JP3577517B2 - Method and apparatus for simultaneous measurement of pH and potential on material surface - Google Patents

Method and apparatus for simultaneous measurement of pH and potential on material surface Download PDF

Info

Publication number
JP3577517B2
JP3577517B2 JP2002139173A JP2002139173A JP3577517B2 JP 3577517 B2 JP3577517 B2 JP 3577517B2 JP 2002139173 A JP2002139173 A JP 2002139173A JP 2002139173 A JP2002139173 A JP 2002139173A JP 3577517 B2 JP3577517 B2 JP 3577517B2
Authority
JP
Japan
Prior art keywords
potential
microelectrode
distribution
sample
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002139173A
Other languages
Japanese (ja)
Other versions
JP2003329643A (en
Inventor
博之 升田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2002139173A priority Critical patent/JP3577517B2/en
Publication of JP2003329643A publication Critical patent/JP2003329643A/en
Application granted granted Critical
Publication of JP3577517B2 publication Critical patent/JP3577517B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【0001】
【発明の属する技術分野】
この出願の発明は、材料表面のpHおよび電位の同時測定方法とそのための装置に関するものである。さらに詳しくは、この出願の発明は、材料表面の100μm平方以下の微小領域内におけるpHおよび電位の同時測定方法とそのための装置に関するものである。
【0002】
【従来の技術と発明の課題】
金属材料の腐食メカニズムの解明や耐腐食性を決定する要因の特定は、新たな耐腐食性金属の開発に貢献するものと考えられている。腐食の進行と金属材料表面のpHや電位分布の間には、関係があることが示唆されており、金属材料表面のpHや電位分布を詳細に測定するための装置の開発が、金属材料の腐食メカニズムの解明や耐腐食性を決定する要因の特定には、必須であると考えられている。
【0003】
従来技術においては、溶液のpHを測定するための各種の測定手法が公知であるが、これらの手法は溶液全体のpHを測定する技術であり、局所的なpH分布測定を実現するものではない。すなわち、金属材料の腐食メカニズムの解明や耐腐食性を決定する要因の特定を実現するために必要とされるような、材料表面の100μm平方以下の微小領域内におけるpH分布を測定する技術は、これまで開発されてこなかった。また、pH分布と電位分布とを同時に測定することを可能とする新たな測定手段も、これまで提案されていない。
【0004】
そこで、この出願の発明は、以上の通りの事情に鑑みてなされたものであり、材料表面の100μm平方以下の微小領域内におけるpH分布および電位分布を同時測定するための新たな測定方法とそのための装置を提供することを課題としている。
【0005】
【課題を解決するための手段】
この出願の発明は、上記の課題を解決するものとして、第1には、溶液中に設置された試料の表面近傍領域におけるpHおよび電位を同時に測定する材料表面のpHおよび電位の同時測定方法であって、試料の表面近傍領域に設置される微小電極と試料との間の電圧差V1と微小電極と溶液中に設置される基準電極との間の電位差V2とを同時に測定し、測定された電圧差V2から微小電極と試料との間の領域におけるpHを算出し、電圧差V2−V1から微小電極近傍領域の局所的な電位を算出することを特徴とする材料表面のpH分布および電位分布の同時測定方法を提供する。
【0006】
この材料表面のpH分布および電位分布の同時測定方法においては、第2の発明として、微小電極または試料を3軸方向に走査するための走査手段により試料の表面近傍領域において微小電極を相対的に走査させ、微小電極と試料との間の電圧差Vの分布と微小電極と基準電極との間の電圧差Vの分布とを測定し、電圧差Vの分布から表面近傍領域におけるpHの分布を算出し、電圧差V−Vの分布から表面近傍領域における電位の分布を算出することを、第3の発明として、微小電極をSTM探針として用い、微小電極と試料との間に発生するトンネル電流を測定し、走査手段に対してフィードバックをかけることでトンネル電流が一定となるように微小電極と試料との間隔を制御し、このときの走査手段の制御量から、表面近傍領域における試料表面の形状を、表面近傍領域におけるpHの分布および電位の分布と同時に取得することを、第4の発明として、微小電極をAFM探針として用い、微小電極と試料との間に発生する原子間力を測定し、走査手段に対してフィードバックをかけることで原子間力が一定となるように微小電極と試料との間隔を制御し、このときの走査手段の制御量から、表面近傍領域における試料表面の形状を、表面近傍領域におけるpHの分布および電位の分布と同時に取得することを特徴とする材料表面のpH分布および電位分布の同時測定方法を提供する。
そして、この出願の発明は、上記方法のための装置として、第5には、溶液中に設置された試料の表面近傍領域におけるpHおよび電位を同時に測定する材料表面のpHおよび電位の同時測定装置であって、試料の表面近傍領域に設置される微小電極と溶液中に設置される基準電極を有し、微小電極と試料との間の電圧差Vを測定する手段と微小電極と溶液中に設置される基準電極との間の電圧差Vを測定する手段を備えて、VとVとを同時に測定し、測定された電圧差Vから微小電極と試料との間の領域におけるpHを算出し、電圧差V−Vから微小電極近傍領域の局所的な電位を算出するpH算出手段と局所電位算出手段とを備えていることを特徴とする材料表面のpH分布および電位分布の同時測定装置を提供し、第6には、微小電極または試料を3軸方向に走査するための走査手段を備え、これにより試料の表面近傍領域において微小電極を相対的に走査させ、微小電極と試料との間の電圧差Vの分布と微小電極と基準電極との間の電圧差Vの分布とを測定し、電圧差Vの分布から表面近傍領域におけるpHの分布を算出し、電圧差V−Vの分布から表面近傍領域における電位の分布を算出することを特徴とする材料表面のpHおよび電位の同時測定装置を提供し、第7には、算出された表面近傍領域におけるpHの分布または電位の分布を、画像化して表示する手段を備えることを特徴とする材料表面のpHおよび電位の同時測定装置を提供する。
【0007】
さらにまた、この出願の発明は、第8には、微小電極がSTM探針であって、微小電極と試料との間に発生するトンネル電流を測定し、走査手段に対してフィードバックをかけることでトンネル電流が一定となるように微小電極と試料との間隔を制御し、このときの走査手段の制御量から、表面近傍領域における試料表面の形状を、表面近傍領域におけるpHの分布および電位の分布と同時に取得することを特徴とする前記の材料表面のpHおよび電位の同時測定装置を提供し、第9には、微小電極がAFM探針であって、微小電極と試料表面に設置されたAFM用カンチレバーとの間に発生する原子間力を測定し、走査手段に対してフィードバックをかけることで原子間力が一定となるように微小電極と試料との間隔を制御し、このときの走査手段の制御量から、表面近傍領域における試料表面の形状を、表面近傍領域におけるpHの分布および電位の分布と同時に取得することを特徴とする前記の材料表面のpHおよび電位の同時測定装置を提供する。
【0008】
また、第10には、算出された微小領域におけるpHの分布/電位の分布/表面の形状を、画像化して表示する手段を備えることを特徴とする前記いずれかの装置を提供する。
【0009】
【発明の実施の形態】
この出願の発明は、上記のとおりの特徴をもつものであるが、以下に、その実施の形態について説明する。
【0010】
この出願の発明である材料表面のpHおよび電位の同時測定方法の概略とその装置の構成を図1に例示する。
【0011】
図1に例示したとおり、この出願の発明である材料表面のpHおよび電位の同時測定装置では、たとえば、ピット(1)中の溶液(2)内に、試料(3)が設置されている。この試料(3)の表面近傍領域には、微小電極(4)が設置されており、また、溶液(2)中には基準電極(5)が設置されている。
【0012】
ここで、試料(2)と微小電極(4)との間の電圧差Vおよび微小電極(4)と基準電極(5)との間の電圧差Vを、マルチタイプのエレクトロメータ(6)等の測定手段により同時に測定する。同時に測定された電圧差Vおよび電圧差Vから、それぞれ、試料(3)と微小電極(4)との間の微小領域におけるpH、および、微小電極(4)の近傍の微小領域における局所的な電位を算出することができる。
【0013】
ここで、微小電極は、試料(3)と微小電極(4)との間の微小領域におけるpHと微小電極(4)と基準電極(5)との間の電圧差Vとの間に比例関係が成立する材料が用いられる。これにより、例えば、酸化タングステン電極を用いた場合には、pHは、
pH=(130−V)/50
と、求まる。また、微小電極(4)の近傍の微小領域における試料の局所的な電位は、V−Vと、算出される。
【0014】
この出願の発明である材料表面のpHおよび電位の同時測定装置では、試料(3)を3軸方向に走査するための走査手段(7)を備えることができる。この走査手段(7)によって、試料(3)の表面近傍領域において微小電極(4)を相対的に走査させることで、試料(3)と微小電極(4)との間の電圧差Vの分布と微小電極(4)と基準電極(5)との間の電圧差Vの分布とを、同時に測定することができる。測定される電圧差Vの分布から、表面近傍領域におけるpHの分布を、また、電圧差V−Vの分布から、表面近傍領域における電位の分布を算出することができる。走査手段(7)は、微小電極(4)に接続されてもよく、この場合は、試料(3)の表面近傍領域において微小電極(4)を走査させることで、試料(3)と微小電極(4)との間の電圧差Vの分布と微小電極(4)と基準電極(5)との間の電圧差Vの分布とを、同時に測定し、電圧差Vの分布と電圧差Vの分布とから、表面近傍領域におけるpHの分布と表面近傍領域における電位の分布とを、算出処理手段(8)により、それぞれ算出する。
【0015】
この出願の発明である材料表面のpHおよび電位の同時測定装置においては、CRTディスプレイ装置や液晶ディスプレイ装置などの画像出力手段(9)を備えることができ、算出された微小領域におけるpHの分布または局所的な電位の分布を、画像化して表示することも可能である。
【0016】
また、この出願の発明である材料表面のpHおよび電位の同時測定装置においては、走査型トンネル顕微鏡の原理を適用することで、pHの分布および局所的な電位の分布だけでなく、試料表面の形状に関する情報をも同時に測定することが可能である。
【0017】
具体的には、図2に例示したとおり、微小電極(24)を、STM探針として適用する。つまり、トンネル電流測定手段(20)により試料(23)と微小電極(24)との間に発生するトンネル電流を測定し、走査手段(27)に対してフィードバックをかけることで、トンネル電流が一定となるように、試料(23)と微小電極(24)との間隔を制御し、この走査手段(27)に対するフィードバックから、表面近傍領域における試料表面の形状を、pHの分布および電位の分布と同時に取得する。
さらに、この出願の発明である材料表面のpHおよび電位の同時測定装置においては、原子間力顕微鏡の原理を適用することで、pHの分布および局所的な電位の分布だけでなく、試料(23)表面の形状に関する情報をも同時に測定することも可能である。以上により取得された試料表面の形状は、画像出力手段(29)により、画像として出力されてもよい。
【0018】
具体的には、図3に例示したとおり、AFM用カンチレバー型の微小電極(34)を用いる。この電極は、一般的には、走査電気化学顕微鏡に利用されており、例えば、非常に細いタングステン電極をガラスコーティングすることで形成されている。
【0019】
つまり、試料(33)とAFM用カンチレバー型の微小電極(34)との間に発生する原子間力を測定し、走査手段(37)に対してフィードバックをかけることで、原子間力が一定となるように、試料(33)と微小電極(34)との間隔を制御し、この走査手段(37)に対するフィードバックから、表面近傍領域における試料(33)表面の形状を、pHの分布および電位の分布と同時に取得する。以上により取得された試料表面の形状は、画像出力手段(39)により、画像として出力されてもよい。
【0020】
以上は、この出願の発明である材料表面のpHおよび電位の同時測定装置における態様の一例であり、この出願の発明が以上で示した形態に限定されることはなく、その細部について、様々な形態をとりうることが考慮されるべきであることは言うまでもない。
この出願の発明は、以上の特徴を持つものであるが、以下に実施例を示し、さらに具体的に説明する。
【0021】
【実施例】
この出願の発明である材料表面のpHおよび電位の同時測定装置の測定原理に基づき、5%塩化マグネシウム水溶液中を純鉄に付着させ、腐食が進行していく際の、純鉄の表面近傍領域におけるpHおよび電位の変化について調べた。微小電極として、微小酸化タングステンpH電極を用いた。
【0022】
図4は、純鉄の表面近傍領域におけるpHと電位の経時変化を示したグラフである。時間の経過とともに、純鉄表面の腐食が進行し、腐食の進行に伴い、pHおよび電位が同時に低下していくことがわかる。
【0023】
以上の通り、この出願の発明である材料表面のpHおよび電位の同時測定装置の測定原理により、材料の表面近傍領域におけるpHおよび電位を同時に測定できることが明らかとなった。微小電極を相対的に走査することで、pHおよび電位の平面分布が得られ、これを画像化することも容易に実現できる。
【0024】
【発明の効果】
この出願の発明によって、以上詳しく説明したとおり、材料表面の100μm平方以下の微小領域内におけるpH分布および電位分布を同時測定するための新たな測定方法が提供される。
【0025】
この出願の発明は、従来技術では不可能であった、局部腐食内部のpH分布および電位分布の測定を実現し、種々の電気化学測定に応用可能であり、耐腐食性材料などの新規機能性材料の開発を行う上で、その指針を得るための重要な技術であると考えられることから、その実用化が強く期待される。
【図面の簡単な説明】
【図1】この出願の発明である材料表面のpHおよび電位の同時測定装置の構成について示した概要図である。
【図2】この出願の発明である材料表面のpHおよび電位の同時測定装置の構成について示した概要図である。
【図3】この出願の発明である材料表面のpHおよび電位の同時測定装置の構成について示した概要図である。
【図4】この出願の発明である材料表面のpHおよび電位の同時測定装置の実施例において、純鉄の表面近傍領域におけるpHと電位の経時変化を示したグラフである
【符号の説明】
1 ピット
2 溶液
3 試料
4 微小電極
5 基準電極
6 エレクトロメータ
7 走査手段
8 算出処理手段
9 画像出力手段
20 トンネル電流測定手段
21 ピット
22 溶液
23 試料
24 微小電極
25 基準電極
26 エレクトロメータ
27 走査手段
28 算出処理手段
29 画像出力手段
30 トンネル電流測定手段
31 ピット
32 溶液
33 試料
34 微小電極
35 基準電極
36 エレクトロメータ
37 走査手段
38 算出処理手段
39 画像出力手段
[0001]
TECHNICAL FIELD OF THE INVENTION
The invention of this application relates to a method and apparatus for simultaneously measuring the pH and potential of a material surface. More specifically, the invention of this application relates to a method and apparatus for simultaneously measuring pH and potential in a minute area of 100 μm square or less on the surface of a material.
[0002]
[Prior Art and Problems of the Invention]
Elucidation of the corrosion mechanism of metallic materials and identification of factors that determine corrosion resistance are thought to contribute to the development of new corrosion resistant metals. It has been suggested that there is a relationship between the progress of corrosion and the pH and potential distribution on the metal material surface. It is considered indispensable to elucidate the corrosion mechanism and identify the factors that determine corrosion resistance.
[0003]
In the prior art, various measurement techniques for measuring the pH of a solution are known, but these techniques are techniques for measuring the pH of the entire solution and do not realize local pH distribution measurement. . In other words, a technique for measuring the pH distribution in a small area of 100 μm square or less on the material surface, as required to elucidate the corrosion mechanism of a metal material and to specify factors that determine corrosion resistance, It has not been developed so far. Further, no new measuring means capable of simultaneously measuring the pH distribution and the potential distribution has been proposed.
[0004]
Therefore, the invention of this application has been made in view of the above circumstances, and a new measurement method and a new measurement method for simultaneously measuring the pH distribution and the electric potential distribution in a minute area of 100 μm square or less on the material surface. It is an object of the present invention to provide an apparatus.
[0005]
[Means for Solving the Problems]
The invention of this application solves the above-mentioned problems. First, a method for simultaneously measuring the pH and the potential of a material surface by simultaneously measuring the pH and the potential in a region near the surface of a sample placed in a solution. there are, at the same time measuring the potential difference V 2 between the voltage difference V 1 and microelectrode and the solution reference electrode is placed in between the microelectrode and the sample to be placed in the region near the surface of the sample, the measurement has been pH was calculated from the voltage difference V 2 in the region between the microelectrode and the sample, the voltage difference V 2 -V 1 material surface and calculates the local potential of the micro-electrode neighborhood Provided is a method for simultaneously measuring pH distribution and potential distribution.
[0006]
In the method for simultaneously measuring the pH distribution and the potential distribution on the material surface, as a second invention, the microelectrode or the scanning means for scanning the sample in three axial directions relatively moves the microelectrode in a region near the surface of the sample. is scanned, pH near the surface region and the distribution of the voltage difference V 2 is measured, from the distribution of the voltage difference V 2 between the distribution and the microelectrodes and the reference electrode of the voltage difference V 1 of the between the microelectrode and the sample Calculating the distribution of the potential and the distribution of the potential in the vicinity of the surface from the distribution of the voltage difference V 2 −V 1 as a third invention. The distance between the microelectrode and the sample is controlled so that the tunnel current is constant by measuring the tunnel current generated between them and applying feedback to the scanning means. As a fourth invention, obtaining the shape of the sample surface in the vicinity region at the same time as the distribution of the pH and the distribution of the potential in the region near the surface is described as follows. The distance between the microelectrode and the sample is controlled so that the atomic force is constant by measuring the generated atomic force and applying feedback to the scanning means. Provided is a method for simultaneously measuring the pH distribution and the potential distribution on a material surface, wherein a shape of a sample surface in a vicinity region is obtained simultaneously with a distribution of a pH and a distribution of a potential in a region near the surface.
Fifthly, the invention of this application is a device for the above method, which is a device for simultaneous measurement of pH and potential on a material surface for simultaneously measuring pH and potential in a region near the surface of a sample placed in a solution. Means for measuring a voltage difference V 1 between the microelectrode and the sample, the microelectrode being provided in a region near the surface of the sample and a reference electrode being installed in the solution; area between comprises means for measuring the voltage difference V 2 between the reference electrode is placed, to measure the V 1 and V 2 at the same time, the micro-electrode and the sample from the voltage difference V 2 which is measured pH was calculated in, pH distribution of the material surface, characterized in that it comprises a pH calculating means and local potential calculating means for calculating the local potential of the micro-electrode neighborhood from the voltage difference V 2 -V 1 and Provides a simultaneous measurement device for potential distribution Sixth, scanning means for scanning the microelectrode or the sample in three axial directions is provided, whereby the microelectrode is relatively scanned in a region near the surface of the sample, and a voltage difference between the microelectrode and the sample is provided. and measuring the distribution of the voltage difference V 2 between the distribution and the microelectrodes and the reference electrodes V 1, to calculate the pH of the distribution in the region near the surface from the distribution of the voltage difference V 2, the voltage difference V 2 -V 1 A device for simultaneously measuring the pH and the potential of the material surface, wherein the device calculates the distribution of the potential in the region near the surface from the distribution of the pH. Provided is a device for simultaneously measuring the pH and the potential of a material surface, comprising a means for imaging and displaying a distribution.
[0007]
Eighth, the invention of this application is based on the fact that the microelectrode is an STM probe, and the tunnel current generated between the microelectrode and the sample is measured and fed back to the scanning means. The distance between the microelectrode and the sample is controlled so that the tunnel current is constant, and the shape of the sample surface in the region near the surface is determined based on the control amount of the scanning means at this time. A ninth aspect of the present invention provides a device for simultaneously measuring the pH and potential of the material surface, wherein the microelectrode is an AFM probe, and the AFM probe is provided on the microelectrode and the sample surface. The interatomic force generated between the sample and the cantilever is measured, and the distance between the microelectrode and the sample is controlled by applying feedback to the scanning means so that the atomic force is constant. A simultaneous measurement device for measuring the pH and potential of the material surface, wherein the shape of the surface of the sample in the region near the surface is obtained simultaneously with the distribution of the pH and the potential in the region near the surface from the control amount of the inspection means. provide.
[0008]
In a tenth aspect, there is provided any one of the above devices, further comprising means for imaging and displaying the calculated distribution of pH / potential distribution / surface shape in the minute region.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
The invention of this application has the features as described above, and embodiments thereof will be described below.
[0010]
FIG. 1 illustrates an outline of a method for simultaneous measurement of pH and potential on a material surface and a configuration of an apparatus according to the invention of this application.
[0011]
As illustrated in FIG. 1, in the apparatus for simultaneously measuring the pH and the potential on the material surface according to the invention of this application, for example, a sample (3) is placed in a solution (2) in a pit (1). A microelectrode (4) is provided in a region near the surface of the sample (3), and a reference electrode (5) is provided in the solution (2).
[0012]
Here, a voltage difference V 2 between the sample (2) and the voltage difference V 1 and microelectrode (4) and the reference electrode between the microelectrode (4) (5), multi-type electrometer (6 ) Are measured at the same time. The voltage difference V 1 and the voltage difference V 2 measured at the same time, respectively, pH in the small area between the sample (3) and microelectrode (4), and the local in a minute region near the microelectrode (4) Potential can be calculated.
[0013]
Here, microelectrodes, proportional between the voltage difference V 2 between a sample (3) pH and microelectrode (4) and the reference electrode in the small region between microelectrodes (4) (5) Materials that have a relationship are used. Thereby, for example, when a tungsten oxide electrode is used, the pH becomes
pH = (130−V 2 ) / 50
I get it. Further, the local potential of the sample in the minute region near the minute electrode (4) is calculated as V 2 −V 1 .
[0014]
The apparatus for simultaneously measuring the pH and the potential on the material surface according to the invention of the present application can include a scanning unit (7) for scanning the sample (3) in three axial directions. This scanning means (7), the sample (3) by causing relative scan the microelectrode (4) in the region near the surface of the sample (3) and of the voltage difference V 1 of the between the microelectrode (4) distribution and microelectrode and (4) the distribution of the voltage difference V 2 between the reference electrode (5) can be measured simultaneously. From the measured distribution of the voltage difference V 2, the pH of the distribution near the surface region, the distribution of the voltage difference V 2 -V 1, it is possible to calculate the distribution of potential in the vicinity of the surface region. The scanning means (7) may be connected to the microelectrode (4). In this case, the sample (3) and the microelectrode (4) are scanned by scanning the microelectrode (4) in a region near the surface of the sample (3). voltage difference and distribution of the voltage difference V 2 between V 1 of the distribution and microelectrode and (4) and the reference electrode (5), measured at the same time, distribution and voltage of the voltage difference V 1 of the between (4) and a distribution of the difference V 2, and a distribution of the potential in the distribution and the surface region near the pH near the surface region, the calculation processing means (8), is calculated.
[0015]
The apparatus for simultaneously measuring the pH and the electric potential of the material surface according to the invention of the present application can include an image output means (9) such as a CRT display device or a liquid crystal display device, and can calculate the distribution of pH or the calculated pH distribution in a minute area. It is also possible to image and display the local potential distribution.
[0016]
In the apparatus for simultaneously measuring the pH and the potential of the material surface according to the invention of the present application, the principle of the scanning tunneling microscope is applied to not only the distribution of the pH and the distribution of the local potential but also the distribution of the sample surface. Information on the shape can be measured at the same time.
[0017]
Specifically, as illustrated in FIG. 2, the microelectrode (24) is applied as an STM probe. That is, the tunnel current generated between the sample (23) and the microelectrode (24) is measured by the tunnel current measuring means (20), and the tunnel current is made constant by applying feedback to the scanning means (27). The distance between the sample (23) and the microelectrode (24) is controlled so that the shape of the sample surface in the region near the surface can be determined from the feedback to the scanning means (27) with the distribution of pH and the distribution of potential. Acquire at the same time.
Further, in the apparatus for simultaneously measuring the pH and the potential on the material surface according to the invention of the present application, by applying the principle of the atomic force microscope, not only the distribution of the pH and the distribution of the local potential but also the sample (23) ) It is also possible to simultaneously measure information about the surface shape. The shape of the sample surface obtained as described above may be output as an image by the image output means (29).
[0018]
Specifically, as shown in FIG. 3, a cantilever-type microelectrode (34) for AFM is used. This electrode is generally used for a scanning electrochemical microscope, and is formed, for example, by coating a very thin tungsten electrode with glass.
[0019]
That is, by measuring the atomic force generated between the sample (33) and the microelectrode (34) of the cantilever type for AFM, and applying feedback to the scanning means (37), the atomic force is made constant. The distance between the sample (33) and the microelectrode (34) is controlled so that the shape of the surface of the sample (33) in the vicinity of the surface can be determined by feedback to the scanning means (37). Acquire at the same time as the distribution. The shape of the sample surface acquired as described above may be output as an image by the image output means (39).
[0020]
The above is an example of the embodiment of the simultaneous measurement device for the pH and the potential of the material surface according to the invention of the present application, and the invention of the present application is not limited to the above-described embodiment, and the details thereof are various. It goes without saying that it is possible to take the form.
The invention of this application has the above-mentioned features, and will be described in more detail with reference to examples below.
[0021]
【Example】
Based on the measurement principle of the simultaneous measurement device for pH and potential on the material surface according to the invention of this application, a 5% magnesium chloride aqueous solution is adhered to pure iron, and a region near the surface of pure iron when corrosion proceeds. The changes in pH and electric potential were examined. A micro tungsten oxide pH electrode was used as the micro electrode.
[0022]
FIG. 4 is a graph showing changes over time in pH and potential in a region near the surface of pure iron. It can be seen that the corrosion of the pure iron surface progresses with the passage of time, and the pH and the potential decrease simultaneously as the corrosion progresses.
[0023]
As described above, it has been clarified that the pH and the electric potential in the region near the surface of the material can be simultaneously measured by the measurement principle of the simultaneous measurement device for the pH and the electric potential of the material surface according to the invention of this application. By relatively scanning the microelectrodes, a planar distribution of pH and potential can be obtained, and it can be easily realized as an image.
[0024]
【The invention's effect】
According to the invention of this application, as described in detail above, a new measurement method for simultaneously measuring the pH distribution and the potential distribution in a minute region of 100 μm square or less on the material surface is provided.
[0025]
The invention of this application realizes the measurement of pH distribution and electric potential distribution inside local corrosion, which was impossible with the prior art, and can be applied to various electrochemical measurements. Since it is considered to be an important technology for obtaining the guideline in the development of materials, its practical application is strongly expected.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a configuration of a device for simultaneously measuring pH and potential of a material surface according to the invention of the present application.
FIG. 2 is a schematic diagram showing the configuration of a device for simultaneously measuring pH and potential on a material surface according to the invention of the present application.
FIG. 3 is a schematic diagram showing a configuration of a device for simultaneously measuring pH and potential of a material surface according to the invention of the present application.
FIG. 4 is a graph showing time-dependent changes in pH and potential in a region near the surface of pure iron in an embodiment of the apparatus for simultaneous measurement of pH and potential of a material surface according to the invention of the present application.
Reference Signs List 1 pit 2 solution 3 sample 4 microelectrode 5 reference electrode 6 electrometer 7 scanning means 8 calculation processing means 9 image output means 20 tunnel current measuring means 21 pit 22 solution 23 sample 24 microelectrode 25 reference electrode 26 electrometer 27 scanning means 28 Calculation processing means 29 Image output means 30 Tunnel current measurement means 31 Pits 32 Solution 33 Sample 34 Microelectrode 35 Reference electrode 36 Electrometer 37 Scanning means 38 Calculation processing means 39 Image output means

Claims (10)

溶液中に設置された試料の表面近傍領域におけるpHおよび電位を同時に
測定する材料表面のpHおよび電位の同時測定方法あって、試料の表面近傍領域に設置される微小電極と試料との間の電圧差V1と微小電極と溶液中に設置される基準電極との間
の電位差V2とを同時に測定し、測定された電圧差V2から微小電極と試料との間の領域におけるpHを算出し、電圧差V2−V1から微小電極近傍領域の局所的な電位を算出することを特徴とする材料表面のpH分布および電位分布の同時測定方法。
There simultaneous measuring method of the pH and the potential of the material surface to simultaneously measure the pH and the potential in the region near the surface of the sample placed in the solution, the voltage between the microelectrode and the sample to be placed in the region near the surface of the sample simultaneously measuring the potential difference V 2 between the difference V 1 and microelectrode and the solution reference electrode is placed in, pH calculates the region between the measured voltage difference V 2 between microelectrodes and sample , simultaneous measuring method of pH distribution and the potential distribution of the material surface and calculates the local potential of the micro-electrode neighborhood from the voltage difference V 2 -V 1.
微小電極または試料を3軸方向に走査するための走査手段により試料の表面近傍領域において微小電極を相対的に走査させ、微小電極と試料との間の電圧差Vの分布と微小電極と基準電極との間の電圧差Vの分布とを測定し、電圧差Vの分布から表面近傍領域におけるpHの分布を算出し、電圧差V−Vの分布から表面近傍領域における電位の分布を算出することを特徴とする請求項1記載の材料表面のpHおよび電位の同時測定方法。The microelectrode near the surface region of the sample by the scanning means for scanning a microelectrode or samples 3 axially by relatively scanning, distribution and microelectrode and the reference voltage difference V 1 of the between the microelectrode and the sample a distribution of the voltage difference V 2 between the electrodes was measured, from the distribution of the voltage difference V 2 calculates the pH of the distribution near the surface region, the distribution of the voltage difference V 2 -V 1 potential in the region near the surface 2. The method according to claim 1, wherein the distribution is calculated. 微小電極をSTM探針として用い、微小電極と試料との間に発生するトン
ネル電流を測定し、走査手段に対してフィードバックをかけることでトンネル電流が一定となるように微小電極と試料との間隔を制御し、このときの走査手段の制御量から、表面近傍領域における試料表面の形状を、表面近傍領域におけるpHの分布および電位の分布と同時に取得することを特徴とする請求項2の材料表面のpHおよび電位の同時測定方法。
Using the microelectrode as an STM probe, measure the tunnel current generated between the microelectrode and the sample, and apply feedback to the scanning means so that the gap between the microelectrode and the sample becomes constant so that the tunnel current becomes constant. 3. The material surface according to claim 2, wherein the shape of the sample surface in the near-surface region is acquired simultaneously with the distribution of the pH and the potential in the near-surface region from the control amount of the scanning means at this time. Method for simultaneous measurement of pH and potential.
微小電極をAFM探針として用い、微小電極と試料表面に設置されたAFM用カンチレバーとの間に発生する原子間力を測定し、走査手段に対してフィードバックをかけることで原子力間力が一定となるように微小電極と試料との間隔を制御し、このときの走査手段の制御量から、表面近傍領域における試料表面の形状を、表面近傍領域におけるpHの分布および電位の分布と同時に取得することを特徴とする請求項2の材料表面のpHおよび電位の同時測定方法。Using the microelectrode as an AFM probe, the atomic force generated between the microelectrode and the AFM cantilever installed on the sample surface is measured, and the atomic force is maintained by applying feedback to the scanning means. The distance between the microelectrode and the sample is controlled so that the shape of the sample surface in the near-surface region is obtained simultaneously with the distribution of pH and the potential in the near-surface region from the control amount of the scanning means at this time. 3. The method for simultaneously measuring the pH and potential of a material surface according to claim 2, wherein: 溶液中に設置された試料の表面近傍領域におけるpHおよび電位を同時に測定する材料表面のpHおよび電位の同時測定装置であって、試料の表面近傍領域に設置される微小電極と溶液中に設置される基準電極を有し、微小電極と試料との間の電圧差Vを測定する手段と微小電極と溶液中に設置される基準電極との間の電圧差Vを測定する手段を備えて、VとVとを同時に測定し、測定された電圧差Vから微小電極と試料との間の領域におけるpHを算出し、電圧差V−Vから微小電極近傍領域の局所的な電位を算出するpH算出手段と局所電位算出手段とを備えていることを特徴とする材料表面のpH分布および電位分布の同時測定装置。A device for simultaneously measuring pH and potential on the surface of a material for simultaneously measuring pH and potential in a region near the surface of a sample placed in a solution, wherein the device is installed in a solution with a microelectrode placed in a region near the surface of the sample and a solution. that has a reference electrode, comprising means for measuring the voltage difference V 2 between the means and the reference electrode is placed in the micro-electrode and a solution for measuring the voltage difference V 1 of the between the microelectrode and the sample and measuring the V 1 and V 2 at the same time, local of the measured pH was calculated from the voltage difference V 2 in the region between the microelectrode and the sample, a minute electrode neighborhood from the voltage difference V 2 -V 1 An apparatus for simultaneously measuring a pH distribution and a potential distribution on a material surface, comprising a pH calculating means for calculating an electric potential and a local potential calculating means. 微小電極または試料を3軸方向に走査するための走査手段を備え、これにより試料の表面近傍領域において微小電極を相対的に走査させ、微小電極と試料との間の電圧差Vの分布と微小電極と基準電極との間の電圧差Vの分布とを測定し、電圧差Vの分布から表面近傍領域におけるpHの分布を算出し、電圧差V−Vの分布から表面近傍領域における電位の分布を算出することを特徴とする請求項5記載の材料表面のpHおよび電位の同時測定装置。Comprising a scanning means for scanning a microelectrode or samples 3 axially, thereby relatively to scan the microelectrode near the surface region of the sample, the distribution of the voltage difference V 1 of the between the microelectrode and the sample a distribution of the voltage difference V 2 between the microelectrode and the reference electrode was measured to calculate the pH of the distribution in the region near the surface from the distribution of the voltage difference V 2, near the surface from the distribution of the voltage difference V 2 -V 1 6. The apparatus for simultaneous measurement of pH and potential on a material surface according to claim 5, wherein the distribution of potential in the region is calculated. 算出された表面近傍領域におけるpHの分布または電位の分布を、画像化して表示する手段を備えることを特徴とする請求項6記載の材料表面のpHおよび電位の同時測定装置。7. The apparatus for simultaneous measurement of pH and potential on a material surface according to claim 6, further comprising means for imaging and displaying the calculated distribution of pH or potential in the region near the surface. 微小電極がSTM探針であって、微小電極と試料との間に発生するトンネル電流を測定し、走査手段に対してフィードバックをかけることでトンネル電流が一定となるように微小電極と試料との間隔を制御し、このときの走査手段の制御量から、表面近傍領域における試料表面の形状を、表面近傍領域におけるpHの分布および電位の分布と同時に取得することを特徴とする請求項6または7の材料表面のpHおよび電位の同時測定装置。The microelectrode is an STM probe, and the tunnel current generated between the microelectrode and the sample is measured, and the feedback between the microelectrode and the sample is applied to the microelectrode so that the tunnel current becomes constant. 8. The method according to claim 6, wherein the interval is controlled, and the shape of the sample surface in the near-surface region is acquired simultaneously with the distribution of the pH and the potential in the near-surface region from the control amount of the scanning means at this time. For simultaneous measurement of pH and potential on the surface of a material. 微小電極がAFM探針であって、微小電極と試料表面に設置されたAFM用カンチレバーとの間に発生する原子間力を測定し、走査手段に対してフィードバックをかけることで原子間力が一定となるように微小電極と試料との間隔を制御し、このときの走査手段の制御量から、表面近傍領域における試料表面の形状を、表面近傍領域におけるpHの分布および電位の分布と同時に取得することを特徴とする請求項6または7の材料表面のpHおよび電位の同時測定装置。The microelectrode is an AFM probe, and the atomic force generated between the microelectrode and the AFM cantilever installed on the sample surface is measured, and the atomic force is constant by applying feedback to the scanning means. The distance between the microelectrode and the sample is controlled so as to obtain the shape of the sample surface in the near-surface region at the same time as the distribution of pH and the potential in the near-surface region from the control amount of the scanning means at this time. The apparatus for simultaneously measuring the pH and the electric potential of a material surface according to claim 6 or 7, wherein: 算出された微小領域におけるpHの分布、電位の分布、または、表面の形状を、画像化して表示する手段を備えることを特徴とする請求項8または9の材料表面のpHおよび電位の同時測定装置。10. The apparatus for simultaneous measurement of pH and potential on a material surface according to claim 8 or 9, further comprising means for imaging and displaying the calculated distribution of pH, potential distribution, or surface shape in the minute region. .
JP2002139173A 2002-05-14 2002-05-14 Method and apparatus for simultaneous measurement of pH and potential on material surface Expired - Lifetime JP3577517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002139173A JP3577517B2 (en) 2002-05-14 2002-05-14 Method and apparatus for simultaneous measurement of pH and potential on material surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002139173A JP3577517B2 (en) 2002-05-14 2002-05-14 Method and apparatus for simultaneous measurement of pH and potential on material surface

Publications (2)

Publication Number Publication Date
JP2003329643A JP2003329643A (en) 2003-11-19
JP3577517B2 true JP3577517B2 (en) 2004-10-13

Family

ID=29700420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002139173A Expired - Lifetime JP3577517B2 (en) 2002-05-14 2002-05-14 Method and apparatus for simultaneous measurement of pH and potential on material surface

Country Status (1)

Country Link
JP (1) JP3577517B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4870033B2 (en) * 2007-06-14 2012-02-08 国立大学法人静岡大学 Submerged measuring device and submerged measuring method
CN101988914B (en) * 2009-07-31 2013-11-06 旭月(北京)科技有限公司 Full-automatic non-invasive micro-test technology
CN102520212B (en) * 2011-12-14 2013-10-30 中国科学院苏州纳米技术与纳米仿生研究所 Device for thinning multi-layer material and method for thinning to-be-detected sample
KR101535877B1 (en) * 2013-11-15 2015-07-14 대한민국 APPARATUS FOR SENSING SOLID MEDIUM pH USING NUTRICULTURE
CN114076834B (en) * 2020-08-14 2023-07-25 中国科学院大连化学物理研究所 Electrochemical potential measuring device and method with time and space resolution
CN112345799B (en) * 2020-11-04 2023-11-14 浙江师范大学 PH measurement method based on single-molecule electrical detection
CN112946306A (en) * 2021-02-02 2021-06-11 北京和众视野科技有限公司 Textile pH value full-flow testing system and testing method thereof

Also Published As

Publication number Publication date
JP2003329643A (en) 2003-11-19

Similar Documents

Publication Publication Date Title
Eckhard et al. Constant-distance mode AC-SECM for the visualisation of corrosion pits
Etienne et al. High resolution constant-distance mode alternating current scanning electrochemical microscopy (AC-SECM)
Izquierdo et al. Spatially resolved measurement of electrochemical activity and pH distributions in corrosion processes by scanning electrochemical microscopy using antimony microelectrode tips
Etienne et al. SECM-based automate equipped with a shearforce detection for the characterization of large and complex samples
Souto et al. In situ monitoring of electroactive species by using the scanning electrochemical microscope. Application to the investigation of degradation processes at defective coated metals
JP6097832B2 (en) Metal Corrosion Resistance Evaluation Method, Metal Material Corrosion Resistance Evaluation Device, Metal Material Composition Prediction Method, Metal Material Composition Prediction Device
US7084661B2 (en) Scanning kelvin microprobe system and process for analyzing a surface
González-García et al. Scanning electrochemical microscopy for the investigation of localized degradation processes in coated metals
Akid et al. Scanning vibrating reference electrode technique: a calibration study to evaluate the optimum operating parameters for maximum signal detection of point source activity
JP2003536059A (en) Device for simultaneous electrochemical and topographic near-field microscopy measurements
Etienne et al. Accurate control of the electrode shape for high resolution shearforce regulated SECM
Wicinski et al. Lateral resolution in scanning Kelvin probe microscopy
WO2001090730A2 (en) Scanning kelvin microprobe system and process for analyzing a surface
Eckhard et al. Alternating current (AC) impedance imaging with combined atomic force scanning electrochemical microscopy (AFM-SECM)
JP3577517B2 (en) Method and apparatus for simultaneous measurement of pH and potential on material surface
Schulte et al. Imaging localised corrosion of NiTi shape memory alloys by means of alternating current scanning electrochemical microscopy (AC-SECM)
Rodriguez et al. Optimized hand fabricated AFM probes for simultaneous topographical and electrochemical tapping mode imaging
Shin et al. Batch fabrication of atomic force microscopy probes with recessed integrated ring microelectrodes at a wafer level
Etienne et al. Optimization of the shearforce signal for scanning electrochemical microscopy and application for kinetic analysis
Müller et al. Localized electrochemical deposition of metals using micropipettes
Takahashi Development of high-resolution scanning electrochemical microscopy for nanoscale topography and electrochemical simultaneous imaging
Tognoni et al. Characterization of tip size and geometry of the pipettes used in scanning ion conductance microscopy
Holder et al. Combined scanning electrochemical-atomic force microscopy (SECM-AFM): Simulation and experiment for flux-generation at un-insulated metal-coated probes
Kashyap et al. Adjusting the distance of electrochemical microsensors from secreting cell monolayers on the micrometer scale using impedance
Coles et al. A hydrodynamic atomic force microscopy flow cell for the quantitative measurement of interfacial kinetics: The aqueous dissolution of salicylic acid and calcium carbonate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040615

R150 Certificate of patent or registration of utility model

Ref document number: 3577517

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term