JP3576934B2 - Method for growing multimetallic compound layers and compositions for growing mixed metal or metal compound layers - Google Patents

Method for growing multimetallic compound layers and compositions for growing mixed metal or metal compound layers Download PDF

Info

Publication number
JP3576934B2
JP3576934B2 JP2000212008A JP2000212008A JP3576934B2 JP 3576934 B2 JP3576934 B2 JP 3576934B2 JP 2000212008 A JP2000212008 A JP 2000212008A JP 2000212008 A JP2000212008 A JP 2000212008A JP 3576934 B2 JP3576934 B2 JP 3576934B2
Authority
JP
Japan
Prior art keywords
metal
mixture
solvent
ligand complex
free
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000212008A
Other languages
Japanese (ja)
Other versions
JP2001081560A (en
Inventor
センザキ ヨシヒデ
アレン ロバーツ デビット
アントニー トーマス ノーマン ジョン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Products and Chemicals Inc
Original Assignee
Air Products and Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Products and Chemicals Inc filed Critical Air Products and Chemicals Inc
Publication of JP2001081560A publication Critical patent/JP2001081560A/en
Application granted granted Critical
Publication of JP3576934B2 publication Critical patent/JP3576934B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1225Deposition of multilayers of inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1258Spray pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions

Description

【0001】
【発明の属する技術分野】
本発明は、基材上に多元金属又は金属化合物層を成長させるための組成物と方法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
半導体製造産業は、集積回路、記憶装置及びフラットパネルディスプレイ装置のための適切な電気デバイスを作るために半導体及び絶縁性又は誘電性基材に薄い層、プラグ、ビア及びパターンでもって金属、金属混合物及び金属化合物混合物を堆積させるのに適切な材料と堆積技術を必要としている。
【0003】
適当な電子材料基材上に金属、金属化合物及びそれらの混合物を堆積させるための様々な方法が知られており、それらには、物理的な方法(スパッタリング、分子線エピタキシー、蒸着及びレーザーアブレーション)、合金化、そして化学気相成長(プラズマ、光又はレーザーに支援される、低圧及び高温での)が含まれる。
【0004】
様々な多元金属酸化物が、“Advances in Processingof Ferroelectric Thin Films”,L.M.Sheppard,Ceramic Bulletin,Vol.71,No.1,pp.85−95(1992)、“Formation of Al−Ta Double−Oxide Thin Films by Low−Pressure MOCVD and Evaluation of Their Corrosion Resistances in Acid andAlkali Solutions”,Hara et al.,Journal of the Electrochemical Society,146(2),pp.510−516(1999)、“High Coercivity in SmFe17 Magnets”,Schnitzke etal.,Appl.Phys.Lett.57(26),pp.2853−2855(Dec.24,1990)、“Investigation of Ternary Transition−Metal Nitride Systems by Reactive Cosputtering”,Van Dover et al.,Chem.Mater.,Vol.5,pp.32−35(1993)、“Reactively Sputtered Ti−Si−N Films II.Diffusion Barriers for Aland Cu Metallizations on Si”,Sun etal.,J.Appl.Phys.,81(2),pp.664−671(Jan.15,1997)、“MOCVD Routes to Thin Metal Oxide Films for Superconducting Electronics”,Schulz et al.,Adv.Mater.6,No.10,pp.719−730(1994)、“Compositional and Microstructural Characterization of RuO−TiO Catalysts Synthesized by the Sol−Gel Method”,Guglielmi et.al.,J.Electrochem.Soc.,Vol.139,No.6,pp.1665−1661(June 1992)、“Enhancement of the Dielectric Constant of Ta Through Substitution with TiO”,Cava et al.,Nature,Vol.377,21,pp.215−217(Sept.1995)、米国特許第4058430号明細書で列挙されたものを含めて、文献で知られており、そのうちの後者の米国特許明細書には「原子層エピタキシー」として知られる成長方法も開示されている。
【0005】
化学気相成長(CVD)は、均一でコンフォーマルな成長をもたらす特性と高制御性の条件下で材料のアレイを成長させることができることから、近年支持を獲得している。一般的に、化学気相成長は、制御された仕方でもって高純度の材料を高速に成長させることができる。
【0006】
しかし、化学気相成長には、その実施を忌避させるいくつかの欠点がある。所望の化学物質の全てが、化学気相成長で処理できるだけ十分に揮発性であるわけではない。一部の化学物質は貯蔵あるいは送出条件において固体である。一部の化学物質は適切な貯蔵と送出のためには揮発性でありすぎる。
【0007】
化学気相成長を行うための状況は、例えば多元金属化学物質の気相成長、例として多元金属酸化物の化学気相成長におけるように、いくつかの化学物質を同時に成長(堆積)させる必要性によって更に複雑にされる。金属前駆物質がお互いどうし反応することがあり、あるいはCVDのための少なくとも1種の金属前駆物質が非常に揮発性であり又は非常に不揮発性である、すなわち固体であることがある。
【0008】
CVDのこれらの不都合を克服するために、先行技術では、固体の金属前駆物質を溶解するために、あるいはCVD用の液体の、特に粘稠な液体の、金属前駆物質を混合するために、溶媒を使用してきた。
【0009】
米国特許第5204314号明細書には、CVDのための金属前駆物質の液体混合物あるいは溶媒混合物のフラッシュ蒸発のための孔付きの装置が開示されている。
米国特許第5820664号明細書には、CVDにとって有用である、混合金属化合物前駆物質の種々の溶媒混合物が記載されている。
【0010】
しかし、CVDのために液体を送出するための溶媒系は、相溶性の揮発性溶媒を選定しなくてはならないので、問題がある。溶媒は、所定の流量と時間について送出される有効な化学物質の量を減少させる。より重大なことに、溶媒は、慎重な扱いを要する半導体及び電子デバイスの製造を行う敏感な反応帯域へ更に別の化学物質を導入する。そのような溶媒が存在することの不利な影響を考慮しなくてはならない。最後に、溶媒は環境及びコスト要因を代表するものである。溶媒又はその分解生成物は、利用後に再循環し、捕捉し、あるいは処理しなくてはならない。
【0011】
国際公開第98/46617号パンフレットには、金属前駆物質と、混合β−ジケトネートから金属を成長(堆積)させる方法とが記載されている。この国際出願は、直接の液体の注入によるCVD及びそのほかの成長用に金属前駆物質を液体で送出することに関するものである。混合β−ジケトネートを使用することは、前駆物質の液体状態を増進して送出を容易にする。溶媒はこれらの液体混合物にとっての一つの選択肢である。
【0012】
同様の開示が、“New Liquid Precursors for Chemical Vapor Deposition”,Gordon et al.,Mater.Res.Soc.Symp.Proc.,495,pp.63−68(1998)と、“Liquid Compounds for CVD of Alkaline Earth Metals”,Gordon et.al.,MRS Meeting,April 7,1999,San Francisco,CAに見られる。
【0013】
金属前駆物質の送出のために適切な液体媒体を提供する先行技術の試みは、選ばれた溶媒又は混合β−ジケトネート配位子を使用して送出のための液体条件を確保することを必要とした。溶媒にあっては、汚染と除去が問題となる。混合配位子にあっては、液体なしの条件に至りかねない意図しない配位子交換が問題となる。β−ジケトネート配位子はしばしば、固体条件に通じる条件を回避するためのβ−ジケトネート置換基の調節がないと固体金属化合物に通じ、かくして意図することなく配位子交換するという結果を更に悪化させる。本発明は、確固とした成長性能のために溶媒と配位子交換の欠点を回避するため、成長のために金属の無溶媒の共通配位子混合物を液体状態で、好ましくは直接の液体注入により使用することによって、これらの欠点を克服する。
【0014】
【課題を解決するための手段】
本発明は、次に掲げるa)〜d)を含む、電子材料の基材上に酸素含有元金属化合物層を成長させるための方法である。
a)周囲条件において液体を構成する2種以上の金属−配位子錯体前駆物質の無溶媒の液体混合物を提供すること。ここで、当該配位子は同一であって、アルキル、アルコキシド、水素、アミド、イミド、アジ化物イオン、硝酸根、シクロペンタジエニル、カルボニル、並びにそれらのフッ素、酸素及び窒素置換類似物からなる群より選ばれる。
b)当該無溶媒の液体混合物を、上記基材が位置している成長帯域へ送出すること。
c)当該基材を成長条件下で当該無溶媒の液体混合物と接触させ、この成長条件下での接触を、化学気相成長、スプレー熱分解、ゾル−ゲルプロセス、スピンコーティング及び原子層エピタキシーからなる群より選択すること。
d)当該無溶媒の液体混合物から当該基材上に酸素含有元金属化合物層を成長させること。
【0015】
本発明は、より好ましくは、次に掲げるa)〜d)を含む、電子材料の基材上に酸素含有元金属化合物層を成長させるための方法である。
a)周囲条件において液体を構成する2種以上の金属−配位子錯体前駆物質の無溶媒の液体混合物を提供すること。ここで、当該前駆物質の配位子は同一であって、そしてアルキル、アルコキシド、水素、アミド、イミド、アジ化物イオン、硝酸根、シクロペンタジエニル、カルボニル、並びにそれらのフッ素、酸素及び窒素置換類似物からなる群より選ばれる。
b)当該無溶媒の液体混合物を直接の液体注入によりフラッシュ蒸発帯域へ送出して当該無溶媒の液体混合物を気化させること。
c)当該基材を、得られた当該無溶媒の液体混合物の蒸気と成長条件下で接触させること。
d)当該無溶媒の液体混合物から当該基材上に酸素含有元金属化合物層を成長させること。
【0016】
好ましくは、周囲条件は40℃以下且つ207kPa(ゲージ圧)(30psig)以下である。
より好ましくは、周囲条件は20〜30℃且つ34〜41kPa(ゲージ圧)(5〜6psig)である。
【0017】
好ましくは、無溶媒混合物は基材上に多元金属化合物層を成長させる前に酸素源と混合される。
好ましくは、酸素源は95+体積%の酸素、オゾン、亜酸化窒素、酸化窒素、二酸化窒素、水、過酸化水素、空気及びそれらの混合物からなる群から選ばれる。
【0018】
もう一つの側面において、本発明は、電子材料の基材上に多元金属化合物層を成長させるための方法であって、下記のa)〜d)、すなわち、
a)周囲条件において液体を構成する2種以上の金属−配位子錯体前駆物質の無溶媒混合物であって、当該配位子が同一であり、且つアルキル、アルコキシド、ハロゲン、水素、アミド、イミド、アジ化物イオン、硝酸根、シクロペンタジエニル、カルボニル、並びにそれらのフッ素、酸素及び窒素置換類似物からなる群より選ばれる、無溶媒混合物を提供すること、
b)当該無溶媒混合物を直接の液体注入によりフラッシュ蒸発帯域へ送出して当該無溶媒混合物を気化させること、
c)当該基材を、得られた当該無溶媒混合物の蒸気と成長条件下で接触させること、
d)当該無溶媒混合物から当該基材上に多元金属化合物層を成長させること、
を含み、当該基材上に当該多元金属化合物層を成長させる前に当該無溶媒混合物を窒素源と混合する、電子材料の基材上に多元金属化合物層を成長させるための方法である
好ましくは、窒素源は窒素、アンモニア、ヒドラジン、アルキルヒドラジン、アジ化水素、アルキルアミン及びそれらの混合物からなる群から選ばれる。
【0019】
好ましくは、無溶媒混合物から基材上に多元金属又は金属化合物層を作るための成長法は、化学気相成長、スプレー熱分解、ゾル−ゲルプロセス、スピンコーティング及び原子層エピタキシーからなる群より選ばれる。
【0020】
好ましくは、多元金属化合物層は、混合金属合金、混合金属酸化物、混合金属窒化物、混合金属炭化物、混合金属炭窒化物、混合金属酸炭窒化物、混合金属酸炭化物、混合金属硫化物、混合金属リン化物、混合金属ヒ化物、混合金属アンチモン化物、混合金属セレン化物、混合金属テルル化物及びそれらの混合物からなる群より選ばれる。
【0021】
本発明はまた、混合金属又は金属化合物層を成長させるための組成物であって、少なくとも2種の金属−配位子錯体前駆物質の無溶媒混合物を含み、当該混合物が周囲条件において液体であり、且つ当該前駆物質の配位子が、アルキル、アルコキシド、ハロゲン、水素、アミド、イミド、アジ化物イオン、硝酸根、シクロペンタジエニル、カルボニル、並びにそれらのフッ素、酸素及び窒素置換類似物からなる群より選ばれ、当該混合物は周囲条件において液体である第一の金属−配位子錯体前駆物質と、周囲条件において液体である第二の金属−配位子錯体前駆物質とを含む、混合金属又は金属化合物層の成長のための組成物である。
【0023】
好ましくは、少なくとも2種の金属−配位子錯体前駆物質の無溶媒混合物の金属は、亜鉛、カドミウム、水銀、アルミニウム、ガリウム、インジウム、タリウム、スズ、鉛、アンチモン、ビスマス、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、スカンジウム、イットリウム、ランタン、チタン、ジルコニウム、ハフニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、マンガン、テクネチウム、レニウム、鉄、ルテニウム、オスミウム、コバルト、ロジウム、イリジウム、ニッケル、パラジウム、白金、銅、銀、金、ケイ素及びセリウムからなる群より個々に選ばれる。
【0024】
好ましくは、少なくとも2種の金属−配位子錯体前駆物質の無溶媒混合物の配位子は、ジメチルアミド、ジエチルアミド、エチルメチルアミド、ブチルアミド、ジプロピルアミド、メチルプロピルアミド、エチルプロピルアミド、メトキシ、エトキシ、プロポキシ及びブトキシからなる群より選ばれる。
【0025】
好ましくは、少なくとも2種の金属−配位子錯体前駆物質の無溶媒混合物は、Zr(N(CHCH、Sn(N(CHCH及びTi(N(CHCHを含む。
あるいはまた、少なくとも2種の金属−配位子錯体前駆物質の無溶媒混合物は、Z r(N(CH、Sn(N(CH及びTi(N(CHを含む。
【0026】
更にあるいは、少なくとも2種の金属−配位子錯体前駆物質の無溶媒混合物は、Zr(O(C))、Sn(O(C))及びTi(O(C))を含む。
更にあるいは、少なくとも2種の金属−配位子錯体前駆物質の無溶媒混合物は、Ta(N(CH及びTi(N(CHを含む。
更にあるいは、少なくとも2種の金属−配位子錯体前駆物質の無溶媒混合物は、CHCHN=Ta(N(CHCH及びTi(N(CHCHを含む。
更にあるいは、少なくとも2種の金属−配位子錯体前駆物質の無溶媒混合物は、Al(OCHCH及びTa(OCHCHを含む。
【0027】
好ましくは、少なくとも2種の金属−配位子錯体前駆物質の無溶媒混合物は、Si(N(CHCHを含み、且つ、Ti(N(CHCH、Zr(N(CHCH、Hf(N(CHCH、V(N(CHCH、V(N(CHCH、Nb(N(CHCH、Nb(N(CHCH、CHCHN=Nb(N(CHCH、CHCHN=V(N(CHCH、(CHCHN=)W(N(CHCH、(CHCHN=)Mo(N(CHCH及びCHCHN=Ta(N(CHCHからなる群より選ばれる金属−配位子錯体前駆物質を含む。
【0028】
【発明の実施の形態】
多成分金属含有材料、例えば混合金属酸化物や窒化物等は、各個々の金属酸化物/窒化物成分にはない独特の物理的性質を有することがよくある。例えば、一部の混合金属酸化物は、高誘電率材料、強誘電体、高温超伝導体、触媒及び耐腐食性コーティング用に使用することができる。また、一部の混合金属窒化物は、良好な拡散バリア特性、超伝導及び磁気特性を示す。
【0029】
電子産業では、集積回路(IC)デバイスの大きさがどんどん小さくなるにつれて、化学気相成長(CVD)により成長させた薄膜は種々の非平坦面におけるコンフォーマルカバレージに関して物理気相成長(PVD)法よりも有利であることを証明している。一般に、前駆物質の送出における容易さと再現性のために、CVD用途向けには液体の前駆物質の方が好まれる。CVD処理で使用される普通の前駆物質送出方法には、蒸気の抜き出し、キャリヤガスでのバブリング、霧滴(エーロゾル又はスプレー)での送出、そして直接の液体注入(DLI)が含まれる。DLIは、供給元コンテナにおけるのと同じ比率の構成成分を反応器へ送出するので、多成分の送出にとって特に好ましい方法である。DLIには、前駆物質を室温で保管しそして送出しようとする必要量のみを加熱するという、従って前駆物質の保存寿命を向上させるという、追加の利点がある。
【0030】
本発明においては、CVD用途におけるDLIを含めて、前駆物質分散送出法のために使用することができる新しい液体前駆物質混合物組成が開示される。揮発性の成分は、
1)それらが化学的に相容性であり、従って不揮発性のポリマー種又は多核種が生成されないように、
2)金属上での配位子交換のため又は配位子間反応のために沈降物が生じないように、すなわち全ての前駆物質について同一の配位子が使用される(すなわちホモレプチック(homoleptic)であり、本発明について言えば、(RN)=MはM(NR)と同じであると見なされる)ように、
3)混合物が低粘度と熱安定性を維持するように、そして
4)不所望の酸化還元化学反応(例えば、M+1+M’+3→M+2+M’+2)が起こらないように、
選ばれる。
【0031】
液体混合物は、液体の金属−配位子錯体を直接混合するか、あるいは液体の金属−配位子錯体(1種又は複数種)中に固体の金属−配位子錯体(1種又は複数種)を溶解させて、調製することができる。これらの系では、前駆物質混合物を溶解又は希釈し得られた混合物の全体を液相とするのに、溶媒は必要でなくあるいは求められない。有機溶媒を使用する広い範囲のCVD前駆物質溶液が、以前は薄膜の成長のための前駆物質として使用されていた。本発明の新しい無溶媒の前駆物質混合物は、CVD処理後に集めるべき余計な揮発性有機媒体がないので、排気中のCVD流出物を除去する負担を軽減する。その上、ここに記載された液体混合物では溶媒を使用しないので、大きな処理量の金属含有蒸気をCVD反応器へ送出することができる。こうして、これらの新しい液体前駆物質混合物を使用するCVDの全体プロセスは、従来技術の説明で述べた前駆物質溶液の液体注入による送出よりも環境に優しく且つ原価効率的である。
【0032】
CVD又はMOCVD(有機金属CVD)のほかに、本発明の液体混合物は、原子層エピタキシー、スピンコーティング、スプレー熱分解及びゾル−ゲルプロセスで処理することができる。原子層エピタキシーでは、ほぼ単層の前駆物質分子が表面に吸着される。この第一の前駆物質層の上に第二の反応物を投入し、続いてこの第二の反応物と既に表面にある第一の反応物とを反応させる。この交互の手順を繰り返して、原子の厚さに近い層でもって所望の厚さの元素又は化合物を提供する。基材の温度を制御して不所望の成長(堆積)を避けることができる。スピンコーティングでは、液体媒体を回転している基材上へ分配して、加熱又は反応等の作用により乾燥させる。スプレー熱分解では、霧滴(エーロゾル)を作り続いて前駆物質を熱的に又は光の作用で分解させる。ゾル−ゲルプロセスでは、前駆物質の加水分解と縮合を行い、前駆物質は回転、浸漬又は吹き付けにより目標の基材上に付着させる。得られたアモルファスの膜を比較的低温(500〜800℃)でアニールし、結晶化と緻密化を行う。DLIを使用するCVDでは、無溶媒混合物を周囲条件で貯蔵器から液体の状態でフラッシュ蒸発帯域へ送出し、そこで無溶媒混合物を金属−配位子錯体前駆物質の気化温度、典型的に100〜500℃まで素早く加熱する。これらは、反応室のような成長帯域において起こる様々な成長プロセスについてそれぞれの成長条件を構成する。
【0033】
多成分前駆物質は、金属アルキル、金属アルコキシド、金属ハロゲン化物、金属水素化物、金属アミド、金属イミド、金属アジ化物、金属硝酸塩、金属シクロペンタジエニル、金属カルボニル、及びそれらのフッ素、酸素及び窒素置換類似物からなる群より選ばれるが、それらに限定はされない。好ましくは、少なくとも2種の金属−配位子錯体前駆物質の無溶媒混合物の配位子は、ジメチルアミド、ジエチルアミド、エチルメチルアミド、ブチルアミド、ジプロピルアミド、メチルプロピルアミド、エチルプロピルアミド、メトキシ、エトキシ、プロポキシ及びブトキシからなる群より選ばれる。可能性のある従来技術の配位子交換の問題を回避するために、同じであるか共通の配位子、ホモレプチック配位子を使用することが重要である。好ましくは、ホモレプチック配位子は単座配位子である。
【0034】
金属配位子前駆物質の金属は、亜鉛、カドミウム、水銀、アルミニウム、ガリウム、インジウム、タリウム、スズ、鉛、アンチモン、ビスマス、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、スカンジウム、イットリウム、ランタン、チタン、ジルコニウム、ハフニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、マンガン、テクネチウム、レニウム、鉄、ルテニウム、オスミウム、コバルト、ロジウム、イリジウム、ニッケル、パラジウム、白金、銅、銀、金、ケイ素及びセリウムのうちの1種又は2種以上でよい。
【0035】
2種以上の金属−配位子前駆物質の無溶媒混合物が液体でなければならない周囲条件は、一般に40℃以下且つ207kPa(ゲージ圧)(30psig)未満として定義される。好ましくは、液相の送出のための周囲条件は20〜30℃且つ34〜41kPa(ゲージ圧)(5〜6psig)である。
【0036】
適切に選ばれた前駆物質は、酸化剤又は窒素含有反応物の存在下においては、混合金属酸化物、窒化物及び酸窒化物のいずれかをもたらす。そのほかに、適切な前駆物質混合物とCVD条件を使用して、混合金属合金、炭化物、炭窒化物、酸炭化物、酸炭窒化物、硫化物、リン化物、ヒ化物、アンチモン化物、セレン化物及びテルル化物を成長させることも可能である。酸化剤又は窒素含有反応物には、95+体積%の酸素、オゾン、水、過酸化水素、亜酸化窒素、酸化窒素、二酸化窒素、空気、窒素ガス、アンモニア、ヒドラジン、アルキルヒドラジン、アルキルアミン及びそれらの混合物が含まれるが、酸化剤又は窒素含有反応物はそれらには限定されない。
【0037】
熱CVDに加えて、上記の前駆物質は、プラズマ、レーザー又は光に支援されるCVD成長、周知の成長手法のために、あるいは原子層エピタキシーにより、利用することができよう。更に、液体混合物前駆物質の適切な選択は、膜のゾル−ゲルプロセス、スプレー熱分解及びスピンコーティングにも当てはめることができる。
【0038】
少なくとも2種の金属−配位子錯体前駆物質の典型例の無溶媒混合物は、Zr(N(CHCHとSn(N(CHCHとTi(N(CHCH、又はZr(N(CHとSn(N(CHとTi(N(CH、又はZr(O(C))とSn(O(C))とTi(O(C))、又はTa(N(CHとTi(N(CH、又はCHCHN=Ta(N(CHCHとTi(N(CHCH、又はAl(OCHCHとTa(OCHCH、又はSi(N(CHCHと、次の群、すなわちTi(N(CHCH、Zr(N(CHCH、Hf(N(CHCH、V(N(CHCH、V(N(CHCH、Nb(N(CHCH、Nb(N(CHCH、CHCHN=Nb(N(CHCH、CHCHN=V(N(CHCH、(CHCHN=)W(N(CHCH、(CHCHN=)Mo(N(CHCH及びCHCHN=Ta(N(CHCHからなる群より選ばれる金属−配位子錯体前駆物質、を含む。
【0039】
【実施例】
次に、前駆物質と成長(堆積)のいくつかの比限定の例でもって、本発明を説明することにする。
【0040】
(例1)
この例はZr−Sn−Ti−O前駆物質を説明する。
19.0g(0.05モル)のZr(N(CHCH、20.4g(0.05モル)のSn(N(CHCH、及び50.5g(0.15モル)のTi(N(CHCHを、不活性雰囲気下に室温で混合して、黄−オレンジ色の透明な液体混合物を得た。この混合物を110〜120℃の加熱浴温度範囲において減圧下で蒸留した。これはDLI送出のために有用であることを示す。
【0041】
(例2)
この例はTi−Ta−Oを説明する。
Ti−Ta−Oのための金属−配位子錯体前駆物質の無溶媒液体混合物は、例1におけるのと同じやり方でもってTi(N(CH(液体)に溶かしたTa(N(CH(固体)から作ることができる。
【0042】
(例3)
この例はTi−Ta−Oを説明する。
Ti−Ta−Oのための金属−配位子錯体前駆物質の無溶媒液体混合物は、例1におけるのと同じやり方でもってTi(N(CHCHに混合したCHCHN=Ta(N(CHCHから作ることができる。
【0043】
(例4)
この例はAlをドープしたTaOを説明する。
AlをドープしたTaOのための金属−配位子錯体前駆物質の無溶媒液体混合物は、例1におけるのと同じやり方でもってAl(OCHCH(固体)とTa(OCHCH(液体)の混合物から作ることができる。
【0044】
(例5)
この例はM−Si−Mを説明する。
M−Si−Mのための金属−配位子錯体前駆物質の無溶媒液体混合物は、例1におけるのと同じやり方でもって、(a)Si(N(CHCH(液体)と(b)M(N(CHCH(この式中のM=Ti、Zr、Hf、V、Nbであり、x=4又は5である)、あるいは(c)(R−N=)M’(N(CHCH(この式中のM’=Ta、Nb、W、Moであり、R=C〜Cアルキルであり、M’=Ta又はNbの場合x=1且つy=3、M’=W又はMoの場合x=y=2である)(全て液体)の混合物から作ることができる。
【0045】
(例6)
この例はCVDによる混合金属化合物の成長を説明する。
100sccmの酸素流とともに120sccmのヘリウムスイープガスを使用して、気化温度が110℃の直接液体注入装置の、混合金属化合物膜の成長のため240〜300℃に保持したウエハー基材ターゲット上へ、Zr(N(CHCH、Sn(N(CHCH及びTi(N(CHCHの金属−配位子錯体前駆物質の溶媒混合物を0.06ml/minで送出した。成長は10〜30nm(100〜300オングストローム)/minであった。反応器の反応室圧力は270Pa(2Torr)であった。これらの条件下でCVDにより前駆物質混合物から成長させた膜のエネルギー分散性X線分析から、成長した膜中にZr、Sn及びTi金属が取り込まれることが証明された。
【0046】
金属前駆物質を送出するための適切な液体媒体を提供するという以前の試みは、送出のために液体条件を確保するのに、選ばれた溶媒又は混合β−ジケトネート配位子の使用を必要とした。溶媒は費用を追加することになり、そして相溶性のために適切な選定をするという問題、且つまた汚染と使用後の除去という問題を引き起こす。液相での送出の目標を解決するための無溶媒の試みは、β−ジケトネート配位子を必要としたが、これらでは非液体条件に至りかねない意図しない配位子交換が問題となる。固体条件に通じる条件を回避するためにβ−ジケトネート置換基を操作しなければ、β−ジケトネート配位子はしばしば固体の金属化合物をもたらし、そうして意図しない配位子交換の結果を一層悪化させる。本発明は、ばらつきのない成長性能のために溶媒とβ−ジケトネート配位子交換の欠点を避けるため、好ましくは直接の液体注入による金属の混合物の成長用の液体状態の金属−配位子錯体において、無溶媒の、非β−ジケトネートの、単一又は共通配位子を使用することによって、これらの欠点を克服することを示した。
【0047】
本発明はいくつかの好ましい態様に関して説明されてはいるが、本発明の完全な範囲は特許請求の範囲の記載から確認されるべきものである。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to compositions and methods for growing multi-metal or metal compound layers on a substrate.
[0002]
Problems to be solved by the prior art and the invention
The semiconductor manufacturing industry has developed metal, metal mixtures with thin layers, plugs, vias and patterns in semiconductors and insulating or dielectric substrates to make suitable electrical devices for integrated circuits, storage devices and flat panel display devices. And appropriate materials and deposition techniques to deposit the metal compound mixture.
[0003]
Various methods are known for depositing metals, metal compounds and mixtures thereof on suitable electronic material substrates, including physical methods (sputtering, molecular beam epitaxy, evaporation and laser ablation). Alloying, and chemical vapor deposition (at low pressure and high temperature, assisted by plasma, light or laser).
[0004]
Various multimetal oxides are described in "Advances in Processing of Ferroelectric Thin Films", L.A. M. Sheppard, Ceramic Bulletin, Vol. 71, No. 1, pp. 85-95 (1992), "Formation of Al2O3-Ta2O5  Double-Oxide Thin Films by Low-Pressure MOCVD and Evaluation of Their Corrosion Resistances in Acid andAlkali Solutions ", Hara et al., Journal of the Electrochemical Society, 146 (2), pp.510-516 (1999)," High Coercivity in Sm2Fe17Nx  Magnets ", Schnitzke et al., Appl. Phys. Lett. 57 (26), pp. 2853-2855 (Dec. 24, 1990)," Investigation of Ternery Translation Transition Vitalization System. Chem. Mater., Vol. 5, pp. 32-35 (1993), "Reactively Sputtered Ti-Si-N Films II. Diffusion Barriers for Aland Cu Metallizations on Si ", Sun et al., J. Appl. Phys., 81 (2), pp. 664-671 (Jan. 15, 1997, 1997)," MOCVD Routes to Foreign Metals. 6, Schulz et al., Adv. Mater. 6, No. 10, pp. 719-730 (1994), "Compositional and Microstructural Characterization of RuO.2-TiO2  "Catalysts Synthesized by the Sol-Gel Method", Guglielmi et. Al., J. Electrochem. Soc., Vol. 139, No. 6, pp. 1666-1661 (June 1992).2O5  Through Substitution with TiO2, Cava et al., Nature, Vol. 377, 21, pp. 215-217 (Sept. 1995), including those listed in U.S. Pat. No. 4,058,430, of which The latter US patent also discloses a growth method known as "atomic layer epitaxy".
[0005]
Chemical vapor deposition (CVD) has gained popularity in recent years because of its ability to grow arrays of materials under conditions that provide uniform and conformal growth and high controllability. In general, chemical vapor deposition can grow high purity materials at a high rate in a controlled manner.
[0006]
However, chemical vapor deposition has several drawbacks that make its implementation evasive. Not all desired chemicals are sufficiently volatile to be processed in chemical vapor deposition. Some chemicals are solid under storage or delivery conditions. Some chemicals are too volatile for proper storage and delivery.
[0007]
The situation for performing chemical vapor deposition is the need to grow (deposit) several chemicals simultaneously, for example, in the vapor phase growth of multimetallic chemicals, for example, in the chemical vapor deposition of multimetal oxides Is further complicated by: The metal precursors may react with each other, or at least one metal precursor for CVD may be very volatile or very nonvolatile, ie, a solid.
[0008]
In order to overcome these disadvantages of CVD, the prior art discloses a method for dissolving a solid metal precursor or for mixing a metal precursor in a liquid for CVD, especially in a viscous liquid. I've been using
[0009]
U.S. Pat. No. 5,204,314 discloses a perforated apparatus for flash evaporation of a liquid or solvent mixture of a metal precursor for CVD.
U.S. Pat. No. 5,820,664 describes various solvent mixtures of mixed metal compound precursors that are useful for CVD.
[0010]
However, the solvent system for delivering the liquid for CVD is problematic because compatible volatile solvents must be selected. Solvents reduce the amount of available chemicals delivered for a given flow rate and time. More importantly, the solvent introduces additional chemicals into sensitive reaction zones where sensitive semiconductor and electronic device fabrication takes place. The adverse effects of the presence of such solvents must be considered. Finally, solvents represent environmental and cost factors. The solvent or its decomposition products must be recycled, captured or processed after use.
[0011]
WO 98/46617 describes a metal precursor and a method for growing (depositing) a metal from a mixed β-diketonate. This international application is concerned with delivering metal precursors in liquid form for CVD and other growth by direct liquid injection. The use of mixed β-diketonates enhances the liquid state of the precursor and facilitates delivery. Solvents are one option for these liquid mixtures.
[0012]
A similar disclosure is provided in “New Liquid Precursors for Chemical Vapor Deposition”, Gordon et al. , Mater. Res. Soc. Symp. Proc. 495 pp. 63-68 (1998), "Liquid Compounds for CVD of Alkaline Earth Metals", Gordon et. al. , MRS Meeting, April 7, 1999, San Francisco, CA.
[0013]
Prior art attempts to provide a suitable liquid medium for delivery of metal precursors have required using selected solvents or mixed β-diketonate ligands to ensure liquid conditions for delivery. did. For solvents, contamination and removal are problems. For mixed ligands, unintentional ligand exchange, which can lead to liquid-free conditions, becomes a problem. Beta-diketonate ligands often pass through solid metal compounds without the modulation of the beta-diketonate substituent to avoid conditions leading to solid conditions, thus further exacerbating the consequences of unintentionally exchanging ligands. Let it. The present invention avoids the disadvantages of solvent and ligand exchange for robust growth performance, so that a solvent-free common ligand mixture of metal is grown in liquid form for growth, preferably by direct liquid injection. Overcoming these drawbacks.
[0014]
[Means for Solving the Problems]
The present invention relates to a method for manufacturing an electronic material comprising the following a) to d)Contains oxygenManyprincipalThis is a method for growing a genus compound layer.
a) Solvent-free of two or more metal-ligand complex precursors that constitute a liquid at ambient conditionsLiquidProviding a mixture. Here, the ligands are the same, and alkyl, alkoxide,waterSelected from the group consisting of nitrogen, amide, imide, azide ion, nitrate, cyclopentadienyl, carbonyl, and their fluorine, oxygen and nitrogen substituted analogs.
b) the solvent-freeLiquidDelivering the mixture to the growth zone where the substrate is located.
c) removing the substrate under solvent-free conditions under growth conditions;LiquidContacting with a mixture, wherein the contact under the growth conditions is selected from the group consisting of chemical vapor deposition, spray pyrolysis, sol-gel process, spin coating and atomic layer epitaxy.
d) the solvent-freeLiquidFrom the mixture onto the substrateContains oxygenManyprincipalGrowing a genus compound layer.
[0015]
The present invention more preferably relates to an electronic material substrate comprising the following a) to d):Contains oxygenManyprincipalThis is a method for growing a genus compound layer.
a) Solvent-free of two or more metal-ligand complex precursors that constitute a liquid at ambient conditionsLiquidProviding a mixture. Wherein the ligands of the precursor are the same and are alkyl, alkoxide,waterSelected from the group consisting of nitrogen, amide, imide, azide ion, nitrate, cyclopentadienyl, carbonyl, and their fluorine, oxygen and nitrogen substituted analogs.
b) the solvent-freeLiquidThe mixture is delivered to the flash evaporation zone by direct liquid injection and the solvent freeLiquidEvaporate the mixture.
c) converting the substrate to the obtained solvent-freeLiquidContact with the vapor of the mixture under growth conditions.
d) the solvent-freeLiquidFrom the mixture onto the substrateContains oxygenManyprincipalGrowing a genus compound layer.
[0016]
Preferably, ambient conditions are 40 ° C. or less and 207 kPa (gauge pressure) (30 psig) or less.
More preferably, ambient conditions are 20-30 ° C. and 34-41 kPa (gauge pressure) (5-6 psig).
[0017]
Preferably, the solventless mixture is mixed with an oxygen source before growing the multimetallic compound layer on the substrate.
Preferably, the oxygen source is selected from the group consisting of 95 +% by volume of oxygen, ozone, nitrous oxide, nitric oxide, nitrogen dioxide, water, hydrogen peroxide, air and mixtures thereof.
[0018]
In another aspect, the present invention is a method for growing a multi-metallic compound layer on a substrate of electronic material, comprising the following steps a) to d):
a) A solvent-free mixture of two or more metal-ligand complex precursors that constitute a liquid at ambient conditions, wherein the ligands are the same and alkyl, alkoxide, halogen, hydrogen, amide, imide Providing a solvent-free mixture selected from the group consisting of: azide ion, nitrate, cyclopentadienyl, carbonyl, and their fluorine, oxygen and nitrogen substituted analogs;
b) delivering the solventless mixture to the flash evaporation zone by direct liquid injection to vaporize the solventless mixture;
c) contacting the substrate with the resulting vapor of the solventless mixture under growth conditions;
d) growing a multimetallic compound layer on the substrate from the solventless mixture;
IncludingOn the substrateTheBefore growing the multimetal compound layerThe solvent-free mixtureMix with nitrogen sourceA method for growing a multimetallic compound layer on a substrate of electronic material.
Preferably, the nitrogen source is selected from the group consisting of nitrogen, ammonia, hydrazine, alkyl hydrazine, hydrogen azide, alkylamine and mixtures thereof.
[0019]
Preferably, the growth method for forming a multi-metal or metal compound layer on a substrate from a solventless mixture is selected from the group consisting of chemical vapor deposition, spray pyrolysis, sol-gel process, spin coating and atomic layer epitaxy. It is.
[0020]
Preferably, multipleprincipalThe compound layer is composed of mixed metal alloy, mixed metal oxide, mixed metal nitride, mixed metal carbide, mixed metal carbonitride, mixed metal oxycarbonitride, mixed metal oxycarbide, mixed metal sulfide, mixed metal phosphide , Mixed metal arsenides, mixed metal antimonides, mixed metal selenides, mixed metal tellurides, and mixtures thereof.
[0021]
The present invention also includes a composition for growing a mixed metal or metal compound layer, the composition comprising a solventless mixture of at least two metal-ligand complex precursors, wherein the mixture is liquid at ambient conditions. And the ligand of the precursorButSelected from the group consisting of alkyl, alkoxide, halogen, hydrogen, amide, imide, azide ion, nitrate, cyclopentadienyl, carbonyl, and their fluorine, oxygen and nitrogen substituted analogs.A mixed metal or metal compound layer comprising a first metal-ligand complex precursor that is liquid at ambient conditions and a second metal-ligand complex precursor that is liquid at ambient conditions. Composition for the growth ofYou.
[0023]
Preferably, the metal of the solventless mixture of the at least two metal-ligand complex precursors is zinc, cadmium, mercury, aluminum, gallium, indium, thallium, tin, lead, antimony, bismuth, lithium, sodium, potassium , Rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, scandium, yttrium, lanthanum, titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, manganese, technetium, rhenium, iron, ruthenium, osmium , Cobalt, rhodium, iridium, nickel, palladium, platinum, copper, silver, gold, silicon and cerium.
[0024]
Preferably, the ligand of the solvent-free mixture of at least two metal-ligand complex precursors is dimethylamide, diethylamide, ethylmethylamide, butylamide, dipropylamide, methylpropylamide, ethylpropylamide, methoxy, It is selected from the group consisting of ethoxy, propoxy and butoxy.
[0025]
Preferably, the solvent-free mixture of at least two metal-ligand complex precursors is Zr (N (CH2CH3)2)4, Sn (N (CH2CH3)2)4And Ti (N (CH2CH3)2)4including.
Alternatively, the solvent-free mixture of at least two metal-ligand complex precursors is Zr (N (CH3)2)4, Sn (N (CH3)2)4And Ti (N (CH3)2)4including.
[0026]
Additionally or alternatively, the solvent-free mixture of at least two metal-ligand complex precursors may be Zr (O (C4H9))4, Sn (O (C4H9))4And Ti (O (C4H9))4including.
Further alternatively, the solvent-free mixture of at least two metal-ligand complex precursors may be Ta (N (CH3)2)5And Ti (N (CH3)2)4including.
Further alternatively, the solvent-free mixture of at least two metal-ligand complex precursors may be CH 23CH2N = Ta (N (CH2CH3)2)3And Ti (N (CH2CH3)2)4including.
Further alternatively, the solvent-free mixture of at least two metal-ligand complex precursors may be Al (OCH2CH3)3And Ta (OCH2CH3)5including.
[0027]
Preferably, the solvent-free mixture of at least two metal-ligand complex precursors is Si (N (CH2CH3)2)4And Ti (N (CH (CH2CH3)2)4, Zr (N (CH2CH3)2)4, Hf (N (CH2CH3)2)4, V (N (CH2CH3)2)5, V (N (CH2CH3)2)4, Nb (N (CH2CH3)2)5, Nb (N (CH2CH3)2)4, CH3CH2N = Nb (N (CH2CH3)2)3, CH3CH2N = V (N (CH2CH3)2)3, (CH3CH2N =)2W (N (CH2CH3)2)2, (CH3CH2N =)2Mo (N (CH2CH3)2)2And CH3CH2N = Ta (N (CH2CH3)2)3And a metal-ligand complex precursor selected from the group consisting of:
[0028]
BEST MODE FOR CARRYING OUT THE INVENTION
Multi-component metal-containing materials, such as mixed metal oxides and nitrides, often have unique physical properties not found in each individual metal oxide / nitride component. For example, some mixed metal oxides can be used for high dielectric constant materials, ferroelectrics, high temperature superconductors, catalysts, and corrosion resistant coatings. Also, some mixed metal nitrides exhibit good diffusion barrier properties, superconductivity and magnetic properties.
[0029]
In the electronics industry, as integrated circuit (IC) devices continue to shrink in size, thin films grown by chemical vapor deposition (CVD) are subject to physical vapor deposition (PVD) for conformal coverage on various non-planar surfaces. Has proved to be more advantageous. In general, liquid precursors are preferred for CVD applications because of the ease and reproducibility of precursor delivery. Common precursor delivery methods used in CVD processes include vapor withdrawal, bubbling with a carrier gas, delivery with a mist (aerosol or spray), and direct liquid injection (DLI). DLI is a particularly preferred method for multi-component delivery because it delivers the same proportions of components to the reactor as in the source container. DLI has the added advantage of storing the precursor at room temperature and heating only the required amount to be delivered, thus increasing the shelf life of the precursor.
[0030]
In the present invention, a new liquid precursor mixture composition is disclosed that can be used for precursor dispersion delivery methods, including DLI in CVD applications. Volatile components are:
1) so that they are chemically compatible and therefore non-volatile polymer or polynuclear species are not formed
2) The same ligand is used in such a way that no precipitates are formed due to ligand exchange on the metal or due to interligand reactions, ie the same ligand is used for all precursors (ie homoleptic) And for the present invention, (RN) = M is M (NR2) Is considered the same as))
3) so that the mixture maintains low viscosity and thermal stability, and
4) Undesired redox chemical reactions (eg, M+1+ M '+3→ M+2+ M '+2)
To be elected.
[0031]
The liquid mixture may be a direct mixture of the liquid metal-ligand complex or a solid metal-ligand complex (one or more) in the liquid metal-ligand complex (s). ) Can be dissolved and prepared. In these systems, no solvent is required or required to dissolve or dilute the precursor mixture to make the entire mixture into a liquid phase. A wide range of CVD precursor solutions using organic solvents have previously been used as precursors for thin film growth. The new solvent-free precursor mixture of the present invention reduces the burden of removing the CVD effluent in the exhaust as there is no extra volatile organic medium to collect after the CVD process. Moreover, because no solvents are used in the liquid mixtures described herein, large throughputs of metal-containing vapors can be delivered to the CVD reactor. Thus, the overall process of CVD using these new liquid precursor mixtures is more environmentally friendly and cost-effective than the liquid injection delivery of precursor solutions described in the prior art description.
[0032]
Besides CVD or MOCVD (metal-organic CVD), the liquid mixtures according to the invention can be processed by atomic layer epitaxy, spin coating, spray pyrolysis and sol-gel processes. In atomic layer epitaxy, nearly monolayer precursor molecules are adsorbed on the surface. A second reactant is charged over the first precursor layer, and the second reactant is subsequently reacted with the first reactant already on the surface. This alternating procedure is repeated to provide the desired thickness of the element or compound in a layer close to the thickness of the atoms. The temperature of the substrate can be controlled to avoid unwanted growth (deposition). In spin coating, a liquid medium is distributed over a rotating substrate and dried by the action of heating or reaction. In spray pyrolysis, mist droplets (aerosols) are created and subsequently the precursor is decomposed thermally or by the action of light. In the sol-gel process, the precursor is hydrolyzed and condensed, and the precursor is deposited on a target substrate by spinning, dipping or spraying. The obtained amorphous film is annealed at a relatively low temperature (500 to 800 ° C.) to perform crystallization and densification. In CVD using DLI, a solvent-free mixture is delivered in liquid form from a reservoir at ambient conditions to a flash evaporation zone where the solvent-free mixture is vaporized to a metal-ligand complex precursor vapor temperature, typically 100 to 100%. Heat quickly to 500 ° C. These constitute the respective growth conditions for the various growth processes taking place in the growth zone, such as the reaction chamber.
[0033]
Multi-component precursors include metal alkyls, metal alkoxides, metal halides, metal hydrides, metal amides, metal imides, metal azides, metal nitrates, metal cyclopentadienyls, metal carbonyls and their fluorine, oxygen and nitrogen It is selected from, but not limited to, the group consisting of substituted analogs. Preferably, the ligand of the solvent-free mixture of at least two metal-ligand complex precursors is dimethylamide, diethylamide, ethylmethylamide, butylamide, dipropylamide, methylpropylamide, ethylpropylamide, methoxy, It is selected from the group consisting of ethoxy, propoxy and butoxy. It is important to use the same or common ligand, a homoleptic ligand, to avoid possible prior art ligand exchange problems. Preferably, the homoleptic ligand is a monodentate ligand.
[0034]
The metal of the metal ligand precursor is zinc, cadmium, mercury, aluminum, gallium, indium, thallium, tin, lead, antimony, bismuth, lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, Barium, scandium, yttrium, lanthanum, titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, manganese, technetium, rhenium, iron, ruthenium, osmium, cobalt, rhodium, iridium, nickel, palladium, platinum, One or more of copper, silver, gold, silicon and cerium may be used.
[0035]
The ambient conditions under which a solvent-free mixture of two or more metal-ligand precursors must be liquid are generally defined as 40 ° C. or less and less than 207 kPa (gauge pressure) (30 psig). Preferably, the ambient conditions for delivery of the liquid phase are 20-30 ° C and 34-41 kPa (gauge pressure) (5-6 psig).
[0036]
Properly selected precursors will provide either mixed metal oxides, nitrides, and oxynitrides in the presence of oxidizing agents or nitrogen-containing reactants. In addition, using appropriate precursor mixtures and CVD conditions, mixed metal alloys, carbides, carbonitrides, oxycarbides, oxycarbonitrides, sulfides, phosphides, arsenides, antimonides, selenides and tellurides It is also possible to grow nitrides. Oxidizing agents or nitrogen containing reactants include 95 + vol% oxygen, ozone, water, hydrogen peroxide, nitrous oxide, nitric oxide, nitrogen dioxide, air, nitrogen gas, ammonia, hydrazine, alkylhydrazine, alkylamine and the like. , But is not limited to oxidants or nitrogen-containing reactants.
[0037]
In addition to thermal CVD, the above precursors could be utilized for plasma, laser or light assisted CVD growth, well-known growth techniques, or by atomic layer epitaxy. Further, the appropriate choice of liquid mixture precursor can also apply to sol-gel processing of films, spray pyrolysis and spin coating.
[0038]
A typical solvent-free mixture of at least two metal-ligand complex precursors is Zr (N (CH2CH3)2)4And Sn (N (CH2CH3)2)4And Ti (N (CH2CH3)2)4, Or Zr (N (CH3)2)4And Sn (N (CH3)2)4And Ti (N (CH3)2)4, Or Zr (O (C4H9))4And Sn (O (C4H9))4And Ti (O (C4H9))4, Or Ta (N (CH3)2)5And Ti (N (CH3)2)4Or CH3CH2N = Ta (N (CH2CH3)2)3And Ti (N (CH2CH3)2)4, Or Al (OCH2CH3)3And Ta (OCH2CH3)5, Or Si (N (CH2CH3)2)4And the next group: Ti (N (CH2CH3)2)4, Zr (N (CH2CH3)2)4, Hf (N (CH2CH3)2)4, V (N (CH2CH3)2)5, V (N (CH2CH3)2)4, Nb (N (CH2CH3)2)5, Nb (N (CH2CH3)2)4, CH3CH2N = Nb (N (CH2CH3)2)3, CH3CH2N = V (N (CH2CH3)2)3, (CH3CH2N =)2W (N (CH2CH3)2)2, (CH3CH2N =)2Mo (N (CH2CH3)2)2And CH3CH2N = Ta (N (CH2CH3)2)3And a metal-ligand complex precursor selected from the group consisting of:
[0039]
【Example】
The invention will now be described by way of some limiting examples of precursors and growth (deposition).
[0040]
(Example 1)
This example is Zr-Sn-Ti-OxThe precursor will be described.
19.0 g (0.05 mol) of Zr (N (CH2CH3)2)420.4 g (0.05 mol) of Sn (N (CH2CH3)2)4, And 50.5 g (0.15 mol) of Ti (N (CH2CH3)2)4Was mixed at room temperature under an inert atmosphere to give a yellow-orange clear liquid mixture. The mixture was distilled under reduced pressure in a heating bath temperature range of 110-120 ° C. This indicates that it is useful for DLI transmission.
[0041]
(Example 2)
This example is Ti-Ta-OxWill be described.
Ti-Ta-OxThe solvent-free liquid mixture of the metal-ligand complex precursor for is prepared in the same manner as in Example 1 by Ti (N (CH (CH3)2)5(Liquid) dissolved in Ta (N (CH3)2)5(Solid) can be made.
[0042]
(Example 3)
This example is Ti-Ta-OxWill be described.
Ti-Ta-OxThe solvent-free liquid mixture of the metal-ligand complex precursor for is prepared in the same manner as in Example 1 by Ti (N (CH (CH2CH3)2)4CH mixed with3CH2N = Ta (N (CH2CH3)2)3Can be made from
[0043]
(Example 4)
This example is TaO doped with Al.xWill be described.
TaO doped with AlxThe solvent-free liquid mixture of the metal-ligand complex precursor for is prepared in the same manner as in Example 1 with Al (OCH2CH3)3(Solid) and Ta (OCH2CH3)5(Liquid) mixture.
[0044]
(Example 5)
This example illustrates M-Si-M.
The solvent-free liquid mixture of the metal-ligand complex precursor for M-Si-M was prepared in the same manner as in Example 1 by (a) Si (N (CH2CH3)2)4(Liquid) and (b) M (N (CH2CH3)2)x(Where M = Ti, Zr, Hf, V, Nb in this formula and x = 4 or 5) or (c) (R−N =)xM '(N (CH2CH3)2)y(Where M '= Ta, Nb, W, Mo, and R = C1~ C5Alkyl, and x = 1 and y = 3 if M '= Ta or Nb, x = y = 2 if M' = W or Mo) (all liquid).
[0045]
(Example 6)
This example illustrates the growth of mixed metal compounds by CVD.
Using a 120 sccm helium sweep gas with a 100 sccm oxygen flow, a direct liquid injector with a vaporization temperature of 110 ° C. onto a wafer substrate target held at 240-300 ° C. for growth of the mixed metal compound film, Zr. (N (CH2CH3)2)4, Sn (N (CH2CH3)2)4And Ti (N (CH2CH3)2)4The solvent mixture of the metal-ligand complex precursor was sent out at 0.06 ml / min. The growth was 10-30 nm (100-300 Å) / min. The reaction chamber pressure of the reactor was 270 Pa (2 Torr). Energy dispersive X-ray analysis of films grown from the precursor mixture by CVD under these conditions demonstrated the incorporation of Zr, Sn and Ti metals into the grown films.
[0046]
Previous attempts to provide a suitable liquid medium for delivering metal precursors have required the use of selected solvents or mixed β-diketonate ligands to ensure liquid conditions for delivery. did. Solvents add cost and cause problems of proper selection for compatibility and also of contamination and post-use removal. Solvent-free attempts to solve the goal of delivery in the liquid phase have required β-diketonate ligands, which pose problems with unintentional ligand exchange which can lead to non-liquid conditions. Unless the β-diketonate substituent is manipulated to avoid conditions that lead to solid conditions, β-diketonate ligands often result in solid metal compounds, thus further exacerbating the consequences of unintended ligand exchange. Let it. The present invention is directed to a metal-ligand complex in the liquid state for the growth of a mixture of metals, preferably by direct liquid injection, to avoid the disadvantages of solvent and β-diketonate ligand exchange for consistent growth performance. Have shown that these disadvantages can be overcome by using solvent-free, non-β-diketonate, single or common ligands.
[0047]
Although the invention has been described in terms of several preferred embodiments, the full scope of the invention should be ascertained from the claims that follow.

Claims (19)

下記のa)〜d)を含む、電子材料の基材上に酸素含有多元金属化合物層を成長させるための方法。
a)周囲条件において液体を構成する2種以上の金属−配位子錯体前駆物質の無溶媒の液体混合物であって、当該配位子が同一であり、且つアルキル、アルコキシド、水素、アミド、イミド、アジ化物イオン、硝酸根、シクロペンタジエニル、カルボニル、並びにそれらのフッ素、酸素及び窒素置換類似物からなる群より選ばれる、無溶媒の液体混合物を提供すること
b)当該無溶媒の液体混合物を上記基材が位置している成長帯域へ送出すること
c)当該基材を成長条件下で当該無溶媒の液体混合物と接触させ、この成長条件下での接触を、化学気相成長、スプレー熱分解、ゾル−ゲルプロセス、スピンコーティング及び原子層エピタキシーからなる群より選択すること
d)当該無溶媒の液体混合物から当該基材上に酸素含有多元金属化合物層を成長させること
A method for growing an oxygen-containing multimetal compound layer on a substrate of an electronic material, comprising the following a) to d).
a) A solventless liquid mixture of two or more metal-ligand complex precursors that constitute a liquid at ambient conditions, wherein the ligands are the same and are alkyl, alkoxide, hydrogen, amide, imide Providing a solvent-free liquid mixture selected from the group consisting of: azide ion, nitrate, cyclopentadienyl, carbonyl, and their fluorine, oxygen, and nitrogen-substituted analogs. B) The solvent-free liquid mixture. C) contacting the substrate with the solvent-free liquid mixture under growth conditions, and contacting the substrate under the growth conditions with chemical vapor deposition, spraying. Selecting from the group consisting of pyrolysis, sol-gel processes, spin coating and atomic layer epitaxy. D) oxygen-containing multimetallic compounds from said solvent-free liquid mixture onto said substrate. Growing a layer
下記のa)〜d)を含む、電子材料の基材上に酸素含有多元金属化合物層を成長させるための方法。
a)周囲条件において液体を構成する2種以上の金属−配位子錯体前駆物質の無溶媒の液体混合物であって、当該配位子が同一であり、且つアルキル、アルコキシド、水素、アミド、イミド、アジ化物イオン、硝酸根、シクロペンタジエニル、カルボニル、並びにそれらのフッ素、酸素及び窒素置換類似物からなる群より選ばれる、無溶媒の液体混合物を提供すること
b)当該無溶媒の液体混合物を直接の液体注入によりフラッシュ蒸発帯域へ送出して当該無溶媒の液体混合物を気化させること
c)当該基材を、得られた当該無溶媒の液体混合物の蒸気と成長条件下で接触させること
d)当該無溶媒の液体混合物から当該基材上に酸素含有多元金属化合物層を成長させること
A method for growing an oxygen-containing multimetal compound layer on a substrate of an electronic material, comprising the following a) to d).
a) A solventless liquid mixture of two or more metal-ligand complex precursors that constitute a liquid at ambient conditions, wherein the ligands are the same and are alkyl, alkoxide, hydrogen, amide, imide Providing a solvent-free liquid mixture selected from the group consisting of: azide ion, nitrate, cyclopentadienyl, carbonyl, and their fluorine, oxygen, and nitrogen-substituted analogs. B) The solvent-free liquid mixture. To the flash evaporation zone by direct liquid injection to vaporize the solvent-free liquid mixture c) contacting the substrate with the resulting vapor of the solvent-free liquid mixture under growth conditions d ) Growing an oxygen-containing multimetallic compound layer on the substrate from the solvent-free liquid mixture
前記周囲条件が40℃以下且つ207kPa(ゲージ圧)(30psig)以下である、請求項1又は2記載の方法。The method of claim 1 or 2, wherein the ambient conditions are 40 ° C or less and 207 kPa (gauge pressure) (30 psig) or less. 前記周囲条件が20〜30℃且つ34〜41kPa(ゲージ圧)(5〜6psig)である、請求項1又は2記載の方法。The method of claim 1 or 2, wherein the ambient conditions are 20-30 ° C and 34-41 kPa (gauge pressure) (5-6 psig). 前記基材上に前記多元金属化合物層を成長させる前に前記無溶媒混合物を酸素源と混合する、請求項1から4までのいずれか一つに記載の方法。5. The method according to any one of the preceding claims, wherein the solventless mixture is mixed with an oxygen source before growing the multimetallic compound layer on the substrate. 前記酸素源を95+体積%の酸素、オゾン、亜酸化窒素、酸化窒素、二酸化窒素、水、過酸化水素、空気及びそれらの混合物からなる群から選ぶ、請求項5記載の方法。The method of claim 5, wherein the oxygen source is selected from the group consisting of 95 + vol% oxygen, ozone, nitrous oxide, nitric oxide, nitrogen dioxide, water, hydrogen peroxide, air and mixtures thereof. 電子材料の基材上に多元金属化合物層を成長させるための方法であって、下記のa)〜d)、すなわち、
a)周囲条件において液体を構成する2種以上の金属−配位子錯体前駆物質の無溶媒混合物であって、当該配位子が同一であり、且つアルキル、アルコキシド、ハロゲン、水素、アミド、イミド、アジ化物イオン、硝酸根、シクロペンタジエニル、カルボニル、並びにそれらのフッ素、酸素及び窒素置換類似物からなる群より選ばれる、無溶媒混合物を提供すること、
b)当該無溶媒混合物を直接の液体注入によりフラッシュ蒸発帯域へ送出して当該無溶媒混合物を気化させること、
c)当該基材を、得られた当該無溶媒混合物の蒸気と成長条件下で接触させること、
d)当該無溶媒混合物から当該基材上に多元金属化合物層を成長させること、
を含み、当該基材上に当該多元金属化合物層を成長させる前に当該無溶媒混合物を窒素源と混合する、電子材料の基材上に多元金属化合物層を成長させるための方法。
A method for growing a multimetallic compound layer on a substrate of an electronic material, comprising the following a) to d):
a) A solventless mixture of two or more metal-ligand complex precursors that constitute a liquid at ambient conditions, wherein the ligands are the same and are alkyl, alkoxide, halogen, hydrogen, amide, imide Providing a solvent-free mixture selected from the group consisting of: azide ion, nitrate, cyclopentadienyl, carbonyl, and their fluorine, oxygen and nitrogen substituted analogs;
b) delivering the solventless mixture to a flash evaporation zone by direct liquid injection to vaporize the solventless mixture;
c) contacting the substrate with the resulting vapor of the solventless mixture under growth conditions;
d) growing a multimetallic compound layer on the substrate from the solventless mixture;
And mixing the solventless mixture with a nitrogen source before growing the multimetallic compound layer on the substrate. A method for growing a multimetallic compound layer on a substrate of electronic material.
前記窒素源を窒素、アンモニア、ヒドラジン、アルキルヒドラジン、アジ化水素、アルキルアミン及びそれらの混合物からなる群から選ぶ、請求項7記載の方法。The method of claim 7, wherein the nitrogen source is selected from the group consisting of nitrogen, ammonia, hydrazine, alkyl hydrazine, hydrogen azide, alkylamine, and mixtures thereof. 前記多元金属化合物層を、混合金属合金、混合金属酸化物、混合金属窒化物、混合金属炭化物、混合金属炭窒化物、混合金属酸炭窒化物、混合金属酸炭化物、混合金属硫化物、混合金属リン化物、混合金属ヒ化物、混合金属アンチモン化物、混合金属セレン化物、混合金属テルル化物及びそれらの混合物からなる群より選ぶ、請求項1から4までのいずれか一つに記載の方法。The multimetal compound layer is formed by using a mixed metal alloy, a mixed metal oxide, a mixed metal nitride, a mixed metal carbide, a mixed metal carbonitride, a mixed metal oxycarbonitride, a mixed metal oxycarbide, a mixed metal sulfide, or a mixed metal. The method according to any one of claims 1 to 4, wherein the method is selected from the group consisting of phosphides, mixed metal arsenides, mixed metal antimonides, mixed metal selenides, mixed metal tellurides and mixtures thereof. 混合金属又は金属化合物層の成長のための組成物であって、少なくとも2種の金属−配位子錯体前駆物質の無溶媒混合物を含み、当該混合物が周囲条件において液体であり、且つ当該配位子が、アルキル、アルコキシド、ハロゲン、水素、アミド、イミド、アジ化物イオン、硝酸根、シクロペンタジエニル、カルボニル、並びにそれらのフッ素、酸素及び窒素置換類似物からなる群より選ばれ、当該混合物が、周囲条件において液体である第一の金属−配位子錯体前駆物質と、周囲条件において液体である第二の金属−配位子錯体前駆物質とを含む、混合金属又は金属化合物層の成長のための組成物。A composition for the growth of a mixed metal or metal compound layer, comprising a solventless mixture of at least two metal-ligand complex precursors, wherein the mixture is liquid at ambient conditions and Is selected from the group consisting of alkyl, alkoxide, halogen, hydrogen, amide, imide, azide ion, nitrate, cyclopentadienyl, carbonyl, and their fluorine, oxygen and nitrogen-substituted analogs, wherein the mixture is The growth of a mixed metal or metal compound layer comprising a first metal-ligand complex precursor that is liquid at ambient conditions and a second metal-ligand complex precursor that is liquid at ambient conditions. Composition for 前記少なくとも2種の金属−配位子錯体前駆物質の無溶媒混合物の当該金属が、亜鉛、カドミウム、水銀、アルミニウム、ガリウム、インジウム、タリウム、スズ、鉛、アンチモン、ビスマス、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、スカンジウム、イットリウム、ランタン、チタン、ジルコニウム、ハフニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、マンガン、テクネチウム、レニウム、鉄、ルテニウム、オスミウム、コバルト、ロジウム、イリジウム、ニッケル、パラジウム、白金、銅、銀、金、ケイ素及びセリウムからなる群より個々に選ばれる、請求項10記載の組成物。The metal of the solventless mixture of the at least two metal-ligand complex precursors is zinc, cadmium, mercury, aluminum, gallium, indium, thallium, tin, lead, antimony, bismuth, lithium, sodium, potassium, Rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, scandium, yttrium, lanthanum, titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, manganese, technetium, rhenium, iron, ruthenium, osmium, cobalt, rhodium, iridium, nickel, palladium, platinum, copper, silver, gold, individually selected from the group consisting of silicon and cerium, 10. Symbol mounting of the composition. 前記少なくとも2種の金属−配位子錯体前駆物質の無溶媒混合物の当該配位子が、ジメチルアミド、ジエチルアミド、エチルメチルアミド、ブチルアミド、ジプロピルアミド、メチルプロピルアミド、エチルプロピルアミド、メトキシ、エトキシ、プロポキシ及びブトキシからなる群より選ばれる、請求項10又は11記載の組成物。The ligand of the solvent-free mixture of the at least two metal-ligand complex precursors is dimethylamide, diethylamide, ethylmethylamide, butylamide, dipropylamide, methylpropylamide, ethylpropylamide, methoxy, ethoxy; is selected from the group consisting of propoxy and butoxy, claim 10 or 11 composition. 前記少なくとも2種の金属−配位子錯体前駆物質の無溶媒混合物が、Zr(N(CH2 CH324 、Sn(N(CH2 CH324及びTi(N(CH2 CH324 を含む、請求項10記載の組成物。Wherein the at least two metal - free solvent mixtures ligand complex precursor, Zr (N (CH 2 CH 3) 2) 4, Sn (N (CH 2 CH 3) 2) 4 and Ti (N (CH 2 CH 3) 2) 4 comprises a composition of claim 10, wherein. 前記少なくとも2種の金属−配位子錯体前駆物質の無溶媒混合物が、Zr(N(CH324 、Sn(N(CH324 及びTi(N(CH324 を含む、請求項10記載の組成物。Wherein the at least two metal - free solvent mixtures ligand complex precursor, Zr (N (CH 3) 2) 4, Sn (N (CH 3) 2) 4 and Ti (N (CH 3) 2 ) including 4, the composition of claim 10. 前記少なくとも2種の金属−配位子錯体前駆物質の無溶媒混合物が、Zr(O(C49 ))4 、Sn(O(C49 ))4 及びTi(O(C49 ))4 を含む、請求項10記載の組成物。Wherein the at least two metal - free solvent mixtures ligand complex precursor, Zr (O (C 4 H 9)) 4, Sn (O (C 4 H 9)) 4 and Ti (O (C 4 H 9 )) The composition of claim 10, comprising 4 ). 前記少なくとも2種の金属−配位子錯体前駆物質の無溶媒混合物が、Ta(N(CH325 及びTi(N(CH324 を含む、請求項10記載の組成物。Wherein the at least two metal - free solvent mixtures ligand complex precursor, Ta (N (CH 3) 2) 5 and Ti (N (CH 3) 2 ) 4 comprises a composition of claim 10, . 前記少なくとも2種の金属−配位子錯体前駆物質の無溶媒混合物が、Al(OCH2 CH33 及びTa(OCH2 CH35 を含む、請求項10記載の組成物。Wherein the at least two metal - free solvent mixtures ligand complex precursor, Al (OCH 2 CH 3) 3 and Ta (OCH 2 CH 3) containing 5 The composition of claim 10, wherein. 前記少なくとも2種の金属−配位子錯体前駆物質の無溶媒混合物が、CH3 CH2 N=Ta(N(CH2 CH323 及びTi(N(CH2 CH324 を含む、請求項10記載の組成物。Wherein the at least two metal - free solvent mixtures ligand complex precursors, CH 3 CH 2 N = Ta (N (CH 2 CH 3) 2) 3 and Ti (N (CH 2 CH 3 ) 2) 4 The composition of claim 10, comprising: 前記少なくとも2種の金属−配位子錯体前駆物質の無溶媒混合物が、Si(N(CH2 CH324 を含み、且つ、Ti(N(CH2 CH324 、Zr(N(CH2 CH324 、Hf(N(CH2 CH324 、V(N(CH2 CH325 、V(N(CH2 CH324 、Nb(N(CH2 CH325 、Nb(N(CH2 CH324 、CH3 CH2 N=Nb(N(CH2 CH323 、CH3 CH2 N=V(N(CH2 CH323 、(CH3 CH2 N=)2 Mo(N(CH2 CH322 、(CH3 CH2 N=)2 W(N(CH2 CH322 、及びCH3 CH2 N=Ta(N(CH2 CH323 からなる群より選ばれる金属−配位子錯体前駆物質を含む、請求項10記載の組成物。Wherein the at least two metal - free solvent mixtures ligand complex precursors comprises a Si (N (CH 2 CH 3 ) 2) 4, and, Ti (N (CH 2 CH 3) 2) 4, Zr (N (CH 2 CH 3 ) 2 ) 4 , Hf (N (CH 2 CH 3 ) 2 ) 4 , V (N (CH 2 CH 3 ) 2 ) 5 , V (N (CH 2 CH 3 ) 2 ) 4 , Nb (N (CH 2 CH 3 ) 2 ) 5 , Nb (N (CH 2 CH 3 ) 2 ) 4 , CH 3 CH 2 N = Nb (N (CH 2 CH 3 ) 2 ) 3 , CH 3 CH 2 N = V (N (CH 2 CH 3 ) 2 ) 3 , (CH 3 CH 2 N =) 2 Mo (N (CH 2 CH 3 ) 2 ) 2 , (CH 3 CH 2 N =) 2 W (N ( CH 2 CH 3) 2) 2 , and CH 3 CH 2 N = Ta ( N (CH 2 CH 3) 2) metal selected from the group consisting of 3 - containing ligand complex precursors, according to claim 10, wherein Composition.
JP2000212008A 1999-07-08 2000-07-07 Method for growing multimetallic compound layers and compositions for growing mixed metal or metal compound layers Expired - Lifetime JP3576934B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/350,074 US6238734B1 (en) 1999-07-08 1999-07-08 Liquid precursor mixtures for deposition of multicomponent metal containing materials
US09/350074 1999-07-08

Publications (2)

Publication Number Publication Date
JP2001081560A JP2001081560A (en) 2001-03-27
JP3576934B2 true JP3576934B2 (en) 2004-10-13

Family

ID=23375125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000212008A Expired - Lifetime JP3576934B2 (en) 1999-07-08 2000-07-07 Method for growing multimetallic compound layers and compositions for growing mixed metal or metal compound layers

Country Status (5)

Country Link
US (1) US6238734B1 (en)
EP (1) EP1067595A3 (en)
JP (1) JP3576934B2 (en)
KR (1) KR100333933B1 (en)
TW (1) TW467963B (en)

Families Citing this family (354)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6338809B1 (en) 1997-02-24 2002-01-15 Superior Micropowders Llc Aerosol method and apparatus, particulate products, and electronic devices made therefrom
US20030148024A1 (en) * 2001-10-05 2003-08-07 Kodas Toivo T. Low viscosity precursor compositons and methods for the depositon of conductive electronic features
US6503561B1 (en) * 1999-07-08 2003-01-07 Air Products And Chemicals, Inc. Liquid precursor mixtures for deposition of multicomponent metal containing materials
US6943392B2 (en) * 1999-08-30 2005-09-13 Micron Technology, Inc. Capacitors having a capacitor dielectric layer comprising a metal oxide having multiple different metals bonded with oxygen
US6743473B1 (en) * 2000-02-16 2004-06-01 Applied Materials, Inc. Chemical vapor deposition of barriers from novel precursors
FI117979B (en) * 2000-04-14 2007-05-15 Asm Int Process for making oxide thin films
US6558517B2 (en) 2000-05-26 2003-05-06 Micron Technology, Inc. Physical vapor deposition methods
US6620723B1 (en) * 2000-06-27 2003-09-16 Applied Materials, Inc. Formation of boride barrier layers using chemisorption techniques
US6491978B1 (en) * 2000-07-10 2002-12-10 Applied Materials, Inc. Deposition of CVD layers for copper metallization using novel metal organic chemical vapor deposition (MOCVD) precursors
US6642567B1 (en) * 2000-08-31 2003-11-04 Micron Technology, Inc. Devices containing zirconium-platinum-containing materials and methods for preparing such materials and devices
JP5290488B2 (en) 2000-09-28 2013-09-18 プレジデント アンド フェロウズ オブ ハーバード カレッジ Vapor growth of oxides, silicates and phosphates
US6566147B2 (en) * 2001-02-02 2003-05-20 Micron Technology, Inc. Method for controlling deposition of dielectric films
US20030017266A1 (en) * 2001-07-13 2003-01-23 Cem Basceri Chemical vapor deposition methods of forming barium strontium titanate comprising dielectric layers, including such layers having a varied concentration of barium and strontium within the layer
US6838122B2 (en) * 2001-07-13 2005-01-04 Micron Technology, Inc. Chemical vapor deposition methods of forming barium strontium titanate comprising dielectric layers
US7011978B2 (en) 2001-08-17 2006-03-14 Micron Technology, Inc. Methods of forming capacitor constructions comprising perovskite-type dielectric materials with different amount of crystallinity regions
DE10140956A1 (en) * 2001-08-27 2003-03-27 Univ Braunschweig Tech Carolo Wilhelmina Process for coating oxidizable materials with layers containing oxides
US7524528B2 (en) * 2001-10-05 2009-04-28 Cabot Corporation Precursor compositions and methods for the deposition of passive electrical components on a substrate
US6951666B2 (en) * 2001-10-05 2005-10-04 Cabot Corporation Precursor compositions for the deposition of electrically conductive features
US20030108664A1 (en) * 2001-10-05 2003-06-12 Kodas Toivo T. Methods and compositions for the formation of recessed electrical features on a substrate
US20060001726A1 (en) * 2001-10-05 2006-01-05 Cabot Corporation Printable conductive features and processes for making same
US7629017B2 (en) * 2001-10-05 2009-12-08 Cabot Corporation Methods for the deposition of conductive electronic features
JP2003124460A (en) * 2001-10-15 2003-04-25 Atsushi Ogura Gate oxide film, element, and method and material for forming gate oxide film
WO2003035279A1 (en) * 2001-10-19 2003-05-01 Superior Micropowders Llc Tape compositions for the deposition of electronic features
US7553512B2 (en) * 2001-11-02 2009-06-30 Cabot Corporation Method for fabricating an inorganic resistor
WO2003083167A1 (en) 2002-03-28 2003-10-09 President And Fellows Of Harvard College Vapor deposition of silicon dioxide nanolaminates
US6846516B2 (en) * 2002-04-08 2005-01-25 Applied Materials, Inc. Multiple precursor cyclical deposition system
US6720027B2 (en) * 2002-04-08 2004-04-13 Applied Materials, Inc. Cyclical deposition of a variable content titanium silicon nitride layer
US20030235961A1 (en) * 2002-04-17 2003-12-25 Applied Materials, Inc. Cyclical sequential deposition of multicomponent films
US6858547B2 (en) * 2002-06-14 2005-02-22 Applied Materials, Inc. System and method for forming a gate dielectric
US20030232501A1 (en) * 2002-06-14 2003-12-18 Kher Shreyas S. Surface pre-treatment for enhancement of nucleation of high dielectric constant materials
US7067439B2 (en) 2002-06-14 2006-06-27 Applied Materials, Inc. ALD metal oxide deposition process using direct oxidation
AU2003248850A1 (en) * 2002-07-12 2004-02-02 President And Fellows Of Harvard College Vapor deposition of tungsten nitride
US6915592B2 (en) * 2002-07-29 2005-07-12 Applied Materials, Inc. Method and apparatus for generating gas to a processing chamber
US7033560B2 (en) * 2002-08-30 2006-04-25 Air Products And Chemicals, Inc. Single source mixtures of metal siloxides
US6905737B2 (en) * 2002-10-11 2005-06-14 Applied Materials, Inc. Method of delivering activated species for rapid cyclical deposition
KR100459609B1 (en) * 2002-10-14 2004-12-03 주식회사 메카로닉스 organic cobalt compounds for cobalt or cobalt salicide thin film and method thereof and method of cobalt thin film
US6887523B2 (en) * 2002-12-20 2005-05-03 Sharp Laboratories Of America, Inc. Method for metal oxide thin film deposition via MOCVD
JP3909320B2 (en) * 2003-01-27 2007-04-25 三菱マテリアル株式会社 Method for synthesizing raw materials for metalorganic chemical vapor deposition
KR100505674B1 (en) * 2003-02-26 2005-08-03 삼성전자주식회사 Method for manufacturing ruthenium layer and method for metal-insulator-metal capacitor using the same
US20040198069A1 (en) 2003-04-04 2004-10-07 Applied Materials, Inc. Method for hafnium nitride deposition
JP4689969B2 (en) * 2003-04-05 2011-06-01 ローム・アンド・ハース・エレクトロニック・マテリアルズ,エル.エル.シー. Preparation of Group IVA and Group VIA compounds
JP4954448B2 (en) * 2003-04-05 2012-06-13 ローム・アンド・ハース・エレクトロニック・マテリアルズ,エル.エル.シー. Organometallic compounds
JP4714422B2 (en) 2003-04-05 2011-06-29 ローム・アンド・ハース・エレクトロニック・マテリアルズ,エル.エル.シー. Method for depositing germanium-containing film and vapor delivery device
JP4133589B2 (en) * 2003-04-21 2008-08-13 株式会社高純度化学研究所 Tetrakis (ethylmethylamino) vanadium, method for producing the same, and method for forming a vanadium nitride film using the same
US20050070126A1 (en) * 2003-04-21 2005-03-31 Yoshihide Senzaki System and method for forming multi-component dielectric films
TW200506093A (en) * 2003-04-21 2005-02-16 Aviza Tech Inc System and method for forming multi-component films
US6844271B2 (en) * 2003-05-23 2005-01-18 Air Products And Chemicals, Inc. Process of CVD of Hf and Zr containing oxynitride films
JP4688458B2 (en) * 2003-10-30 2011-05-25 日本パイオニクス株式会社 Insulating film forming material and film forming method using the same
KR20050091488A (en) * 2004-03-12 2005-09-15 주식회사 유피케미칼 The precursor compounds for the metal and ceramic film, and the method of synthesis
US20050252449A1 (en) 2004-05-12 2005-11-17 Nguyen Son T Control of gas flow and delivery to suppress the formation of particles in an MOCVD/ALD system
US20060062917A1 (en) * 2004-05-21 2006-03-23 Shankar Muthukrishnan Vapor deposition of hafnium silicate materials with tris(dimethylamino)silane
US8119210B2 (en) 2004-05-21 2012-02-21 Applied Materials, Inc. Formation of a silicon oxynitride layer on a high-k dielectric material
US8323754B2 (en) 2004-05-21 2012-12-04 Applied Materials, Inc. Stabilization of high-k dielectric materials
JP4959122B2 (en) * 2004-09-27 2012-06-20 株式会社アルバック Method for forming vanadium-containing film
US7824466B2 (en) 2005-01-14 2010-11-02 Cabot Corporation Production of metal nanoparticles
ES2353397T3 (en) * 2005-01-14 2011-03-01 Cabot Corporation SECURITY DEVICE, ITS USE, AND PROCESSES TO PRODUCE THEM.
WO2006076606A2 (en) 2005-01-14 2006-07-20 Cabot Corporation Optimized multi-layer printing of electronics and displays
US8167393B2 (en) 2005-01-14 2012-05-01 Cabot Corporation Printable electronic features on non-uniform substrate and processes for making same
WO2006076612A2 (en) * 2005-01-14 2006-07-20 Cabot Corporation A process for manufacturing application specific printable circuits (aspc’s) and other custom electronic devices
WO2006076615A1 (en) * 2005-01-14 2006-07-20 Cabot Corporation Ink-jet printing of compositionally no-uniform features
WO2006076603A2 (en) * 2005-01-14 2006-07-20 Cabot Corporation Printable electrical conductors
US8383014B2 (en) 2010-06-15 2013-02-26 Cabot Corporation Metal nanoparticle compositions
KR100657792B1 (en) 2005-01-24 2006-12-14 삼성전자주식회사 Method of manufacturing a thin layer using atomic layer deposition, and method of manufacturing a capacitor and a gate structure using the same
KR100688532B1 (en) 2005-02-14 2007-03-02 삼성전자주식회사 A Te precursor, a Te-including chalcogenide thin layer prepared by using the Te precursor, a method for preparing the thin layer and a phase-change memory device
FR2883287A1 (en) * 2005-03-16 2006-09-22 Air Liquide Preparing organometallic precursor molecules comprises introducing reagents in reactor, reacting to obtain solid-liquid phase mixture, filtering to recover liquid phase and removing solvents present in liquid phase by distillation
JP2008536318A (en) * 2005-04-07 2008-09-04 アヴィザ テクノロジー インコーポレイテッド Multi-layer multi-component high-k film and method for depositing the same
US7402534B2 (en) 2005-08-26 2008-07-22 Applied Materials, Inc. Pretreatment processes within a batch ALD reactor
US20070054048A1 (en) * 2005-09-07 2007-03-08 Suvi Haukka Extended deposition range by hot spots
US7550222B2 (en) * 2005-10-21 2009-06-23 Gm Global Technology Operations, Inc. Fuel cell component having a durable conductive and hydrophilic coating
KR100724084B1 (en) 2005-11-16 2007-06-04 주식회사 유피케미칼 Thin film deposition from atomic layer deposition or chemical vapor deposition and their uses
US20070194470A1 (en) * 2006-02-17 2007-08-23 Aviza Technology, Inc. Direct liquid injector device
US7798096B2 (en) 2006-05-05 2010-09-21 Applied Materials, Inc. Plasma, UV and ion/neutral assisted ALD or CVD in a batch tool
US7625637B2 (en) * 2006-05-31 2009-12-01 Cabot Corporation Production of metal nanoparticles from precursors having low reduction potentials
EP2029790A1 (en) 2006-06-02 2009-03-04 L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Method of forming high-k dielectric films based on novel titanium, zirconium, and hafnium precursors and their use for semiconductor manufacturing
FR2904007B1 (en) * 2006-07-21 2008-11-21 Toulouse Inst Nat Polytech METHOD FOR DEPOSITING NON-OXIDE CERAMIC COATINGS
JP2008182183A (en) * 2006-12-26 2008-08-07 Doshisha Film forming method using atomic layer deposition method and its film forming device
KR101656890B1 (en) 2008-02-27 2016-09-12 레르 리키드 쏘시에떼 아노님 뿌르 레드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 Method for forming a titanium-containing layer on a substrate using an atomic layer deposition (ald) process
US7659158B2 (en) 2008-03-31 2010-02-09 Applied Materials, Inc. Atomic layer deposition processes for non-volatile memory devices
US20100047988A1 (en) 2008-08-19 2010-02-25 Youn-Joung Cho Methods of forming a layer, methods of forming a gate structure and methods of forming a capacitor
US20100062149A1 (en) * 2008-09-08 2010-03-11 Applied Materials, Inc. Method for tuning a deposition rate during an atomic layer deposition process
US8491967B2 (en) 2008-09-08 2013-07-23 Applied Materials, Inc. In-situ chamber treatment and deposition process
US9394608B2 (en) 2009-04-06 2016-07-19 Asm America, Inc. Semiconductor processing reactor and components thereof
US8802201B2 (en) * 2009-08-14 2014-08-12 Asm America, Inc. Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species
US8563085B2 (en) * 2009-08-18 2013-10-22 Samsung Electronics Co., Ltd. Precursor composition, methods of forming a layer, methods of forming a gate structure and methods of forming a capacitor
US20110045183A1 (en) * 2009-08-18 2011-02-24 Youn-Joung Cho Methods of forming a layer, methods of forming a gate structure and methods of forming a capacitor
JP5899615B2 (en) * 2010-03-18 2016-04-06 株式会社リコー Insulating film manufacturing method and semiconductor device manufacturing method
US9176377B2 (en) 2010-06-01 2015-11-03 Inpria Corporation Patterned inorganic layers, radiation based patterning compositions and corresponding methods
MY153033A (en) * 2011-01-04 2014-12-31 Univ Sains Malaysia Lanthanum cerium oxide thin film and its preparation thereof
JP5730670B2 (en) 2011-05-27 2015-06-10 株式会社Adeka Method for producing thin film containing molybdenum oxide, and raw material for forming thin film containing molybdenum oxide
US9312155B2 (en) 2011-06-06 2016-04-12 Asm Japan K.K. High-throughput semiconductor-processing apparatus equipped with multiple dual-chamber modules
US10854498B2 (en) 2011-07-15 2020-12-01 Asm Ip Holding B.V. Wafer-supporting device and method for producing same
US20130023129A1 (en) 2011-07-20 2013-01-24 Asm America, Inc. Pressure transmitter for a semiconductor processing environment
EP2573098A1 (en) * 2011-09-22 2013-03-27 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Vanadium-organic compounds and their use for thin films deposition
US9017481B1 (en) 2011-10-28 2015-04-28 Asm America, Inc. Process feed management for semiconductor substrate processing
US10714315B2 (en) 2012-10-12 2020-07-14 Asm Ip Holdings B.V. Semiconductor reaction chamber showerhead
SG11201501107XA (en) * 2012-11-19 2015-07-30 Adeka Corp Method for producing thin film containing molybdenum, thin film-forming starting material, and molybdenum imide compound
US9310684B2 (en) 2013-08-22 2016-04-12 Inpria Corporation Organometallic solution based high resolution patterning compositions
WO2015056944A1 (en) * 2013-10-14 2015-04-23 한국화학연구원 Molybdenum compound or tungsten compound, method for preparing same and method for forming thin film using same
US10683571B2 (en) 2014-02-25 2020-06-16 Asm Ip Holding B.V. Gas supply manifold and method of supplying gases to chamber using same
US10167557B2 (en) 2014-03-18 2019-01-01 Asm Ip Holding B.V. Gas distribution system, reactor including the system, and methods of using the same
US11015245B2 (en) 2014-03-19 2021-05-25 Asm Ip Holding B.V. Gas-phase reactor and system having exhaust plenum and components thereof
US10858737B2 (en) 2014-07-28 2020-12-08 Asm Ip Holding B.V. Showerhead assembly and components thereof
US9890456B2 (en) 2014-08-21 2018-02-13 Asm Ip Holding B.V. Method and system for in situ formation of gas-phase compounds
US10941490B2 (en) 2014-10-07 2021-03-09 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US9657845B2 (en) 2014-10-07 2017-05-23 Asm Ip Holding B.V. Variable conductance gas distribution apparatus and method
KR102264419B1 (en) 2014-10-23 2021-06-11 인프리아 코포레이션 Organometallic solution based high resolution patterning compositions and corresponding methods
US9663547B2 (en) 2014-12-23 2017-05-30 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Silicon- and Zirconium-containing compositions for vapor deposition of Zirconium-containing films
US9499571B2 (en) 2014-12-23 2016-11-22 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Germanium- and zirconium-containing compositions for vapor deposition of zirconium-containing films
US10276355B2 (en) 2015-03-12 2019-04-30 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US10458018B2 (en) 2015-06-26 2019-10-29 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US10600673B2 (en) 2015-07-07 2020-03-24 Asm Ip Holding B.V. Magnetic susceptor to baseplate seal
EP3896520B1 (en) 2015-10-13 2022-10-05 Inpria Corporation Organotin oxide hydroxide patterning compositions, precursors, and patterning
US10211308B2 (en) 2015-10-21 2019-02-19 Asm Ip Holding B.V. NbMC layers
US11139308B2 (en) 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US10529554B2 (en) 2016-02-19 2020-01-07 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
US10190213B2 (en) 2016-04-21 2019-01-29 Asm Ip Holding B.V. Deposition of metal borides
US10865475B2 (en) 2016-04-21 2020-12-15 Asm Ip Holding B.V. Deposition of metal borides and silicides
US10032628B2 (en) 2016-05-02 2018-07-24 Asm Ip Holding B.V. Source/drain performance through conformal solid state doping
US10367080B2 (en) 2016-05-02 2019-07-30 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
US9859151B1 (en) 2016-07-08 2018-01-02 Asm Ip Holding B.V. Selective film deposition method to form air gaps
US10612137B2 (en) 2016-07-08 2020-04-07 Asm Ip Holdings B.V. Organic reactants for atomic layer deposition
US10714385B2 (en) 2016-07-19 2020-07-14 Asm Ip Holding B.V. Selective deposition of tungsten
US9812320B1 (en) 2016-07-28 2017-11-07 Asm Ip Holding B.V. Method and apparatus for filling a gap
US9887082B1 (en) 2016-07-28 2018-02-06 Asm Ip Holding B.V. Method and apparatus for filling a gap
KR102532607B1 (en) 2016-07-28 2023-05-15 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus and method of operating the same
US10643826B2 (en) 2016-10-26 2020-05-05 Asm Ip Holdings B.V. Methods for thermally calibrating reaction chambers
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US10106568B2 (en) 2016-10-28 2018-10-23 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Hafnium-containing film forming compositions for vapor deposition of hafnium-containing films
US10643904B2 (en) 2016-11-01 2020-05-05 Asm Ip Holdings B.V. Methods for forming a semiconductor device and related semiconductor device structures
US10229833B2 (en) 2016-11-01 2019-03-12 Asm Ip Holding B.V. Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10714350B2 (en) 2016-11-01 2020-07-14 ASM IP Holdings, B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10134757B2 (en) 2016-11-07 2018-11-20 Asm Ip Holding B.V. Method of processing a substrate and a device manufactured by using the method
KR102546317B1 (en) 2016-11-15 2023-06-21 에이에스엠 아이피 홀딩 비.브이. Gas supply unit and substrate processing apparatus including the same
US10619242B2 (en) 2016-12-02 2020-04-14 Asm Ip Holding B.V. Atomic layer deposition of rhenium containing thin films
KR20180068582A (en) 2016-12-14 2018-06-22 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
KR20180070971A (en) 2016-12-19 2018-06-27 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US10269558B2 (en) 2016-12-22 2019-04-23 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10867788B2 (en) 2016-12-28 2020-12-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
WO2018125169A1 (en) * 2016-12-29 2018-07-05 Intel Corporation Device, system and method to provide high aspect ratio oligomer structures
US10364259B2 (en) * 2016-12-30 2019-07-30 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Zirconium, hafnium, titanium precursors and deposition of group 4 containing films using the same
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US10655221B2 (en) 2017-02-09 2020-05-19 Asm Ip Holding B.V. Method for depositing oxide film by thermal ALD and PEALD
US10468261B2 (en) 2017-02-15 2019-11-05 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US10529563B2 (en) 2017-03-29 2020-01-07 Asm Ip Holdings B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
USD876504S1 (en) 2017-04-03 2020-02-25 Asm Ip Holding B.V. Exhaust flow control ring for semiconductor deposition apparatus
KR102457289B1 (en) 2017-04-25 2022-10-21 에이에스엠 아이피 홀딩 비.브이. Method for depositing a thin film and manufacturing a semiconductor device
US10770286B2 (en) 2017-05-08 2020-09-08 Asm Ip Holdings B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US10892156B2 (en) 2017-05-08 2021-01-12 Asm Ip Holding B.V. Methods for forming a silicon nitride film on a substrate and related semiconductor device structures
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US10685834B2 (en) 2017-07-05 2020-06-16 Asm Ip Holdings B.V. Methods for forming a silicon germanium tin layer and related semiconductor device structures
KR20190009245A (en) 2017-07-18 2019-01-28 에이에스엠 아이피 홀딩 비.브이. Methods for forming a semiconductor device structure and related semiconductor device structures
US11374112B2 (en) 2017-07-19 2022-06-28 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11018002B2 (en) 2017-07-19 2021-05-25 Asm Ip Holding B.V. Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
US10541333B2 (en) 2017-07-19 2020-01-21 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US10590535B2 (en) 2017-07-26 2020-03-17 Asm Ip Holdings B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US10770336B2 (en) 2017-08-08 2020-09-08 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US10692741B2 (en) 2017-08-08 2020-06-23 Asm Ip Holdings B.V. Radiation shield
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US10249524B2 (en) 2017-08-09 2019-04-02 Asm Ip Holding B.V. Cassette holder assembly for a substrate cassette and holding member for use in such assembly
US11139191B2 (en) 2017-08-09 2021-10-05 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
USD900036S1 (en) 2017-08-24 2020-10-27 Asm Ip Holding B.V. Heater electrical connector and adapter
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
KR102491945B1 (en) 2017-08-30 2023-01-26 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US11056344B2 (en) 2017-08-30 2021-07-06 Asm Ip Holding B.V. Layer forming method
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
KR102630301B1 (en) 2017-09-21 2024-01-29 에이에스엠 아이피 홀딩 비.브이. Method of sequential infiltration synthesis treatment of infiltrateable material and structures and devices formed using same
US10844484B2 (en) 2017-09-22 2020-11-24 Asm Ip Holding B.V. Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US10658205B2 (en) 2017-09-28 2020-05-19 Asm Ip Holdings B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US10403504B2 (en) 2017-10-05 2019-09-03 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US10319588B2 (en) 2017-10-10 2019-06-11 Asm Ip Holding B.V. Method for depositing a metal chalcogenide on a substrate by cyclical deposition
US10923344B2 (en) 2017-10-30 2021-02-16 Asm Ip Holding B.V. Methods for forming a semiconductor structure and related semiconductor structures
KR102443047B1 (en) 2017-11-16 2022-09-14 에이에스엠 아이피 홀딩 비.브이. Method of processing a substrate and a device manufactured by the same
US10910262B2 (en) 2017-11-16 2021-02-02 Asm Ip Holding B.V. Method of selectively depositing a capping layer structure on a semiconductor device structure
US11022879B2 (en) 2017-11-24 2021-06-01 Asm Ip Holding B.V. Method of forming an enhanced unexposed photoresist layer
KR102597978B1 (en) 2017-11-27 2023-11-06 에이에스엠 아이피 홀딩 비.브이. Storage device for storing wafer cassettes for use with batch furnaces
US11639811B2 (en) 2017-11-27 2023-05-02 Asm Ip Holding B.V. Apparatus including a clean mini environment
US10872771B2 (en) 2018-01-16 2020-12-22 Asm Ip Holding B. V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
WO2019142055A2 (en) 2018-01-19 2019-07-25 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
TWI799494B (en) 2018-01-19 2023-04-21 荷蘭商Asm 智慧財產控股公司 Deposition method
USD903477S1 (en) 2018-01-24 2020-12-01 Asm Ip Holdings B.V. Metal clamp
US11018047B2 (en) 2018-01-25 2021-05-25 Asm Ip Holding B.V. Hybrid lift pin
USD880437S1 (en) 2018-02-01 2020-04-07 Asm Ip Holding B.V. Gas supply plate for semiconductor manufacturing apparatus
US11081345B2 (en) 2018-02-06 2021-08-03 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
CN111699278B (en) 2018-02-14 2023-05-16 Asm Ip私人控股有限公司 Method for depositing ruthenium-containing films on substrates by cyclical deposition processes
US10896820B2 (en) 2018-02-14 2021-01-19 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US10731249B2 (en) 2018-02-15 2020-08-04 Asm Ip Holding B.V. Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus
KR102636427B1 (en) 2018-02-20 2024-02-13 에이에스엠 아이피 홀딩 비.브이. Substrate processing method and apparatus
US10658181B2 (en) 2018-02-20 2020-05-19 Asm Ip Holding B.V. Method of spacer-defined direct patterning in semiconductor fabrication
US10975470B2 (en) 2018-02-23 2021-04-13 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11114283B2 (en) 2018-03-16 2021-09-07 Asm Ip Holding B.V. Reactor, system including the reactor, and methods of manufacturing and using same
KR102646467B1 (en) 2018-03-27 2024-03-11 에이에스엠 아이피 홀딩 비.브이. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US11088002B2 (en) 2018-03-29 2021-08-10 Asm Ip Holding B.V. Substrate rack and a substrate processing system and method
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
KR102501472B1 (en) 2018-03-30 2023-02-20 에이에스엠 아이피 홀딩 비.브이. Substrate processing method
TW202344708A (en) 2018-05-08 2023-11-16 荷蘭商Asm Ip私人控股有限公司 Methods for depositing an oxide film on a substrate by a cyclical deposition process and related device structures
TWI816783B (en) 2018-05-11 2023-10-01 荷蘭商Asm 智慧財產控股公司 Methods for forming a doped metal carbide film on a substrate and related semiconductor device structures
KR102596988B1 (en) 2018-05-28 2023-10-31 에이에스엠 아이피 홀딩 비.브이. Method of processing a substrate and a device manufactured by the same
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
TW202013553A (en) 2018-06-04 2020-04-01 荷蘭商Asm 智慧財產控股公司 Wafer handling chamber with moisture reduction
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
US10797133B2 (en) 2018-06-21 2020-10-06 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
KR102568797B1 (en) 2018-06-21 2023-08-21 에이에스엠 아이피 홀딩 비.브이. Substrate processing system
KR20210027265A (en) 2018-06-27 2021-03-10 에이에스엠 아이피 홀딩 비.브이. Periodic deposition method for forming metal-containing material and film and structure comprising metal-containing material
JP2021529254A (en) 2018-06-27 2021-10-28 エーエスエム・アイピー・ホールディング・ベー・フェー Periodic deposition methods for forming metal-containing materials and films and structures containing metal-containing materials
KR20200002519A (en) 2018-06-29 2020-01-08 에이에스엠 아이피 홀딩 비.브이. Method for depositing a thin film and manufacturing a semiconductor device
US10612136B2 (en) 2018-06-29 2020-04-07 ASM IP Holding, B.V. Temperature-controlled flange and reactor system including same
US10388513B1 (en) 2018-07-03 2019-08-20 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10755922B2 (en) 2018-07-03 2020-08-25 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10767789B2 (en) 2018-07-16 2020-09-08 Asm Ip Holding B.V. Diaphragm valves, valve components, and methods for forming valve components
US11053591B2 (en) 2018-08-06 2021-07-06 Asm Ip Holding B.V. Multi-port gas injection system and reactor system including same
US10883175B2 (en) 2018-08-09 2021-01-05 Asm Ip Holding B.V. Vertical furnace for processing substrates and a liner for use therein
US10829852B2 (en) 2018-08-16 2020-11-10 Asm Ip Holding B.V. Gas distribution device for a wafer processing apparatus
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US11024523B2 (en) 2018-09-11 2021-06-01 Asm Ip Holding B.V. Substrate processing apparatus and method
KR20200030162A (en) 2018-09-11 2020-03-20 에이에스엠 아이피 홀딩 비.브이. Method for deposition of a thin film
US11049751B2 (en) 2018-09-14 2021-06-29 Asm Ip Holding B.V. Cassette supply system to store and handle cassettes and processing apparatus equipped therewith
CN110970344A (en) 2018-10-01 2020-04-07 Asm Ip控股有限公司 Substrate holding apparatus, system including the same, and method of using the same
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
KR102592699B1 (en) 2018-10-08 2023-10-23 에이에스엠 아이피 홀딩 비.브이. Substrate support unit and apparatuses for depositing thin film and processing the substrate including the same
US10847365B2 (en) 2018-10-11 2020-11-24 Asm Ip Holding B.V. Method of forming conformal silicon carbide film by cyclic CVD
US10811256B2 (en) 2018-10-16 2020-10-20 Asm Ip Holding B.V. Method for etching a carbon-containing feature
KR102546322B1 (en) 2018-10-19 2023-06-21 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus and substrate processing method
KR102605121B1 (en) 2018-10-19 2023-11-23 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus and substrate processing method
USD948463S1 (en) 2018-10-24 2022-04-12 Asm Ip Holding B.V. Susceptor for semiconductor substrate supporting apparatus
US11087997B2 (en) 2018-10-31 2021-08-10 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
KR20200051105A (en) 2018-11-02 2020-05-13 에이에스엠 아이피 홀딩 비.브이. Substrate support unit and substrate processing apparatus including the same
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11031242B2 (en) 2018-11-07 2021-06-08 Asm Ip Holding B.V. Methods for depositing a boron doped silicon germanium film
US10818758B2 (en) 2018-11-16 2020-10-27 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US10847366B2 (en) 2018-11-16 2020-11-24 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US10559458B1 (en) 2018-11-26 2020-02-11 Asm Ip Holding B.V. Method of forming oxynitride film
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
KR102636428B1 (en) 2018-12-04 2024-02-13 에이에스엠 아이피 홀딩 비.브이. A method for cleaning a substrate processing apparatus
US11158513B2 (en) 2018-12-13 2021-10-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
JP2020096183A (en) 2018-12-14 2020-06-18 エーエスエム・アイピー・ホールディング・ベー・フェー Method of forming device structure using selective deposition of gallium nitride, and system for the same
TWI819180B (en) 2019-01-17 2023-10-21 荷蘭商Asm 智慧財產控股公司 Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
KR20200091543A (en) 2019-01-22 2020-07-31 에이에스엠 아이피 홀딩 비.브이. Semiconductor processing device
CN111524788B (en) 2019-02-01 2023-11-24 Asm Ip私人控股有限公司 Method for topologically selective film formation of silicon oxide
JP2020136678A (en) 2019-02-20 2020-08-31 エーエスエム・アイピー・ホールディング・ベー・フェー Method for filing concave part formed inside front surface of base material, and device
KR20200102357A (en) 2019-02-20 2020-08-31 에이에스엠 아이피 홀딩 비.브이. Apparatus and methods for plug fill deposition in 3-d nand applications
KR102626263B1 (en) 2019-02-20 2024-01-16 에이에스엠 아이피 홀딩 비.브이. Cyclical deposition method including treatment step and apparatus for same
JP2020136677A (en) 2019-02-20 2020-08-31 エーエスエム・アイピー・ホールディング・ベー・フェー Periodic accumulation method for filing concave part formed inside front surface of base material, and device
TW202100794A (en) 2019-02-22 2021-01-01 荷蘭商Asm Ip私人控股有限公司 Substrate processing apparatus and method for processing substrate
KR20200108248A (en) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. STRUCTURE INCLUDING SiOCN LAYER AND METHOD OF FORMING SAME
KR20200108242A (en) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. Method for Selective Deposition of Silicon Nitride Layer and Structure Including Selectively-Deposited Silicon Nitride Layer
KR20200108243A (en) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. Structure Including SiOC Layer and Method of Forming Same
JP2020167398A (en) 2019-03-28 2020-10-08 エーエスエム・アイピー・ホールディング・ベー・フェー Door opener and substrate processing apparatus provided therewith
KR20200116855A (en) 2019-04-01 2020-10-13 에이에스엠 아이피 홀딩 비.브이. Method of manufacturing semiconductor device
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
KR20200125453A (en) 2019-04-24 2020-11-04 에이에스엠 아이피 홀딩 비.브이. Gas-phase reactor system and method of using same
KR20200130118A (en) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. Method for Reforming Amorphous Carbon Polymer Film
KR20200130121A (en) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. Chemical source vessel with dip tube
KR20200130652A (en) 2019-05-10 2020-11-19 에이에스엠 아이피 홀딩 비.브이. Method of depositing material onto a surface and structure formed according to the method
JP2020188255A (en) 2019-05-16 2020-11-19 エーエスエム アイピー ホールディング ビー.ブイ. Wafer boat handling device, vertical batch furnace, and method
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
USD935572S1 (en) 2019-05-24 2021-11-09 Asm Ip Holding B.V. Gas channel plate
USD922229S1 (en) 2019-06-05 2021-06-15 Asm Ip Holding B.V. Device for controlling a temperature of a gas supply unit
KR20200141003A (en) 2019-06-06 2020-12-17 에이에스엠 아이피 홀딩 비.브이. Gas-phase reactor system including a gas detector
KR20200143254A (en) 2019-06-11 2020-12-23 에이에스엠 아이피 홀딩 비.브이. Method of forming an electronic structure using an reforming gas, system for performing the method, and structure formed using the method
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
USD931978S1 (en) 2019-06-27 2021-09-28 Asm Ip Holding B.V. Showerhead vacuum transport
KR20210005515A (en) 2019-07-03 2021-01-14 에이에스엠 아이피 홀딩 비.브이. Temperature control assembly for substrate processing apparatus and method of using same
JP2021015791A (en) 2019-07-09 2021-02-12 エーエスエム アイピー ホールディング ビー.ブイ. Plasma device and substrate processing method using coaxial waveguide
CN112216646A (en) 2019-07-10 2021-01-12 Asm Ip私人控股有限公司 Substrate supporting assembly and substrate processing device comprising same
KR20210010307A (en) 2019-07-16 2021-01-27 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
KR20210010816A (en) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. Radical assist ignition plasma system and method
KR20210010820A (en) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. Methods of forming silicon germanium structures
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
CN112242296A (en) 2019-07-19 2021-01-19 Asm Ip私人控股有限公司 Method of forming topologically controlled amorphous carbon polymer films
CN112309843A (en) 2019-07-29 2021-02-02 Asm Ip私人控股有限公司 Selective deposition method for achieving high dopant doping
CN112309899A (en) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 Substrate processing apparatus
CN112309900A (en) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 Substrate processing apparatus
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
KR20210018759A (en) 2019-08-05 2021-02-18 에이에스엠 아이피 홀딩 비.브이. Liquid level sensor for a chemical source vessel
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
JP2021031769A (en) 2019-08-21 2021-03-01 エーエスエム アイピー ホールディング ビー.ブイ. Production apparatus of mixed gas of film deposition raw material and film deposition apparatus
USD930782S1 (en) 2019-08-22 2021-09-14 Asm Ip Holding B.V. Gas distributor
KR20210024423A (en) 2019-08-22 2021-03-05 에이에스엠 아이피 홀딩 비.브이. Method for forming a structure with a hole
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
KR20210024420A (en) 2019-08-23 2021-03-05 에이에스엠 아이피 홀딩 비.브이. Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane
KR20210029090A (en) 2019-09-04 2021-03-15 에이에스엠 아이피 홀딩 비.브이. Methods for selective deposition using a sacrificial capping layer
KR20210029663A (en) 2019-09-05 2021-03-16 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
CN112593212B (en) 2019-10-02 2023-12-22 Asm Ip私人控股有限公司 Method for forming topologically selective silicon oxide film by cyclic plasma enhanced deposition process
TW202129060A (en) 2019-10-08 2021-08-01 荷蘭商Asm Ip控股公司 Substrate processing device, and substrate processing method
KR20210043460A (en) 2019-10-10 2021-04-21 에이에스엠 아이피 홀딩 비.브이. Method of forming a photoresist underlayer and structure including same
KR20210045930A (en) 2019-10-16 2021-04-27 에이에스엠 아이피 홀딩 비.브이. Method of Topology-Selective Film Formation of Silicon Oxide
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
KR20210047808A (en) 2019-10-21 2021-04-30 에이에스엠 아이피 홀딩 비.브이. Apparatus and methods for selectively etching films
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
KR20210054983A (en) 2019-11-05 2021-05-14 에이에스엠 아이피 홀딩 비.브이. Structures with doped semiconductor layers and methods and systems for forming same
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
KR20210062561A (en) 2019-11-20 2021-05-31 에이에스엠 아이피 홀딩 비.브이. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
KR20210065848A (en) 2019-11-26 2021-06-04 에이에스엠 아이피 홀딩 비.브이. Methods for selectivley forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
CN112951697A (en) 2019-11-26 2021-06-11 Asm Ip私人控股有限公司 Substrate processing apparatus
CN112885693A (en) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 Substrate processing apparatus
CN112885692A (en) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 Substrate processing apparatus
JP2021090042A (en) 2019-12-02 2021-06-10 エーエスエム アイピー ホールディング ビー.ブイ. Substrate processing apparatus and substrate processing method
KR20210070898A (en) 2019-12-04 2021-06-15 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
CN112992667A (en) 2019-12-17 2021-06-18 Asm Ip私人控股有限公司 Method of forming vanadium nitride layer and structure including vanadium nitride layer
KR20210080214A (en) 2019-12-19 2021-06-30 에이에스엠 아이피 홀딩 비.브이. Methods for filling a gap feature on a substrate and related semiconductor structures
KR20210095050A (en) 2020-01-20 2021-07-30 에이에스엠 아이피 홀딩 비.브이. Method of forming thin film and method of modifying surface of thin film
TW202130846A (en) 2020-02-03 2021-08-16 荷蘭商Asm Ip私人控股有限公司 Method of forming structures including a vanadium or indium layer
TW202146882A (en) 2020-02-04 2021-12-16 荷蘭商Asm Ip私人控股有限公司 Method of verifying an article, apparatus for verifying an article, and system for verifying a reaction chamber
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
US11781243B2 (en) 2020-02-17 2023-10-10 Asm Ip Holding B.V. Method for depositing low temperature phosphorous-doped silicon
KR20210116240A (en) 2020-03-11 2021-09-27 에이에스엠 아이피 홀딩 비.브이. Substrate handling device with adjustable joints
KR20210116249A (en) 2020-03-11 2021-09-27 에이에스엠 아이피 홀딩 비.브이. lockout tagout assembly and system and method of using same
KR20210117157A (en) 2020-03-12 2021-09-28 에이에스엠 아이피 홀딩 비.브이. Method for Fabricating Layer Structure Having Target Topological Profile
KR20210124042A (en) 2020-04-02 2021-10-14 에이에스엠 아이피 홀딩 비.브이. Thin film forming method
TW202146689A (en) 2020-04-03 2021-12-16 荷蘭商Asm Ip控股公司 Method for forming barrier layer and method for manufacturing semiconductor device
TW202145344A (en) 2020-04-08 2021-12-01 荷蘭商Asm Ip私人控股有限公司 Apparatus and methods for selectively etching silcon oxide films
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
KR20210132600A (en) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
KR20210132605A (en) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. Vertical batch furnace assembly comprising a cooling gas supply
US11898243B2 (en) 2020-04-24 2024-02-13 Asm Ip Holding B.V. Method of forming vanadium nitride-containing layer
KR20210134226A (en) 2020-04-29 2021-11-09 에이에스엠 아이피 홀딩 비.브이. Solid source precursor vessel
KR20210134869A (en) 2020-05-01 2021-11-11 에이에스엠 아이피 홀딩 비.브이. Fast FOUP swapping with a FOUP handler
KR20210141379A (en) 2020-05-13 2021-11-23 에이에스엠 아이피 홀딩 비.브이. Laser alignment fixture for a reactor system
KR20210143653A (en) 2020-05-19 2021-11-29 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
KR20210145078A (en) 2020-05-21 2021-12-01 에이에스엠 아이피 홀딩 비.브이. Structures including multiple carbon layers and methods of forming and using same
TW202201602A (en) 2020-05-29 2022-01-01 荷蘭商Asm Ip私人控股有限公司 Substrate processing device
CN111818533B (en) * 2020-06-04 2021-08-17 浙江大学 Wireless communication system design method based on intelligent reflecting surface
TW202204667A (en) 2020-06-11 2022-02-01 荷蘭商Asm Ip私人控股有限公司 Atomic layer deposition and etching of transition metal dichalcogenide thin films
TW202218133A (en) 2020-06-24 2022-05-01 荷蘭商Asm Ip私人控股有限公司 Method for forming a layer provided with silicon
TW202217953A (en) 2020-06-30 2022-05-01 荷蘭商Asm Ip私人控股有限公司 Substrate processing method
TW202219628A (en) 2020-07-17 2022-05-16 荷蘭商Asm Ip私人控股有限公司 Structures and methods for use in photolithography
TW202204662A (en) 2020-07-20 2022-02-01 荷蘭商Asm Ip私人控股有限公司 Method and system for depositing molybdenum layers
US11725280B2 (en) 2020-08-26 2023-08-15 Asm Ip Holding B.V. Method for forming metal silicon oxide and metal silicon oxynitride layers
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
TW202229613A (en) 2020-10-14 2022-08-01 荷蘭商Asm Ip私人控股有限公司 Method of depositing material on stepped structure
TW202217037A (en) 2020-10-22 2022-05-01 荷蘭商Asm Ip私人控股有限公司 Method of depositing vanadium metal, structure, device and a deposition assembly
TW202223136A (en) 2020-10-28 2022-06-16 荷蘭商Asm Ip私人控股有限公司 Method for forming layer on substrate, and semiconductor processing system
TW202235675A (en) 2020-11-30 2022-09-16 荷蘭商Asm Ip私人控股有限公司 Injector, and substrate processing apparatus
CN114639631A (en) 2020-12-16 2022-06-17 Asm Ip私人控股有限公司 Fixing device for measuring jumping and swinging
TW202231903A (en) 2020-12-22 2022-08-16 荷蘭商Asm Ip私人控股有限公司 Transition metal deposition method, transition metal layer, and deposition assembly for depositing transition metal on substrate
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
US20220397826A1 (en) * 2021-06-15 2022-12-15 Inpria Corporation Organotin patterning materials with ligands having silicon/germanium; precursor compositions; and synthesis methods
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3632429A (en) * 1970-06-30 1972-01-04 Matsushita Electric Ind Co Ltd Method for making metal oxide film resistors
SE393967B (en) 1974-11-29 1977-05-31 Sateko Oy PROCEDURE AND PERFORMANCE OF LAYING BETWEEN THE STORAGE IN A LABOR PACKAGE
JPS60108338A (en) * 1983-11-15 1985-06-13 Nippon Telegr & Teleph Corp <Ntt> Manufacture of base material for optical fiber
US5208284A (en) * 1989-12-05 1993-05-04 Ethyl Corporation Coating composition
US5820664A (en) 1990-07-06 1998-10-13 Advanced Technology Materials, Inc. Precursor compositions for chemical vapor deposition, and ligand exchange resistant metal-organic precursor solutions comprising same
US5204314A (en) 1990-07-06 1993-04-20 Advanced Technology Materials, Inc. Method for delivering an involatile reagent in vapor form to a CVD reactor
US5262199A (en) * 1992-04-17 1993-11-16 Center For Innovative Technology Coating porous materials with metal oxides and other ceramics by MOCVD
US5417823A (en) * 1993-12-17 1995-05-23 Ford Motor Company Metal-nitrides prepared by photolytic/pyrolytic decomposition of metal-amides
US5464666A (en) * 1995-02-06 1995-11-07 Air Products And Chemicals, Inc. Process for chemical vapor codeposition of copper and aluminum alloys
US5725904A (en) * 1995-06-02 1998-03-10 Elf Atochem North America, Inc. Liquid methyltin halide compositions
US5952047A (en) * 1997-03-28 1999-09-14 Dowa Mining Co., Ltd. CVD precursors and film preparation method using the same
WO1998046617A1 (en) 1997-04-17 1998-10-22 The President And Fellows Of Harvard College Liquid precursor for formation of metal oxides
JPH1174478A (en) * 1997-09-01 1999-03-16 Matsushita Electron Corp Manufacture of dielectric film, semiconductor device, manufacture thereof, and manufacturing device therefor
US6045864A (en) * 1997-12-01 2000-04-04 3M Innovative Properties Company Vapor coating method
US6015917A (en) * 1998-01-23 2000-01-18 Advanced Technology Materials, Inc. Tantalum amide precursors for deposition of tantalum nitride on a substrate

Also Published As

Publication number Publication date
KR20010015186A (en) 2001-02-26
TW467963B (en) 2001-12-11
KR100333933B1 (en) 2002-04-22
JP2001081560A (en) 2001-03-27
EP1067595A2 (en) 2001-01-10
US6238734B1 (en) 2001-05-29
EP1067595A3 (en) 2002-01-16

Similar Documents

Publication Publication Date Title
JP3576934B2 (en) Method for growing multimetallic compound layers and compositions for growing mixed metal or metal compound layers
JP3677218B2 (en) Liquid precursor mixture for the deposition of multi-component metal-containing materials
JP3588334B2 (en) Method for depositing metal metalloid oxides and nitrides with composition gradient
EP0920435B1 (en) Random access memory device and platinum chemical vapour deposition process used in its preparation
JP4861550B2 (en) Alkane / polyamine solvent composition for liquid fed CVD
TWI398543B (en) Atomic layer deposition systems and methods including metal beta-diketiminate compounds
EP0990059B1 (en) Low temperature chemical vapor deposition process for forming bismuth-containing ceramic thin films useful in ferroelectric memory devices
US6350686B1 (en) Organometallic compound mixtures in chemical vapor deposition
TWI410514B (en) Unsymmetrical ligand sources, reduced symmetry metal-containing compounds, and systems and methods including same
TW200424338A (en) Method for metal oxide thin film deposition via MOCVD
EP2132357A2 (en) Methods for forming a ruthenium-based film on a substrate
US6218518B1 (en) Tetrahydrofuran-adducted group II β-diketonate complexes as source reagents for chemical vapor deposition
EP1132494B1 (en) Deposition and annealing of multicomponent ZrSnTi and HfSnTi oxide thin films using solventless liquid mixture of precursors
US6858251B2 (en) Lanthanum complex and process for the preparation of a BLT layer using same
JP2005023010A (en) Organovanadium compound, solution raw material containing the compound and method for forming vanadium-containing thin film
JP2005023009A (en) Organovanadium compound, solution raw material controlling the compound and method for forming vanadium-containing thin film

Legal Events

Date Code Title Description
A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20040217

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20040220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040708

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070716

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6