JP3580406B2 - High temperature thermoelectric conversion element - Google Patents

High temperature thermoelectric conversion element Download PDF

Info

Publication number
JP3580406B2
JP3580406B2 JP26201198A JP26201198A JP3580406B2 JP 3580406 B2 JP3580406 B2 JP 3580406B2 JP 26201198 A JP26201198 A JP 26201198A JP 26201198 A JP26201198 A JP 26201198A JP 3580406 B2 JP3580406 B2 JP 3580406B2
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
type thermoelectric
semiconductors
electrode
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26201198A
Other languages
Japanese (ja)
Other versions
JP2000091650A (en
Inventor
紀男 野崎
真樹 石沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP26201198A priority Critical patent/JP3580406B2/en
Publication of JP2000091650A publication Critical patent/JP2000091650A/en
Application granted granted Critical
Publication of JP3580406B2 publication Critical patent/JP3580406B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、高温度熱電変換素子に係る。より詳細には、高温度となる燃料電池、ガスエンジン等から排出される熱エネルギーを電気エネルギーに変換して出力することが可能な高温度熱電変換素子に関する。
【0002】
【従来の技術】
従来の熱電変換素子としては、例えば、図4に示すものが挙げられる。図4の熱電変換素子は、複数のp型熱電変換半導体401及びn型熱電変換半導体402が電極403、404を介して交互かつ連続的に接続され、その両面を絶縁性を有する基板405、407で挟み込んで構成され、片面を加熱板421、もう一方の面を冷却板420に接触させて熱電変換装置として用いられる。このような構成の熱電変換素子では、加熱板421から貫流した熱と冷却板420により吸収された熱が絶縁性基板405、407を経て熱電変換半導体401、402に達することによって、温度差が発生する。この温度差はゼーベック効果により熱電変換半導体401、402の両端間に起電力を発生させ、その結果、電気出力配線422、423より電力が供給される。
【0003】
しかしながら、現状では絶縁性基板405、407の材質としては、一般的に平板のセラミック材や平板のアルミナを用いて表面処理を施したアルミ材が用いられている。従って、基板の形状が平面のため接触面における熱抵抗等により熱伝搬が妨げられ、温度分布が不均等となり熱電変換半導体に加わる温度差が小さくなって、電気出力が小さく熱電変換効率が低くなる、という問題点があった。
【0004】
この問題点を解決する方法として、加熱側基板407と加熱板421および冷却側基板405と冷却板420の接触面に嵌合溝を設け接触面積の拡大を図ることにより、熱流量を増加させ温度分布を均一化させる方法が、特開平10−144968号公報に開示されている。この方法によれば、加熱側基板407と加熱板421および冷却側基板405と冷却板420の接触面の熱流量を増加させ温度分布を均一化できるので、熱電変換半導体401、402に加わる温度差が大きくなるため出力の増大効果が期待される。
【0005】
しかしながら、特開平10−144968号公報に開示され方法は、熱供給温度が百数十℃程度の熱電変換装置に使用して運転する場合には良好であるが、例えば、ディーゼルエンジン(排熱温度:300〜450℃)や、ガスエンジン(排熱温度:400〜600℃)、固体電解質型燃料電池(排熱温度:600〜800℃)等のように排熱温度が300℃以上800℃以下で熱供給運転する場合には、加熱側基板407と冷却側基板405の温度の違いから金属特有の熱膨張差が発生するため、百数十℃程度では問題とならなかった熱応力が発生し熱電変換素子401、402の反り歪みが生じる、という新たな問題が生じていた。
【0006】
この反り歪みは、熱供給温度が300℃以上の場合には熱電変換素子401、402の機械的強度の弱い部分、すなわち、熱電変換半導体401、402本体や、熱電変換半導体401、402と電極403、404との接続部411、412への応力となる。その結果、金属疲労等により熱電変換半導体401、402本体や熱電変換半導体401、402の電極403、404との接続部411、412の寿命を短くするという問題が発生する。特に、熱電変換半導体401、402は一般的に劈開性を持ち、通常の金属と比べ機械的強度が弱いという性質を持つことから、熱電変換装置の熱供給温度が300℃以上で運転する場合には、特開平10−144968号公報に開示され方法だけでは上記問題は解消できない状況にあった。
【0007】
現在、熱電変換半導体401、402を構成する材料としては、例えばビスマス−テルル系熱電変換半導体が主に使用されているが、このビスマス−テルル系熱電変換半導体は本体温度が250〜300℃以上に上昇すると空気中の酸素と反応して酸化する性質を有する。従って、この酸化は直接的に熱電変換素子401、402の特性を劣化させ、出力を低下させるので、この問題を解決することが期待されている。
【0008】
また、基板407、405と電極403、404との間には絶縁材として耐熱400℃程度のポリイミドフィルム(不図示)を用いる場合があるが、電極403、404を接着している接着剤(不図示)は耐熱200℃程度であるため、熱電変換素子401、402への供給温度を300℃以上とした場合、特開平10−144968号公報に開示され方法は、冷却側基板405への適用は可能であるが、加熱側基板407への適用はできない状況にあった。
【0009】
【発明が解決しようとする課題】
本発明は、熱電変換素子への供給温度が300℃以上800℃以下という高温度熱源供給時において、安定した出力の確保と、高い熱電変換効率と、優れた耐久性とを兼ね備えた高温度熱電変換素子を提供することを目的とする。
【0010】
【問題を解決するための手段】
本発明に係る第一の高温度熱電変換素子は、複数のp型熱電変換半導体とn型熱電変換半導体とを交互に離間して設け、隣り合うp型熱電変換半導体とn型熱電変換半導体の上面を電気的に接続する第一の電極と、隣り合うp型熱電変換半導体とn型熱電変換半導体の下面を電気的に接続する第二の電極とを交互に備えることによって、前記複数のp型熱電変換半導体とn型熱電変換半導体を直列に接続するとともに、前記第一の電極が前記複数のp型熱電変換半導体とn型熱電変換半導体に接触している側と反対の側には、第一の絶縁部材、冷却側基板を順に接触させて設け、前記第二の電極が前記複数のp型熱電変換半導体とn型熱電変換半導体に接触している側と反対の側には、第二の絶縁部材、加熱側基板を順に接触させて配置して構成され、更に、前記冷却側基板を冷却板に、前記加熱側基板を加熱板に接触させることにより電気出力を得る高温度熱電変換素子において、前記複数のp型熱電変換半導体とn型熱電変換半導体の上下面以外の側面に陽極酸化アルミ被膜を設けることにより、空気中の酸素による熱電変換半導体の酸化が防止できる。
【0011】
また、上記特徴を有する高温度熱電変換素子において、前記複数のp型熱電変換半導体及びn型熱電変換半導体と前記第一の電極との接触面、並びに、前記複数のp型熱電変換半導体及びn型熱電変換半導体と前記第二の電極との接触面、に銀メッキを施したことにより、加熱側各部において放射、対流による熱伝導を低減させ熱電変換半導体にかかる温度差を向上させることができる。
【0012】
参考発明に係る第一の高温度熱電変換素子は、複数のp型熱電変換半導体とn型熱電変換半導体とを交互に離間して設け、隣り合うp型熱電変換半導体とn型熱電変換半導体の上面を電気的に接続する第一の電極と、隣り合うp型熱電変換半導体とn型熱電変換半導体の下面を電気的に接続する第二の電極とを交互に備えることによって、前記複数のp型熱電変換半導体とn型熱電変換半導体を直列に接続するとともに、前記第一の電極が前記複数のp型熱電変換半導体とn型熱電変換半導体に接触している側と反対の側には、第一の絶縁部材、冷却側基板を順に接触させて設け、前記第二の電極が前記複数のp型熱電変換半導体とn型熱電変換半導体に接触している側と反対の側には、第二の絶縁部材、加熱側基板を順に接触させて配置して構成され、更に、前記冷却側基板を冷却板に、前記加熱側基板を加熱板に接触させることにより電気出力を得る高温度熱電変換素子において、前記第一の絶縁部材は前記第一の電極が可動となるような材料であることを特徴とする。
【0013】
上記構成では、第一の絶縁部材として第一の電極が可動となるような材料を用いたことにより、熱電変換素子の温度差により生じる反りや歪みによる応力を、第一の電極が可動となるような材料の弾性により吸収することが可能となる。
【0014】
このような第一の電極が可動となるような材料としては、導熱性シリコン樹脂又は4フッ化エチレン樹脂が好適に用いられる。
【0015】
参考発明に係る第二の高温度熱電変換素子は、複数のp型熱電変換半導体とn型熱電変換半導体とを交互に離間して設け、隣り合うp型熱電変換半導体とn型熱電変換半導体の上面を電気的に接続する第一の電極と、隣り合うp型熱電変換半導体とn型熱電変換半導体の下面を電気的に接続する第二の電極とを交互に備えることによって、前記複数のp型熱電変換半導体とn型熱電変換半導体を直列に接続するとともに、前記第一の電極が前記複数のp型熱電変換半導体とn型熱電変換半導体に接触している側と反対の側には、第一の絶縁部材、冷却側基板を順に接触させて設け、前記第二の電極が前記複数のp型熱電変換半導体とn型熱電変換半導体に接触している側と反対の側には、第二の絶縁部材、加熱側基板を順に接触させて配置して構成され、更に、前記冷却側基板を冷却板に、前記加熱側基板を加熱板に接触させることにより電気出力を得る高温度熱電変換素子において、前記第二の絶縁部材は300℃以上800℃以下の耐熱性をもつ材料であることを特徴とする。
【0016】
上記構成では、第二の絶縁部材として300℃以上800℃以下の耐熱性をもつ材料を用いたことにより、供給温度が300〜800℃の範囲にあるディーゼルエンジンをはじめ、ガスエンジンや固体電解質型燃料電池等の排熱を、熱電変換素子への熱供給源として利用できる。
【0017】
このような300℃以上800℃以下の耐熱性をもつ材料としては、陽極酸化アルミが好ましい。
【0018】
上記特徴を有する高温度熱電変換素子において、前記冷却側基板と前記冷却板の互いの接触面、及び、前記加熱側基板と前記加熱板の互いの接触面、を嵌合溝構造とすることにより、各接触面の面積を拡大させることができるので、熱流量を増加させ温度分布の均一化が図れる。その結果、熱電変換半導体に加わる温度差が大きくなるため出力の増大が可能となる。
【0019】
また、上記構成における第二の電極として、真空蒸着法により作製した金属箔を用いることにより、金属箔を第二の絶縁部材に固定する際に、第二の絶縁部材を構成する陽極酸化アルミ被膜の封孔処理も同時に行うことができる。
【0020】
【発明の実施の形態】
以下では、本発明に係る高温度熱電変換素子について、図面に基づき詳細に説明する。
【0021】
図1は、本発明に係る高温度熱電変換素子の模式的な断面図である。図1において、101はp型熱電変換半導体、102はn型熱電変換半導体、103は第一の電極、104は第二の電極、105は第一の絶縁部材、106は冷却側基板、107は第二の絶縁部材、108は加熱側基板、109は冷却側基板と冷却板との接触面、110加熱側基板と加熱板との接触面、111は熱電変換半導体と第一の電極との接触部、112は熱電変換半導体と第二の電極との接触部、120は冷却板、121は加熱板、122及び123は電気出力配線である。
【0022】
図1に示した高温度熱電変換素子では、複数のp型熱電変換半導体101とn型熱電変換半導体102は、交互に離間して設けられ、隣り合うp型熱電変換半導体101とn型熱電変換半導体102の上面(冷却側)には第一の電極103を、隣り合うp型熱電変換半導体101とn型熱電変換半導体102の下面(加熱側)には第二の電極104を、交互に備えることによって、前記複数のp型熱電変換半導体101とn型熱電変換半導体102を直列に接続している。その際、第一の電極103は熱が加わった際に可動できる材料で、第二の電極104は熱が加わっても固定された状態を維持する材料で、それぞれ構成する。
【0023】
更に、図1の高温度熱電変換素子は、第一の電極103が複数のp型熱電変換半導体101とn型熱電変換半導体102に接触している側と反対の側には、第一の絶縁部材105、冷却側基板106を順に接触させて設け、前記第二の電極104が前記複数のp型熱電変換半導体101とn型熱電変換半導体102に接触している側と反対の側には、第二の絶縁部材104、加熱側基板108を順に接触させて配置して構成され、更に、前記冷却側基板106を冷却板120に、前記加熱側基板108を加熱板121に接触させることにより電気出力を得る。
【0024】
その際、第一の電極103としては、熱が加わった際に可動できる材料が好ましく、第二の電極104としては、熱が加わっても固定された状態を維持する材料が望ましい。
【0025】
具体的には、複数のp型熱電変換半導体101及びn型熱電変換半導体102が接続された第二の電極(固定電極)104は、例えば陽極酸化アルミ被膜からなる第二の絶縁部材107に接着材(不図示)により固定、若しくは真空蒸着により陽極酸化アルミ被膜107の封孔処理とともに固定され、加熱側に設けられる。一方、複数のp型熱電変換半導体101及びn型熱電変換半導体102が接続された第一の電極(可動電極)103は、例えばシリコン樹脂被膜からなる第一の絶縁部材105に接着された銀箔をパターン化したものが好適であり、冷却側に設けられる。その際、冷却側に設ける第一の絶縁部材105は、加熱運転時における熱電変換半導体101、102の熱応力による変形を吸収する厚みと弾性を有する形態が好ましい。ここで、シリコン樹脂とはシリコンを任意の樹脂で固めたものを指す。また、第一の絶縁部材105として、シリコン樹脂に代えて4フッ化エチレン樹脂(商品名テフロンと呼称されるもの等)を用いても構わない。
【0026】
また、図1の高温度熱電変換素子において、冷却側基板106と冷却板120の互いの接触面109、及び、加熱側基板108と加熱板121の互いの接触面110、を嵌合溝構造とする形態が望ましい。このような嵌合溝構造は、各接触面109、110の面積を拡大させることができるので、熱流量を増加させ温度分布の均一化が図れる。その結果、熱電変換半導体101、102に加わる温度差が大きくなるため出力の増大が可能な、高温度熱電変換素子が得られる。
【0027】
図2は、図1に示した高温度熱電変換素子を、高温度で運転した際の状態を示した模式的な断面図である。図2に示すように、加熱側の嵌合溝付基板208は冷却側の嵌合溝付基板206よりも装置運転時には非常に高温となるため、金属特有の熱膨張現象が起こり両嵌合溝付基板206、208の寸法に相違が生じる。また、複数のp型熱電変換半導体201及びn型熱電変換半導体202においても両端温度差のため台形状に変形が生じる。この変形は、どの熱電変換半導体でも同一となるが、その傾きは基板中心部では小さく、基板外周部に近づくほど大きくなる傾向がある。このような熱膨張による応力は、劈開性をもつ熱電変換半導体201、202本体、若しくは各熱電変換半導体201、202と電極203、204との接続部211、212に歪みとなってかかる。しかしながら、本発明に係る高温度熱電変換素子では、図3に示すように、熱膨張により台形状に変形した熱電変換半導体201、202の加熱側から冷却側に至る方向の熱膨張は、冷却側に設けた第一の絶縁部材205であるシリコン樹脂の弾性によって吸収することができる。
【0028】
また、加熱側基板208における熱電変換半導体接続部方向の熱膨張は加熱側基板221の嵌合溝部分の微少滑面および素材弾性により緩和された後、熱電変換半導体201、202の傾斜となって現れる。この傾斜にかかる応力は、冷却側の第一の絶縁部材205として設けたシリコン樹脂および冷却側の第一の電極(可動電極)203の弾性による変形となって吸収される。このため、本発明に係る熱電変換素子は、加熱温度と冷却温度の差が300〜800℃の範囲にある場合においても、熱電変換半導体201、202本体若しくは熱電変換半導体201、202と電極203、204との接続部分211、212にかかる熱応力を、従来に比べて非常に小さくすることができる。
【0029】
図3は、本発明に係る高温度熱電変換素子を構成するn又はp型熱電変換半導体の模式的な斜視図である。図3において、b1とb2は電極103、104と接する上下面を、a1〜a4は上下面以外の側面を指す。従来、例えばビスマス−テルルからなる熱電変換半導体は、本体温度が250〜300℃以上に上昇すると空気中の酸素と反応して劣化する傾向があった。これに対して、本発明に係る熱電変換半導体では、この劣化を防止するため熱電変換半導体101、102の加熱側から冷却側に至る方向、すなわち熱電変換半導体101、102と電極103、104との接続面b1、b2以外の側面a1〜a4に陽極酸化アルミ被膜を設けたことにより大気を遮断できるので、各熱電変換半導体101、102の劣化を抑止できる。また、各熱電変換半導体101、102の側面a1〜a4に設けた陽極酸化アルミ被膜は、大気遮断の利点以外に陽極酸化アルミ被膜自体の熱絶縁性を高めることにより加熱側基板108面からの放射熱による熱電変換半導体101、102の温度上昇を低減し熱電変換半導体101、102にかかる温度差を確立させて出力を増大させる二次的効果も有する。
【0030】
また、加熱側基板108の第二の電極(固定電極)104に対する各熱電変換半導体101、102の接続と、冷却側基板106の第一の電極(可動電極)103に対する各熱電変換半導体101、102の接続は、次に示すような異なる構成とした。すなわち、加熱側基板108の第二の電極(固定電極)104に対する各熱電変換半導体101、102の接続は、各熱電変換半導体101、102の接続面112に銀メッキ処理を施した後500℃程度で溶解する銀ろうを使用してろう付けした。一方、冷却側基板106の第一の電極(可動電極)103に対する各熱電変換半導体101、102の接続は、各熱電変換半導体101、102のの接続面111に銀メッキまたは銅メッキ処理を施した後200℃程度で溶解する半田を使用して半田付けした。このような構成により、高温度時の運転において、冷却側基板108の第一の電極(可動電極)103と各熱電変換半導体101、102との接続面111に生じる熱膨張をさらに緩和することができる。
【0031】
上記構成からなる図1に示した高温度熱電変換素子は、熱電変換素子への供給温度が300〜800℃という高温度熱源供給時でも安定に動作し、その出力は2〜5kW/m(供給温度300℃の場合)、5〜13kW/m(供給温度800℃の場合)であり十分実用に値することが確認された。また、供給熱エネルギーと電気出力の比である熱電変換効率は2.5〜9%(供給温度300℃の場合)、8〜19%(供給温度800℃の場合)と高効率であり、同出力の従来装置と比較して装置体積が十分に小さいため省スペース化も図れることが分かった。従って、本発明に係る高温度熱電変換素子は、固体電解質型燃料電池やゴミ焼却炉等の排熱を直接、電気エネルギーに変換できることが明らかとなった。
【0032】
【発明の効果】
以上説明したように、本発明に係る高温度熱電変換素子は、熱電変換素子への供給温度が300〜800℃という高温度熱源供給時に、各熱電変換半導体と加熱側基板との接続は固定状態が維持される構成と、各熱電変換半導体111、112と冷却側基板との接続は可動状態となる構成とを備えている。従って、本発明によれば、熱電変換素子への供給温度が300〜800℃という高温度熱源供給時において、安定した出力の確保と、高い熱電変換効率と、優れた耐久性とを兼ね備えた高温度熱電変換素子、すなわち、供給温度が300〜800℃となるディーゼルエンジン、ガスエンジン、固体電解質型燃料電池等の排熱を、熱電変換素子への熱供給源として利用できる高温度熱電変換素子を提供することができる。
【0033】
また、本発明に係る高温度熱電変換素子は、熱電変換効率が向上するにより、同出力の従来装置と比較して装置の小型化や省スペース化も達成できる。
【図面の簡単な説明】
【図1】本発明に係る高温度熱電変換素子の模式的な断面図である。
【図2】図1に示した高温度熱電変換素子を、高温度で運転した際の状態を示した模式的な断面図である。
【図3】本発明に係る高温度熱電変換素子を構成するn又はp型熱電変換半導体の模式的な斜視図である。
【図4】従来の高温度熱電変換素子の模式的な断面図である。
【符号の説明】
101、201 p型熱電変換半導体、
102、201 n型熱電変換半導体、
103、203 第一の電極(可動電極)、
104、204 第二の電極(固定電極)、
105、205 第一の絶縁部材、
106、206 冷却側基板、
107、207 第二の絶縁部材、
108、208 加熱側基板、
109、209 冷却側基板と冷却板との接触面、
110、210 加熱側基板と加熱板との接触面、
111、211 熱電変換半導体と第一の電極との接触部、
112、212 熱電変換半導体と第二の電極との接触部、
120、220 冷却板、
121、221 加熱板、
122、123、222、223 電気出力配線、
401 p型熱電変換半導体、
402 n型熱電変換半導体、
403、404 電極、
405、407 絶縁性基板、
411、412 各熱電変換半導体と各電極との接続部、
420 冷却板、
421 加熱板、
422、423 電気出力配線。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-temperature thermoelectric conversion element. More specifically, the present invention relates to a high-temperature thermoelectric conversion element that can convert thermal energy discharged from a high-temperature fuel cell, gas engine, or the like into electrical energy and output the electrical energy.
[0002]
[Prior art]
FIG. 4 shows an example of a conventional thermoelectric conversion element. In the thermoelectric conversion element of FIG. 4, a plurality of p-type thermoelectric conversion semiconductors 401 and n-type thermoelectric conversion semiconductors 402 are connected alternately and continuously via electrodes 403 and 404, and substrates 405 and 407 having insulating properties on both surfaces thereof. The heating plate 421 has one surface in contact with the heating plate 421 and the other surface in contact with the cooling plate 420, and is used as a thermoelectric conversion device. In the thermoelectric conversion element having such a configuration, a temperature difference occurs because the heat flowing through the heating plate 421 and the heat absorbed by the cooling plate 420 reach the thermoelectric conversion semiconductors 401 and 402 through the insulating substrates 405 and 407. I do. This temperature difference generates an electromotive force between both ends of the thermoelectric conversion semiconductors 401 and 402 by the Seebeck effect, and as a result, electric power is supplied from the electric output wirings 422 and 423.
[0003]
However, at present, as a material of the insulating substrates 405 and 407, generally, a flat ceramic material or an aluminum material subjected to a surface treatment using a flat alumina is used. Therefore, since the shape of the substrate is flat, heat propagation is hindered by thermal resistance or the like at the contact surface, the temperature distribution becomes uneven, the temperature difference applied to the thermoelectric conversion semiconductor becomes small, and the electric output is small and the thermoelectric conversion efficiency is low. , There was a problem.
[0004]
As a method for solving this problem, a fitting groove is provided on a contact surface between the heating side substrate 407 and the heating plate 421 and a contact surface between the cooling side substrate 405 and the cooling plate 420 to increase the contact area, thereby increasing the heat flow rate and increasing the temperature. A method for making the distribution uniform is disclosed in JP-A-10-144968. According to this method, the heat flow at the contact surface between the heating-side substrate 407 and the heating plate 421 and the contact surface between the cooling-side substrate 405 and the cooling plate 420 can be increased to make the temperature distribution uniform, so that the temperature difference applied to the thermoelectric conversion semiconductors 401 and 402 can be increased. Is expected to increase the output.
[0005]
However, the method disclosed in Japanese Patent Application Laid-Open No. 10-144968 is good when used in a thermoelectric converter having a heat supply temperature of about one hundred and several tens of degrees Celsius. : 300 to 450 ° C.) and a gas engine (exhaust heat temperature: 400 to 600 ° C.), the solid oxide fuel cell (exhaust heat temperature: 600~800 ℃) 800 ℃ exhaust heat temperature of 300 ° C. or more as such follows When the heat supply operation is performed, a difference in the thermal expansion between the heating side substrate 407 and the cooling side substrate 405 causes a thermal expansion difference peculiar to the metal. There is a new problem that the thermoelectric conversion elements 401 and 402 are warped.
[0006]
When the heat supply temperature is equal to or higher than 300 ° C., the warp distortion is caused by the weak mechanical strength of the thermoelectric conversion elements 401 and 402, that is, the thermoelectric conversion semiconductors 401 and 402, the thermoelectric conversion semiconductors 401 and 402, and the electrode 403. , 404 and the connection parts 411, 412. As a result, there is a problem that the life of the thermoelectric conversion semiconductors 401 and 402 and the connection portions 411 and 412 between the thermoelectric conversion semiconductors 401 and 402 and the electrodes 403 and 404 are shortened due to metal fatigue or the like. In particular, since the thermoelectric conversion semiconductors 401 and 402 generally have a cleavage property and a mechanical strength that is lower than that of a normal metal, when the thermoelectric conversion device is operated at a heat supply temperature of 300 ° C. or more, However, the above-described problem cannot be solved only by the method disclosed in JP-A-10-144968.
[0007]
At present, as a material constituting the thermoelectric conversion semiconductors 401 and 402, for example, a bismuth-tellurium-based thermoelectric conversion semiconductor is mainly used, and the bismuth-tellurium-based thermoelectric conversion semiconductor has a main body temperature of 250 to 300 ° C. or higher. When it rises, it has the property of reacting with oxygen in the air and oxidizing. Therefore, this oxidation directly deteriorates the characteristics of the thermoelectric conversion elements 401 and 402 and lowers the output, so that this problem is expected to be solved.
[0008]
In some cases, a polyimide film (not shown) having a heat resistance of about 400 ° C. is used as an insulating material between the substrates 407 and 405 and the electrodes 403 and 404. (Shown) has a heat resistance of about 200 ° C., and when the supply temperature to the thermoelectric conversion elements 401 and 402 is set to 300 ° C. or more, the method disclosed in Japanese Patent Application Laid-Open No. 10-144968 is not applicable to the cooling-side substrate 405. Although it was possible, it could not be applied to the heating-side substrate 407.
[0009]
[Problems to be solved by the invention]
The present invention relates to a high-temperature thermoelectric device having a stable output, high thermoelectric conversion efficiency, and excellent durability at the time of supplying a high-temperature heat source whose supply temperature to a thermoelectric conversion element is 300 ° C. or more and 800 ° C. or less. It is an object to provide a conversion element.
[0010]
[Means to solve the problem]
The first high-temperature thermoelectric conversion element according to the present invention is provided with a plurality of p-type thermoelectric conversion semiconductors and n-type thermoelectric conversion semiconductors that are alternately separated from each other. By alternately providing a first electrode electrically connecting the upper surface, and a second electrode electrically connecting the lower surface of the adjacent p-type thermoelectric conversion semiconductor and the n-type thermoelectric conversion semiconductor, the plurality of p-type While connecting the type thermoelectric conversion semiconductor and the n-type thermoelectric conversion semiconductor in series, on the side opposite to the side where the first electrode is in contact with the plurality of p-type thermoelectric conversion semiconductors and the n-type thermoelectric conversion semiconductor, A first insulating member and a cooling-side substrate are provided in contact with each other in order, and the second electrode has a second electrode on a side opposite to a side in contact with the plurality of p-type thermoelectric conversion semiconductors and the n-type thermoelectric conversion semiconductor. Place the two insulating members and the heating side substrate in contact in order. Made is, further, the cooling-side substrate to the cooling plate, in the high temperature thermoelectric conversion element to obtain an electrical output by contacting the heated side substrate to the heating plate, the plurality of p-type thermoelectric conversion semiconductor and n-type thermoelectric conversion By providing the anodized aluminum coating on the side surfaces other than the upper and lower surfaces of the semiconductor, oxidation of the thermoelectric conversion semiconductor by oxygen in the air can be prevented.
[0011]
Further, in the high-temperature thermoelectric conversion element having the above characteristics, a contact surface between the plurality of p-type thermoelectric conversion semiconductors and the n-type thermoelectric conversion semiconductor and the first electrode, and the plurality of p-type thermoelectric conversion semiconductors and n By performing silver plating on the contact surface between the mold thermoelectric conversion semiconductor and the second electrode, radiation and convection in each part on the heating side can be reduced, and the temperature difference applied to the thermoelectric conversion semiconductor can be improved. .
[0012]
The first high-temperature thermoelectric conversion element according to the reference invention is provided with a plurality of p-type thermoelectric conversion semiconductors and n-type thermoelectric conversion semiconductors alternately separated from each other. By alternately providing a first electrode electrically connecting the upper surface, and a second electrode electrically connecting the lower surface of the adjacent p-type thermoelectric conversion semiconductor and the n-type thermoelectric conversion semiconductor, the plurality of p-type While connecting the type thermoelectric conversion semiconductor and the n-type thermoelectric conversion semiconductor in series, on the side opposite to the side where the first electrode is in contact with the plurality of p-type thermoelectric conversion semiconductors and the n-type thermoelectric conversion semiconductor, A first insulating member and a cooling-side substrate are provided in contact with each other in order, and the second electrode has a second electrode on a side opposite to a side in contact with the plurality of p-type thermoelectric conversion semiconductors and the n-type thermoelectric conversion semiconductor. Place the second insulating member and the heating side substrate in contact with each other in order. Is configured, further, in the high-temperature thermoelectric conversion element to obtain an electrical output by bringing the cooling-side substrate into contact with the cooling plate and the heating-side substrate into contact with the heating plate, wherein the first insulating member has the first electrode. It is a material that can be moved.
[0013]
In the above configuration, by using a material that makes the first electrode movable as the first insulating member, the first electrode becomes movable due to the stress due to the warpage or distortion caused by the temperature difference of the thermoelectric conversion element. It becomes possible to absorb by the elasticity of such a material.
[0014]
As such a material that makes the first electrode movable, a heat conductive silicon resin or a tetrafluoroethylene resin is preferably used.
[0015]
The second high-temperature thermoelectric conversion element according to the reference invention is provided with a plurality of p-type thermoelectric conversion semiconductors and n-type thermoelectric conversion semiconductors alternately separated from each other. By alternately providing a first electrode electrically connecting the upper surface, and a second electrode electrically connecting the lower surface of the adjacent p-type thermoelectric conversion semiconductor and the n-type thermoelectric conversion semiconductor, the plurality of p-type While connecting the type thermoelectric conversion semiconductor and the n-type thermoelectric conversion semiconductor in series, on the side opposite to the side where the first electrode is in contact with the plurality of p-type thermoelectric conversion semiconductors and the n-type thermoelectric conversion semiconductor, A first insulating member and a cooling-side substrate are provided in contact with each other in order, and the second electrode has a second electrode on a side opposite to a side in contact with the plurality of p-type thermoelectric conversion semiconductors and the n-type thermoelectric conversion semiconductor. Place the second insulating member and the heating side substrate in contact with each other in order. Further, in the high-temperature thermoelectric conversion element that obtains an electric output by bringing the cooling-side substrate into contact with the cooling plate and the heating-side substrate into contact with the heating plate, the second insulating member has a temperature of 300 ° C or more and 800 ° C or less. It is characterized by being a material having heat resistance.
[0016]
In the above configuration, by using a material having heat resistance of 300 ° C. or more and 800 ° C. or less as the second insulating member, a diesel engine having a supply temperature in the range of 300 to 800 ° C., a gas engine, and a solid electrolyte type Waste heat of a fuel cell or the like can be used as a heat supply source to the thermoelectric conversion element.
[0017]
Anodized aluminum is preferred as such a material having a heat resistance of 300 ° C. or more and 800 ° C. or less.
[0018]
In the high-temperature thermoelectric conversion element having the above characteristics, the contact surface between the cooling-side substrate and the cooling plate, and the contact surface between the heating-side substrate and the heating plate, with a fitting groove structure. Since the area of each contact surface can be increased, the heat flow can be increased and the temperature distribution can be made uniform. As a result, the temperature difference applied to the thermoelectric conversion semiconductor increases, so that the output can be increased.
[0019]
Further, by using a metal foil produced by a vacuum deposition method as the second electrode in the above configuration, when the metal foil is fixed to the second insulating member, the anodized aluminum film constituting the second insulating member Can be performed simultaneously.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a high-temperature thermoelectric conversion element according to the present invention will be described in detail with reference to the drawings.
[0021]
FIG. 1 is a schematic sectional view of a high-temperature thermoelectric conversion element according to the present invention. In FIG. 1, 101 is a p-type thermoelectric conversion semiconductor, 102 is an n-type thermoelectric conversion semiconductor, 103 is a first electrode, 104 is a second electrode, 105 is a first insulating member, 106 is a cooling-side substrate, 107 is The second insulating member, 108 is a heating side substrate, 109 is a contact surface between the cooling side substrate and the cooling plate, 110 is a contact surface between the heating side substrate and the heating plate, 111 is a contact between the thermoelectric conversion semiconductor and the first electrode. , 112 is a contact portion between the thermoelectric conversion semiconductor and the second electrode, 120 is a cooling plate, 121 is a heating plate, and 122 and 123 are electric output wirings.
[0022]
In the high-temperature thermoelectric conversion element shown in FIG. 1, the plurality of p-type thermoelectric conversion semiconductors 101 and the n-type thermoelectric conversion semiconductors 102 are provided alternately and separately, and the adjacent p-type thermoelectric conversion semiconductor 101 and n-type thermoelectric conversion First electrodes 103 are alternately provided on the upper surface (cooling side) of the semiconductor 102, and second electrodes 104 are alternately provided on the lower surface (heating side) of the adjacent p-type thermoelectric conversion semiconductor 101 and n-type thermoelectric conversion semiconductor 102. Thereby, the plurality of p-type thermoelectric conversion semiconductors 101 and n-type thermoelectric conversion semiconductors 102 are connected in series. At this time, the first electrode 103 is made of a material that can move when heat is applied, and the second electrode 104 is made of a material that maintains a fixed state even when heat is applied.
[0023]
Further, the high-temperature thermoelectric conversion element of FIG. 1 has a first insulating layer on the side opposite to the side where the first electrode 103 is in contact with the plurality of p-type thermoelectric conversion semiconductors 101 and n-type thermoelectric conversion semiconductors 102. A member 105 and a cooling-side substrate 106 are provided in contact with each other in order, and on the side opposite to the side where the second electrode 104 is in contact with the plurality of p-type thermoelectric conversion semiconductors 101 and the n-type thermoelectric conversion semiconductor 102, The second insulating member 104 and the heating-side substrate 108 are arranged so as to be in contact with each other in order. Further, by contacting the cooling-side substrate 106 with the cooling plate 120 and the heating-side substrate 108 with the heating plate 121, Get output.
[0024]
At this time, the first electrode 103 is preferably made of a material that can move when heat is applied, and the second electrode 104 is preferably made of a material that maintains a fixed state even when heat is applied.
[0025]
Specifically, the second electrode (fixed electrode) 104 to which the plurality of p-type thermoelectric conversion semiconductors 101 and n-type thermoelectric conversion semiconductors 102 are connected is bonded to a second insulating member 107 made of, for example, an anodized aluminum film. It is fixed by a material (not shown) or fixed together with the sealing treatment of the anodized aluminum coating 107 by vacuum evaporation, and is provided on the heating side. On the other hand, the first electrode (movable electrode) 103 to which the plurality of p-type thermoelectric conversion semiconductors 101 and n-type thermoelectric conversion semiconductors 102 are connected is made of silver foil adhered to a first insulating member 105 made of, for example, a silicon resin film. Patterned ones are preferred and are provided on the cooling side. At this time, it is preferable that the first insulating member 105 provided on the cooling side has a thickness and elasticity that absorb deformation of the thermoelectric conversion semiconductors 101 and 102 due to thermal stress during the heating operation. Here, the silicon resin refers to a material obtained by hardening silicon with an arbitrary resin. Further, as the first insulating member 105, instead of the silicon resin, a tetrafluoroethylene resin (such as one called trade name Teflon) may be used.
[0026]
In the high-temperature thermoelectric conversion element of FIG. 1, the contact surface 109 between the cooling-side substrate 106 and the cooling plate 120 and the contact surface 110 between the heating-side substrate 108 and the heating plate 121 have a fitting groove structure. The preferred form is Such a fitting groove structure can increase the area of each of the contact surfaces 109 and 110, so that the heat flow can be increased and the temperature distribution can be made uniform. As a result, a high-temperature thermoelectric conversion element capable of increasing the output because the temperature difference applied to the thermoelectric conversion semiconductors 101 and 102 is increased can be obtained.
[0027]
FIG. 2 is a schematic sectional view showing a state when the high-temperature thermoelectric conversion element shown in FIG. 1 is operated at a high temperature. As shown in FIG. 2, the substrate 208 with the fitting groove on the heating side has a much higher temperature during operation of the apparatus than the substrate 206 with the fitting groove on the cooling side. A difference occurs in the dimensions of the attached substrates 206 and 208. In addition, a plurality of p-type thermoelectric conversion semiconductors 201 and n-type thermoelectric conversion semiconductors 202 are also trapezoidally deformed due to a temperature difference between both ends. This deformation is the same for all the thermoelectric conversion semiconductors, but the inclination tends to be smaller at the center of the substrate and larger as approaching the outer periphery of the substrate. The stress due to such thermal expansion acts as a strain on the thermoelectric conversion semiconductors 201 and 202 having cleavage properties or the connection portions 211 and 212 between the thermoelectric conversion semiconductors 201 and 202 and the electrodes 203 and 204. However, in the high-temperature thermoelectric conversion element according to the present invention, as shown in FIG. 3, the thermal expansion in the direction from the heating side to the cooling side of the thermoelectric conversion semiconductors 201 and 202 deformed into a trapezoidal shape due to the thermal expansion is the cooling side. Can be absorbed by the elasticity of the silicon resin, which is the first insulating member 205 provided on the substrate.
[0028]
In addition, the thermal expansion of the heating-side substrate 208 in the direction of the thermoelectric conversion semiconductor connection portion is reduced by the slight smooth surface and the material elasticity of the fitting groove portion of the heating-side substrate 221, and then the thermoelectric conversion semiconductors 201 and 202 become inclined. appear. The stress applied to the inclination is absorbed by the elastic deformation of the silicon resin provided as the first insulating member 205 on the cooling side and the first electrode (movable electrode) 203 on the cooling side. Therefore, the thermoelectric conversion element according to the present invention, even when the difference between the heating temperature and the cooling temperature is in the range of 300 to 800 ° C., the thermoelectric conversion semiconductors 201 and 202 or the thermoelectric conversion semiconductors 201 and 202 and the electrodes 203, The thermal stress applied to the connection portions 211 and 212 with the 204 can be extremely reduced as compared with the related art.
[0029]
FIG. 3 is a schematic perspective view of an n-type or p-type thermoelectric conversion semiconductor constituting the high-temperature thermoelectric conversion element according to the present invention. In FIG. 3, b1 and b2 indicate upper and lower surfaces in contact with the electrodes 103 and 104, and a1 to a4 indicate side surfaces other than the upper and lower surfaces. Conventionally, thermoelectric conversion semiconductors made of, for example, bismuth-tellurium tend to deteriorate by reacting with oxygen in the air when the body temperature rises to 250 to 300 ° C. or higher. On the other hand, in the thermoelectric conversion semiconductor according to the present invention, in order to prevent this deterioration, the direction from the heating side to the cooling side of the thermoelectric conversion semiconductors 101, 102, that is, the direction between the thermoelectric conversion semiconductors 101, 102 and the electrodes 103, 104. By providing the anodized aluminum coating on the side surfaces a1 to a4 other than the connection surfaces b1 and b2, the atmosphere can be shut off, so that the deterioration of the thermoelectric conversion semiconductors 101 and 102 can be suppressed. The anodized aluminum film provided on the side surfaces a1 to a4 of each of the thermoelectric conversion semiconductors 101 and 102 emits radiation from the surface of the heating-side substrate 108 by improving the thermal insulation of the anodized aluminum film itself in addition to the advantage of shielding the atmosphere. There is also a secondary effect of reducing the temperature rise of the thermoelectric conversion semiconductors 101 and 102 due to heat, establishing the temperature difference between the thermoelectric conversion semiconductors 101 and 102, and increasing the output.
[0030]
The connection of each thermoelectric conversion semiconductor 101, 102 to the second electrode (fixed electrode) 104 of the heating-side substrate 108, and the connection of each thermoelectric conversion semiconductor 101, 102 to the first electrode (movable electrode) 103 of the cooling-side substrate 106. Has a different configuration as shown below. That is, the connection of each of the thermoelectric conversion semiconductors 101 and 102 to the second electrode (fixed electrode) 104 of the heating-side substrate 108 is performed at about 500 ° C. after performing silver plating on the connection surface 112 of each of the thermoelectric conversion semiconductors 101 and 102. Brazing was performed using a silver wax that dissolves in the above. On the other hand, the connection of each of the thermoelectric conversion semiconductors 101 and 102 to the first electrode (movable electrode) 103 of the cooling-side substrate 106 is performed by subjecting the connection surface 111 of each of the thermoelectric conversion semiconductors 101 and 102 to silver plating or copper plating. Thereafter, soldering was performed using a solder that melts at about 200 ° C. With such a configuration, in the operation at the time of high temperature, the thermal expansion generated on the connection surface 111 between the first electrode (movable electrode) 103 of the cooling side substrate 108 and each of the thermoelectric conversion semiconductors 101 and 102 can be further reduced. it can.
[0031]
The high-temperature thermoelectric conversion element having the above-described configuration and shown in FIG. 1 operates stably even when a high-temperature heat source of 300 to 800 ° C. is supplied to the thermoelectric conversion element, and its output is 2 to 5 kW / m 2 ( (In the case of a supply temperature of 300 ° C.) and 5 to 13 kW / m 2 (in the case of a supply temperature of 800 ° C.), which were confirmed to be sufficiently practical. Further, the thermoelectric conversion efficiency, which is the ratio between the supplied thermal energy and the electric output, is 2.5 to 9% (at a supply temperature of 300 ° C.) and 8 to 19% (at a supply temperature of 800 ° C.). It was found that space was saved because the volume of the device was sufficiently small as compared with the conventional device of output. Therefore, it has been clarified that the high-temperature thermoelectric conversion element according to the present invention can directly convert waste heat from a solid oxide fuel cell or a waste incinerator to electric energy.
[0032]
【The invention's effect】
As described above, in the high-temperature thermoelectric conversion element according to the present invention, when the supply temperature to the thermoelectric conversion element is 300 to 800 ° C., the connection between each thermoelectric conversion semiconductor and the heating-side substrate is fixed. Is maintained, and the connection between the thermoelectric conversion semiconductors 111 and 112 and the cooling-side substrate is in a movable state. Therefore, according to the present invention, when a high-temperature heat source is supplied at a supply temperature of 300 to 800 ° C. to the thermoelectric conversion element, a stable output, high thermoelectric conversion efficiency, and excellent durability are obtained. Temperature thermoelectric conversion element, that is, a high-temperature thermoelectric conversion element that can use exhaust heat of a diesel engine, a gas engine, a solid oxide fuel cell, or the like having a supply temperature of 300 to 800 ° C. as a heat supply source to the thermoelectric conversion element. Can be provided.
[0033]
Further, the high-temperature thermoelectric conversion element according to the present invention can improve the thermoelectric conversion efficiency, so that the device can be made smaller and space-saving as compared with a conventional device having the same output.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view of a high-temperature thermoelectric conversion element according to the present invention.
FIG. 2 is a schematic sectional view showing a state when the high-temperature thermoelectric conversion element shown in FIG. 1 is operated at a high temperature.
FIG. 3 is a schematic perspective view of an n-type or p-type thermoelectric conversion semiconductor constituting the high-temperature thermoelectric conversion element according to the present invention.
FIG. 4 is a schematic cross-sectional view of a conventional high-temperature thermoelectric conversion element.
[Explanation of symbols]
101, 201 p-type thermoelectric conversion semiconductor,
102, 201 n-type thermoelectric conversion semiconductor,
103, 203 first electrode (movable electrode),
104, 204 second electrode (fixed electrode),
105, 205 first insulating member,
106, 206 cooling side substrate,
107, 207 second insulating member,
108, 208 heating side substrate,
109, 209 The contact surface between the cooling side substrate and the cooling plate,
110, 210 contact surface between the heating side substrate and the heating plate,
111, 211 contact portions between the thermoelectric conversion semiconductor and the first electrode,
112, 212 contact portions between the thermoelectric conversion semiconductor and the second electrode,
120, 220 cooling plate,
121, 221 heating plate,
122, 123, 222, 223 electrical output wiring,
401 p-type thermoelectric conversion semiconductor,
402 n-type thermoelectric conversion semiconductor,
403, 404 electrodes,
405, 407 insulating substrate,
411, 412 connection part between each thermoelectric conversion semiconductor and each electrode,
420 cooling plate,
421 heating plate,
422, 423 Electrical output wiring.

Claims (2)

複数のp型熱電変換半導体とn型熱電変換半導体とを交互に離間して設け、隣り合うp型熱電変換半導体とn型熱電変換半導体の上面を電気的に接続する第一の電極と、隣り合うp型熱電変換半導体とn型熱電変換半導体の下面を電気的に接続する第二の電極とを交互に備えることによって、前記複数のp型熱電変換半導体とn型熱電変換半導体を直列に接続するとともに、
前記第一の電極が前記複数のp型熱電変換半導体とn型熱電変換半導体に接触している側と反対の側には、第一の絶縁部材、冷却側基板を順に接触させて設け、前記第二の電極が前記複数のp型熱電変換半導体とn型熱電変換半導体に接触している側と反対の側には、第二の絶縁部材、加熱側基板を順に接触させて配置して構成され、
更に、前記冷却側基板を冷却板に、前記加熱側基板を加熱板に接触させることにより電気出力を得る高温度熱電変換素子において、
前記複数のp型熱電変換半導体とn型熱電変換半導体の上下面以外の側面に陽極酸化アルミ被膜を設けたことを特徴とする高温度熱電変換素子。
A plurality of p-type thermoelectric conversion semiconductors and n-type thermoelectric conversion semiconductors are provided alternately and separately, and a first electrode for electrically connecting the upper surfaces of the adjacent p-type thermoelectric conversion semiconductors and the n-type thermoelectric conversion semiconductor; The plurality of p-type thermoelectric conversion semiconductors and the n-type thermoelectric conversion semiconductors are connected in series by alternately providing matching p-type thermoelectric conversion semiconductors and second electrodes for electrically connecting the lower surfaces of the n-type thermoelectric conversion semiconductors. Along with
On the side opposite to the side where the first electrode is in contact with the plurality of p-type thermoelectric conversion semiconductors and the n-type thermoelectric conversion semiconductor, a first insulating member and a cooling-side substrate are provided in contact with each other in order, On the side opposite to the side where the second electrode is in contact with the plurality of p-type thermoelectric conversion semiconductors and the n-type thermoelectric conversion semiconductor, a second insulating member and a heating-side substrate are arranged in contact with each other in order. And
Further, in the high-temperature thermoelectric conversion element to obtain an electrical output by contacting the cooling-side substrate to the cooling plate and the heating-side substrate to the heating plate,
Wherein the plurality of p-type thermoelectric conversion semiconductor and n-type thermoelectric conversion semiconductor high temperature thermoelectric conversion elements you characterized in that the side surfaces other than the top and bottom surfaces provided with anodized aluminum coating.
前記複数のp型熱電変換半導体及びn型熱電変換半導体と前記第一の電極との接触面、並びに、前記複数のp型熱電変換半導体及びn型熱電変換半導体と前記第二の電極との接触面、に銀メッキを施したことを特徴とする請求項1に記載の高温度熱電変換素子。A contact surface between the plurality of p-type thermoelectric conversion semiconductors and the n-type thermoelectric conversion semiconductor and the first electrode, and a contact between the plurality of p-type thermoelectric conversion semiconductors and the n-type thermoelectric conversion semiconductor and the second electrode The high temperature thermoelectric conversion element according to claim 1, wherein the surface is silver-plated.
JP26201198A 1998-09-16 1998-09-16 High temperature thermoelectric conversion element Expired - Fee Related JP3580406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26201198A JP3580406B2 (en) 1998-09-16 1998-09-16 High temperature thermoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26201198A JP3580406B2 (en) 1998-09-16 1998-09-16 High temperature thermoelectric conversion element

Publications (2)

Publication Number Publication Date
JP2000091650A JP2000091650A (en) 2000-03-31
JP3580406B2 true JP3580406B2 (en) 2004-10-20

Family

ID=17369789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26201198A Expired - Fee Related JP3580406B2 (en) 1998-09-16 1998-09-16 High temperature thermoelectric conversion element

Country Status (1)

Country Link
JP (1) JP3580406B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100648630B1 (en) * 2000-09-26 2006-11-23 삼성전자주식회사 apparatus for cooling a plate in a semiconductor fabricating and method for producting a plate having a cooling line
US8893513B2 (en) * 2012-05-07 2014-11-25 Phononic Device, Inc. Thermoelectric heat exchanger component including protective heat spreading lid and optimal thermal interface resistance
US10458683B2 (en) 2014-07-21 2019-10-29 Phononic, Inc. Systems and methods for mitigating heat rejection limitations of a thermoelectric module
CA3052989A1 (en) * 2017-02-08 2018-08-16 Magna Seating Inc. Thermoelectric module and flexible thermoelectric circuit assembly
CN110112282B (en) * 2019-06-17 2022-06-10 中北大学 Multilayer stealth nanostructure with graphene heat conduction layer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4497973A (en) * 1983-02-28 1985-02-05 Ecd-Anr Energy Conversion Company Thermoelectric device exhibiting decreased stress
JP3539796B2 (en) * 1995-05-30 2004-07-07 株式会社エコ・トゥエンティーワン Thermoelectric converter
JPH09148635A (en) * 1995-11-17 1997-06-06 Matsushita Electric Works Ltd Manufacture of thermoelectric conversion module
JP3506199B2 (en) * 1996-11-11 2004-03-15 日本電信電話株式会社 Thermoelectric converter

Also Published As

Publication number Publication date
JP2000091650A (en) 2000-03-31

Similar Documents

Publication Publication Date Title
US7880079B2 (en) Dual gap thermo-tunneling apparatus and methods
JP4768961B2 (en) Thermoelectric module having thin film substrate
WO2004061982A1 (en) Cooling device for electronic component using thermo-electric conversion material
JPH10303471A (en) Thermoelectric element and thermoelectric element module using the same
JPWO2005124881A1 (en) Thermoelectric conversion element
KR20120080820A (en) Thermoelectric module
JP3580406B2 (en) High temperature thermoelectric conversion element
JP3554861B2 (en) Thin film thermocouple integrated thermoelectric conversion device
JP3501394B2 (en) Thermoelectric conversion module
KR102323978B1 (en) Thermoelectric module
JPH07106641A (en) Integral ring type thermoelectric conversion element and device employing same
JP3506199B2 (en) Thermoelectric converter
CN111670505A (en) Thermoelectric module for generating electricity and corresponding production method
CN108713259B (en) Thermoelectric conversion module
JP3188070B2 (en) Thermoelectric generation module
JP3482094B2 (en) Thermal stress relaxation pad for thermoelectric conversion element and thermoelectric conversion element
JP3573448B2 (en) Thermoelectric conversion element
KR102021664B1 (en) Multi-multi-array themoeletric generator and its manufacturing method
EP1981095A2 (en) A peltier module
WO1995017020A1 (en) Thermoelectric conversion element, thermoelectric conversion element array, and thermal displacement converter
KR102456680B1 (en) Thermoelectric element
JPH06275871A (en) Thermoelectric power generation module
JP7281715B2 (en) Thermoelectric conversion module
RU2158988C1 (en) Thermoelectric module
KR102423607B1 (en) Thermoelectric module

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040714

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees