JP3580930B2 - Electron emission device - Google Patents

Electron emission device Download PDF

Info

Publication number
JP3580930B2
JP3580930B2 JP658796A JP658796A JP3580930B2 JP 3580930 B2 JP3580930 B2 JP 3580930B2 JP 658796 A JP658796 A JP 658796A JP 658796 A JP658796 A JP 658796A JP 3580930 B2 JP3580930 B2 JP 3580930B2
Authority
JP
Japan
Prior art keywords
thin film
semiconductor thin
electron
semiconductor
electron emission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP658796A
Other languages
Japanese (ja)
Other versions
JPH09199001A (en
Inventor
隆 杉野
純嗣 白藤
真一 鹿田
弘 塩見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP658796A priority Critical patent/JP3580930B2/en
Publication of JPH09199001A publication Critical patent/JPH09199001A/en
Application granted granted Critical
Publication of JP3580930B2 publication Critical patent/JP3580930B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、半導体からの電子放出を利用する電子放出装置に関するものである。本発明の電子放出装置は、電子顕微鏡、オージェ電子分光装置等の分析機器やマイクロ波増幅管、更にフラット表示パネルなどのキーデバイスである電子線源として用いられる。
【0002】
【従来の技術】
従来、電子線源としてファウラーノルトハイム放出を用いた電界放出型素子(フィールドエミッタ)の研究開発が金属やシリコンを中心とした半導体を用いて進められてきている(例えば I.Brodie and C.A.Spindt, ”Vacuum Microelectronics,” Advances in Electronics and Electron Physics, 83, pp.1−106, 1992)。また、ダイヤモンド表面を電子放出面として利用するフィールドエミッタの試作が開示されている。(特開平5−205616号公報、特開平6−20591号公報、特開平7−94077号公報など)
【0003】
【発明が解決しようとする課題】
フィールドエミッタには通常、低電界での電子放出、高電流密度動作、および長時間動作(長寿命化)が要求される。量子力学的トンネル現象を用いて固体材料から真空中に電子を取り出すため、用いる金属の仕事関数や半導体の電子親和力によって動作電界が大きく左右される。このため小さい仕事関数、又は電子親和力をもつ材料を選ぶことが必要である。低電界の動作しきい値を実現することは高電流密度動作にもつながる。
【0004】
固体材料を尖塔型にし、高電界を集中させて高電流密度動作を行うと固体の温度が上昇し、固体表面の特性劣化や溶融が生じ、電子の放出効率が激減する。このためダイヤモンドなどの耐熱材料が選ばれる。しかし十分満足できるものが実現されていないのが現状である。
【0005】
【課題を解決するための手段】
低電界動作を可能にするためには小さい仕事関数を有する金属の使用が要求され、実験的にはセシウムでその優位性が示されているが、酸化性、耐熱性等に課題があり、実用には至っていない。通常、安定な金属の仕事関数は4−6eVでそれによって動作電界が決まる(図3)。本発明はこの動作電界を低下させる手段を提供する。N型半導体と金属によってショットキー接合を形成するとそのショットキー障壁高さは理想的には金属の仕事関数と半導体の電子親和力の差によって決まることが知られている。このショットキー接合では図4に示すように、逆方向電圧を印加することにより、金属から半導体の伝導帯に電子を供給することができる。この電子の濃度はショットキー障壁高さに依存し、障壁高さの減少で増加する。半導体の伝導帯を金属表面での真空準位と仮定すると、N型半導体を用いてショットキー接合を形成することは金属の仕事関数を減少させる有効な手段と考えられる。
【0006】
次に半導体に供給された電子が真空中に放出されるためには、通常、半導体の電子親和力に値する障壁を越えなければならない。この課題を克服する手段として負性電子親和力を有する半導体を用いることが提案される。更に、半導体膜を電子のトンネリングが可能な程度に薄くすることにより金属から供給された電子を半導体内で衝突させることなく真空中へ放出することができる。この状態にすると金属を用いた従来型のフィールドエミッタと等価なエネルギーバンド構造と見なすことができ、かつ障壁高さが低下できると考えられる。
【0007】
電子放出が起こる半導体表面の特性劣化を抑制するため、耐熱性を有する材料が必要となる。このような条件はダイヤモンドや窒化アルミニウム、窒化ホウ素等の窒素をV族元素として含有するIII−V族化合物半導体を用いることによって実現される。
【0008】
【発明の実施の形態】
本発明に関する半導体材料の一例としてダイヤモンドを取り上げ、金属−ダイヤモンド接合部のバンド構造を図4に示す。ドナー不純物を添加したN型ダイヤモンドを用いる。ダイヤモンドの表面が水素処理されていない場合には電子親和力は2.3eVの正の値を取ると報告されている(M.W.Geis, J.A.Gregory and B.B.Pate, ”Capacitance−voltage measurements on metal−SiO2−diamond structures fabricated with (100)− and (111)−oriented substrates,” IEEE Trans. Electron Devices, 38, pp.619−626, 1991)。
【0009】
リン原子をドナー不純物として添加するとそのドナー準位は伝導帯端より0.2eVに存在することが知られている。このため高濃度にリン原子を添加するとフェルミ準位は伝導帯端の方へ移動する。このダイヤモンドと金属(仕事関数4−6eV)のショットキー接合を作製することにより2−4eVのショットキー障壁高さが得られる。金属と接合していない方のダイヤモンド表面を水素原子で終端することにより負性電子親和力が得られる。このため金属からダイヤモンドに供給された電子は容易に真空中に取り出される。この時、ダイヤモンド膜の電気抵抗は電子放出による電流密度を低減する要因となる。ダイヤモンド膜厚を電子がトンネリングできる程度、例えば10nm以下、に薄くすることにより金属から供給された電子はダイヤモンド内で衝突することなく真空中に取り出されることになる。
【0010】
【実施例】
図2に本発明の第1の実施例である電子放出装置の陰極部の作成工程を断面図により示す。図2(a)に示すように尖塔状に加工したPt線1を水洗、乾燥後、マイクロ波プラズマCVD装置の反応管内にセットする。メタンと水素を原料ガスとしてマイクロ波プラズマによりガスを分解、励起してPt銅線の先端にダイヤモンド薄膜2を成長させる(図2(b))。この際、リン原子を不純物として添加するためホスフィンガスを同時に反応管へ供給する。ダイヤモンド薄膜の厚さが10nm程度になるように成長を行う。
【0011】
ダイヤモンド薄膜の成長が終了した後、メタンとホスフィンガスを止め、水素のマイクロ波プラズマを生成してダイヤモンド表面を5分間処理する。これはダイヤモンド表面を水素原子3で終端するためである(図2(c))。
【0012】
前記のように作製したダイヤモンド陰極と平板電極の距離を100μmにして1×10−7Torrの真空中に封入し図1に示す電子放出装置を形成した。この電子放出装置の特性を測定したところ、1kVの印加電圧に対して0.1mAの高い放出電流が得られた。又、100時間の連続動作においてもダイヤモンド表面の変化および電子放出特性の劣化は認められなかった。
【0013】
次に、本発明の第2の実施例を説明する。第1の実施例と同様に尖塔状に加工したPt線を水洗、乾燥後、熱CVD装置の反応管内にセットする。トリメチルアルミニウムとNHを原料ガスとしてPt線の先端にAlN薄膜を形成する。この際AlN薄膜中にSiを不純物として添加する。AlN薄膜の厚みが10nm程度になるように成長を止めた。
【0014】
前記のように作製したAlN陰極と平板電極の距離を30μmにして1×10−7Torrの真空中で封管に封入し、図1に模式図を示す電子放出装置を形成した。この電子放出装置の特性を測定したところ、2.5kVの印加電圧に対して80μAの高い放出電流が得られた。又、100時間の連続動作においてもAlN表面の変化および電子放出特性の劣化は認められなかった。
【0015】
上記第1および第2の実施例では金属としてPtを用いたが、Taやタングステン等の高融点金属の他、銅も使用することができる。
【0016】
また、半導体の表面に1つまたは2つ以上の突起を設けることにより、優れた電子放出特性を得ることができる。さらに、図5に示すように平面状の金属6の表面に高さ10nm以下の尖塔形状を有する1つまたは2つ以上の半導体7を配置することもできる。このような尖塔形状を有する半導体を金属表面上に2つ以上設けることによって、放出電流密度が極めて高い電子放出装置を実現することができる。
【0017】
【発明の効果】
以上説明したように本発明の電子放出装置は高輝度で安定な特性を有しているため、高精度を必要とするオージエ電子分光装置等の分析機器の電子銃やマイクロ波増幅管、更に表示機器のキーデバイスとして利用すると効果的である。
【図面の簡単な説明】
【図1】本発明の電子放出装置の一実施例を示す模式図。
【図2】本発明の電子放出装置の陰極部作成工程を表す断面図。
【図3】従来の電子放出装置のエネルギーバンド構造を示す模式図。
【図4】本発明の電子放出装置のエネルギーバンド構造を示す模式図。
【図5】本発明の電子放出装置の他の実施例を示す模式図。
【符号の説明】
1・・・金属
2・・・半導体薄膜
3・・・表面終端した水素原子
4・・・平板電極
5・・・封管
6・・・平面状の金属
7・・・尖塔形状を有する半導体
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electron emission device that uses electron emission from a semiconductor. The electron emission device of the present invention is used as an analysis device such as an electron microscope and an Auger electron spectrometer, a microwave amplification tube, and an electron beam source which is a key device such as a flat display panel.
[0002]
[Prior art]
Conventionally, research and development of field emission devices (field emitters) using Fowler-Nordheim emission as an electron beam source have been promoted using semiconductors such as metals and silicon (for example, I. Brodie and CA). Spindt, "Vacuum Microelectronics," Advances in Electronics and Electron Physics, 83, pp. 1-106, 1992). In addition, a trial production of a field emitter using a diamond surface as an electron emission surface is disclosed. (JP-A-5-205616, JP-A-6-20591, JP-A-7-94077, etc.)
[0003]
[Problems to be solved by the invention]
Field emitters are generally required to emit electrons in a low electric field, operate at a high current density, and operate for a long time (extend the life). Since electrons are extracted from a solid material into a vacuum using quantum mechanical tunneling, the operating electric field is greatly affected by the work function of the metal used and the electron affinity of the semiconductor. For this reason, it is necessary to select a material having a small work function or electron affinity. Achieving a low electric field operation threshold also leads to high current density operation.
[0004]
When a solid material is made to have a spire shape and a high electric field is concentrated and a high current density operation is performed, the temperature of the solid increases, and the characteristics of the solid surface are degraded or melted, and the electron emission efficiency is drastically reduced. For this reason, a heat-resistant material such as diamond is selected. However, at present it has not been fully satisfactory.
[0005]
[Means for Solving the Problems]
Use of a metal having a small work function is required to enable low electric field operation, and cesium has been experimentally shown to be superior, but there are problems with oxidizing properties, heat resistance, etc. Has not been reached. Typically, the work function of a stable metal is 4-6 eV, which determines the operating electric field (FIG. 3). The present invention provides a means for reducing this operating electric field. It is known that when a Schottky barrier is formed by an N-type semiconductor and a metal, the Schottky barrier height is ideally determined by the difference between the work function of the metal and the electron affinity of the semiconductor. In this Schottky junction, as shown in FIG. 4, by applying a reverse voltage, electrons can be supplied from the metal to the conduction band of the semiconductor. The electron concentration depends on the Schottky barrier height and increases as the barrier height decreases. Assuming that the conduction band of the semiconductor is a vacuum level at the surface of the metal, forming a Schottky junction using an N-type semiconductor is considered to be an effective means of reducing the work function of the metal.
[0006]
Next, in order for the electrons supplied to the semiconductor to be released into a vacuum, the electron must usually cross a barrier worth the electron affinity of the semiconductor. It is proposed to use a semiconductor having a negative electron affinity as a means for overcoming this problem. Furthermore, by making the semiconductor film thin enough to allow tunneling of electrons, electrons supplied from a metal can be emitted into a vacuum without colliding within the semiconductor. In this state, it can be considered that the energy band structure can be regarded as an energy band structure equivalent to a conventional field emitter using a metal, and the barrier height can be reduced.
[0007]
A material having heat resistance is required in order to suppress deterioration of characteristics of a semiconductor surface where electron emission occurs. Such conditions can be realized by using a group III-V compound semiconductor containing nitrogen as a group V element, such as diamond, aluminum nitride, and boron nitride.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Taking diamond as an example of the semiconductor material according to the present invention, the band structure of the metal-diamond junction is shown in FIG. N-type diamond to which donor impurities are added is used. It has been reported that the electron affinity takes a positive value of 2.3 eV when the surface of the diamond is not hydrogenated (MW Geis, JA Gregory and BB Pate, "Capacitance"). -Voltage measurements on metal-SiO2-diamond structures fabricated with (100) -and (111) -oriented substrates, "IEEE Trans.Electronics, 1963, 1992.
[0009]
It is known that when a phosphorus atom is added as a donor impurity, the donor level exists at 0.2 eV from the conduction band edge. Therefore, when phosphorus atoms are added at a high concentration, the Fermi level moves toward the conduction band edge. A Schottky barrier height of 2-4 eV can be obtained by forming a Schottky junction between the diamond and the metal (work function 4-6 eV). Negative electron affinity can be obtained by terminating the diamond surface not bonded to the metal with hydrogen atoms. For this reason, the electrons supplied from the metal to the diamond are easily taken out in a vacuum. At this time, the electrical resistance of the diamond film is a factor for reducing the current density due to electron emission. By reducing the diamond film thickness to such an extent that electrons can be tunneled, for example, 10 nm or less, electrons supplied from a metal can be taken out into a vacuum without colliding within the diamond.
[0010]
【Example】
FIG. 2 is a sectional view showing a step of forming a cathode portion of the electron-emitting device according to the first embodiment of the present invention. As shown in FIG. 2A, the Pt wire 1 processed into a spire shape is washed with water, dried, and set in a reaction tube of a microwave plasma CVD apparatus. Using methane and hydrogen as raw material gases, the gas is decomposed and excited by microwave plasma to grow the diamond thin film 2 on the tip of the Pt copper wire (FIG. 2B). At this time, a phosphine gas is simultaneously supplied to the reaction tube to add phosphorus atoms as impurities. The diamond thin film is grown so as to have a thickness of about 10 nm.
[0011]
After the growth of the diamond thin film is completed, the methane and phosphine gases are stopped, and a microwave plasma of hydrogen is generated to treat the diamond surface for 5 minutes. This is to terminate the diamond surface with hydrogen atoms 3 (FIG. 2C).
[0012]
The distance between the diamond cathode prepared as described above and the plate electrode was set to 100 μm, and the resultant was sealed in a vacuum of 1 × 10 −7 Torr to form the electron emission device shown in FIG. When the characteristics of the electron-emitting device were measured, a high emission current of 0.1 mA was obtained for an applied voltage of 1 kV. In addition, no change in the diamond surface and no deterioration in the electron emission characteristics were observed in the continuous operation for 100 hours.
[0013]
Next, a second embodiment of the present invention will be described. The Pt wire processed into a spire shape as in the first embodiment is washed with water, dried, and then set in a reaction tube of a thermal CVD apparatus. An AlN thin film is formed at the tip of a Pt wire using trimethyl aluminum and NH 3 as source gases. At this time, Si is added to the AlN thin film as an impurity. The growth was stopped so that the thickness of the AlN thin film became about 10 nm.
[0014]
The distance between the AlN cathode prepared as described above and the plate electrode was set to 30 μm, and sealed in a sealed tube in a vacuum of 1 × 10 −7 Torr to form an electron emission device shown in a schematic diagram in FIG. When the characteristics of the electron-emitting device were measured, a high emission current of 80 μA was obtained for an applied voltage of 2.5 kV. In addition, no change in the AlN surface and no deterioration in the electron emission characteristics were observed even after continuous operation for 100 hours.
[0015]
Although Pt is used as the metal in the first and second embodiments, copper can be used in addition to high melting point metals such as Ta and tungsten.
[0016]
In addition, by providing one or more projections on the surface of the semiconductor, excellent electron emission characteristics can be obtained. Further, as shown in FIG. 5, one or two or more semiconductors 7 having a spire shape with a height of 10 nm or less can be arranged on the surface of the planar metal 6. By providing two or more such spire-shaped semiconductors on a metal surface, an electron-emitting device having an extremely high emission current density can be realized.
[0017]
【The invention's effect】
As described above, the electron emission device of the present invention has high luminance and stable characteristics. It is effective when used as a key device of equipment.
[Brief description of the drawings]
FIG. 1 is a schematic view showing one embodiment of an electron emission device of the present invention.
FIG. 2 is a cross-sectional view illustrating a step of forming a cathode portion of the electron-emitting device of the present invention.
FIG. 3 is a schematic diagram showing an energy band structure of a conventional electron emission device.
FIG. 4 is a schematic diagram showing an energy band structure of the electron emission device of the present invention.
FIG. 5 is a schematic view showing another embodiment of the electron-emitting device of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Metal 2 ... Semiconductor thin film 3 ... Hydrogen atom terminated on the surface 4 ... Plate electrode 5 ... Sealed tube 6 ... Planar metal 7 ... Semiconductor having a spire shape

Claims (6)

金属体と、前記金属体と接合された負性電子親和力を有する厚み10nm以下の半導体薄膜と、前記金属体および前記半導体薄膜とは電気的に絶縁され前記半導体薄膜との間が空間であるように配置された電極とを備え、前記半導体薄膜がドナー不純物を添加したN型ダイヤモンドまたはN型窒化アルミニウムであることを特徴とする電子放出装置。The metal body, the semiconductor thin film having a negative electron affinity and having a thickness of 10 nm or less bonded to the metal body, and the metal body and the semiconductor thin film are electrically insulated from each other so that a space is formed between the semiconductor body and the semiconductor thin film. comprising arranged between electrodes, wherein the semiconductor thin film is an electron-emitting device comprising an N-type diamond or N-type aluminum nitride der Rukoto was added donor impurity. 前記半導体薄膜の表面に1つまたは2つ以上の突起を設けたことを特徴とする請求項1に記載の電子放出装置。The electron emission device according to claim 1, wherein one or more projections are provided on a surface of the semiconductor thin film. 金属体と、前記金属体の表面上に配置され高さ10nm以下の尖塔形状を有し負性電子親和力を有する1つまたは2つ以上の半導体薄膜と、前記金属体および前記半導体薄膜とは電気的に絶縁され前記半導体との間が空間であるように配置された電極とを備え、前記半導体薄膜がドナー不純物を添加したN型ダイヤモンドまたはN型窒化アルミニウムであることを特徴とする電子放出装置。The metal body, one or two or more semiconductor thin films which are disposed on the surface of the metal body, have a spire shape with a height of 10 nm or less and have a negative electron affinity, and the metal body and the semiconductor thin film are electrically connected to each other. to between the semiconductor is insulated and electrodes arranged such that space, the electron emission semiconductor thin film and said N-type diamond or N-type aluminum nitride der Rukoto was added donor impurity apparatus. 前記半導体薄膜が、リン(P)不純物を添加したN型ダイヤモンドであることを特徴とする請求項1〜3のいずれかに記載の電子放出装置。The electron emission device according to claim 1, wherein the semiconductor thin film is N-type diamond to which phosphorus (P) impurities are added . 前記半導体薄膜がN型ダイヤモンドであって、該半導体薄膜の表面を水素原子で終端したことを特徴とする請求項1〜4のいずれかに記載の電子放出装置。5. The electron-emitting device according to claim 1 , wherein the semiconductor thin film is N-type diamond, and the surface of the semiconductor thin film is terminated with hydrogen atoms. 前記半導体薄膜が、シリコン(Si)不純物を添加したN型窒化アルミニウムであることを特徴とする請求項1〜3のいずれかに記載の電子放出装置。4. The electron emission device according to claim 1, wherein the semiconductor thin film is N-type aluminum nitride to which silicon (Si) impurities are added.
JP658796A 1996-01-18 1996-01-18 Electron emission device Expired - Fee Related JP3580930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP658796A JP3580930B2 (en) 1996-01-18 1996-01-18 Electron emission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP658796A JP3580930B2 (en) 1996-01-18 1996-01-18 Electron emission device

Publications (2)

Publication Number Publication Date
JPH09199001A JPH09199001A (en) 1997-07-31
JP3580930B2 true JP3580930B2 (en) 2004-10-27

Family

ID=11642469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP658796A Expired - Fee Related JP3580930B2 (en) 1996-01-18 1996-01-18 Electron emission device

Country Status (1)

Country Link
JP (1) JP3580930B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6350999B1 (en) 1999-02-05 2002-02-26 Matsushita Electric Industrial Co., Ltd. Electron-emitting device
CH696179A5 (en) * 2000-06-08 2007-01-31 Satis Vacuum Ind Vertriebs Ag Plasma evaporation source for a vacuum coating arrangement for applying coating layers on optical substrates.
JPWO2002097843A1 (en) * 2001-05-28 2004-09-30 株式会社渡辺商行 Electrode, electron-emitting device and device using the same
US6806630B2 (en) * 2002-01-09 2004-10-19 Hewlett-Packard Development Company, L.P. Electron emitter device for data storage applications and method of manufacture
JP3535871B2 (en) 2002-06-13 2004-06-07 キヤノン株式会社 Electron emitting device, electron source, image display device, and method of manufacturing electron emitting device
JP4154356B2 (en) * 2003-06-11 2008-09-24 キヤノン株式会社 Electron emitting device, electron source, image display device, and television
JP3826120B2 (en) 2003-07-25 2006-09-27 キヤノン株式会社 Electron emitting device, electron source, and manufacturing method of image display device
JP3889411B2 (en) 2004-05-31 2007-03-07 株式会社東芝 Discharge lamp and discharge electrode
JP4667031B2 (en) 2004-12-10 2011-04-06 キヤノン株式会社 Manufacturing method of electron-emitting device, and manufacturing method of electron source and image display device using the manufacturing method
US20080164802A1 (en) * 2005-06-17 2008-07-10 Sumitomo Electric Industries, Ltd. Diamond Electron Emission Cathode, Electron Emission Source, Electron Microscope, And Electron Beam Exposure Device
JP2009104916A (en) 2007-10-24 2009-05-14 Canon Inc Electron emitting element, electron source, image display device, and manufacturing method of electron emitting element
JP7407690B2 (en) 2020-11-02 2024-01-04 株式会社東芝 Electron-emitting devices and power-generating devices

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5619092A (en) * 1993-02-01 1997-04-08 Motorola Enhanced electron emitter
JPH0778581A (en) * 1993-09-07 1995-03-20 Hitachi Ltd Monochromatized electron beam source and its manufacture
JP3269065B2 (en) * 1993-09-24 2002-03-25 住友電気工業株式会社 Electronic device
JP3390255B2 (en) * 1994-06-24 2003-03-24 富士通株式会社 Field emission cathode device and method of manufacturing the same

Also Published As

Publication number Publication date
JPH09199001A (en) 1997-07-31

Similar Documents

Publication Publication Date Title
JP3537053B2 (en) Electron source for electron emission device
US6780075B2 (en) Method of fabricating nano-tube, method of manufacturing field-emission type cold cathode, and method of manufacturing display device
JP3281533B2 (en) Cold electron emission display device and semiconductor cold electron emission element
JP2966842B1 (en) Field emission electron source
JP3580930B2 (en) Electron emission device
JP3269065B2 (en) Electronic device
KR20000023410A (en) Electric field emission type electron source
JP3497685B2 (en) Semiconductor device using semiconductor BCN compound
US6008502A (en) Diamond electron emitting device having an insulative electron supply layer
US20080074026A1 (en) Field emission electron source and method of manufacturing the same
JPH09320450A (en) Electron emitting element and its manufacture
JPH07122198A (en) Carbon nanotube transistor
Uh et al. Improvement of electron emission efficiency and stability by surface application of molybdenum silicide onto gated poly-Si field emitters
JP3789064B2 (en) Electron emitter
JP3554238B2 (en) Cold cathode
JP2005310724A (en) Field emission type electron source and manufacturing method for it
JP2001250468A (en) Field electron emission device and its manufacturing method
JP3335836B2 (en) Electron emission device
JP2000260300A (en) Electron emission element and its manufacture
KR100485128B1 (en) Field emission device and method of manufacturing a field emission device
JP3260502B2 (en) Electron-emitting device
Jung et al. Effect of N doping on the electron emission properties of diamondlike carbon film on a 2-in. Mo field emitter array panel
JP4312331B2 (en) Electron emission device
JP4312326B2 (en) Electron emission device
JP4218219B2 (en) Plasma film forming apparatus and carbon film forming method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040721

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees