JP3574044B2 - 形状測定装置 - Google Patents

形状測定装置 Download PDF

Info

Publication number
JP3574044B2
JP3574044B2 JP2000146146A JP2000146146A JP3574044B2 JP 3574044 B2 JP3574044 B2 JP 3574044B2 JP 2000146146 A JP2000146146 A JP 2000146146A JP 2000146146 A JP2000146146 A JP 2000146146A JP 3574044 B2 JP3574044 B2 JP 3574044B2
Authority
JP
Japan
Prior art keywords
mirror
coordinates
light
measuring
equation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000146146A
Other languages
English (en)
Other versions
JP2001338278A (ja
Inventor
日出人 藤田
博明 吉田
晋平 福本
浩 蚊野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2000146146A priority Critical patent/JP3574044B2/ja
Publication of JP2001338278A publication Critical patent/JP2001338278A/ja
Application granted granted Critical
Publication of JP3574044B2 publication Critical patent/JP3574044B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、測定ヘッドを動かして測定台上に載置された被測定物の3次元的形状を測定する形状測定装置に関する。
【0002】
【従来の技術】
従来から、スポット光またはスリット光を被測定物に照射し、被測定物の表面に観察される光像の位置からその形状を復元する能動ステレオ型の形状測定装置が知られている。
【0003】
この能動ステレオ型の形状測定装置としては、測定台上に載置された被測定物の周囲からスリット光を回転ミラーによって走査させるものや、回転ステージを使用して、被測定物を360度の全周囲から測定するものが開発されている。
【0004】
しかしながら、被測定物が複雑な形状である場合には、回転ステージを用いても観察できない領域が存在するため、被測定物全体の形状を測定できない。
【0005】
これに対し、本願出願人は、コンパクトな測定ヘッドを手に把持し、被測定物の周りで測定ヘッドを移動させることにより測定を行う形状測定装置を既に開発している(特開2000−39310号参照)。
【0006】
この形状測定装置によれば、被測定物に対し、自由な角度から測定を行うことができるため、被測定物の形状が複雑であっても、適切に測定を行うことができる。
【0007】
【発明が解決しようとする課題】
しかしながら、被測定物の全体形状を測定するためには、測定ヘッドの位置を変えながら何度も計測を行う必要があり、計測手順が増加するという問題がある。
【0008】
そこで、本発明は、少ない測定手順で適切な3次元形状を測定することができる形状測定装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
この発明による第1の形状測定装置は、測定台上に載置された被測定物の形状を測定する測定ヘッド、測定ヘッドの位置を検出する位置検出手段、ならびに測定ヘッドと位置検出手段との出力に基づいて被測定物の3次元形状を求める演算手段を備えた形状測定装置であって、被測定物を映す鏡を測定台上に配置したことを特徴とする。
【0010】
位置検出手段としては、たとえば、2台のカメラを用いてステレオ法により測定ヘッドの位置を検出するものが用いられる。測定ヘッドとしては、たとえば、被測定物に対して光束を照射する光照射手段、および光照射手段からの光束が照射される被測定物上の測定点を撮像することにより、被測定物の実像と鏡に映った被測定物の虚像とを撮像する撮像手段を含んでいるものが用いられる。
【0011】
鏡としては、表面に光反射面が形成されているものが用いられる。この場合には、演算手段としては、たとえば、撮像手段の撮像画面上での測定点の座標と、光照射手段から出射された光束を表す平面を表す方程式とに基づいて、測定ヘッド中心の座標系での測定点の座標を求める第1手段、第1手段によって求められた各測定点の座標を、位置検出手段による検出結果に基づいて、ワールド座標系の座標に変換することにより、被測定物の実像に対する3次元形状と、鏡に映った被測定物の虚像に対する3次元形状とを求める第2手段、鏡の光反射面を表すワールド座標系での方程式を求める第3手段、鏡の光反射面を表す方程式に基づいて、虚像に対する3次元形状の光反射面に対して対称な3次元形状を求める第4手段、ならびに虚像に対する3次元形状の光反射面に対して対称な3次元形状と、被測定物の実像に対する3次元形状とを合成することにより被測定物の3次元形状を求める第5手段を備えているものが用いられる。
【0012】
鏡の光反射面を表す方程式を求める手段としては、たとえば、2台のカメラを用いてステレオ法により光反射面上の3点以上の点の座標を測定する手段、および得られた光反射面上の3点以上の点の座標に基づいて光反射面を表す方程式を求める手段を備えているものが用いられる。
【0013】
鏡の光反射面を表す方程式を求める手段としては、たとえば、光反射面上に不透明な薄板を載せた状態で、測定ヘッドを用いて薄板を撮像し、薄板の平面を特定するための3点以上の点の測定ヘッド中心の座標系での座標を抽出する手段、得られた測定ヘッド中心の座標系での3点以上の点の座標を、位置検出手段による検出結果に基づいて、ワールド座標系での座標に変換する手段、および得られたワールド座標系での3点以上の点の座標に基づいて、ワールド座標系での薄板の平面を表す方程式を求める手段を備えているものが用いられる。
【0014】
測定ヘッドの光照射手段から照射される光束が、鏡の光反射面に対して垂直に出射されるように、測定ヘッドの姿勢を規制するガイド手段を設けることが好ましい。ガイド手段は、測定ヘッドの移動経路を規制するものであることが好ましい。測定ヘッドをガイド手段に沿って移動させるための駆動手段を設けることが好ましい。
【0015】
測定ヘッドの移動経路全体を覆う筐体を設けてもよい。筐体が被測定物を挿脱するための開口部を備えていてもよい。筐体の開口部に弾性部材からなる蓋部を設け、蓋部に被測定物を挿脱するための切込部を形成してもよい。
【0016】
鏡として、表面に光反射面が形成された光反射板と、光反射板上に形成された透明板とからなるものを用いてもよい。この場合には、演算手段としては、たとえば、被測定物の実像上の測定点に対しては、撮像手段の撮像画面上での測定点の座標と、光照射手段から出射された光束を表す平面を表す方程式とに基づいて、測定ヘッド中心の座標系での測定点の座標を求める第1手段、鏡に映った被測定物の虚像上の測定点に対しては、撮像手段の撮像画面上での測定点の座標値を鏡の透明板の屈折量を考慮して補正した後の座標値と、光照射手段から出射された光束を表す平面の方程式を鏡の透明板の屈折量を考慮して補正した後の方程式とに基づいて、測定ヘッド中心の座標系での測定点の座標を求める第2手段、第1手段および第2手段によって求められた各測定点の座標を、位置検出手段による検出結果に基づいて、ワールド座標系の座標に変換することにより、被測定物の実像に対する3次元形状と、鏡に映った被測定物の虚像に対する3次元形状とを求める第3手段、鏡の光反射面を表すワールド座標系での方程式を求める第4手段、鏡の光反射面を表す方程式に基づいて、虚像に対する3次元形状の光反射面に対して対称な3次元形状を求める第5手段、ならびに虚像に対する3次元形状の光反射面に対して対称な3次元形状と、被測定物の実像に対する3次元形状とを合成することにより被測定物の3次元形状を求める第6手段を備えているものが用いられる。
【0017】
鏡の光反射面を表す方程式を求める手段としては、たとえば、2台のカメラを用いてステレオ法により、鏡が載置された測定台上の3点以上の点の座標を測定する手段、および得られた測定台上の3点以上の点の座標に基づいて光反射面を表す方程式を求める手段を備えているものが用いられる。
【0018】
測定ヘッドの光照射手段から照射される光束が、鏡の光反射面に対して垂直に出射されるように、測定ヘッドの姿勢を規制するガイド手段を設けることが好ましい。
【0019】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。
【0020】
〔1〕形状測定装置の概略構成の説明
【0021】
図1は、形状測定装置の概略構成を示している。
【0022】
測定台201には、円弧状のガイドレール204が固定されており、そのガイドレール204で囲まれる領域に平板状の鏡205が配置されている。鏡205としては、表面に光反射面を有するステンレスミラー205が用いられている。そして、このステンレスミラー205上に、被測定物としての足100が載せられている。また、測定台201には、測定台201に対して脱着可能な支柱202が取り付けられており、その上部には、水平バー203が取り付けられている。
【0023】
形状測定装置は、測定者によって手動でガイドレール204に沿って移動せしめられる測定ヘッド10と、水平バー203の両端部に取り付けられたステレオカメラ21、22と、それらの制御、各種演算等を行うパーソナルコンピュータからなる制御装置30とを備えている。各ステレオカメラ21、22の撮像レンズには、図2に示すマーカ14が放つ光の周波数帯を選択的に透過するバンドパスフィルタ23が取り付けられている。
【0024】
〔2〕測定ヘッド10の概略構成の説明
【0025】
図2は、図1における測定ヘッド10の概略構成を示している。
【0026】
測定ヘッド10は、直方体形状で前方開口のケーシング11と、ケーシング11内に収納された1台のCCDカメラ12及びスリット光源13と、ケーシング11の上面に設けられた6つのLED光源14a〜14fからなるマーカ14とを備えている。スリット光源13としては、半導体レーザが用いられている。
【0027】
測定ヘッド10は、図示しない支持機構によって、ガイドレール204に沿って移動可能に取り付けられている。測定ヘッド10が、図示しない支持機構によって、ガイドレール204に取り付けられることにより、スリット光源13から出射される光束がステンレスミラー205に対して垂直な面に沿って出射されるように測定ヘッド10の姿勢が規制されている。
【0028】
マーカ14を構成する6つのLED光源14a〜14fは、測定ヘッド10の方向を特定するために、点対称な配置とせず、測定ヘッド10の中心線に対し線対称な配置となっている。ここでは、ケーシング11の上面にLED光源14b、14c、14d、14e、14fの5点が長方形をなすように配置され、それら5点の重心にLED光源14aが配置されている。なお、3次元空間中での測定ヘッド10の位置及び方向を測定するためには、マーカとして少なくとも3個のLED光源があれば十分であるが、4個以上のLED光源を用いることにより、測定ヘッド10の位置及び方向の測定精度が最小2乗的に向上する。
【0029】
また、形状測定装置10は、ガイドレール204上における形状測定装置10の位置を検出するためのエンコーダ16を備えている。エンコーダ16の出力は、制御装置30に入力される。
【0030】
〔3〕形状測定装置の測定原理の説明
【0031】
図3は、形状測定装置の測定原理を示している。
【0032】
測定者によってガイドレール204上を移動せしめられる測定ヘッド10を用いてある測定点Aの座標を測定する。測定された座標を測定ヘッド中心の座標系(以下、カメラ座標系という)における座標(x,y,z)で表す。カメラ座標系は、測定ヘッド10の移動とともに移動する座標系である。
【0033】
一方、被測定物100の形状は、固定した座標系で表され、この座標系をワールド座標と呼ぶ。測定ヘッド10によって測定された測定点のワールド座標系における座標を(X,Y,Z)とする。被測定物100の形状はワールド座標系で記述する必要があるため、測定ヘッド10によって測定された測定点Aのカメラ座標系における座標(x,y,z)を、ワールド座標系に変換する。この変換は、測定ヘッド10の移動を表す回転行列Rと並進ベクトルtとを用いて、次の数式1に基づいて行われる。
【0034】
【数1】
Figure 0003574044
【0035】
したがって、ワールド座標系における測定ヘッド10の位置及び方向を、回転行列Rと並進ベクトルtとして求めることで、カメラ座標系における座標(x,y,z)を、ワールド座標系に変換することができる。
【0036】
〔4〕形状測定装置による測定処理手順の説明
【0037】
この形状測定装置による形状測定は、次のような処理手順によって実行される。
【0038】
(1) 第1ステップ:ワールド座標系における測定ヘッド10の各測定位置に関する情報を、測定ヘッド10の各測定位置におけるエンコーダ16の出力値と対応付けて、制御装置30に搭載されたメモリ(図示省略)に格納する。
【0039】
(2) 第2ステップ:ワールド座標系におけるステンレスミラー205の平面を表す方程式を算出する。
【0040】
(3) 第3ステップ:測定ヘッド10を用いて、カメラ座標系における被測定物上の測定点の座標を求める。
【0041】
(4) 第4ステップ:ワールド座標系における測定ヘッド10の位置に関する情報に基づいて、カメラ座標系における被測定物上の測定点の座標を、ワールド座標系における座標に変換する。
【0042】
(5) 第5ステップ:ワールド座標系における測定点のうち、ステンレスミラー205に映り込んだ虚像上の座標を、実像上の座標に変換する。
【0043】
以下、これら各ステップについて説明する。
【0044】
〔4−1〕第1ステップについての説明
図5は、第1ステップの処理手順を説明するフローチャートである。
【0045】
まず、測定ヘッド10をガイドレール204の基準位置に配置して(ステップS01)、その位置におけるエンコーダ16の出力値を制御装置30のメモリに格納する(ステップS02)。
【0046】
次に、測定ヘッド10に設けられたマーカ14のワールド座標系における座標を、ステレオカメラ21、22によって測定する。この位置測定方法は、ステレオ法としてよく知られているため、その説明を省略する(ステップS03)。
【0047】
次に、マーカ14を構成する各LED光源14a〜14fのカメラ座標系の座標をそれぞれ(xi,yi,zi)とし、また、ステレオカメラ21、22によって測定された各LED光源14a〜14fのワールド座標系における座標をそれぞれ(Xi,Yi,Zi)とする。但し、iは、1、2…6である。各LED光源14a〜14fのカメラ座標系の各座標(xi,yi,zi)は、既知である。
【0048】
測定ヘッド10の移動を表す回転行列Rと並進ベクトルtを、次の数式2を満足する行列Rとベクトルtとして求める(ステップS04)。そして、求めた行列Rとベクトルtとを、先にメモリに格納しておいたエンコーダ16の出力値と対応付けてメモリに格納する(ステップS05)。
【0049】
【数2】
Figure 0003574044
【0050】
そして、測定ヘッド10をガイドレール204に沿って移動させ、全ての測定位置について上述したステップS02〜S05の処理を繰り返す(ステップS06、S07)。これにより、エンコーダ16の出力値とその位置における回転行列R及び並進ベクトルtを対応付けたテーブルデータが生成され、制御装置30のメモリに格納される。
【0051】
〔4−2〕第2ステップについての説明
第2ステップでは、まず、測定台201上に設けられたステンレスミラー205を不透明な薄板で覆い、その薄板上の点についてワールド座標系における座標がステレオ法により測定される。次に、得られた薄板上の点のワールド座標系における座標に基づいて、ステンレスミラー205の平面を表す方程式AX+BY+CZ+D=0を算出する。平面の方程式の算出にあたっては、平板上の点として少なくとも3点あればよい。
【0052】
ステンレスミラー205を不透明な薄板で覆い測定する代わりに、ステンレスミラー205上に少なくとも3個のマーカを設け、そのマーカの位置を計測することにより、ステンレスミラー205の平面の方程式を算出するようにしてもよい。
【0053】
また、測定ヘッド10を用いて、ステンレスミラー205の平面を表す方程式AX+BY+CZ+D=0を求めてもよい。つまり、測定台201上に設けられたステンレスミラー205を不透明な薄板で覆い、この薄板を測定ヘッド10によって撮像し、薄板の平面を求めるための3点の座標(カメラ座系での座標)を抽出する。抽出したカメラ座標系での3点の座標を、第1ステップで求められた、当該測定ヘッド10の位置に対応する回転行列Rと並進ベクトルtとに基づいて、ワールド座標系での座標に変換する。得られたワールド座標系での3点の座標に基づいて、ワールド座標系での薄板の平面の方程式を求める。
【0054】
なお、被測定物を測定台201上に配置して測定を行う以下の処理においては、ステレオカメラ21、22を用いないため、図1に矢印で示すように、支柱202ごと測定台201から取り外して測定が行われる。
【0055】
〔4−3〕第3ステップについての説明
図4は測定ヘッド10による測定点の位置測定方法を示している。
【0056】
図4に示すように、カメラ座標系とは、CCDカメラ12の光学中心を原点とし、光軸方向をz軸、CCDカメラ12の水平方向をx軸、CCDカメラ12の垂直方向をy軸とする座標系である。CCDカメラ12の画像面Sは、原点から焦点距離fの位置に存在する。つまり、画像面Sは、x−y平面に平行でかつz=fである平面である。
【0057】
測定ヘッド10による位置計測方法自体は、光切断法と呼ばれる公知の測定方法である。被測定物100の表面上におけるスリット光源13からのスリット光が照射されている線上の所定の点を測定点Aとする。
【0058】
この測定点Aのカメラ座標系での座標を(x,y,z)とし、画像面S上での測定点Aに対応する観察点A´の座標を(xs,ys,f)とし、スリット光を表す平面の方程式をax+by+cz+d=0とする。観察点A´の座標(xs,ys,f)におけるfは、CCDカメラ12の焦点距離として既知であり、(xs,ys)は画像面で観察されるスリット光の画素位置から求められる。
【0059】
スリット光を表す平面の方程式は測定ヘッド10の校正によって求められている。したがって、x,y,z,αを未知数とする次の数式3で表される連立方程式を解くことにより、(x,y,z)が求められる。
【0060】
【数3】
Figure 0003574044
【0061】
この処理は、CCDカメラ12の出力に基づいて、制御装置30によって行われる。
【0062】
〔4−4〕第4ステップについての説明
第4ステップでは、まず、エンコーダ16の出力に基づいて、制御装置30のメモリから対応する回転行列Rと並進ベクトルtが読み出される。
【0063】
次に、得られた回転行列Rと並進ベクトルtとに基づいて、第3ステップで求めたカメラ座標系における足100上の測定点の座標を、ワールド座標系の座標に変換する。
【0064】
そして、測定ヘッド10をガイドレール204に沿って移動させながら、ガイドレール204上における全ての観察位置について、第3及び第4ステップの処理を繰り返すことにより、その都度得られる測定点のワールド座標系における座標(X,Y,Z)の集合として、図6に示すような足100の像が生成される。
【0065】
〔5−5〕第5ステップについての説明
第5ステップでは、まず、第4ステップにおいて得られた図6に示す足100の像に基づいて、図6に破線で示す足100の実像Iと、図6に実線で示すステンレスミラー205に映った足100の虚像Iとが識別される。
【0066】
この識別方法について説明する。例えば、第2ステップにおいて得られたステンレスミラー205の平面を表す方程式をAX+BY+CZ+D=0とする。各測定点のワールド座標系の座標を用いて、測定点毎にβ(=AX+BY+CZ+D)を求める。β≧0となる測定点は、ステンレスミラー205の平面より上側(座標軸上では正側)にあるため、足100の実像I上の測定点であると識別される。逆にβ<0となる測定点は、ステンレスミラー205に映った足100の虚像I上の測定点であると識別される。
【0067】
そして、虚像Iのステンレスミラー205の平面に対して対称な像I´を求め、得られた対称な像I´を実像Iと合成することにより、図7に示すような足100の像が得られる。
【0068】
図7に示すように、このようにして得られた像は、足100の土踏まずの部分が、ステンレスミラー205に映り込んだ虚像Iに基づいて生成された像I´により補われており、より忠実に足100の形状が再現されている。
【0069】
このように上記実施の形態によれば、測定台201の上面にステンレスミラー205を配置して、被測定物としての足100の実像に、ステンレスミラー205に映り込んだ虚像に基づいて生成された像を合成しているため、足100における土踏まずなど凹みのある部分の像を補うことができ、適切な足100の3次元形状を生成することが可能となる。
【0070】
このとき、足100における土踏まずなど凹みのある部分の像(虚像)と側面(実像)とが同時に測定されているため、少ない測定手順で適切な3次元形状を測定することができる。
【0071】
また、上記実施の形態によれば、スリット光源13から出射される光束がステンレスミラー205に対して垂直な面に沿って出射されるように測定ヘッド10の姿勢が規制されているため、測定時においては、スリット光源13から直接足100に照射される光束と、一旦ステンレスミラー205に反射されてから足100に照射される光束とが重なることになる。これにより、ステンレスミラー205に反射された光束が、誤った像を生成することがなくなり、精度良く測定を行うことが可能となる。
【0072】
また、上記実施の形態によれば、第1及び第2ステップにおける初期設定が完了した後は、測定台201に対してステレオカメラ21、22を取り外して被測定物の測定を行うことができるため、測定装置の小型化を図ることが可能となる。
【0073】
たとえ、測定装置の移動等によりガイドレール204の軌道が変化した場合でも、ステレオカメラ21、22を取り付けてテーブルデータの更新を行うことにより、精度を保つことができる。
【0074】
また、上記実施の形態によれば、測定台201上面を鏡面とするために、光反射面が露出しているステンレスミラー205を用いているため、反射面上における光の屈折が生じることがなく、精度良く測定を行うことが可能となる。
【0075】
なお、上記実施の形態においては、測定ヘッド10を測定者が手動で移動させる構成としたが、モータを用いて測定ヘッド10を自動的にガイドレール204に沿って移動させるようにしてもよい。このようにすると、測定者が測定ヘッド10に触れることなく自動的に被測定物の測定を行うことができるようになる。
【0076】
更に、測定ヘッド10をモータで移動させる場合には、被測定物を配置して測定を行う間、測定者は測定ヘッド10に触れる必要がないため、図8に示すように、測定装置全体を筐体206で覆うことができる。このようにすると、照明光等の外乱光を遮断することができるため、精度よく測定を行うことが可能となる。
【0077】
また、人の足の形状を測定するような場合には、図9に示すように、筐体206の上部に開口部207を設ければよい。この場合、開口部207をゴム等の弾性部材からなる弾性板208で塞ぎ、その弾性板208に設けたスリット209から足等の被測定物が挿入できるように構成することにより、開口部207と被測定物との隙間から照明光等の外乱光が入射することがなくなり、精度よく測定を行うことが可能となる。
【0078】
また、上記実施の形態においては、測定ヘッド10をガイドレール204に沿って移動させる場合について説明したが、図10に示すように、測定ヘッド10を自由に移動させるように構成してもよい。この場合、第1ステップにおけるステップS03、S04の処置が、測定ヘッド10の測定位置毎に行われることになる。
【0079】
また、ステンレスミラー205は、測定台201の上面と平行な位置だけでなく、例えば図10において破線で示すような測定台201の上面と垂直な位置など、任意の位置に配置してもよい。この場合、ステンレスミラー205の位置を変える毎に第2のステップを行えば、ステンレスミラー205の位置に拠らず、適切な測定を行うことができる。これにより、測定対象物100の大きさや形状に応じて、任意にステンレスミラー205の位置を変更することができるため、ステンレスミラー205を適切な位置に配置すれば、より少ない測定手順で適切な3次元形状を測定することができる。
【0080】
また、鏡205としては、ステンレスミラーに限定されることはなく、光反射率の高い種々の部材を用いてもよい。
【0081】
また、上記実施の形態においては、ステレオカメラ21、22の出力を用いてワールド座標系での測定ヘッド10の位置に関する情報、すなわち回転行列R及び並進ベクトルtを求めたが、測定ヘッド10の移動軌跡が特定されていればステレオカメラ21、22を用いることなく回転行列R及び並進ベクトルtが求められる。
【0082】
また、測定ヘッド10としては、被測定物上の測定点の位置を測定できるものであれば、上述した実施の形態と異なるものであってもよい。例えば、スリット光源13の代わりにスポット光源を用いてもよい。
【0083】
〔5〕表面に光反射面が形成された光反射板と光反射板上に形成された透明ガラス板とからなる鏡を用いた場合の実施の形態の説明
【0084】
上記実施の形態では、鏡として表面に光反射面を有するステンレスミラー205が用いられているが、足の100の裏面の形状をより広い範囲にわたって測定するために、図11に示すような表面に光反射面が形成された光反射板301と光反射板301上に形成された透明ガラス板302とからなる鏡300を、ステンレスミラー205に代えて用いることができる。
【0085】
ただし、このような鏡300を用いた場合には、透明ガラス板302内を光が通過する際に光が屈曲するので、次のような補正が必要となる。
【0086】
測定ヘッド10内のスリット光源13から出射された光束は、矢印L1で示すように、鏡300の上面から入射し、透明ガラス板302内を通って鏡300の光反射板301で反射される。この反射光は、矢印L2で示すように、再度、透明ガラス板302内を通って、鏡300の上面から出射され、被測定物100に照射される。光束は、透明ガラス板302内を通過する際に屈曲するため、被測定物100に照射される際の光束を表す方程式ax+by+cz+d=0を、光の屈曲を考慮して補正する必要がある。
【0087】
つまり、第3ステップで用いられる光束を表す方程式ax+by+cz+d=0を、光の屈曲を考慮して補正する必要がある。
【0088】
また、被測定物100から反射された光束は、同様に、鏡300の上面から入射し、透明ガラス板302内を通って鏡300の光反射板301で反射される。この反射光は、再度、透明ガラス板302内を通って、鏡300の上面から出射され、CCDカメラ12に入射する。したがって、CCDカメラ12の画像面S上での測定点の座標(観察点での座標)(xs,ys,f)における(xs,ys)も、光の屈曲を考慮して補正する必要がある。
【0089】
つまり、第3ステップで用いられる観察点での座標(xs,ys,f)における(xs,ys)を、光の屈曲を考慮して補正する必要がある。
【0090】
さらに、第2ステップでは、測定台201上に設けられたステンレスミラー205の上面を表すワールド座標系での方程式aX+bY+cZ+d=0が求められているが、鏡300を用いた場合には鏡300内の光反射板301の上面を表すワールド座標系での方程式aX+bY+cZ+d=0を求める必要がある。
【0091】
ここでは、鏡300内の光反射板301の厚さがごく薄いものであると仮定し、鏡300内の光反射板301の上面を表すワールド座標系での方程式aX+bY+cZ+d=0の代わりに、鏡300が載せられる測定台201の表面を表すワールド座標系での方程式が求められる。測定台201の表面の方程式は、次のようにして求めることができる。
【0092】
つまり、測定台201を不透明な薄板で覆い、その平板上の点についてワールド座標系における座標をステレオ法により測定する。そして、得られた薄板上の点のワールド座標系における座標に基づいて、測定台201の表面を表す方程式を算出する。平面の方程式の算出にあたっては、薄板上の点として少なくとも3点あればよい。
【0093】
測定台201を不透明な薄板で覆い測定する代わりに、測定台201上に少なくとも3個のマーカを設け、そのマーカの位置を計測することにより、測定台201の表面の方程式を算出するようにしてもよい。また、上記第2ステップで説明したように、測定ヘッド10を用いて、測定台201の表面の方程式を算出するようにしてもよい。
【0094】
ところで、図11に矢印L1、L2で示すように、スリット光源13から出射された光束は、透明ガラス板302を2回通過した後に被測定物100に照射されている。したがって、スリット光源13から出射された光束が鏡300で反射されて被測定物100に照射される際の光の屈曲特性は、鏡300の厚み(正確には透明ガラス板302の厚み)をvとすると、図11に矢印L1、L3で示すように、厚みが2vの仮想透明ガラス板を介して、この仮想透明ガラス板の向こう側にある被測定物100’に光が照射される場合の屈曲特性と等価となる。
【0095】
同様に、被測定物100から反射された光束が、鏡300で反射されてCCDカメラ12に入射する際の光の屈曲特性は、鏡300の厚み(正確には透明ガラス板302の厚み)をvとすると、厚みが2vの仮想透明ガラス板を介して、この仮想透明ガラス板の向こう側にあるCCDカメラに光が照射される場合の屈曲特性と等価となる。
【0096】
〔6〕屈曲の影響を考慮した補正方法の説明
【0097】
以下、これらの屈曲の影響を考慮した補正方法について説明する。
説明を簡単にするために、図12に示すように、スリット光源13およびCCDカメラの画像面Sが、厚さwの透明ガラス板400の手前側に位置しており、被測定物100が透明ガラス板400の向こう側に位置している場合における補正方法について説明する。そして、図11のように鏡300が測定台201上に載置されている場合の補正方法との違いについて説明を追加することにする。
【0098】
〔6−1〕被測定物100に照射される際の光束を表す方程式ax+by+cz+d=0の補正方法の説明
【0099】
図12および図13に基づいて、まず、被測定物100に照射される際の光束を表す方程式ax+by+cz+d=0の補正方法について説明する。
【0100】
(1)まず、測定ヘッド10の構成によって求められている光束を表す平面のカメラ座標系で表した方程式ax+by+cz+d=0を、ワールド座標系の方程式を表すa’X+b’Y+c’Z+d’=0に変換する。
【0101】
(2)次に、ワールド座標系での光束を表す平面の方程式(a’X+b’Y+c’Z+d’=0)と、ワールド座標系での透明ガラス板400を表す平面の方程式(a’X+b’Y+c’Z+d’=0)とに基づいて、光束を表す平面と透明ガラス板400のなす角度(入射角)θ1を求め、スネルの法則から図13のθ2を求める。
【0102】
図11のように測定台201上に鏡300が載置されている場合には、透明ガラス板400を表す平面の方程式(a’X+b’Y+c’Z+d’=0)の代わりに、鏡300が載せられる測定台201の表面の方程式が用いられる。
【0103】
なお、空気の屈折率をn1、透明ガラス板400の屈折率をn2とすると、θ1とθ2との関係は、スネルの法則によって次式4で表される。
【0104】
【数4】
Figure 0003574044
【0105】
(3)次に、ワールド座標系での屈曲後の光束の平面の方程式(a ’’X+b ’’Y+c ’’Z+d ’’=0)を求める。
【0106】
透明ガラス板400から出力される光束の平面と、透明ガラス板400に入射される元の光束の平面との距離Uは、図14から、次式5で表される。
【0107】
【数5】
Figure 0003574044
【0108】
図11に示すように測定台201上に鏡300が載せられている場合には、鏡300の透明ガラス板302の厚さをvとすると、上記数式5におけるwは、2vとなる。
【0109】
ワールド座標系での屈曲後の光束の平面は、透明ガラス板400に入射される元の光束の平面(a’X+b’Y+c’Z+d’=0)に平行でかつ、距離がUだけ離れた平面となる。したがって、ワールド座標系での屈曲後の光束の平面の方程式(a ’’X+b ’’Y+c ’’Z+d ’’=0)は、次式6によって求められる。
【0110】
【数6】
Figure 0003574044
【0111】
(4)第1ステップで求められたカメラ座標の回転Rと並進tとを用いて、ワールド座標系での屈曲後の光束の平面の方程式a ’’X+b ’’Y+c ’’Z+d ’’を、カメラ座標系での平面の方程式(a ’’’ x+b ’’’ y+c ’’’ z+d ’’’ )に変換する。
【0112】
このようにして求められたカメラ座標系での屈曲後の光束の平面の方程式(a ’’’ x+b ’’’ y+c ’’’ z+d ’’’ )を、上記第3ステップで用いられる光束を表す平面の方程式として用いる。
【0113】
〔6−2〕CCDカメラ12の画像面S上での測定点の座標(観察点での座標)(xs,ys,f)における(xs,ys)の補正方法の説明
【0114】
CCDカメラ12の画像面S上での測定点の座標(観察点での座標)(xs,ys,f)における(xs,ys)の補正方法について説明する。この方法には2つの方法がある。
【0115】
第1方法は、被測定物100から反射してくる光(以下、反射光という)が、CCDカメラ12の画像面Sに対して全て垂直に入射すると仮定して、画像面S上での測定点の座標(xs,ys,f)における(xs,ys)を補正する方法である。
【0116】
第2方法は、被測定物100から反射してくる光(以下、反射光という)が、CCDカメラ12の焦点位置(カメラ座標原点)に向かってCCDカメラ12に入射すると仮定して、画像面S上での測定点の座標(xs,ys,f)における(xs,ys)を補正する方法である。
【0117】
〔6−2−1〕第1方法の説明
まず、図12および図15に基づいて、第1方法について説明する。
【0118】
第1方法では、被測定物100から反射してくる光(以下、反射光という)が、CCDカメラ12の画像面Sに対して全て垂直に入射すると仮定している。
【0119】
(1)まず、カメラ座標系でのCCDカメラ12の光軸(z軸)の直線方程式を、第1ステップで求められたカメラ座標の回転Rと並進tとを用いて、ワールド座標系に変換する。
【0120】
(2)ワールド座標系の光軸(z軸)の直線方程式と、ワールド座標系の透明ガラス板400の方程式(a’X+b’Y+c’Z+d’=0)とに基づいて、透明ガラス板400とCCDカメラ12の光軸(z軸)のなす角度(入射角)θ1を求め、スネルの法則から図15のθ2を求める。
【0121】
図11のように測定台201上に鏡300が載置されている場合には、透明ガラス板400を表す平面の方程式(a’X+b’Y+c’Z+d’=0)の代わりに、鏡300が載せられる測定台201の表面の方程式が用いられる。
【0122】
(3)透明ガラス板400から出力される光束の平面と、透明ガラス板400に入射される元の光束の平面との距離U(=w×(tan θ1−tan θ2)×cosθ1)を、上記数式5を用いて求める。
【0123】
図11に示すように測定台201上に鏡300が載せられている場合には、鏡300の透明ガラス板302の厚さをvとすると、上記数式5におけるwは、2vとなる。
【0124】
(4)次に、図16に示すように、ワールド座標系でのCCDカメラ12の光軸(z軸)の直線方程式と、ワールド座標系での透明ガラス板400の平面の方程式とに基づいて、光軸(z軸)を含みかつ透明ガラス板400に垂直な平面Qを表す方程式を求める。
【0125】
(5)第1ステップで求められたカメラ座標の回転Rと並進tとを用いて、ワールド座標系での光軸(z軸)を含みかつ透明ガラス板400に垂直な平面Qを表す方程式を、カメラ座標系での方程式に変換する。
【0126】
(6)次に、図17に示すように、カメラ座標系での光軸を含みかつ透明ガラス板400に垂直な平面Qを表す方程式と、カメラ座標系での画像面Sを表す方程式とに基づいて、光軸を含みかつ透明ガラス板400に垂直な平面Qと、画像面Sとの交線の方程式を求める。
【0127】
(7)光軸を含みかつ透明ガラス板400に垂直な平面Qと、画像面Sとの交線の方程式に基づいて、平面Qと画像面Sとの交線上において、画像面S上のz軸と交差する位置Pから、距離Uだけずれた位置P’の座標(x1,y1)を求める。求めた座標値(x1,y1)が補正値となる。
【0128】
(8)そして、上記第3ステップで用いられる画像面S上での測定点に対応する観察点の座標(xs,ys,f)を、補正値(x1,y1)を用いて補正する。画像面上S上での測定点に対応する観察点の座標(xs,ys,f)に対する補正後の座標を(xs’,ys’,f)とすると、xs’およびys’は次式7で表される。図18に、画像面上Sで観察された画像を補正した場合の例を示す。図18において破線は画像面上Sで観察された画像を示し、実線は補正後の画像を示している。
【0129】
【数7】
Figure 0003574044
【0130】
〔6−2−2〕第2方法の説明
図12および図19に基づいて、第2方法について説明する。
【0131】
第2方法では、被測定物100から反射してくる光(以下、反射光という)が、CCDカメラ12の焦点位置(カメラ座標原点)に向かってCCDカメラ12に入射すると仮定している。
【0132】
(1)画像面S上での観測点の座標を抽出する。そして、カメラ座標原点から上記観測点を通る直線Lの方程式をカメラ座標系において求める。
【0133】
(2)カメラ座標系で求めた上記直線Lの方程式を、第1ステップで求められたカメラ座標の回転Rと並進tとを用いて、ワールド座標系に変換する。
【0134】
(3)ワールド座標系での直線Lの方程式と、ワールド座標系の透明ガラス板400の方程式(a’X+b’Y+c’Z+d’=0)とに基づいて、透明ガラス板400とCCDカメラ12の光軸(z軸)のなす角度(入射角)θ1を求め、スネルの法則から図19のθ2を求める。
【0135】
図11のように測定台201上に鏡300が載置されている場合には、透明ガラス板400を表す平面の方程式(a’X+b’Y+c’Z+d’=0)の代わりに、鏡300が載せられる測定台201の表面の方程式が用いられる。
【0136】
(4)次に、透明ガラス板400から出力される反射光の平面と、透明ガラス板400に入射される元の反射光の平面との距離U(=w×(tan θ1−tan θ2)×cosθ1)を、上記数式5を用いて求める。
【0137】
図11に示すように測定台201上に鏡300が載せられている場合には、鏡300の透明ガラス板302の厚さをvとすると、上記数式5におけるwは、2vとなる。
【0138】
(5)次に、図20に示すように、ワールド座標系での直線Lの方程式と、ワールド座標系での透明ガラス板400の平面の方程式とに基づいて、直線Lを含みかつ透明ガラス板400に垂直な平面Qの方程式を求める。
【0139】
図11のように測定台201上に鏡300が載置されている場合には、透明ガラス板400を表す平面の方程式(a’X+b’Y+c’Z+d’=0)の代わりに、鏡300が載せられる測定台201の表面の方程式が用いられる。
【0140】
(6)第1ステップで求められたカメラ座標の回転Rと並進tとを用いて、ワールド座標系での直線Lを含みかつ透明ガラス板400に垂直な平面Qを表す方程式を、カメラ座標系での方程式に変換する。
【0141】
(7)次に、図21に示すように、カメラ座標系での直線Lを含みかつ透明ガラス板400に垂直な平面Qを表す方程式と、カメラ座標系での画像面Sを表す方程式とに基づいて、直線Lを含みかつ透明ガラス板400に垂直な平面Qと、画像面Sとの交線の方程式を求める。
【0142】
(8)直線Lを含みかつ透明ガラス板400に垂直な平面Qを表す方程式とカメラ座標系での画像面Sを表す方程式とに基づいて、平面Qと画像面Sとの交線の方程式を求める。
【0143】
(9)画像面S上の直線Lと交差する位置Pから、距離Uだけずれた位置P’の座標(xs’,ys’,f)を求める。求めた座標値(xs’,ys’,f)が、観察点の座標(xs,ys,f)の補正後の座標となる。
【0144】
【発明の効果】
この発明によれば、測定台上に鏡を配置することにより、被測定物の実像だけでなく、この鏡に映り込んだ虚像を測定に利用することができるため、少ない計測手順で被測定物の3次元形状を生成することが可能となる。
【図面の簡単な説明】
【図1】本発明の実施の形態における形状測定装置の第1の構成を表す概略構成図である。
【図2】図1の形状測定装置における測定ヘッドの概略構成を示す斜視図である。
【図3】図1の形状測定装置における測定原理を説明する説明図である。
【図4】図2の測定ヘッドを用いて測定点の位置測定を行う測定方法を説明する説明図である。
【図5】第1ステップにおける処理手順を説明するフローチャートである。
【図6】第4ステップで得られる足の像を示す説明図である。
【図7】第5ステップで得られる足の像を示す説明図である。
【図8】本発明の実施の形態における形状測定装置の第2の構成を表す概略構成図である。
【図9】本発明の実施の形態における形状測定装置の第3の構成を表す概略構成図である。
【図10】本発明の実施の形態における形状測定装置の第4の構成を表す概略構成図である。
【図11】表面に光反射面が形成された光反射板と光反射板上に形成された透明ガラス板とからなる鏡を用いた場合に、透明ガラス板で光が屈折する様子を示す模式図である。
【図12】スリット光源およびCCDカメラの画像面が、透明ガラス板の手前側に位置しており、被測定物が透明ガラス板の向こう側に位置している場合における補正方法を説明するための模式図である。
【図13】被測定物に照射される際の光束を表す方程式の補正方法を説明するための模式図である。
【図14】透明ガラス板から出力される光束の平面と、透明ガラス板に入射される元の光束の平面との距離Uの算出方法を説明するための模式図である。
【図15】画像面S上での測定点の座標を補正するための第1方法を説明するための模式図である。
【図16】光軸(z軸)を含みかつ透明ガラス板に垂直な平面Qを示す模式図である。
【図17】光軸を含みかつ透明ガラス板に垂直な平面Qと、画像面との交線を示す模式図である。
【図18】画像面上で観察された画像を補正した場合の例を示す模式図である。
【図19】画像面S上での測定点の座標を補正するための第2方法を説明するための模式図である。
【図20】図19の直線Lを含みかつ透明ガラス板400に垂直な平面Qを示す模式図である。
【図21】図19の直線Lを含みかつ透明ガラス板に垂直な平面Qと、画像面との交線を示す模式図である。
【符号の説明】
10 測定ヘッド
12 CCDカメラ
13 スリット光源
14 マーカ
16 エンコーダ
21 ステレオカメラ
22 ステレオカメラ
201 測定台
204 ガイドレール
205 ステンレスミラー
300 鏡

Claims (16)

  1. 測定台上に載置された被測定物に対してスリット光を照射する光照射手段を備え、該被測定物の形状を測定する測定ヘッド、測定ヘッドの位置を検出する位置検出手段、ならびに測定ヘッドと位置検出手段との出力に基づいて被測定物の3次元形状を求める演算手段を備えた形状測定装置であって、
    上面に載せられた被測定物を映す鏡を測定台上に配置し、測定ヘッドから照射されたスリット光が鏡の光反射面に対して垂直に出射されるように、測定ヘッドの姿勢を規制するガイド手段を備えていることを特徴とする形状測定装置。
  2. 位置検出手段は、2台のカメラを用いてステレオ法により測定ヘッドの位置を検出するものである請求項1に記載の形状測定装置。
  3. 測定ヘッドは、
    照射手段からの光束が照射される被測定物上の測定点を撮像することにより、被測定物の実像と鏡に映った被測定物の虚像とを撮像する撮像手段、
    を含んでいることを特徴とする請求項1および2のいずれかに記載の形状測定装置。
  4. 鏡は表面に光反射面が形成されていることを特徴とする請求項1、2および3のいずれかに記載の形状測定装置。
  5. 演算手段は、
    撮像手段の撮像画面上での測定点の座標と、光照射手段から出射された光束を表す平面を表す方程式とに基づいて、測定ヘッド中心の座標系での測定点の座標を求める第1手段、
    第1手段によって求められた各測定点の座標を、位置検出手段による検出結果に基づいて、ワールド座標系の座標に変換することにより、被測定物の実像に対する3次元形状と、鏡に映った被測定物の虚像に対する3次元形状とを求める第2手段、
    鏡の光反射面を表すワールド座標系での方程式を求める第3手段、
    鏡の光反射面を表す方程式に基づいて、虚像に対する3次元形状の光反射面に対して対称な3次元形状を求める第4手段、ならびに
    虚像に対する3次元形状の光反射面に対して対称な3次元形状と、被測定物の実像に対する3次元形状とを合成することにより被測定物の3次元形状を求める第5手段、
    を備えていることを特徴とする請求項4に記載の形状測定装置。
  6. 鏡の光反射面を表す方程式を求める手段は、
    2台のカメラを用いてステレオ法により光反射面上の3点以上の点の座標を測定する手段、および
    得られた光反射面上の3点以上の点の座標に基づいて光反射面を表す方程式を求める手段、
    を備えていることを特徴とする請求項5に記載の形状測定装置。
  7. 鏡の光反射面を表す方程式を求める手段は、
    光反射面上に不透明な薄板を載せた状態で、測定ヘッドを用いて薄板を撮像し、薄板の平面を特定するための3点以上の点の測定ヘッド中心の座標系での座標を抽出する手段、
    得られた測定ヘッド中心の座標系での3点以上の点の座標を、位置検出手段による検出結果に基づいて、ワールド座標系での座標に変換する手段、および
    得られたワールド座標系での3点以上の点の座標に基づいて、ワールド座標系での薄板の平面を表す方程式を求める手段、
    を備えていることを特徴とする請求項5に記載の形状測定装置。
  8. ガイド手段は、測定ヘッドの移動経路を規制するものであることを特徴とする請求項1に記載の形状測定装置。
  9. 測定ヘッドをガイド手段に沿って移動させるための駆動手
    段を備えていることを特徴とする請求項8に記載の形状測定装置。
  10. 測定ヘッドの移動経路全体を覆う筐体を備えていることを特徴とする請求項9に記載の形状測定装置。
  11. 筐体が被測定物を挿脱するための開口部を備える請求項10に記載 形状測定装置。
  12. 筐体の開口部に弾性部材からなる蓋部を設け、蓋部が被測定物を挿脱するための切込部を備えていることを特徴とする請求項11に記載の形状測定装置。
  13. 鏡は、表面に光反射面が形成された光反射板と、光反射板上に形成された透明板とからなることを特徴とする請求項1、2および3のいずれかに記載の形状測定装置。
  14. 演算手段は、
    被測定物の実像上の測定点に対しては、撮像手段の撮像画面上での測定点の座標と、光照射手段から出射された光束を表す平面を表す方程式とに基づいて、測定ヘッド中心の座標系での測定点の座標を求める第1手段、
    鏡に映った被測定物の虚像上の測定点に対しては、撮像手段の撮像画面上での測定点の座標値を鏡の透明板の屈折量を考慮して補正した後の座標値と、光照射手段から出射された光束を表す平面の方程式を鏡の透明板の屈折量を考慮して補正した後の方程式とに基づいて、測定ヘッド中心の座標系での測定点の座標を求める第2手段、
    第1手段および第2手段によって求められた各測定点の座標を、位置検出手段による検出結果に基づいて、ワールド座標系の座標に変換することにより、被測定物の実像に対する3次元形状と、鏡に映った被測定物の虚像に対する3次元形状とを求める第3手段、
    鏡の光反射面を表すワールド座標系での方程式を求める第4手段、
    鏡の光反射面を表す方程式に基づいて、虚像に対する3次元形状の光反射面に対して対称な3次元形状を求める第5手段、ならびに
    虚像に対する3次元形状の光反射面に対して対称な3次元形状と、被測定物の実像に対する3次元形状とを合成することにより被測定物の3次元形状を求める第6手段、
    を備えていることを特徴とする請求項13に記載の形状測定装置。
  15. 鏡の光反射面を表す方程式を求める手段は、
    2台のカメラを用いてステレオ法により、鏡が載置された測定台上の3点以上の点の座標を測定する手段、および
    得られた測定台上の3点以上の点の座標に基づいて光反射面を表す方程式を求める手段、
    を備えていることを特徴とする請求項14に記載の形状測定装置。
  16. 測定ヘッドの光照射手段から照射される光束が、鏡の光反射面に対して垂直に出射されるように、測定ヘッドの姿勢を規制するガイド手段を備えていることを特徴とする請求項13、14および15のいずれかに記載の形状測定装置。
JP2000146146A 2000-03-23 2000-05-18 形状測定装置 Expired - Fee Related JP3574044B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000146146A JP3574044B2 (ja) 2000-03-23 2000-05-18 形状測定装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000082436 2000-03-23
JP2000-82436 2000-03-23
JP2000146146A JP3574044B2 (ja) 2000-03-23 2000-05-18 形状測定装置

Publications (2)

Publication Number Publication Date
JP2001338278A JP2001338278A (ja) 2001-12-07
JP3574044B2 true JP3574044B2 (ja) 2004-10-06

Family

ID=26588173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000146146A Expired - Fee Related JP3574044B2 (ja) 2000-03-23 2000-05-18 形状測定装置

Country Status (1)

Country Link
JP (1) JP3574044B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048709A (ja) * 2008-08-22 2010-03-04 Toyota Motor Corp レーザ照射装置および方法
US8723928B2 (en) 2008-07-11 2014-05-13 Panasonic Corporation Three-dimensional shape measuring apparatus, integrated circuit, and three-dimensional shape measuring method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3408237B2 (ja) * 2000-10-02 2003-05-19 三洋電機株式会社 形状測定装置
JP5509645B2 (ja) * 2009-03-25 2014-06-04 富士ゼロックス株式会社 位置・姿勢認識方法、部品把持方法、部品配置方法、部品組立方法、位置・姿勢認識装置、部品把持装置、部品配置装置、および部品組立装置
JP6005459B2 (ja) * 2012-09-26 2016-10-12 公益財団法人鉄道総合技術研究所 計測装置、およびプログラム
SE540459C2 (en) * 2016-11-22 2018-09-18 Unibap Ab Measuring system and method of an industrial robot

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8723928B2 (en) 2008-07-11 2014-05-13 Panasonic Corporation Three-dimensional shape measuring apparatus, integrated circuit, and three-dimensional shape measuring method
JP2010048709A (ja) * 2008-08-22 2010-03-04 Toyota Motor Corp レーザ照射装置および方法

Also Published As

Publication number Publication date
JP2001338278A (ja) 2001-12-07

Similar Documents

Publication Publication Date Title
US6909513B1 (en) Shape measuring device
US11629954B2 (en) Intraoral scanner with fixed focal position and/or motion tracking
US10660732B2 (en) Viewfinder with real-time tracking for intraoral scanning
US7742635B2 (en) Artifact mitigation in three-dimensional imaging
US7791738B2 (en) Three-dimensional shape measuring device, and portable measuring device
US20150097931A1 (en) Calibration of 3d scanning device
JPH032531B2 (ja)
WO2000033026A1 (en) Apparatus and method to measure three-dimensional data
JP2012521005A (ja) 光学式ゲージ及び3次元表面プロファイル測定方法
US20150097968A1 (en) Integrated calibration cradle
JP5173106B2 (ja) 光学要素の幾何学構造の伝達測定方法と装置
JP3574044B2 (ja) 形状測定装置
JP2623367B2 (ja) 三次元形状測定装置の校正方法
CN106840030B (zh) 一种二维长程面形检测装置及检测方法
JP3408237B2 (ja) 形状測定装置
US20170192219A1 (en) Image generating system, image generating method, and image generating apparatus
JP2001304844A (ja) X線蛍光による層厚測定において測定対象の位置を設定する方法
JP2001041723A (ja) 形状測定装置
JPH0789057B2 (ja) 距離測定装置
JPH0314445B2 (ja)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040630

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees