JP3580696B2 - Coagulant-producing microorganism having organic acid substrate utilization characteristics, microbial coagulant, and wastewater / sludge treatment method using the same - Google Patents

Coagulant-producing microorganism having organic acid substrate utilization characteristics, microbial coagulant, and wastewater / sludge treatment method using the same Download PDF

Info

Publication number
JP3580696B2
JP3580696B2 JP08481198A JP8481198A JP3580696B2 JP 3580696 B2 JP3580696 B2 JP 3580696B2 JP 08481198 A JP08481198 A JP 08481198A JP 8481198 A JP8481198 A JP 8481198A JP 3580696 B2 JP3580696 B2 JP 3580696B2
Authority
JP
Japan
Prior art keywords
sludge
microbial
coagulant
flocculant
organic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08481198A
Other languages
Japanese (ja)
Other versions
JPH11276160A (en
Inventor
善介 井上
道彦 池
正憲 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma KK
Original Assignee
Takuma KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma KK filed Critical Takuma KK
Priority to JP08481198A priority Critical patent/JP3580696B2/en
Publication of JPH11276160A publication Critical patent/JPH11276160A/en
Application granted granted Critical
Publication of JP3580696B2 publication Critical patent/JP3580696B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Sludge (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、有機酸基質利用特性を有する新規な凝集剤産生微生物に係り、更に詳細には、この凝集剤産生微生物を下廃水汚泥等の有機性廃棄物を分解して得られる有機酸により培養して凝集活性の高い微生物凝集剤を生産させ、この微生物凝集剤を下廃水処理に適用して、汚泥等の固形物を処理水から効率的に沈殿分離させたり、汚泥等の固形物を脱水させる下廃水・汚泥処理方法に関する。
【0002】
【従来の技術】
従来、各種の有機物を含有する廃水処理、例えば食品加工や染色加工工場等の廃水処理、また都市下水等の下水処理においては処理水中または生下水中の懸濁物質をいかに効率的に沈殿分離するか、あるいは沈殿で生じた汚泥をいかに効率よく濃縮・脱水するかに多くの技術が導入されている。
【0003】
下廃水処理の一例として下水処理で説明すると、まず流入下水から砂などを沈砂除去した後、最初沈殿池で懸濁物質を沈殿分離し、次の生物酸化処理工程では活性汚泥法により有機物を酸化分解し、最後に最終沈殿池で残留浮遊している懸濁物質を沈殿除去して清澄水を最終処理水として放流している。
これらの各工程の沈殿分離操作は速やかに行われるのが望ましいが、活性汚泥中に糸状菌や放線菌などの糸状性微生物が増殖すると、細かな生物フロックが膨化して活性汚泥全体の膨化現象(バルキング)が生じ、沈殿しにくくなることによって活性汚泥の浮遊流出という事態が出現していた。逆に、生物フロックが凝集圧密化せずに細かく分散するデフロック現象の場合には、沈殿せずに活性汚泥が流出するという問題があった。
【0004】
下廃水処理において更に本質的な問題は、沈殿分離等で生成される大量の下廃水汚泥をどう処理するかという問題である。特に下水処理においては処理水量が極めて大量であるため、下水汚泥の処理はその死活問題である。
【0005】
全国の下水処理場から排出される下水汚泥は脱水・焼却・溶融等で減量・減容化されてはいるが、それでも1年間に約231万立米の下水汚泥が出現する。このうち60%は陸上・海上に埋立処分され、25%は緑農地又は建設資材として有効利用されており、残り15%はメタンガスや燃料等に再利用されている。埋立処分地が少なくなっている中で、下水汚泥をどう再利用するかが大きな課題となっている。下水汚泥以外に、一般の工場等で排出される廃水処理汚泥についても同様の問題が存する。
【0006】
従来、いかに沈殿させるかという問題については、沈殿分離の対象となる混合液中にカチオン性の合成高分子系凝集剤(例えばポリアクリルアミド)や無機系凝集剤(例えばPAC,即ちポリアルミニウムクロライド)を投入して、アニオン性の活性汚泥や固形物を電気的に中和して強制的に凝集沈殿させる方法が採られていた。
しかし、これらの凝集剤は処理水中でイオン状に溶解するから、凝集沈殿に寄与しなかったものは処理水と一緒に放流されて環境汚染を惹起し、また合成高分子凝集剤は生物により分解されにくいので、自然水や土壌に残留汚染を引き起こすことが指摘されていた。
【0007】
特に、ポリアクリルアミドについては凝集能の点で優れてはいるが、この物質自身が強い変異原性を示し、またポリアクリルアミド中に含まれるモノマーのアクリルアミドに発ガン性・神経毒があることからその残留性が危惧されている。また近年多用されているPAC等アルミニウム系凝集剤もアルミニウムを含有するためアルツハイマー病の発現物質としてその毒性が指摘されている。
【0008】
このような化学凝集剤の有する欠点を打開する切り札として開発されてきたのが、近年のバイオテクノロジーを利用した微生物凝集剤である。
ロードコッカス属やノカルディア属の菌類が産生する微生物凝集剤は凝集能力を有するとともに安全性が高いことから、前記の化学凝集剤に替えて、又は併用して薬剤凝集処理の必要な工程に導入されてきている(特公平4−26836号、特公平5−78309号、特公平6−2201号、特公平6−11363号、特公平6−61556号および特開平7−75561号)。
更に、これらの数倍の凝集能力を有する凝集剤産生微生物としてアシネトバクター属、エンテロバクター属、オーレオバクテリウム属およびオエルスコビア属の特定の菌株(特公平6−61号および特公平7−108216号)が新しく発見されている。
【0009】
【発明が解決しようとする課題】
上記の菌株が産生する微生物凝集剤は安全性が高く同時に凝集能力が高い点で従来の化学凝集剤よりは評価できるが、下廃水汚泥を量産することは従来の化学凝集剤と変わらず、何ら下廃水汚泥の最終処分に役立たない点では化学凝集剤と同様であった。
【0010】
微生物凝集剤の役割は安全にしかも効率よく汚泥の沈殿を促進させることであるから、凝集沈殿性能だけを問題とすべきであり、量産された下廃水汚泥の後始末は全く別の技術的課題であるとする考え方もあるであろう。従来はこのような考え方が一般的であった。
しかし、本発明者等は下廃水処理の最大の問題が下廃水汚泥の最終処分である限り、この最終処分に貢献できなければ微生物凝集剤またはその生産方法自体に大きな問題を含んでいると考えている。
【0011】
また、これらの微生物凝集剤は微生物(菌株)が培地に産生するものであり、培地に微生物を培養するための栄養源を添加しておかなければならないことは当然である。
この栄養源には炭素源、窒素源、無機塩類(ミネラル)、ビタミン・ホルモン等の微量有機化合物がある。特公平5−78309号、特公平6−61号、特公平6−61556号および特公平7−108216号では炭素源としてグルコース・フラクトース・スクロース等が利用されているが、これらは極めて高価な材料で大量に菌株を培養する場合には生産価格に難点がある。
【0012】
また、特公平4−26836号および特公平6−11363号では栄養源として家畜や魚類等の血液成分を含む廃水、またその加工残留物の廃棄物を利用している。この廃棄物を再利用する長所があるものの、下廃水処理に適用する場合には血液成分廃水を下水処理場に移送する手間や廃水の腐敗という問題点がある。
【0013】
特開平7−75561では窒素源として米糠・フィッシュミール・ヒマワリ種子粉末を利用しているが、炭素源としてはグルコース・フラクトース等の高価な材料を使用している点で上述したものと同じ欠点を有している。特に、特公平6−2201号は炭素源としてメタノール・エタノール等のアルコール類を使用している点で従来よりは凝集剤の安価な製法を提供しているが、これも下水処理工程のような大量使用の場合には培地の調製が割高になる。
【0014】
【課題を解決するための手段】
この発明は上記の欠点を解消するためになされたものであり、下水処理場や工場等の廃水処理場から生ずる有機性廃棄物、その最終形態としての下廃水汚泥中の有機物から嫌気性消化などを通して得られるほとんど無料に近い有機酸に着目してなされたものである。
【0015】
まず、本発明は有機酸を基質(炭素源、エネルギー源)として増殖する新規な菌株であるシトロバクター属細菌TKF04株(FERM P−16722)からなる凝集剤産生微生物を用いる点を特徴とする。
【0016】
次に、このシトロバクター属細菌TKF04株(FERM P−16722)を有機酸を基質とした培地で培養し、その培養物又は培養処理物を主成分とする微生物凝集剤を提供する。又、有機酸として下廃水汚泥等の有機性廃棄物から得られた有機酸を利用する。
【0017】
そして、この微生物凝集剤を下廃水処理工程、例えば生下水、生物酸化処理水または下廃水汚泥中に添加して、これらの処理対象物から汚泥または固形物を凝集沈殿させたり、汚泥を脱水させたりする下廃水・汚泥処理方法を提供するものである。
【0018】
【発明の実施の形態】
下水処理場や工場等の廃水処理場から日々大量に排出される最初沈殿池汚泥や余剰活性汚泥などの下廃水汚泥は、そのほとんどが脱水や焼却などの処理を経て、最終的に埋め立て処分されていることは前述した通りである。
ゴミの処分が社会問題となる中で、汚泥を単なる廃棄物としてでなく、再生利用可能な資源として捉える動きが出てきている。
【0019】
このような中で発明者等は微生物凝集剤について鋭意研究した結果、下廃水汚泥等の有機性廃棄物を処理する際に生成される有機酸を基質、即ち炭素源およびエネルギー源として培養できる凝集剤産生微生物を発見できれば、極めて安価に微生物凝集剤を大量生産できると同時に下廃水汚泥等の有機性廃棄物の最終処分に貢献できることを着想するに至った。
即ち、下廃水処理場では活性汚泥法により下廃水処理を行なっているが、その中で沈殿物として得られる最初沈殿池汚泥・余剰活性汚泥・最終沈殿池汚泥等の有機性廃棄物中の有機物を分解処理しなければならない。
【0020】
この分解処理は通常、嫌気性生物処理で行なわれ、大別すると2段階で行なわれる。
第1段階はタンパク質、含水炭素、脂肪等の高分子有機物質を低級な分子にまで分解する作用で、言い換えれば酸発酵細菌である通性嫌気性菌や偏性嫌気性菌が行なう有機酸発酵である。ギ酸、酢酸、プロピオン酸、酪酸等の低級脂肪酸が生成され、特に酢酸・プロピオン酸がその中心となる。
第2段階は第1段階で得られた有機酸をメタンガス、二酸化炭素に分解する工程で、偏性嫌気性菌であるメタン発酵細菌が行なうメタン発酵である。
【0021】
前記第1段階で生成される有機酸を凝集剤産生微生物の培養基質として利用できれば、生産に要する薬品経費は非常に安価になると同時に下廃水処理場で利用する場合輸送経費が不要となり、究極的な低価格を実現することができる。
同時に下廃水処理の最大の問題である下廃水汚泥の最終処分に貢献することもできる。下廃水処理場で排出される下廃水汚泥等の有機性廃棄物から有機酸を生成し、この有機酸で微生物凝集剤を生産し、同一又は別の処理場内で再利用すれば、下廃水汚泥の排出と消費という一貫したリサイクルシステムを下廃水処理場に作りだすことができる。
【0022】
有機酸の別の製法として汚泥等の有機性廃棄物を熱処理する公知の湿式酸化法がある。
下廃水汚泥を加圧しながら約300度で加熱すると、有機物の大半は二酸化炭素と水になるが、一部は低級脂肪酸の一種である酢酸になる。この酢酸を前記の基質として利用することができる。
勿論、下廃水汚泥から有機酸を生成する方法としては前述した嫌気性生物処理法の方がコスト的に安く、設備費用も少ない点で優れている。
【0023】
基質として利用できる有機酸は微生物(菌)の培養を効率的に行なえるものなら何でもよいが、分子量の小さな有機酸の方が菌が吸収分解しやすいため効率的である。特に、前述した発酵有機酸であるギ酸・酢酸・プロピオン酸等の低級脂肪酸又はそれらの混合有機酸が好ましい。
【0024】
本発明を実現するためには、有機酸で培養できる凝集剤産生微生物の菌株を発見することが大前提となる。
各種土壌、汚泥、生物膜を分離源として使用した。凝集活性物質の生産能力を有する公知のノカルディア属やロドコッカス属の放線菌は発泡汚泥中に多数存在するといわれているし、凝集促進物質を産生する細菌は生物膜中に存在すると考えられるからである。
【0025】
細菌の分離には酢酸・プロピオン酸培地を寒天で固化した平板培地を使用し、微生物凝集剤の生産試験には酢酸・プロピオン酸液体培地を使用した。分離された菌株をこの液体培地で培養しカオリンを浮遊物質としてその凝集試験を行なった結果、吸光度であるOD550 を使用した凝集活性測定により、通常より凝集活性が高い培養液が存在することを見出すに至った。
この培養液から菌を分離したところ優れた凝集活性を有する新規な菌を発見した。
【0026】
本発明者等は、本菌株をTKF04株と以後称する。
このTKF04株を分類学的に同定するため各種生理・形態試験を行った。また、補助的に細菌簡易同定キット(AP120E)を利用した同定も行った。表1にTKF04株の同定試験の結果を示す。
【0027】
【表1】

Figure 0003580696
【0028】
表1の菌学的性質について、バージー・マニュアル・システマティック・バクテリオロジー第1・2巻(Bergey’s Manual of Systematic Bacteriology Volume 1・2)を用いて細菌の同定を行なった。
【0029】
表1から分かるように、TKF04株は、グラム陰性の運動性を有する桿菌であり、シトロバクター・フロインジイ菌(Citrobacter freundii)に極めて類似した特性を持つことが明らかになった。また、16SrRNA−DNAの上・下流各々6〜700bの塩基配列をシーケンスし、その相同性を検索した結果からも、シトロバクター・フロインジイ菌との高い相同性が認められた。しかし、典型株のものと、生理特性、DNA塩基配列ともに若干の相違が認められたため、本菌株は種までは特定せず、シトロバクター(Citrobacter)属細菌と同定した。これまでシトロバクター属細菌による微生物凝集剤の生産については報告されておらず、新規の凝集剤産生微生物と考えられる。
【0030】
本発明に係るシトロバクター属細菌TKF04株は、工業技術院生命工学工業技術研究所 通知番号:10生寄文第424号(FERM P−16722)として既に寄託されている。
【0031】
この菌を有機酸を基質とする培地で培養すると、凝集活性の高い微生物凝集剤を産生する。つまり、本発明の微生物凝集剤は、前記の細菌を有機酸培地で培養して培養物、培養液又は培養処理物を主成分としたものである。
培地はゲル状培地・液体培地を問わず、また培養物等から遠心分離や膜分離などの公知の精製手段で凝集剤成分を分離精製したものでもよい。更に培養物等の濃縮物、瀘液、瀘過残滓、それらの乾燥物でもよく、粉体・顆粒体に成形しても構わない。
【0032】
下廃水処理施設には有機酸の生成原料となる活性汚泥を中心とした大量の有機性汚泥が存在し、同時に微生物凝集剤を大量に必要とする沈殿槽が多数存在する。従って、下廃水処理施設内に有機酸生産施設を設けておき、同時に凝集剤産生微生物を培養する培養施設も沈殿槽などの凝集処理施設の近傍に設けておき、前記の培養施設に下廃水汚泥から得られる有機酸を用いた培地を調製し、この培地にて凝集剤産生微生物を培養すれば、効率的に微生物凝集剤の生産とそれを使っての凝集処理を行なうことができる。
また、この有機酸として酢酸等の低級脂肪酸を使用することが望ましいことは上述した通りである。
【0033】
本発明に係るTKF04株は、炭素源として酢酸およびプロピオン酸の基質利用特性が顕著で、他の炭素源に対する基質利用特性が小さいことが分っている。下廃水汚泥を嫌気性消化・湿式酸化して得られる有機酸は酢酸を主体としているから、TKF04株の炭素源として好適である。
【0034】
多くの微生物が微量成分をバランスよく含んだ酵母エキスを必要とするのに対し、TKF04株の培養では酵母エキスを必要としないことが分った。即ち、TKF04株は酢酸およびプロピオン酸に対する選択的基質利用特性が圧倒的に高く、培地設定が極めて安価に済むという利点を有する。
【0035】
また、TKF04株は窒素源として有機、無機物質のいずれも利用できることが分った。下廃水汚泥等の有機性汚泥には種々の有機・無機性の窒素化合物が含まれているので、TKF04株の培養に有機性汚泥の分解物を利用することが極めて合理的であることが分る。
【0036】
本発明に係る微生物凝集剤は下廃水処理の固液分離工程に使用される。具体的には、凝集剤産生菌を培養して得られる培養物またはそれを加工した培養処理物を生下廃水、生物酸化処理水、下廃水汚泥等に添加し、これ等の処理対象物から固形物を強制的に分離沈殿させる。
【0037】
下廃水処理における分離沈殿は基本的に3段階に分類される。即ち、流入下廃水からの砂などの沈砂除去、最初沈殿池での懸濁物を含む固形物の沈殿、活性汚泥法による生物酸化処理後、最終沈殿池で残留浮遊した懸濁物質の沈殿除去である。
これらの各工程の沈殿分離操作は速やかに行なわれるのが望ましいから、前記の微生物凝集剤が沈殿促進剤として添加される。
【0038】
この沈殿促進剤として微生物凝集剤単体を用いるだけでなく、他の微生物凝集剤・高分子系凝集剤・無機系凝集剤とともに用いて効率化を図ってもよい。
また、活性汚泥中にバルキングが生じた場合には、この微生物凝集剤を添加して生物フロックを強制的に凝集圧密化し、沈殿促進と活性汚泥の流出防止を図ることができる。
【0039】
更に、汚泥を消化、即ち有機酸発酵・メタン発酵した後に残留する消化汚泥はかなりの水分を含んでいるから、この消化汚泥中に微生物凝集剤の培養物または培養処理物を添加すれば、その凝集作用により消化汚泥の脱水を行ない、固形化した消化汚泥の後処理を簡易化することができる。もちろん生汚泥、余剰汚泥あるいはそれらの混合汚泥に添加してその脱水を効率化することもできる。
【0040】
【実施例】
本発明に係る凝集剤産生菌を分離することから始めた。各種土壌、下水処理場から採取した汚泥、台所流しの排出口および河川底部などから採取した生物膜を新規な凝集剤産生菌の分離源として使用した。
【0041】
これを植種源として5mg/Lトリポリ燐酸ナトリウム溶液で適当に希釈し、超音波発振機にて分散させた後、酢酸・プロピオン酸平板培地に28℃でコロニーが出現するまで培養し、コロニーを形成した細菌株を分離した。ここで、酢酸・プロピオン培地とは、炭素源として酢酸(Na塩として0.7%)およびプロピオン酸(Na塩として0.3%)、補栄養素として酵母エキス(0.01%)を含む無機塩培地で、表2に詳細を示している。酵母エキスは基質利用に不要であるが、増殖を高めるために添加している。この培地組成を寒天にて固化したものが上記の平板培地であり、滅菌水で溶液化した培地が後述の液体培地である。
【0042】
【表2】
Figure 0003580696
【0043】
次に、酢酸・プロピオン酸液体培地を10mL分注した試験管に前記コロニーを形成した細菌株を個々に植種し、28℃の恒温下、120rpmで7日間(増殖が遅いものは14日間)好気的に往復振とう培養した。
【0044】
イオン交換水にカオリンを分散させた5g/Lのカオリン懸濁液10mLに0.15MのCaCl溶液0.1mLを添加したものに、菌体を含む前記培養液を1mL加える。これをタッチミキサーで5秒間攪拌した後5分間静置し、カオリン粒子の凝集性を菌体の培養液を添加しない系(コントロール)との比較から評価し、微生物凝集剤産生菌を一次スクリーニングした。上記コントロールには培養液の代りにイオン交換水1mLを添加している。
【0045】
この一次スクリーニングで得られた陽性株については、再度同様の凝集試験を繰り返し行い、5分静置後の上澄部の波長550nmにおける吸光度から、式1に示す計算式に基づいて凝集活性を定量的に評価する2次スクリーニングを行なった。結果として1566の細菌株のスクリーニングにより、102の1次スクリーニング陽性株が得られ、2次スクリーニングにおいて、95%以上の凝集活性を安定して示した細菌株TKF04株を最有望株として選別した。
【0046】
[式1]
凝集活性=(OD550−C −OD550 )/OD550−C ×100
OD550 :サンプルを添加した場合の上澄の吸光度
OD550−C :イオン交換水を添加した場合の上澄の吸光度
【0047】
式1において、吸光度ODは液が濁っている程大きな値となり、液が完全透明のときゼロとなる。培養液の添加によってカオリンが沈殿し液が完全透明になると、OD550 はゼロとなり、凝集活性は100%となる。逆に、カオリンが全く沈殿しない場合にはOD550 =OD550−C となり、凝集活性は0%となる。従って、凝集活性は理論的には0%〜100%を変動するが、誤差によりこの範囲外となる場合もある。以後、凝集活性は全て式1によって計算される。
【0048】
上述と同様に、酢酸・プロピオン酸液体培地においてTKF04株の増殖を行い、増殖率を波長660nmにおける吸光度0D660 により測定した。また、微生物凝集剤の生産率を培養液のカオリン凝集活性により調べ、その経時変化を菌体増殖と共に図1に示した。TKF04株は対数増殖期に微生物凝集剤を生産し、培養液の凝集活性は培養1日で95%以上に達した後、約2日間は維持されることが明らかになった。
【0049】
微生物凝集剤が細胞の内部に蓄積されているか、表面に固着しているか、あるいは細胞外に分泌されているのかを調べるため、培養48時間後の培養液を採取し、遠心分離にて菌体を除去した上澄液、回収した菌体を元量の無機塩培地に懸濁した菌体懸濁液、およびこれを超音波処理して細胞を破砕した菌体破砕液の各々についてカオリン凝集活性を測定し、何等の処理も施さない培養液のものと比較した。結果は図2に示されている。
【0050】
この試験では、凝集試験における培養液等サンプルの添加量を1mLに固定せず、0.1mL〜2.0mLの範囲で変化させた。凝集活性は主に上澄液に検出されたことから、TKF04株の生産する微生物凝集剤は細胞外に分泌されていることが明らかになった。これは回収・精製を行う場合には有利な特性である。換言すれば、微生物凝集剤を遠心分離等によって菌体と分離できるから、上澄液から微生物凝集剤だけを回収でき、濃縮・乾燥・粒体化・顆粒化等の操作を容易に行うことができる。
【0051】
培地組成がTKF04株の微生物凝集剤生産に及ぼす影響を種々調べた。まず、酢酸・プロピオン酸培地から酵母エキスを除いた場合にも、培養液の凝集活性には何等の変化も認められなかったことから、TKF04株による微生物凝集剤生産には特定の補栄養素は必要とされないことが明らかになった。しかし、酵母エキス添加で増殖の促進が認められた。
【0052】
また、酢酸・プロピオン酸培地の炭素源(酢酸Na+プロピオン酸Na)を、酢酸Naのみ、プロピオン酸Naのみ、エタノール、ヘキサデカン、グルコースなど(各々10g/Lの濃度で調製)に換えた培地でTKF04株を培養し、培養上澄液のカオリン凝集活性を調べた。図3に示すように、酢酸およびプロピオン酸のみで明らかな凝集活性が認められた。TKF04株は低級脂肪酸を利用する際に特異的に微生物凝集剤を生産するものと考えられ、これまでに報告されている糖類や脂質を基質として生産される微生物凝集剤とは異なるタイプの代謝により生じていることが推測される。
【0053】
窒素源を種々変えた修正酢酸・プロピオン酸培地における培養上澄液のカオリン凝集活性を調べた。その結果は図4に示されている。TKF04株は微生物凝集剤生産の窒素源として硝酸塩以外は比較的幅広く利用できることが分かった。
【0054】
下廃水処理から生じる有機汚泥中には各種の窒素化合物が含まれているため、TKF04株を培養するための窒素源として利用できる。また、有機汚泥を分解して得られる有機酸は、その多くが酢酸であり、TKF04株の培養における炭素源として最適である。つまり有機汚泥によりTKF04株を培養して微生物凝集剤を生産し、この微生物凝集剤を利用して処理水中の固体成分の凝集沈殿に活用すれば、汚泥の生成と消費という一貫システムを作り上げることができる。
【0055】
酢酸・プロピオン酸培地でTKF04株が生産した微生物凝集剤による粒子沈降特性を、48時間後の培養上澄液を用いて種々検討した。まず、カオリン粒子に対する凝集活性に及ぼす各種因子の影響を調べた。ここで、先のカオリン凝集試験では凝集助剤としてCaCl溶液を添加していたが、添加の影響がほとんどないことが明らかになったため、以降の試験では省略した。カオリン凝集試験(微生物凝集剤1mL添加試験)におけるpHおよび温度の影響を図5および図6に各々示す。この微生物凝集剤は幅広いpH域および温度域で高い凝集活性を示していることから、その応用範囲が広いことが示唆された。特に、化学凝集剤であるPAC(ポリアルミニウムクロライド)の狭いpH依存性と比較しても、この微生物凝集剤の優秀性は明らかである。
【0056】
次に、上澄液添加量を変化させてカオリン凝集試験を行い、その有効濃度(希釈)の決定を試みた。図7に示すように、懸濁液量の1%(10000ppm)で凝集活性は約50%に達し、約3%も添加すれば90%以上の凝集活性が得られた。また、10%以上の過剰添加でも凝集効果は低下しなかったことから、この微生物凝集剤は高い凝集活性を持っており、使用しやすいものであるといえる。一見すると、PACが低濃度で凝集活性を示すのと対照的に、この微生物凝集剤は上記の高濃度側で凝集活性を示すように考えられる。しかし、この微生物凝集剤の濃度は上澄液添加液量の懸濁液に対する濃度であり、上澄液に含まれる微生物凝集剤成分の濃度でない点に注意を要する。従って、精製物を用いていない本試験ではPACの濃度と比較して、濃度の高低を論ずることには困難がある。
【0057】
さらに、カオリン以外の各種粒子に対する凝集活性を同様の試験にて調べ、その結果を図8に示した。各種粒子の懸濁液は、約2〜5g/Lの濃度で調製した。この微生物凝集剤は各種有機・無機粒子に対して有効な凝集活性を示した。特に活性汚泥に対してかなり高い凝集活性を示しており、本凝集剤の排水処理及び汚泥処理工程での利用性を裏付けている。汚泥からの脂肪酸生成→微生物凝集剤生産→排水・汚泥処理系での利用という廃棄物リサイクルの概念が本発明により実現できることを示しており、大規模な実用試験への突破口を開いたものである。
【0058】
凝集沈殿工程への微生物凝集剤の利用では、培養液の直接添加以外にも、濃縮液のより小量の添加や乾燥製品としての利用形態が考慮されるべきである。また、微生物凝集剤の化学組成や構造についての検討は、化成品として実用化する場合には必須となるため、その回収・精製は重要である。そこで、この微生物凝集剤の簡便な回収と精製について検討を行った。
【0059】
培養上澄液を限外ろ過膜で処理したところ、この微生物凝集剤は分画分子量50000の膜で簡単に濃縮されることが明らかになった(カオリン凝集活性の収率として90%以上)。その後、ゲルろ過分析によって分子量は200万以上であると推定され、高分子ポリマーであると考えられる。また、別法として、この微生物凝集剤はエタノール沈殿により回収され、沈殿物を脱塩(透析)することで粗精製物として回収できることが明らかになった(カオリン凝集活性の収率として90%以上)。この粗精製された微生物凝集剤は、酢酸・プロピオン酸培地1L当たり約200mg程度が得られることが分かった。
【0060】
粗精製した微生物凝集剤の化学分析で、定法では糖およびタンパク質が小量しか検出されなかったことから、当初は脂質系のバイオポリマーとも考えられたが、窒素含量が必ずしも低くなかったため、さらに分析を継続し、ヘキソースアミンを数10%のオーダーで含有していることが明らかになった。さらに詳細な検討は必要ではあるが、現状ではキトサンに類似の特性をもつ可能性が示唆されている。
【0061】
一方、粗精製物を使用したカオリン粒子の凝集試験により、終濃度1〜3mg/Lという極めて低い添加濃度でかなり高い凝集活性をもつことが明らかになっており、この微生物凝集剤の活性の高さが確認された。
低濃度の添加で十分な凝集沈殿や、汚泥脱水が可能なポリマーは、濃縮汚泥、脱水汚泥や、上澄処理液、脱水ろ液中に残留する濃度が極めて低いレベルに維持できるため、汚泥のコンポスト化や廃棄、処理水の再利用における健康リスクやハザードの可能性も低いという利点がある。
【0062】
本発明は上記実施例に限定されるものではなく、本発明の技術思想を逸脱しない範囲における種々の変形例、設計変更等をその技術的範囲内に包含するものである。
【0063】
【発明の効果】
本発明は以上詳述したように、有機酸を基質として増殖しながら凝集剤を菌体外に産生する新規な凝集剤産生微生物であるシトロバクター属細菌TKF04株(FERM P−16722)の発見からなされたものである。この菌株の培養で利用する有機酸は、下廃水汚泥等の有機性廃棄物を嫌気性消化などの後処理をすることによってほとんど無料に近い経費で生産できるものであり、前記発見された微生物(菌)を培養する基質(炭素源およびエネルギー源)として利用すれば、微生物凝集剤の大量生産に画期的な方法を提供するものである。
【0064】
そして、この方法は有機酸を基質とする凝集剤産生微生物全般に対して適用することができる。同時に、大量に発生する下廃水汚泥を栄養原料にするから、下廃水汚泥の減量化を達成でき、下廃水汚泥の排出と消費というリサイクルシステムを下水処理場や工場等の廃水処理場に実現することも可能となる。
【0065】
培養液や上澄液を濃縮・乾燥して固形の微生物凝集剤も容易に製造でき、この固形微生物凝集剤を使用することにより一層効果的な凝集作用を発揮できる。
【0066】
更に、下廃水処理場に培養施設を設け、下廃水汚泥から得られる有機酸を基質とする培地を調製しておけば、有機酸の移送経費もほとんど不要となり、培養液や培養上澄液の大量生産を安価にしかも迅速に行なえる。
活性汚泥法を中心とする下廃水処理では最初沈殿池汚泥、余剰活性汚泥などの大量の下廃水汚泥が生じ、これら下廃水汚泥の最終処理段階で必然的に生じる有機酸を利用するのであるから、下廃水処理は本発明の最も効果的な適用対象となる。
【0067】
このようにして得られた微生物凝集剤を下廃水汚泥の凝集沈殿に積極的に活用すれば、環境に対してもクリーンであり、また活性汚泥にバルキングやデフロックが生じた場合にも、この凝集剤を利用して汚泥の沈殿分離を促進することができる。
また、生汚泥、余剰汚泥や消化汚泥あるいはそれらの混合汚泥の脱水処理に利用すれば汚泥を廃棄するための後処理も効率化することができる。
【図面の簡単な説明】
【図1】菌体増殖と凝集活性の培養時間依存性を示す経時変化図である。
【図2】微生物凝集剤が蓄積される位置を示す凝集活性特性図である。
【図3】各種炭素源での凝集剤生産性を示す凝集活性特性図である。
【図4】各種窒素源での凝集剤生産性を示す凝集活性特性図である。
【図5】凝集活性のpH依存性を示す凝集活性特性図である。
【図6】凝集活性の温度依存性を示す凝集活性特性図である。
【図7】凝集活性の濃度依存性を示す凝集活性特性図である。
【図8】凝集活性の被凝集物質依存性を示す凝集活性特性図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a novel flocculant-producing microorganism having an organic acid substrate utilization property, and more particularly, to culturing the flocculant-producing microorganism with an organic acid obtained by decomposing an organic waste such as sewage sludge. To produce a microbial coagulant with high coagulation activity, and apply this microbial coagulant to wastewater treatment to efficiently precipitate and separate solids such as sludge from treated water and dewater solids such as sludge. And a method for treating sewage and sludge.
[0002]
[Prior art]
Conventionally, in wastewater treatment containing various organic substances, for example, wastewater treatment in food processing and dyeing processing plants, and sewage treatment such as municipal sewage, how efficiently precipitates and separates suspended substances in treated water or raw sewage. Many techniques have been introduced to concentrate or dehydrate sludge generated by precipitation.
[0003]
To explain sewage treatment as an example of sewage treatment, sand and other substances are first settled from inflowing sewage, and then suspended substances are first separated and settled in a sedimentation basin. It decomposes and finally removes suspended solids remaining in the final sedimentation basin and discharges clear water as final treated water.
It is desirable that the sedimentation and separation operations in each of these steps be performed promptly.However, when filamentous microorganisms such as filamentous fungi and actinomycetes proliferate in the activated sludge, fine biological flocs expand and the entire activated sludge expands. (Bulking) occurred, and the sedimentation became difficult, resulting in a floating outflow of activated sludge. Conversely, in the case of a deflocc phenomenon in which biological flocs are finely dispersed without coagulation and consolidation, there is a problem that activated sludge flows out without settling.
[0004]
A further essential problem in sewage treatment is how to treat a large amount of sewage sludge generated by sedimentation and the like. Especially in the case of sewage treatment, the amount of treated water is extremely large, so the treatment of sewage sludge is a matter of life and death.
[0005]
Although sewage sludge discharged from sewage treatment plants nationwide has been reduced in volume and volume by dehydration, incineration, melting, etc., about 2.31 million cubic meters of sewage sludge appears every year. Of this, 60% is landfilled on land and sea, 25% is effectively used as green farmland or construction material, and the remaining 15% is reused for methane gas and fuel. As landfill sites are becoming scarce, how to reuse sewage sludge has become a major issue. In addition to sewage sludge, a similar problem exists for wastewater treatment sludge discharged from general factories and the like.
[0006]
Conventionally, as to the problem of how to precipitate, a cationic synthetic polymer-based flocculant (for example, polyacrylamide) or an inorganic flocculant (for example, PAC, that is, polyaluminum chloride) is mixed in a mixture to be subjected to precipitation separation. A method has been adopted in which the activated sludge and solids are charged and electrically neutralized to forcibly aggregate and precipitate.
However, since these flocculants dissolve in ionic form in treated water, those that did not contribute to flocculation and sedimentation are discharged together with treated water to cause environmental pollution, and synthetic polymer flocculants are decomposed by living organisms. It has been pointed out that it causes residual pollution in natural waters and soils.
[0007]
In particular, although polyacrylamide is superior in terms of aggregating ability, this substance itself exhibits strong mutagenicity, and its monomeric acrylamide contained in polyacrylamide has carcinogenicity and neurotoxicity. There is concern about persistence. In addition, aluminum-based coagulants such as PAC, which are frequently used in recent years, also contain aluminum, and their toxicity has been pointed out as a substance exhibiting Alzheimer's disease.
[0008]
A microbial flocculant utilizing biotechnology in recent years has been developed as a trump card that overcomes the disadvantages of such a chemical flocculant.
Microbial flocculants produced by fungi of the genus Rhodococcus and Nocardia have high agglutinating ability and are highly safe, so they can be introduced into processes that require drug flocculation treatment in place of or in combination with the chemical flocculants described above. (Japanese Patent Publication No. 4-26836, Japanese Patent Publication No. 5-78309, Japanese Patent Publication No. Hei 6-2201, Japanese Patent Publication No. Hei 6-11363, Japanese Patent Publication No. Hei 6-61556, and Japanese Patent Laid-Open Publication No. Hei 7-75561).
In addition, specific strains of the genera Acinetobacter, Enterobacter, Aureobacterium and Oerscobia as coagulant-producing microorganisms having several times the aggregating ability thereof are disclosed in Japanese Patent Publication Nos. 6-61 and 7-108216. Is newly discovered.
[0009]
[Problems to be solved by the invention]
Microbial flocculants produced by the above strains can be evaluated more safely than conventional chemical flocculants in that they have high safety and high flocculation capacity, but mass production of sewage sludge is no different from conventional chemical flocculants, It was similar to the chemical flocculant in that it did not contribute to the final disposal of sewage sludge.
[0010]
Since the role of the microbial flocculant is to promote the sedimentation of the sludge safely and efficiently, only the coagulation sedimentation performance should be considered, and the disposal of mass-produced sewage sludge is a completely different technical issue. Some might think that this is the case. Conventionally, such a concept has been common.
However, the present inventors consider that as long as the greatest problem of the sewage treatment is the final disposal of the sewage sludge, if it cannot contribute to this final disposal, the microbial coagulant or the production method itself contains a major problem. ing.
[0011]
In addition, these microorganism coagulants are produced in a medium by a microorganism (strain), and it is natural that a nutrient source for culturing the microorganism must be added to the medium.
These nutrient sources include carbon sources, nitrogen sources, inorganic salts (minerals), trace organic compounds such as vitamins and hormones. In Japanese Patent Publication No. 5-78309, Japanese Patent Publication No. 6-61, Japanese Patent Publication No. 6-61556 and Japanese Patent Publication No. 7-108216, glucose, fructose, sucrose and the like are used as carbon sources, but these are extremely expensive materials. When a large number of strains are cultured, there is a problem in the production price.
[0012]
Further, Japanese Patent Publication No. 4-26836 and Japanese Patent Publication No. 6-11363 use wastewater containing blood components such as livestock and fish as a nutrient source, and waste of processing residue. Although there is an advantage of recycling this waste, when it is applied to sewage treatment, there is a problem that it is troublesome to transfer blood component wastewater to a sewage treatment plant and the wastewater is spoiled.
[0013]
Japanese Patent Application Laid-Open No. 7-75561 uses rice bran, fish meal, and sunflower seed powder as a nitrogen source, but has the same disadvantages as described above in that expensive materials such as glucose and fructose are used as a carbon source. Have. In particular, Japanese Patent Publication No. 6-2201 provides an inexpensive method for producing a flocculant in that alcohols such as methanol and ethanol are used as a carbon source. When used in large quantities, the preparation of the medium is expensive.
[0014]
[Means for Solving the Problems]
The present invention has been made to solve the above-mentioned drawbacks, and includes organic wastes generated from wastewater treatment plants such as sewage treatment plants and factories, and anaerobic digestion from organic matter in sewage sludge as its final form. The focus was on almost free organic acids obtained through
[0015]
First, the present invention is characterized in that a coagulant-producing microorganism comprising a novel strain of the genus Citrobacter TKF04 (FERM P-16722), which is a novel strain that grows using organic acids as substrates (carbon and energy sources), is used.
[0016]
Next, this Citrobacter bacterium TKF04 strain (FERM P-16722) is cultured in a medium using an organic acid as a substrate, and a microbial coagulant containing the culture or the processed product as a main component is provided. In addition, an organic acid obtained from an organic waste such as sewage sludge is used as the organic acid.
[0017]
Then, this microbial coagulant is added to a sewage treatment step, for example, raw sewage, biologically oxidized water or sewage sludge, to coagulate and precipitate sludge or solids from these treatment objects, and to dewater sludge. The present invention provides a wastewater / sludge treatment method.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Most of the sewage sludge, such as first settling tank sludge and surplus activated sludge, discharged daily from sewage treatment plants and wastewater treatment plants such as factories, is mostly landfilled through dehydration and incineration. Is as described above.
As the disposal of garbage has become a social problem, there has been a movement to view sludge as a recyclable resource, not just waste.
[0019]
Under these circumstances, the present inventors have conducted intensive studies on microbial coagulants, and have found that organic acids generated when treating organic waste such as sewage sludge can be used as a substrate, that is, coagulation that can be cultured as a carbon source and an energy source. The discovery of the agent-producing microorganisms led to the idea that microbial coagulants could be mass-produced at very low cost and could contribute to the final disposal of organic waste such as sewage sludge.
In other words, in the sewage treatment plant, the sewage treatment is performed by the activated sludge method, and the organic matter in the organic waste such as the first settling tank sludge, excess activated sludge, and the last settling tank sludge obtained as a sediment in the sewage treatment plant Must be disassembled.
[0020]
This decomposition treatment is usually performed by anaerobic biological treatment, and is roughly divided into two stages.
The first stage is the action of decomposing high molecular organic substances such as proteins, hydrated carbon, and fats to lower-order molecules. In other words, organic acid fermentation performed by facultative anaerobic bacteria and obligate anaerobic bacteria, which are acid-fermenting bacteria. It is. Lower fatty acids such as formic acid, acetic acid, propionic acid and butyric acid are produced, especially acetic acid / propionic acid being the center.
The second step is a step of decomposing the organic acid obtained in the first step into methane gas and carbon dioxide, and is a methane fermentation performed by a methane fermenting bacterium which is an obligate anaerobic bacterium.
[0021]
If the organic acid produced in the first step can be used as a culture substrate for a coagulant-producing microorganism, the cost of chemicals required for production will be extremely low, and at the same time, if it is used in a sewage treatment plant, transport costs will be unnecessary, and ultimately A very low price can be realized.
At the same time, it can contribute to the final disposal of sewage sludge, which is the biggest problem in sewage treatment. An organic acid is generated from organic waste such as sewage sludge discharged at a sewage treatment plant, and a microbial coagulant is produced with the organic acid, and reused in the same or another treatment plant. A consistent recycling system of wastewater discharge and consumption can be created at sewage treatment plants.
[0022]
As another method for producing an organic acid, there is a known wet oxidation method for heat-treating organic waste such as sludge.
When the sewage sludge is heated at about 300 ° C. while pressurizing, most of the organic matter becomes carbon dioxide and water, but part of it becomes acetic acid, a kind of lower fatty acid. This acetic acid can be used as the substrate.
Of course, as a method for producing an organic acid from sewage sludge, the above-described anaerobic biological treatment method is superior in terms of cost and equipment costs.
[0023]
Any organic acid that can be used as a substrate can be used as long as it can efficiently culture microorganisms (bacteria). However, organic acids having a small molecular weight are more efficient because bacteria are easily absorbed and decomposed. In particular, lower fatty acids such as the above-mentioned fermented organic acids such as formic acid, acetic acid, and propionic acid, or mixed organic acids thereof are preferable.
[0024]
In order to realize the present invention, a major premise is to find a strain of a coagulant-producing microorganism that can be cultured with an organic acid.
Various soils, sludges and biofilms were used as separation sources. Known actinomycetes of the genus Nocardia and Rhodococcus having the ability to produce flocculant active substances are said to be present in large numbers in foamed sludge, and bacteria that produce flocculants are considered to be present in biofilms. is there.
[0025]
A plate medium obtained by solidifying an acetic acid / propionic acid medium with agar was used for separating bacteria, and an acetic acid / propionic acid liquid medium was used for a production test of a microbial flocculant. The isolated strain was cultured in this liquid medium, and the flocculation test was performed using kaolin as a suspended substance. 550 As a result, it was found that a culture solution having higher agglutinating activity was present.
When bacteria were separated from this culture solution, new bacteria having excellent agglutinating activity were found.
[0026]
We refer to this strain hereinafter as the TKF04 strain.
Various physiological and morphological tests were performed to identify the TKF04 strain taxonomically. In addition, identification using an easy bacterial identification kit (AP120E) was also performed. Table 1 shows the results of the identification test of the TKF04 strain.
[0027]
[Table 1]
Figure 0003580696
[0028]
Regarding the mycological properties shown in Table 1, the bacteria were identified by using the Bergey's Manual of Systematic Bacteriology Volume 1.2.
[0029]
As can be seen from Table 1, the TKF04 strain was a bacterium having Gram-negative motility, and was found to have characteristics very similar to Citrobacter freundii. In addition, from the results of sequencing the base sequence of 6-700b each of the upstream and downstream of 16S rRNA-DNA and searching for their homology, high homology with Citrobacter freundii was confirmed. However, slight differences were observed in the physiological characteristics and the DNA base sequence from those of the typical strain, so this strain was identified as a bacterium of the genus Citrobacter without specifying the species. No production of a microbial flocculant by Citrobacter has been reported so far, and it is considered to be a novel flocculant-producing microorganism.
[0030]
The bacterium TKF04 strain of the genus Citrobacter according to the present invention has been deposited with the National Institute of Advanced Industrial Science and Technology, Institute of Biotechnology and Industrial Technology Notification No .: 10 No. 424 (FERM P-16722).
[0031]
When this bacterium is cultured in a medium using an organic acid as a substrate, a microorganism flocculant having a high flocculant activity is produced. That is, the microbial coagulant of the present invention is obtained by culturing the above bacteria in an organic acid medium and using a culture, a culture solution or a culture-treated product as a main component.
The medium may be a gel medium or a liquid medium, or may be one obtained by separating and purifying a flocculant component from a culture or the like by a known purification means such as centrifugation or membrane separation. Further, a concentrate such as a culture, a filtrate, a filtration residue, a dried product thereof, or a powder or granule may be used.
[0032]
A large amount of organic sludge, mainly activated sludge, which is a raw material for generating organic acids, exists in a sewage treatment plant, and at the same time, there are many sedimentation tanks that require a large amount of a microbial coagulant. Therefore, an organic acid production facility is provided in the sewage treatment facility, and a culture facility for culturing the coagulant-producing microorganisms is also provided near the coagulation treatment facility such as a sedimentation tank. By preparing a medium using an organic acid obtained from the above, and culturing a flocculant-producing microorganism in this medium, it is possible to efficiently produce a microbial flocculant and perform flocculant treatment using the same.
As described above, it is desirable to use a lower fatty acid such as acetic acid as the organic acid.
[0033]
It has been found that the TKF04 strain according to the present invention has remarkable substrate utilization characteristics of acetic acid and propionic acid as carbon sources, and has low substrate utilization characteristics with respect to other carbon sources. The organic acid obtained by anaerobic digestion and wet oxidation of sewage sludge is mainly composed of acetic acid, and thus is suitable as a carbon source for TKF04 strain.
[0034]
It has been found that many microorganisms require a yeast extract containing trace components in a well-balanced manner, whereas the culture of the TKF04 strain does not require a yeast extract. That is, the TKF04 strain has an advantage that the selective substrate utilization property for acetic acid and propionic acid is overwhelmingly high, and the medium setting can be extremely inexpensive.
[0035]
Further, it was found that the TKF04 strain can use both organic and inorganic substances as a nitrogen source. Since organic sludge such as sewage sludge contains various organic and inorganic nitrogen compounds, it can be seen that it is extremely rational to use the decomposition product of organic sludge for culturing the TKF04 strain. You.
[0036]
The microbial coagulant according to the present invention is used in a solid-liquid separation step of wastewater treatment. Specifically, a culture obtained by culturing a flocculant-producing bacterium or a processed culture obtained by processing the same is added to raw wastewater, biologically oxidized water, sewage sludge, and the like. The solid is forcibly separated and settled.
[0037]
Separation and sedimentation in wastewater treatment is basically classified into three stages. That is, removal of sediment such as sand from wastewater under inflow, precipitation of solid matter including suspended matter in the first settling tank, removal of suspended solids remaining in the last settling tank after biological oxidation treatment by activated sludge method It is.
Since it is desirable that the precipitation separation operation in each of these steps is performed promptly, the above-mentioned microorganism coagulant is added as a precipitation accelerator.
[0038]
In addition to using only a microbial flocculant alone as the precipitation promoter, efficiency may be improved by using it together with other microbial flocculants, polymer flocculants, and inorganic flocculants.
When bulking occurs in the activated sludge, the microorganism flocculant can be added to forcibly coagulate and consolidate the biological floc, thereby promoting sedimentation and preventing the outflow of the activated sludge.
[0039]
Furthermore, digested sludge, that is, digested sludge remaining after organic acid fermentation and methane fermentation contains a considerable amount of water, so if a culture or culture treatment of a microbial flocculant is added to this digested sludge, The digested sludge is dehydrated by the coagulation action, and the post-treatment of the solidified digested sludge can be simplified. Of course, it can be added to raw sludge, surplus sludge or a mixed sludge thereof to increase the efficiency of dehydration.
[0040]
【Example】
We started by isolating the flocculant producing bacteria according to the present invention. Biofilms collected from various soils, sludge collected from sewage treatment plants, outlets of kitchen sinks and river bottoms were used as sources for separation of novel flocculant-producing bacteria.
[0041]
This was appropriately diluted with a 5 mg / L sodium tripolyphosphate solution as a seeding source, dispersed with an ultrasonic oscillator, and then cultured in an acetic acid / propionic acid plate medium at 28 ° C. until colonies appeared. The bacterial strain formed was isolated. Here, the acetic acid / propion medium is an inorganic medium containing acetic acid (0.7% as a Na salt) and propionic acid (0.3% as a Na salt) as a carbon source, and yeast extract (0.01%) as a nutrient. Table 2 shows details in a salt medium. Yeast extract is not required for substrate utilization, but is added to enhance growth. The above-mentioned plate medium is obtained by solidifying this medium composition with agar, and the liquid medium made into solution with sterilized water is a liquid medium described later.
[0042]
[Table 2]
Figure 0003580696
[0043]
Next, the bacterial strains that formed the colonies were individually inoculated into test tubes into which 10 mL of an acetic acid / propionic acid liquid medium was dispensed, and kept at 28 ° C. at 120 rpm for 7 days (14 days for those with slow growth). The cells were cultured aerobically with reciprocating shaking.
[0044]
0.15 M CaCl is added to 10 mL of a 5 g / L kaolin suspension in which kaolin is dispersed in ion-exchanged water. 2 To the solution to which 0.1 mL of the solution has been added, 1 mL of the culture solution containing the bacterial cells is added. This was stirred for 5 seconds with a touch mixer, and then allowed to stand for 5 minutes. The agglutinability of kaolin particles was evaluated by comparison with a system (control) to which a culture solution of bacterial cells was not added, and a primary screening of microbial agglutinant-producing bacteria was performed. . In the above control, 1 mL of ion-exchanged water was added instead of the culture solution.
[0045]
For the positive strain obtained in this primary screening, the same agglutination test was repeated again, and the agglutinating activity was quantified based on the calculation formula shown in Formula 1 from the absorbance at 550 nm of the supernatant after standing for 5 minutes. A secondary screening was performed to evaluate the performance. As a result, 1566 positive strains were obtained by screening 1566 bacterial strains, and in the secondary screening, a bacterial strain TKF04 strain that stably exhibited an aggregation activity of 95% or more was selected as the most promising strain.
[0046]
[Equation 1]
Aggregation activity = (OD 550-C -OD 550 ) / OD 550-C × 100
OD 550 : Absorbance of supernatant when sample is added
OD 550-C : Absorbance of supernatant when ion-exchanged water is added
[0047]
In Formula 1, the absorbance OD becomes larger as the liquid becomes more turbid, and becomes zero when the liquid is completely transparent. When kaolin precipitates by adding the culture solution and the solution becomes completely transparent, OD 550 Is zero and the aggregation activity is 100%. Conversely, if kaolin does not precipitate at all, OD 550 = OD 550-C And the aggregation activity is 0%. Therefore, the agglutinating activity theoretically fluctuates from 0% to 100%, but may be outside this range due to an error. Hereinafter, all the agglutinating activities are calculated by Equation 1.
[0048]
In the same manner as described above, the TKF04 strain was grown in an acetic acid / propionic acid liquid medium, and the growth rate was measured at an absorbance of 0D at a wavelength of 660 nm. 660 Was measured by The production rate of the microbial coagulant was examined by the kaolin coagulation activity of the culture solution, and the time-dependent change was shown in FIG. 1 together with the bacterial growth. The TKF04 strain produced a microbial flocculant during the logarithmic growth phase, and it was revealed that the flocculant activity of the culture broth reached 95% or more in one day of culture and was maintained for about two days.
[0049]
To examine whether the microbial coagulant is accumulated inside the cells, fixed on the surface, or secreted outside the cells, a culture solution after 48 hours of culture is collected, and the cells are centrifuged. Kaolin agglutinating activity of the supernatant from which the cells were removed, the cell suspension in which the recovered cells were suspended in the original amount of an inorganic salt medium, and the cell disrupted solution obtained by sonicating the cells to disrupt cells. Was measured and compared with that of a culture solution without any treatment. The results are shown in FIG.
[0050]
In this test, the addition amount of the sample such as the culture solution in the agglutination test was not fixed to 1 mL, but was changed in the range of 0.1 mL to 2.0 mL. Since the agglutinating activity was mainly detected in the supernatant, it was revealed that the microbial aggregating agent produced by the TKF04 strain was secreted extracellularly. This is an advantageous property when performing recovery and purification. In other words, since the microbial flocculant can be separated from the cells by centrifugation or the like, only the microbial flocculant can be recovered from the supernatant, and operations such as concentration, drying, granulation, and granulation can be easily performed. it can.
[0051]
Various effects of the medium composition on the production of the microbial flocculant by the TKF04 strain were examined. First, even when the yeast extract was removed from the acetic acid / propionic acid medium, no change was observed in the agglutinating activity of the culture solution. And it was not clear. However, the promotion of the growth was confirmed by the addition of the yeast extract.
[0052]
Further, TKF04 was used in a medium in which the carbon source (Na acetate + Na propionate) of the acetic acid / propionic acid medium was changed to Na acetate only, Na propionate alone, ethanol, hexadecane, glucose, etc. (each prepared at a concentration of 10 g / L). The strain was cultured, and the kaolin aggregation activity of the culture supernatant was examined. As shown in FIG. 3, a clear aggregation activity was observed only with acetic acid and propionic acid. The TKF04 strain is considered to specifically produce a microbial flocculant when utilizing lower fatty acids, and by a different type of metabolism than the microbial flocculant produced using saccharides and lipids as substrates as reported so far. It is presumed that it has occurred.
[0053]
The kaolin aggregation activity of the culture supernatant in a modified acetic acid / propionic acid medium with various nitrogen sources was examined. The result is shown in FIG. The TKF04 strain was found to be relatively widely usable except for nitrate as a nitrogen source for the production of a microbial flocculant.
[0054]
Since various kinds of nitrogen compounds are contained in the organic sludge generated from the wastewater treatment, it can be used as a nitrogen source for culturing the TKF04 strain. Most of the organic acid obtained by decomposing organic sludge is acetic acid, and is most suitable as a carbon source in culturing TKF04 strain. In other words, if the TKF04 strain is cultured with organic sludge to produce a microbial coagulant, and this microbial coagulant is used for coagulation and sedimentation of solid components in the treated water, an integrated system of sludge generation and consumption can be created. it can.
[0055]
Various sedimentation characteristics of the microorganism flocculant produced by the TKF04 strain in an acetic acid / propionic acid medium were examined using the culture supernatant after 48 hours. First, the effects of various factors on the aggregation activity on kaolin particles were examined. Here, in the above-mentioned kaolin coagulation test, CaCl 2 Although the solution was added, it was found that the effect of the addition was almost negligible, and was omitted in subsequent tests. The effects of pH and temperature on the kaolin agglutination test (microorganism coagulant 1 mL addition test) are shown in FIGS. 5 and 6, respectively. This microbial flocculant exhibited high flocculant activity in a wide range of pH and temperature, suggesting that its application range is wide. In particular, the superiority of this microbial flocculant is apparent even in comparison with the narrow pH dependence of PAC (polyaluminum chloride), which is a chemical flocculant.
[0056]
Next, a kaolin agglutination test was performed by changing the amount of the supernatant added, and an attempt was made to determine the effective concentration (dilution). As shown in FIG. 7, the coagulation activity reached about 50% at 1% (10000 ppm) of the suspension amount, and 90% or more was obtained when about 3% was added. Further, since the flocculating effect was not reduced even by the addition of 10% or more, it can be said that this microbial flocculant has high flocculating activity and is easy to use. At first glance, it appears that this microbial flocculant exhibits agglutinating activity at the above-mentioned higher concentrations, in contrast to PAC showing aggregating activity at lower concentrations. However, it should be noted that the concentration of the microbial flocculant is the concentration of the amount of the supernatant added to the suspension and not the concentration of the microbial coagulant component contained in the supernatant. Therefore, in this test using no purified product, it is difficult to discuss the level of the concentration as compared with the concentration of PAC.
[0057]
Furthermore, the aggregation activity for various particles other than kaolin was examined by the same test, and the results are shown in FIG. Suspensions of various particles were prepared at a concentration of about 2-5 g / L. This microbial flocculant exhibited effective flocculant activity on various organic and inorganic particles. In particular, it shows a considerably high coagulation activity for activated sludge, and supports the utility of the present coagulant in wastewater treatment and sludge treatment processes. It shows that the concept of waste recycling, that is, fatty acid generation from sludge → microbial coagulant production → utilization in wastewater and sludge treatment systems, can be realized by the present invention, opening a breakthrough to large-scale practical tests. .
[0058]
In the use of the microbial coagulant in the coagulation sedimentation step, in addition to the direct addition of the culture solution, the addition of a smaller amount of the concentrate and the use form as a dry product should be considered. In addition, since the study of the chemical composition and structure of the microbial coagulant is essential for practical use as a chemical product, its recovery and purification are important. Therefore, simple recovery and purification of this microbial coagulant were studied.
[0059]
When the culture supernatant was treated with an ultrafiltration membrane, it was revealed that this microbial aggregating agent was easily concentrated on a membrane having a molecular weight cut off of 50,000 (90% or more as a kaolin aggregation activity yield). Thereafter, the molecular weight was estimated to be 2,000,000 or more by gel filtration analysis, and it is considered to be a high molecular weight polymer. Alternatively, it has been revealed that this microbial flocculant can be recovered by ethanol precipitation and recovered as a crude product by desalting (dialysis) the precipitate (90% or more as a kaolin flocculant activity yield). ). It was found that about 200 mg of the roughly purified microorganism flocculant was obtained per liter of acetic acid / propionic acid medium.
[0060]
In the chemical analysis of the crudely purified microbial flocculant, only a small amount of sugar and protein was detected by the standard method, so it was initially considered to be a lipid-based biopolymer.However, the nitrogen content was not necessarily low. And it was revealed that hexoseamine was contained on the order of several tens%. Although more detailed studies are necessary, it is suggested that chitosan may have similar properties at present.
[0061]
On the other hand, an agglutination test of kaolin particles using a crudely purified product has revealed that it has a considerably high agglutinating activity at an extremely low final concentration of 1 to 3 mg / L. Was confirmed.
Polymers capable of sufficiently coagulating sedimentation and sludge dewatering by addition of low concentration can maintain sludge in concentrated sludge, dewatered sludge, supernatant treatment liquid and dewatered filtrate at extremely low levels. There is an advantage that the possibility of health risks and hazards in composting, disposal and reuse of treated water is low.
[0062]
The present invention is not limited to the embodiments described above, but includes various modifications and design changes within the technical scope without departing from the technical idea of the present invention.
[0063]
【The invention's effect】
As described in detail above, the present invention is based on the discovery of a novel flocculant-producing microorganism, TKF04 strain (FERM P-16722), which is a novel flocculant-producing microorganism that grows extracellularly while growing on an organic acid as a substrate. It was done. The organic acid used in the culture of this strain can be produced at almost no cost by post-treatment such as anaerobic digestion of organic waste such as sewage sludge. Utilization as a substrate (carbon source and energy source) for culturing the fungus) provides an innovative method for mass production of a microbial coagulant.
[0064]
And this method can be applied to all flocculant-producing microorganisms using an organic acid as a substrate. At the same time, since wastewater sludge generated in large quantities is used as a nutrient material, the amount of wastewater sludge can be reduced, and a recycling system for discharging and consuming wastewater sludge is realized in wastewater treatment plants and wastewater treatment plants such as factories. It is also possible.
[0065]
A solid microbial coagulant can be easily produced by concentrating and drying the culture solution or the supernatant, and a more effective coagulation action can be exhibited by using this solid microbial coagulant.
[0066]
Furthermore, if a cultivation facility is provided at the sewage treatment plant, and a medium using an organic acid obtained from sewage sludge as a substrate is prepared, the cost of transporting the organic acid is almost unnecessary, and the culture solution and culture supernatant are not required. Mass production can be performed inexpensively and quickly.
In the treatment of sewage, mainly the activated sludge process, a large amount of sewage sludge, such as sedimentation tank sludge and excess activated sludge, is first generated, and the organic acids generated in the final treatment stage of these sewage sludge are used. Wastewater treatment is one of the most effective applications of the present invention.
[0067]
If the microbial coagulant obtained in this way is positively used for coagulation and sedimentation of sewage sludge, it is environmentally clean, and even if bulking or defloc occurs in activated sludge, this coagulation can be achieved. The use of the agent can promote sedimentation and separation of sludge.
Further, if the sludge is used for dewatering raw sludge, surplus sludge, digested sludge, or a mixed sludge thereof, post-treatment for discarding sludge can be made more efficient.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a time-dependent change diagram showing the dependence of cell growth and aggregation activity on culture time.
FIG. 2 is an agglutination activity characteristic diagram showing a position where a microorganism coagulant is accumulated.
FIG. 3 is a graph showing flocculant activity characteristics showing flocculant productivity with various carbon sources.
FIG. 4 is a graph showing flocculant activity characteristics showing flocculant productivity with various nitrogen sources.
FIG. 5 is an agglutination activity characteristic diagram showing the pH dependence of agglutination activity.
FIG. 6 is an agglutination activity characteristic diagram showing the temperature dependence of the agglutination activity.
FIG. 7 is an agglutination activity characteristic diagram showing the concentration dependence of agglutination activity.
FIG. 8 is an agglutination activity characteristic diagram showing the agglutination target substance dependence of agglutination activity.

Claims (8)

シトロバクター属細菌TKF04株(FERM P−16722)からなる凝集剤産生微生物。A flocculant-producing microorganism comprising the Citrobacter bacterium TKF04 strain (FERM P-16722). 請求項1記載のシトロバクター属細菌TKF04株(FERM P−16722)を有機酸を基質として調製した培地で培養し、それから得られる培養物又は培養処理物を主成分とした微生物凝集剤。A microbial coagulant comprising a culture or a culture-treated product obtained by culturing the Citrobacter bacterium TKF04 strain (FERM P-16722) according to claim 1 in a medium prepared using an organic acid as a substrate. 前記有機酸は下廃水処理から生じる汚泥等の有機性廃棄物から得られた有機酸である請求項2記載の微生物凝集剤。The microbial coagulant according to claim 2, wherein the organic acid is an organic acid obtained from organic waste such as sludge generated from sewage treatment. 前記培地を液体培地とし、この培養液又は培養液から菌体を除去した上澄液を濃縮して乾燥させ、残留した固形分からなる請求項2又は3記載の微生物凝集剤。The microbial coagulant according to claim 2 or 3, wherein the medium is a liquid medium, and the culture solution or the supernatant from which the cells have been removed from the culture solution is concentrated and dried, and the remaining solid content is formed. 培養液又は上澄液を濃縮するために限外濾過膜を使用する請求項4記載の微生物凝集剤。The microorganism coagulant according to claim 4, wherein an ultrafiltration membrane is used for concentrating the culture solution or the supernatant. 前記培地を液体培地とし、この培養液又は菌体を除去した上澄液からエタノール沈殿により沈殿物を回収し、この沈殿物を脱塩(透析)して得られた請求項2又は3記載の微生物凝集剤。4. The method according to claim 2, wherein the medium is a liquid medium, a precipitate is recovered from the culture solution or the supernatant from which the cells have been removed by ethanol precipitation, and the precipitate is obtained by desalting (dialysis). Microbial flocculant. 請求項2ないし請求項6記載の微生物凝集剤を下廃水処理施設の流入水あるいは処理水に添加して、汚泥または固形物を凝集沈殿させる下廃水処理方法。A wastewater treatment method for adding the microorganism coagulant according to any one of claims 2 to 6 to influent or treated water of a wastewater treatment facility to coagulate and settle sludge or solids. 請求項2ないし請求項6記載の微生物凝集剤を生汚泥、余剰汚泥又は消化汚泥あるいはそれらの混合汚泥に添加して、それらの汚泥を脱水する下廃水汚泥処理方法。A sewage sludge treatment method comprising adding the microbial coagulant according to claim 2 to raw sludge, excess sludge, digested sludge, or a mixed sludge thereof, and dewatering the sludge.
JP08481198A 1998-03-31 1998-03-31 Coagulant-producing microorganism having organic acid substrate utilization characteristics, microbial coagulant, and wastewater / sludge treatment method using the same Expired - Fee Related JP3580696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08481198A JP3580696B2 (en) 1998-03-31 1998-03-31 Coagulant-producing microorganism having organic acid substrate utilization characteristics, microbial coagulant, and wastewater / sludge treatment method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08481198A JP3580696B2 (en) 1998-03-31 1998-03-31 Coagulant-producing microorganism having organic acid substrate utilization characteristics, microbial coagulant, and wastewater / sludge treatment method using the same

Publications (2)

Publication Number Publication Date
JPH11276160A JPH11276160A (en) 1999-10-12
JP3580696B2 true JP3580696B2 (en) 2004-10-27

Family

ID=13841121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08481198A Expired - Fee Related JP3580696B2 (en) 1998-03-31 1998-03-31 Coagulant-producing microorganism having organic acid substrate utilization characteristics, microbial coagulant, and wastewater / sludge treatment method using the same

Country Status (1)

Country Link
JP (1) JP3580696B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103949224A (en) * 2014-04-24 2014-07-30 东华理工大学 Trichoderma aureoviride particle adsorbent for treating uranium-bearing wastewater as well as preparation method and application of absorbent

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030092901A (en) * 2002-05-31 2003-12-06 네오바이오다임 주식회사 Novel strain bacillus sp. dp152(kctc10250bp) and method for preparing high cohesive polysaccharide biopolymer
US20130102055A1 (en) * 2011-10-20 2013-04-25 Board Of Regents, The University Of Texas System Continuous flocculation deflocculation process for efficient harvesting of microalgae from aqueous solutions
CN113880395B (en) * 2021-08-31 2023-10-13 芜湖海创环保科技有限责任公司 Sludge dewatering complexing agent and sludge dewatering method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103949224A (en) * 2014-04-24 2014-07-30 东华理工大学 Trichoderma aureoviride particle adsorbent for treating uranium-bearing wastewater as well as preparation method and application of absorbent

Also Published As

Publication number Publication date
JPH11276160A (en) 1999-10-12

Similar Documents

Publication Publication Date Title
Bakar et al. A review of moving-bed biofilm reactor technology for palm oil mill effluent treatment
Ahmed et al. Production of biogas and performance evaluation of existing treatment processes in palm oil mill effluent (POME)
Wu et al. Pollution control technologies for the treatment of palm oil mill effluent (POME) through end-of-pipe processes
Lee et al. Microbial flocculation, a potentially low-cost harvesting technique for marine microalgae for the production of biodiesel
Vu et al. A hybrid anaerobic and microalgal membrane reactor for energy and microalgal biomass production from wastewater
Mustafa et al. Microalgae: a renewable source for wastewater treatment and feedstock supply for biofuel generation
CN101186366A (en) Method for producing biological flocculant by using sewage treatment plant residual active sludge
Wei et al. Application of ultra-sonication, acid precipitation and membrane filtration for co-recovery of protein and humic acid from sewage sludge
KR100679754B1 (en) Method and apparatus for decomposing sludge using alkalophilic strain
Zhang et al. Sludge predation by aquatic worms: Physicochemical characteristics of sewage sludge and implications for dewaterability
JP3570888B2 (en) Waste treatment method
CN105110557A (en) Method for treating kitchen wastewater through flocculation flotation-oil production microorganisms
CN105621806B (en) A kind of biological coagulation oxidation technology of quick processing kitchen garbage, waste-water
JPH11197636A (en) Method for treatment of organic waste
CN103739144A (en) Detergent synthesis wastewater treatment technology
JP3580696B2 (en) Coagulant-producing microorganism having organic acid substrate utilization characteristics, microbial coagulant, and wastewater / sludge treatment method using the same
JP2005144361A (en) Organic waste treating method
Mansor et al. An overview of anaerobic treatment processes performance treating palm oil mill effluent (POME)-Past, present and future
CN104276687A (en) System and method for recycling animal protein feed from casing processing waste liquid
JPH10165174A (en) Coagulant producing microorganism using organic acid as substrate, microbial coagulant produced therefrom and treatment of sewage using the coagulant
Krishna A review on bioflocculation using microalgae for nutrient removal from wastewater
CN106219873B (en) A kind of milk processing factory's wastewater treatment method
Muhammad et al. Laboratory guided production of bioflocculant by microorganisms isolated from water stored in clay pot
RU2757010C1 (en) Method for obtaining bioflocculant from excess activated sludge
CN221141527U (en) Excrement and urine and effluent disposal system of frog class plant

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040720

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees