆動ギア 27 アイドラギア
28 駆動軸 29 深溝玉軸受
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a nozzle touch mechanism of an injection molding machine, and more particularly, to an improvement of a nozzle touch mechanism of an injection molding machine in which a nozzle is brought into contact with and separated from a fixed mold by using a ball screw.
[0002]
[Prior art]
In the nozzle touch mechanism of the injection molding machine, the fixed platen of the mold clamping device and the heating cylinder housing of the injection device are driven and connected by a ball screw, and the ball screw is driven by the driving mechanism to advance the heating cylinder housing at the time of injection. There are known various types in which a nozzle is pressed into contact with a fixed mold, and after injection, the heating cylinder housing is retracted to separate the nozzle from the fixed mold. By the way, the ball screw is composed of a ball screw shaft and a ball nut, one of which is attached to the fixed platen so as not to move in the axial direction to the heating cylinder housing, and one is fixed and the other is rotatably provided. The ball nut shown in FIGS. 4 to 6 has been proposed as being rotatably mounted on a heating cylinder housing.
[0003]
The nozzle touch mechanism shown in FIGS. 4 to 6 is applied to an in-line screw-type injection molding machine, and has a front end fixed to a fixed platen 51 and inserted into a nut mounting hole 56 formed in a heating cylinder housing 52. A ball screw shaft 59 and a ball nut 60 screwed to the ball screw shaft 59 and rotatably mounted in a nut mounting hole 56 are provided. Two sets of ball screws 58 are provided, and each ball nut 60 is rotationally driven by a driving mechanism 65. By doing so, the heating cylinder housing 52 is moved forward and backward, and the nozzle 54 of the heating cylinder 53 attached to the heating cylinder housing 52 is brought into contact with and separated from a fixed mold (not shown). In this nozzle touch mechanism, each ball nut 60 has a flange portion 61 at the front end and engages a tightening nut 62 at the rear end side, and the nut is mounted via two tapered roller bearings 63 and 64. It is mounted in the hole 56. That is, a bearing projection 57 is provided in the middle of the nut mounting hole 56 as shown in FIG. 6, and the front tapered roller bearing 63 is sandwiched between the ball nut flange 61 and the front surface of the bearing projection 57. A rear tapered roller bearing 64 is sandwiched between the rear surface of the bearing projection 57 and the ball nut tightening nut 62. Thus, each ball nut 60 is attached to the heating cylinder housing 52 so as to be rotatable and not rattled in the axial direction.
[0004]
The drive mechanism 65 transmits the rotation of the drive shaft 67 of the motor with reduction gear (geared motor) 66 to one driven gear 69 via the drive gear 68, and transmits the other to the driven gear 69 via the idler gear 70. Each driven gear 69 is made to rotate the same. Each driven gear 69 is bolted to the rear end face of each ball nut 60 so as to rotate each ball nut 60 integrally. The idler gear 70 is an annular gear having outer peripheral teeth as shown in FIG. 5, and two upper and lower portions on the inner periphery are supported by casting supporting metal 71 so as to mesh with each driven gear 69. Reference numeral 55 in FIGS. 4 to 6 denotes a screw provided rotatably and advancing and retracting inside the heating cylinder 53, and 72 denotes a nozzle touch position detector. The nozzle touch position detector 72 includes a slit plate 75 attached to a drive shaft 67 via a connection shaft 73 and an auxiliary shaft 74, and a photo sensor 76 provided to protrude forward of the heating cylinder housing 52. The number of rotations of the heating cylinder housing 52 is measured to measure the moving amount of the heating cylinder housing 52. The front means the left direction of the heating cylinder housing 52 in FIG.
[0005]
[Problems to be solved by the invention]
The conventional nozzle touch mechanism has a problem in that the operation of mounting the ball nut 60 requires skill. When mounting the ball nut 60, the front tapered roller bearing 63 is inserted from the front of the heating cylinder housing 52, and the rear tapered roller bearing 64 is inserted from the rear, and each tapered roller bearing 63, 64 is inserted into the bearing projection 57 of the nut mounting hole. Attach so that it abuts. Then, the ball nut 60 is fitted to each of the tapered roller bearings 63 and 64 from the front of the heating cylinder housing 52, and the tightening nut 62 is screwed to the rear end side of the ball nut 60 and tightened. By the way, the ball nut 60 needs to be attached to the heating cylinder housing 52 so as not to rattle in the axial direction. Therefore, the tapered roller bearings 63 and 64 are evenly arranged so as not to rattle in the axial direction. It must be installed with an appropriate tightening force. The inner races of the tapered roller bearings 63 and 64 are moved by the operation of the tightening nuts 62, and the outer races are pressed against the bearing projections 57 through the rollers by the movement of the inner races. Mounted. However, since the inner race, the outer race, and the like of the tapered roller bearings 63 and 64 do not always move under the same conditions, the tightening torque of the tightening nut 62 must be adjusted while performing various adjustment operations. In addition, the ball nut 60 and the tapered roller bearings 63 and 64 are mounted in the nut mounting holes 57, and the above operations must be performed in a state where the tightened state of the tapered roller bearings 63 and 64 cannot be viewed. As a result, the work of adjusting the tightening torque of the tightening nut 62 has to depend on the intuition of the operator and requires a high degree of skill, so that it is difficult for anyone to mount the nut with high accuracy.
[0006]
In addition, there is a problem that replacement work of the ball screw is complicated and takes a long time. When removing the ball screw 58, the front end of the ball screw shaft 59 is removed from the fixed platen 51, the driven gear 69 and the tightening nut 62 are removed from the ball nut 60, and the ball nut 60 and the front tapered roller bearing 63 from the front of the heating cylinder housing 52. And also by removing the rear tapered roller bearing 64 from the rear. As described above, since the ball nut 60, the tightening nut 62, and the tapered roller bearings 63 and 64 must be disassembled in the nut mounting hole 57 and must be removed from different directions, the removal operation is complicated. As described above, the mounting operation of the ball screw 60 requires a high degree of skill in mounting the ball nut 60, and the tapered roller bearings 63, 64, the ball nut 60, and the tightening nut 62 are sequentially assembled in the nut mounting hole 57. It is complicated because it is performed by. As described above, the components 60, 62, 63, 64, and 69 must be sequentially assembled or disassembled in the nut mounting holes 57 in each operation of mounting and removing the ball screw 58. The replacement work is complicated and takes a long time.
[0007]
Further, there is a problem that the environment around the drive mechanism 65 is polluted, and the lubricating oil management of the drive mechanism 65 is complicated. The idler gear 70 provided between each driven gear 69 of the drive mechanism is guided and supported by a support. However, it is necessary to apply grease to the support 71 in order to prevent wear and galling of the idler gear 70. ing. However, the grease adheres to the idler gear 71 and is scattered around by the rotation of the idler gear 71, and extremely contaminates the environment around the idler gear 71. In addition, since the grease is greatly consumed by scattering, the grease must be applied frequently and in such a manner that the grease is hard to be scattered, so that lubricating oil management is complicated.
[0008]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and has as its object to provide a nozzle touch of an injection molding machine capable of mounting a ball screw with high accuracy without requiring skill, and which can easily and quickly replace the ball screw. It is to provide a mechanism. Another object of the present invention is to provide a nozzle touch mechanism of an injection molding machine capable of guiding and supporting an idler gear installed between driven gears without lubrication, in a case employing a plurality of ball screws.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, according to the present invention, a nut mounting hole is formed in a cylindrical shape having a small diameter portion at the front and a large diameter portion at the rear, and has a flange at the rear end and a fastening nut at the front end. Is attached to the outer periphery of the sleeve that is to be engaged, and is clamped and attached between the fastening nut and the flange portion. The size of the nut mounting hole is set so that the sleeve can rotate freely and the flange portion of the sleeve projects rearward. The ball nut is attached to the sleeve by being axially sandwiched between a front wall of the diameter portion and a bearing pressing member attached to a rear wall of the heating cylinder housing. Thus, at the time of mounting the ball nut, the bearing can be integrally assembled in advance to the sleeve, or the ball nut can be further integrally assembled to the sleeve to form a nut unit, and the nut unit can be mounted in the nut mounting hole from the rear. At this time, the inner race is mounted by pressing the inner race against the flange portion of the sleeve with a tightening nut, and the outer race is mounted on the front wall of the large diameter portion of the nut mounting hole by pressing with the bearing pressing member. There is no need to set the preload at When removing the ball nut, since the bearing and the sleeve or the bearing, the sleeve and the ball nut are integrated as a nut unit, by removing the bearing pressing member from the heating cylinder housing, the ball nut is moved backward from the nut mounting hole together. Can be removed.
[0010]
It is preferable that the flange portion of the sleeve is a driven gear / flange portion in which the driven gear of the drive mechanism is integrally formed. Thus, by mounting a bearing or a ball nut on the sleeve, a nut unit that is compactly assembled including the driven gear can be obtained.
[0011]
The bearing consists of a small-diameter bearing, a large-diameter bearing, and a small-diameter bearing which are mounted on the outer periphery of the sleeve in order from the flange side.The small-diameter bearing on the tightening nut side is mounted in the small-diameter portion of the nut mounting hole. The bearing having the diameter may be mounted on the large diameter portion of the nut mounting hole, and the bearing pressing member may be mounted on the outer circumference of the small diameter bearing on the flange portion side. At this time, the large-diameter bearing preferably adopts two angular ball bearings or tapered roller bearings, and is preferably combined in the opposite direction so as not to displace each other in the axial direction. By pressing the front wall of the large-diameter portion of the mounting hole and pressing the bearing pressing member with the other bearing at the time of retreat, the heating cylinder housing can be moved integrally with the ball nut so as not to shift in the axial direction.
[0012]
Regarding the nozzle touch mechanism employing a plurality of ball screws, an idler gear consisting of an annular gear provided between driven gears is supported at two or more locations on the inner periphery by a deep groove ball bearing, and the idler gear can be supported by rolling contact. Has become. This eliminates the need for a lubricant such as grease and can prevent wear and galling of the idler gear.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described in detail with reference to FIGS. FIG. 1 is a conceptual explanatory view of a nozzle touch mechanism applied to an in-line screw-type injection molding machine, and is a plan view partially showing a state at the time of nozzle touch. FIG. 2 is a view taken in the direction of arrow AA in FIG. 1 and shows a drive system of the nozzle touch mechanism. FIG. 3 is an enlarged view of a main part of FIG. 1 and shows a mounting structure of a ball nut. 1 to 3, reference numeral 1 denotes a fixed platen of a mold clamping device, which is fixedly installed on a machine base (not shown), and a fixed mold (not shown) is attached to a left side surface in FIG. Reference numeral 2 denotes a heating cylinder housing of the injection device, which is installed on a machine base (not shown) so as to face the fixed platen 1 so as to be able to move forward and backward. Reference numeral 3 denotes a heating cylinder having a nozzle 4 at the tip, and a screw 5 disposed inside the heating cylinder so as to rotate and advance and retreat, and a rear end portion of the heating cylinder housing so that the tip nozzle 4 faces the fixed platen 1. 2 and is fixed and held, and advances and retreats integrally with the heating cylinder housing 2. The left direction of the heating cylinder housing 2 in FIG. 1 is the front.
[0014]
In the nozzle touch mechanism shown in FIGS. 1 to 3, the fixed platen 1 and the heating cylinder housing 2 are driven and connected by two sets of ball screws 6, and each ball screw 6 is driven by a driving mechanism 7. Each ball screw 6 includes a ball screw shaft 8 and a ball nut 9 that are screwed together, and two sets are provided symmetrically on both sides of the heating cylinder 3. Each ball screw shaft 8 extends through the nut mounting hole 10 provided in the heating cylinder housing 2 so as to extend in parallel with the heating cylinder 3. The front end of the ball screw shaft 8 is attached to the fixed platen 1 by an attachment plate 11 so as not to rotate. I have. The nut mounting holes 10 are provided for mounting the ball nuts 9, and are provided two symmetrically in parallel on both sides of the heating cylinder 3 in the heating cylinder housing 2, with a small-diameter portion 12 at the front and a large-diameter portion 13 at the rear. And a circular hole 15 through which the ball screw shaft 8 is inserted is formed in a front wall 14 closing the front of the small diameter portion 12.
[0015]
The ball nut 9 is rotatably mounted in a nut mounting hole 10 so as to be screwed and rotated with the ball screw shaft 8. That is, the ball nut 9 has a flange portion 16 at the rear end. The flange portion 16 is bolted to a flange portion 18 at the rear end of the sleeve 17 and is integrally attached to the sleeve 17. The flange portion 18 of the sleeve has outer peripheral teeth, and also serves as a driven gear that meshes with a drive gear 26 of a drive mechanism described later, and is a driven gear / flange portion integrally formed with a so-called driven gear. . A threaded portion is formed on the outer periphery of the front end of the sleeve 17 so that a fastening nut 19 is engaged with the first bearing 20, which is a small-diameter ball bearing, and a large-diameter angular ball bearing in order from the flange 18 side. The second and third bearings 21 and 22 and the fourth bearing 23 formed of a small-diameter ball bearing are fitted, and the inner race of each of the bearings 20, 21, 22 and 23 is tightened by the fastening nut 19 and the flange portion 18. It is integrally attached to the sleeve 17 by being clamped in the axial direction. The sleeve 17 is mounted in the nut mounting hole 10 such that the fastening nut 19 side is forward and the flange portion 18 projects from the rear. In the bearings 20, 21, 22 and 23 mounted on the outer periphery of the sleeve 17, the fourth bearing 23 on the side of the fastening nut 19 is provided in the small diameter portion 12 of the nut mounting hole, and the second and third bearings 21 and 22 are provided. The first bearing 20 on the flange portion 18 side is fitted to the large diameter portion 13 of the nut mounting hole, and is mounted so as to protrude from the rear end of the nut mounting hole 10. A bearing pressing member 24 is fitted on the outer periphery of the first bearing 20 on the flange portion 18 side, and the bearing pressing member 24 is bolted to the rear wall of the heating cylinder housing 2. A pressing portion protruding forward is formed on the inner peripheral side of the bearing pressing member 24. The pressing portion engages with the rear end of the nut mounting hole 10 and contacts the outer race of the second bearing 21. The second and third bearings 21 and 22 are sandwiched in the axial direction by the front wall of the large diameter portion 13 of the nut mounting hole. The second and third bearings 21 and 22 are mounted in opposite directions as shown in FIG. 3, and the rear second bearing 21 when the ball nut 9 moves forward, and the front third bearing 22 when the ball nut 9 retreats. Is responsible for the axial force. Further, the bearing pressing member 24 has an annular integral structure, but may have a two-part structure. As described above, since the ball nut 9 is rotatably mounted in the nut mounting hole 10 so as not to rattle in the axial direction, the ball nut 9 moves along the ball screw shaft 8 by rotating, so that the heating cylinder housing 2 is rotated. Will move forward and backward.
[0016]
The drive mechanism 7 is for driving the ball screw 6, and includes an electric motor (motor with a reduction gear) 25, a drive gear 26, a flange portion 18 of a sleeve having outer peripheral teeth, and an idler gear 27. The electric motor 25 is integrally mounted on the heating cylinder housing 2 in the vicinity of one of the nut mounting holes 10, and is controlled by a control device (not shown) to operate before and after injection. The drive gear 26 is attached to the drive shaft 28 of the electric motor, and is provided so as to mesh with the outer peripheral teeth formed on the flange portion 18 of one of the sleeves. The idler gear 27 is an annular gear having outer peripheral teeth as shown in FIG. 2, and three upper and lower inner peripheral portions are guided and supported by deep groove ball bearings 29 so as to mesh with the flange portions 18 of the respective sleeves. As described above, the drive mechanism 7 rotates the flange portion 18 of one sleeve via the drive gear 26 by the operation of the electric motor 25, and transmits this rotation to the flange portion 18 of the other sleeve via the idler gear 27, Each sleeve 17 is rotated at the same speed in the same direction. Thereby, each ball nut 9 rotates integrally with each sleeve 17 and moves at the same speed along each ball screw shaft 8 to move the heating cylinder housing 2 forward and backward.
[0017]
Reference numeral 30 denotes an encoder serving as a nozzle touch position detector, which is mounted on a drive shaft 28 of the electric motor via a coupling 31 and a connection shaft 32 so as to be located on the side of the nut mounting hole 10. The encoder 30 measures the rotation speed of the drive shaft 28 of the electric motor. When the nozzle 4 comes into contact with a fixed mold (not shown), the electric motor 25 idles, and the output from the encoder 30 stops. When the period exceeds a predetermined time, the electric motor 25 is stopped.
[0018]
The nozzle touch mechanism shown in FIGS. 1 to 3 is configured as described above, and its operation will be described below in relation to the operation of the injection molding machine. Prior to injection, the heating cylinder housing 2 is advanced to bring the nozzle 4 into press contact with a fixed mold (not shown). That is, the electric motor 25 operates in response to a mold-clamping completion signal from the mold-clamping device, rotates the flange portion 18 of one sleeve via the drive gear 26, and rotates the flange portion 18 of the other sleeve via the idler gear 27. I do. Due to the rotation of the flange portion 18 of each sleeve, each ball nut 9 rotates the same and moves forward along each ball screw shaft 8 to move the heating cylinder housing 2 in a direction approaching the fixed platen 1. During this time, the rotation speed of the drive shaft 28 of the electric motor is being measured by the encoder 30, and when the output of the encoder 30 does not change for a predetermined time, the electric motor 25 stops. As a result, the heating cylinder housing 2 is stopped, and the nozzle 4 is brought into pressure contact with a fixed mold (not shown). After the injection, the heating cylinder housing 2 is retracted, the nozzle 4 is cut off from a fixed mold (not shown), and the nozzle is backed. That is, the electric motor 25 reversely rotates in response to the plasticization end signal and the cooling completion signal, thereby causing the flange portion 18 of the sleeve and the ball nut 9 to rotate in the reverse direction, and the electric motor 25 stops when the value measured by the encoder 30 reaches the set value. . During this time, the ball nut 9 retreats along the ball screw shaft 8, moves the heating cylinder housing 2 in a direction away from the fixed platen 1, makes the nozzle back, and separates the nozzle 4 from a fixed mold (not shown).
[0019]
By the way, the heating cylinder housing 2 is advanced by pushing the front wall of the large diameter portion 13 of the nut mounting hole via the sleeve 17 and the second and third bearings 21 and 22 when the ball nut 9 is advanced, and when the ball nut 9 is retracted. It is retracted by pressing the bearing pressing member 24 through the sleeve and the second and third bearings 21 and 22. At this time, there is no backlash in the axial direction in each of the ball nut 9 and the sleeve 17, the sleeve 17, the second and third bearings 21, 22, the second and third bearings 21, 22, and the bearing pressing member 24. Since the ball nut 9 and the heating cylinder housing 2 do not rattle in the axial direction, the heating cylinder housing 2 advances and retreats integrally with the ball nut 9, and the contact and separation of the nozzle 4 can be repeatedly performed with high precision. In addition, the idler gear 27 is guided and supported by rolling contact with the deep groove ball bearing 29, and there is no need to supply a lubricant such as grease to the guide surface of the deep groove ball bearing 29. It can be operated without maintenance, without any problems such as management.
[0020]
Next, a method of mounting the ball nut 9 in the mounting operation of the ball screw 6 will be described. A first bearing 20 is fitted around the outer periphery of the sleeve 17, a bearing pressing member 24 is fitted around the outer periphery of the first bearing 20, a second bearing 21 is provided adjacent to the first bearing 20, and a third bearing 22. The fourth bearings 23 are sequentially fitted, and the fastening nuts 19 are engaged with the front ends of the sleeves 17 and fastened. Since the second bearing 21 and the third bearing 22 are angular ball bearings, they are fitted in opposite directions. As a result, the bearings 20, 21, 22, 23 are axially clamped between the fastening nut 19 and the flange portion 18, and the sleeve 17 and the bearings 20, 21, 22, 23 are integrally assembled. Thereafter, the ball nut 9 is fitted to the sleeve 17 and the flange portion 16 of the ball nut is bolted to the flange portion 18. As a result, the sleeve 17, the bearings 20, 21, 22, 23 and the ball nut 9 are assembled into a unitary nut. The nut unit is inserted into the nut mounting hole 10 from the rear, the fourth bearing 23 on the tightening nut 19 side is fitted into the small diameter portion 12 of the nut mounting hole, and the third bearing 22 is connected to the large diameter portion 13 of the nut mounting hole. Fit so that it contacts the front wall. At this time, the first bearing 20 and the flange portion 18 on the flange portion 18 side of the sleeve project from the nut mounting hole 10, and the bearing pressing member 24 is bolted to the rear wall of the heating cylinder housing 2 in this state. As a result, the nut unit is such that the large-diameter second and third bearings 21 and 22 are axially sandwiched between the front wall of the large-diameter portion 13 of the nut mounting hole and the bearing pressing member 24, and the ball nut 9 is mounted in the nut mounting hole. 10 is attached to the heating cylinder housing 2 so as to be rotatable about 10 and does not rattle in the axial direction. The ball nut 9 may be attached to the sleeve 17 after attaching the sleeve 17 and the bearings 20, 21, 22, 23 integrally to the nut attachment hole 10. As described above, the sleeve 17 and the bearings 20, 21, 22, 23 or the sleeve 17 and the bearings 20, 21, 22, 23 and the ball nut 9 are integrally assembled to form a nut unit, and the nut unit is formed into a nut mounting hole. 10, the ball nut 9 can be mounted in the nut mounting hole 10 by bolting the bearing pressing member 24 to the heating cylinder housing 2, so that the ball nut 9 can be mounted without special skill.
[0021]
On the other hand, the work of removing the ball screw 6 is performed as follows. The front end of the ball screw shaft 8 is removed from the fixed platen 1, the bolt connection between the bearing pressing member 24 and the heating tube housing 2 is released, and the ball nut 9 is pulled out or pushed out together with the ball screw shaft 8 together with the ball screw shaft 8 from the nut mounting hole 10 and removed. . After the bolt connection between the ball nut 9 and the sleeve 17 is released and the ball nut 9 is detached from the sleeve 17, the bolt connection between the bearing pressing member 24 and the heating cylinder housing 2 is released, and the sleeve 17 and each of the bearings 20 are removed. 21, 22, and 23 may be integrally removed. As described above, the work of removing the ball screw 6 is a nut unit in which the ball nut 9 is integrated with the sleeve 17, the bearings 20, 21, 22, 23, the bearing pressing member 24, and the like. The ball nut 9 can be easily and quickly removed together with the ball screw shaft 8 from the nut mounting hole 10 because it does not need to be disassembled inside and can be removed by pulling out or pushing out the nut mounting hole 10.
[0022]
【The invention's effect】
According to the present invention, the following effects can be obtained.
(1) The nut mounting hole has a cylindrical shape with a small diameter portion at the front and a large diameter portion at the rear, and the ball nut is attached to the nut mounting hole via the sleeve and the bearing. Or a bearing, a sleeve and a ball nut may be integrally assembled to form a nut unit, and the nut unit may be mounted in a nut mounting hole to integrally mount the ball nut to the heating cylinder housing. At that time, the inner race is sandwiched in the axial direction by the flange portion of the sleeve and the tightening nut and is integrally mounted on the sleeve, and the outer race is formed by the front wall of the large diameter portion of the nut mounting hole and the bearing pressing member. Since it is sandwiched in the axial direction and is integrally attached to the heating cylinder housing, there is no need to finely adjust the tightening torque of the bearing as in the related art. Therefore, no special skill is required for the mounting work of the ball nut, and anyone can easily, quickly and accurately mount the ball nut.
{Circle around (2)} In removing the ball screw, the ball nut can be removed from the nut mounting hole together with the sleeve, the bearing, the bearing pressing member, and the like by releasing the bolt connection of the bearing pressing member, so that the operation can be performed easily and quickly. . Therefore, the replacement operation of the ball screw can be performed more easily and quickly.
{Circle around (3)} Since the nut mounting hole is formed in a cylindrical shape having a small diameter portion at the front and a large diameter portion at the rear, a front wall having a circular hole through which the ball screw shaft is inserted can be provided. As a result, it is possible to prevent the lubricant such as grease supplied to the ball screw and each bearing from being scattered, so that a nozzle touch position detector such as an encoder can be provided beside the nut mounting hole, and the drive shaft of the electric motor can be provided. It can be installed almost directly. As a result, the measurement accuracy of the nozzle touch position detector can be increased, and the nozzle touch operation can be performed with higher accuracy.
(4) A small-diameter ball bearing is mounted on the tightening nut side of the sleeve, and this ball bearing is fitted into the small-diameter portion of the nut mounting hole, so that there is no play in the direction perpendicular to the ball screw shaft. Ball nut can be mounted on the heating cylinder housing as described above. As a result, the nozzle touch operation can be performed with higher accuracy.
(5) By forming the peripheral teeth on the flange at the rear end of the sleeve and integrating the driven gear of the drive mechanism with the sleeve, the structure of the drive mechanism can be simplified and the ball screw replacement operation can be made easier and easier. Can be done quickly.
{Circle around (6)} In the case of employing a plurality of ball screws, the idler gear composed of an annular gear is guided and supported by a deep groove ball bearing, so that even if oil is not supplied, the idler gear can be operated without abrasion, galling or the like. This makes it unnecessary to manage the lubricant of the drive mechanism, and can prevent environmental pollution and the like due to the lubricant.
[Brief description of the drawings]
FIG. 1 is a conceptual explanatory view of an embodiment of the present invention, and is a plan view showing a state at the time of nozzle touch by cutting a part.
FIG. 2 is a view as viewed in the direction of arrows AA in FIG. 1;
FIG. 3 is an enlarged view of a main part of FIG. 1;
FIG. 4 is a conceptual explanatory view of the prior art, and is a plan view showing a state at the time of nozzle touch by cutting a part.
FIG. 5 is a view taken in the direction of arrows BB in FIG. 4;
FIG. 6 is an enlarged view of a main part of FIG. 4;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Fixed platen 2 Heating cylinder housing
3 heating cylinder 4 nozzle
6 Ball screw 7 Drive mechanism
8 Ball screw shaft 9 Ball nut
10 Nut mounting hole 12 Nut mounting hole small diameter
13 Large diameter part of nut mounting hole 14 Front wall of nut mounting hole
16 Flange of ball nut
17 Sleeve 18 Sleeve flange
19 Tightening nut for sleeve 20 First bearing (small diameter ball bearing)
21 2nd bearing (large diameter anguilla ball bearing)
22 3rd bearing (large-diameter anguilla ball bearing)
23 fourth bearing (small diameter ball bearing) 24 bearing pressing member
25 Electric motor (motor with reduction gear)
26 Drive gear 27 Idler gear
28 Drive shaft 29 Deep groove ball bearing

Claims (4)

固定金型が取付けられた固定プラテンと先端にノズルを有する加熱筒が取付けられた加熱筒ハウジングとを駆動連結するボールねじと、ボールねじを駆動する駆動機構とを備え、ボールねじは一端が固定プラテンに固定され、加熱筒ハウジングに加熱筒と平行に形成されたナツト取付穴に挿通されたボールねじ軸と、このボールねじ軸に螺合しナツト取付穴に軸受を介して回転自在に取付けられたボールナツトとからなり、駆動機構はボールナツトに駆動連結された被動ギアと、この被動ギアを回転駆動する駆動源とからなり、駆動源の作動により被動ギアを介してボールナツトを回転することにより、加熱筒ハウジングを進退させてノズルを固定金型に接触・離間すようにした射出成形機のノズルタツチ機構であって、ナツト取付穴が前方を小径部とし後方を大径部とする円筒状に形成され、軸受が後端にフランジ部を有し前端側に締付ナツトを係合するようになったスリーブの外周にフランジ部と締付ナツトとで軸方向に挟持して取付けられるとともに、スリーブが回転自在でスリーブのフランジ部が後方に突出するようにナツト取付穴の大径部の前壁と加熱筒ハウジングの後壁に取付けられた軸受押圧部材とで軸方向に挟持して取付けられ、ボールナツトがスリーブに装着して一体に取付けられていることを特徴とする射出成形機のノズルタツチ機構。A ball screw for driving and connecting a fixed platen on which a fixed mold is mounted and a heating cylinder housing having a heating cylinder having a nozzle at the tip is provided, and a drive mechanism for driving the ball screw, and one end of the ball screw is fixed. A ball screw shaft fixed to the platen and inserted into a nut mounting hole formed in the heating cylinder housing in parallel with the heating cylinder, and rotatably mounted via a bearing in the nut mounting hole by screwing into the ball screw shaft. The driving mechanism is composed of a driven gear that is drivingly connected to the ball nut, and a driving source that rotationally drives the driven gear. The operation of the driving source causes the ball nut to rotate through the driven gear, thereby heating the ball nut. a Nozurutatsuchi mechanism by forward and backward a cylinder housing injection molding machine as you contact or away from the nozzle to the fixed mold, nut mounting holes are pre Is formed into a cylindrical shape with a small diameter part and a large diameter part at the rear. The bearing has a flange at the rear end, and a fastening nut is engaged at the front end. The nut was attached to the front wall of the large-diameter portion of the nut mounting hole and the rear wall of the heating cylinder housing so that the sleeve was rotatable and the flange of the sleeve protruded rearward. A nozzle touch mechanism for an injection molding machine, wherein a ball nut is attached to a sleeve by being axially sandwiched by a bearing pressing member and attached integrally to a sleeve. 軸受は、スリーブのフランジ部側から順に取付けられた小径の軸受、大径の軸受及び小径の軸受からなり、締付ナツト側の小径の軸受がナツト取付穴の小径部に装着され、大径の軸受がナツト取付穴の大径部に装着され、フランジ部側の小径の軸受の外周に軸受押圧部材が装着されている請求項1記載の射出成形機のノズルタツチ機構。The bearing consists of a small-diameter bearing, a large-diameter bearing and a small-diameter bearing mounted in order from the flange part side of the sleeve.The small-diameter bearing on the tightening nut side is mounted on the small-diameter part of the nut mounting hole. 2. The nozzle touch mechanism for an injection molding machine according to claim 1, wherein the bearing is mounted on a large diameter portion of the nut mounting hole, and a bearing pressing member is mounted on an outer periphery of the small diameter bearing on the flange portion side. スリーブのフランジ部は、駆動機構の被動ギアが一体に形成された被動ギア兼フランジ部になっている請求項1又は2記載の射出成形機のノズルタツチ機構。3. The nozzle touch mechanism for an injection molding machine according to claim 1, wherein the flange portion of the sleeve is a driven gear / flange portion integrally formed with a driven gear of the drive mechanism. ボールねじが加熱筒に平行に複数設けられ、駆動機構が各ボールねじのボールナツトに駆動連結された被動ギア間に各被動ギアが同一回転するように設けられたアイドラギアを備え、このアイドラギアは外周歯を有する環状ギアで、内周の2個所以上が深溝玉軸受で案内支持されている請求項1、2又は3記載の射出成形機のノズルタツチ機構。A plurality of ball screws are provided in parallel with the heating cylinder, and a driving mechanism is provided with idler gears provided between driven gears which are drivingly connected to ball nuts of the respective ball screws so that each driven gear rotates in the same manner. 4. The nozzle touch mechanism for an injection molding machine according to claim 1, wherein an annular gear having at least two inner circumferential portions is guided and supported by a deep groove ball bearing.
JP27421998A 1998-08-21 1998-08-21 Nozzle touch mechanism of injection molding machine Expired - Fee Related JP3581918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27421998A JP3581918B2 (en) 1998-08-21 1998-08-21 Nozzle touch mechanism of injection molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27421998A JP3581918B2 (en) 1998-08-21 1998-08-21 Nozzle touch mechanism of injection molding machine

Publications (2)

Publication Number Publication Date
JP2000061984A JP2000061984A (en) 2000-02-29
JP3581918B2 true JP3581918B2 (en) 2004-10-27

Family

ID=17538694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27421998A Expired - Fee Related JP3581918B2 (en) 1998-08-21 1998-08-21 Nozzle touch mechanism of injection molding machine

Country Status (1)

Country Link
JP (1) JP3581918B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018218394A1 (en) * 2017-05-27 2018-12-06 苏州锦珂塑胶科技有限公司 High-performance electric injection molding device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000246761A (en) * 1999-03-02 2000-09-12 Niigata Eng Co Ltd Ball screw mechanism and injection molding machine using the mechanism
PL2597304T3 (en) * 2011-09-02 2015-12-31 Shanghai Ghrepower Green Energy Co Ltd Wind turbine with a mechanism for synchronously varying the pitch of a multi-blade rotor
JP6753732B2 (en) * 2016-08-26 2020-09-09 住友重機械工業株式会社 Injection molding machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018218394A1 (en) * 2017-05-27 2018-12-06 苏州锦珂塑胶科技有限公司 High-performance electric injection molding device

Also Published As

Publication number Publication date
JP2000061984A (en) 2000-02-29

Similar Documents

Publication Publication Date Title
EP0188622B1 (en) Screw-rotating injection mechanism for injection molding machines
US5676227A (en) Free-wheel hub for bicycles
DE3936496C2 (en)
JPH11138598A (en) Injection device for injection molding machine
DE69607999T2 (en) Ejection device
JP3581918B2 (en) Nozzle touch mechanism of injection molding machine
CN103842166A (en) Screw actuated press unit
KR20070037624A (en) Injection device
JP3703745B2 (en) Molding device clamping machine
CN203098635U (en) Clutch actuator
JPH03278929A (en) Ejector mechanism of injection molding machine
JP4104764B2 (en) Ink fountain device for printing machine
KR101853467B1 (en) External type adjustment device angle of correction rollers for metallic pipe straightener
KR100626852B1 (en) Drive shaft moving device
JP2001021019A (en) Ball screw and driving device
US6733265B1 (en) Electric precision injection unit
CN207840405U (en) A kind of linear driving device of ball nut
JP3372831B2 (en) Electric molding machine
JP4161230B2 (en) Injection molding machine
JP4430476B2 (en) Injection device
JPH05126226A (en) Rectilinear feeding device
KR200156070Y1 (en) Backlash control device of double lead worm gear for the rotary table of numerical controlled machine tool
JP3471089B2 (en) Mold thickness adjustment device of injection molding machine
DE4323784A1 (en) System for adjusting screw position in injection moulding machine - has adjusting ring screwed round circumference of flange on screw plunger cylinder and locked when in position
JPS5843214B2 (en) Automatic tool fastening device for rotating spindle

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees