JP3571298B2 - 化石燃料貫流ボイラ - Google Patents

化石燃料貫流ボイラ Download PDF

Info

Publication number
JP3571298B2
JP3571298B2 JP2000589873A JP2000589873A JP3571298B2 JP 3571298 B2 JP3571298 B2 JP 3571298B2 JP 2000589873 A JP2000589873 A JP 2000589873A JP 2000589873 A JP2000589873 A JP 2000589873A JP 3571298 B2 JP3571298 B2 JP 3571298B2
Authority
JP
Japan
Prior art keywords
combustion chamber
boiler
once
tube
tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000589873A
Other languages
English (en)
Other versions
JP2002533643A (ja
Inventor
フランケ、ヨアヒム
クラール、ルードルフ
ウイトコウ、エバーハルト
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of JP2002533643A publication Critical patent/JP2002533643A/ja
Application granted granted Critical
Publication of JP3571298B2 publication Critical patent/JP3571298B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B21/00Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
    • F22B21/34Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from water tubes grouped in panel form surrounding the combustion chamber, i.e. radiation boilers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B21/00Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
    • F22B21/34Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from water tubes grouped in panel form surrounding the combustion chamber, i.e. radiation boilers
    • F22B21/346Horizontal radiation boilers

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fats And Perfumes (AREA)
  • Feeding And Controlling Fuel (AREA)

Description

【0001】
本発明は、化石燃料用の燃焼室を有し、高温ガス側においてこの燃焼室に水平煙道を介して垂直煙道が後置接続され、燃焼室の囲壁が垂直に配置され互いに気密に溶接された蒸発管で形成されている貫流ボイラに関する。
【0002】
ボイラを備えた発電所において、燃料の含有エネルギはボイラにおいて流れ媒体を蒸発させるために利用される。流れ媒体は通常蒸気発生回路内を導かれる。ボイラによって供給された蒸気は例えば蒸気タービンを駆動するために利用され、及び/又は密閉された外部のプロセスに利用される。蒸気が蒸気タービンを駆動すると、その蒸気タービンのタービン軸を介して通常、発電機あるいは作業機械が駆動される。発電機の場合、これによって発生された電流は、複合電力系統及び/又は島状電力系統に供給される。
【0003】
ボイラは貫流ボイラとして形成される。貫流ボイラは、VGB クラフトベルクステヒニーク(Kraftwerkstechnik) 73(1993年)、第4号、第352〜360頁に掲載のF.フランケ、W.ケーラー、E.ウィッチョー共著の論文「ベンソンボイラの蒸発器構想」で知られている。貫流ボイラの場合、蒸発管として設けられた蒸気発生管の加熱は、流れ媒体をその蒸気発生管の一回の通過で蒸発させる。
【0004】
貫流ボイラは通常、垂直構造の燃焼室が装備されている。これは、燃焼室がほぼ垂直方向における加熱媒体あるいは高温ガスの通過に対して設計されることを意味する。燃焼室には高温ガス側において水平煙道が後置接続され、高温ガス流が燃焼室から水平煙道に移行する際、高温ガスのほぼ水平方向への転向が行われる。しかしそのような燃焼室は一般に、温度に起因して燃焼室長さが変化するために、燃焼室を懸垂支持する架台を必要とする。これは、貫流ボイラを製造および組み立てる際にかなり高い技術的経費がかかることを意味し、その経費は、貫流ボイラの全高が大きくなればなるほど高くなる。これは特に、全負荷時における80kg/sより大きな蒸気出力用として設計されている貫流ボイラに当てはまる。
【0005】
貫流ボイラは圧力の制限を受けないので、主蒸気圧は、液状媒体と蒸気状媒体との間にほんの僅かな密度差しか存在しない水の臨界圧(Pkri=221バール)よりかなり高くできる。高い主蒸気圧は、高い熱効率を助長し、従って燃料として例えば石炭あるいは活性炭が燃焼される化石燃料式発電所におけるCOの発生量を少なくする。
【0006】
特別な問題は、貫流ボイラの煙道あるいは燃焼室の囲壁を、そこで生ずる管壁温度あるいは材料温度を考慮して設計することにある。約200バールまでの未臨界圧力範囲において、燃焼室の囲壁温度は、蒸発管の内周面の湿りが保証されるとき、主に水の飽和温度の高さによって決定される。これは例えば、内周面に表面構造物を有する蒸発管を利用することによって達成される。そのために、特に内側フィン付き蒸発管が用いられ、貫流ボイラへのその採用は例えば上述の文献で知られている。このいわゆるフィン付き管、即ち内周面にフィンが付けられた管は、管内壁から流れ媒体への特に良好な熱伝達率を有する。
【0007】
燃焼室の囲壁が種々に異なって加熱されることは経験的に避けられない。従って一般に、蒸発管の異なった加熱に基づいて、貫流ボイラにおける高加熱の(強く加熱される)蒸発管からの流れ媒体の出口温度は、標準加熱あるいは低加熱の(弱く加熱される)蒸発管の場合におけるよりも高くなる。これによって、隣接する蒸発管間に温度差が生じ、この温度差は、貫流ボイラの寿命を短くするか管に亀裂をひき起こす熱応力を生じさせる。
【0008】
本発明の課題は、特に安価な製造費および組立費しか必要とせず、運転中において燃焼室の隣接する蒸発管間の温度差が特に小さいような、冒頭に述べた形式の化石燃料式貫流ボイラを提供することにある。
【0009】
この課題は、本発明に基づいて、冒頭に述べた形式の貫流ボイラにおいて、
燃焼室は、水平煙道の高さに配置された多数のバーナを有し、並行に流れ媒体を供給される多数の蒸発管(10)に対して、全負荷時における蒸気出力M(kg/s)と並行に流れ媒体を供給されるこれらの蒸発管の総内側横断面積A(m2)との商が1350(kg/sm2)より小さいように、設計され、
燃焼室の並行に流れ媒体を供給される多数の蒸発管に、流れ媒体側においてそれぞれ、流れ媒体の共通の入口管寄せ装置が前置接続され、共通の出口管寄せ装置が後置接続され
多数の蒸発管がその内周面にそれぞれ多条ねじ山を形成するフィンを有している
ことによって解決される。
【0010】
本発明は、特に安価な製造費および組立費で作れる貫流ボイラは単純に形成できる懸垂構造物を有していなければならない、という考えから出発している。技術的に比較的安価に作れる燃焼室懸垂支持用の架台は、貫流ボイラの全高を特に低くする。貫流ボイラの特に低い全高は、燃焼室が水平構造に形成されていることによって得られる。そのために、バーナは燃焼室壁に水平煙道の高さに配置される。これによって、貫流ボイラの運転中、高温ガスは燃焼室をほぼ水平の主流れ方向に流れる。
【0011】
しかし水平燃焼室の場合、貫流ボイラの運転中、高温ガス側から見て後方の燃焼室範囲は、高温ガス側から見て前方の燃焼室範囲よりも比較的弱く加熱(低加熱)される。更に例えば、バーナ近くの蒸発管は、燃焼室の隅に配置された蒸発管よりも強く加熱(高加熱)される。燃焼室の前方範囲における加熱量は、後方範囲における加熱量のほぼ3倍の大きさとなることがある。100%蒸気出力(全負荷)時における従来では一般的な蒸発管の質量流量密度2000kg/msの場合に、全管の質量流量の平均値に関係して、高加熱の蒸発管における質量流量は低下し、低加熱の蒸発管における質量流量は増加する。この挙動は、蒸発管の全圧力降下における摩擦損失の比較的大きな量によってひき起こされる。更に、燃焼室の特に低い高さに基づく蒸発管の相対伸長差は、垂直燃焼室の場合よりも大きくなる。これは、個々の蒸発管の加熱量および摩擦損失における差を追加的に強める。それでも隣接する蒸発管間の温度をほぼ同じにするために、貫流ボイラは、比較的強く加熱される(高加熱の)蒸発管内に、比較的弱く加熱される(低加熱の)蒸発管におけるより大きな流れ媒体流量が自動的に発生するように、設計しなければならない。これは一般的に、平均的に加熱される蒸発管の圧力降下Δp(バール)がその摩擦損失Δpの数倍の大きさである場合に当てはまる。一定の質量流量において、比較的強く加熱される(高加熱の)蒸発管における流量上昇の条件は、次式の通りである。
【数1】
Figure 0003571298
【0012】
ここで、ΔpPは加速圧力降下の変化(バール)、ΔQは加熱量の変化(kJ/s)、Mは質量流量(kg/s)、Kは定数(バール・s/kJ)である。この不等式で公式化された条件は、一定質量流量において総圧力損失Δ(ΔP+ΔP+ΔP)(バール)が高加熱量ΔQにおいて減少すること、即ち数学的に負になるはずであることを、指している。即ち、多数の蒸発管に同じ総圧力損失が生じているとき、高加熱の蒸発管においては低加熱の蒸発管に比べて上述の不等式に応じて流れ媒体の流量が増大する。
【0013】
膨大な計算の結果、水平燃焼室を備えた貫流ボイラに対する上述の不等式で公式化された条件は、並列接続された多数の蒸発管に対して、全負荷時における貫流ボイラの蒸気出力M(kg/s)と、これらの並列接続された蒸発管の総内側横断面積A(m)との商が1350(kg/sm)より大きくない場合に満たされることが、新たに判明した。即ち、数学的に次式で表される。
(M/A)<1350
【0014】
その場合、貫流ボイラの全負荷時における蒸発出力Mは、許容蒸気発生量あるいはボイラ連続最大定格(BMCR)と呼ばれ、蒸発管のそれぞれの内側横断面積は水平断面を適用される。
【0015】
好適には、燃焼室の並行接続された多数の蒸発管に、それぞれ流れ媒体用の共通の入口管寄せ装置が前置接続され、共通の出口管寄せ装置が後置接続されている。即ち、この実施態様で形成された貫流ボイラは、並列接続された多数の蒸発管間の確実な圧力バランスを可能にするので、並列接続されたすべての蒸発管は同じ総圧力損失を有する。これは、高加熱の蒸発管においては低加熱の蒸発管に比べて上述の不等式に応じて流量が増大することを意味する。
【0016】
好適には、燃焼室の正面壁の蒸発管は、流れ媒体側において、燃焼室の側壁を形成する囲壁の蒸発管に前置接続されている。これによって、燃焼室の高加熱の正面壁の特に良好な冷却が保証される。
【0017】
本発明の他の実施態様において、燃焼室の多数の蒸発管の管内径は、燃焼室における蒸発管のそれぞれの位置に関係して選定されている。このようにして、蒸発管は燃焼室内において高温ガス側の予設定可能な加熱温度分布に合わされる。これによって、蒸発管の貫流に影響を及ぼすことによって、蒸発管の出口における温度差が特に確実に小さくされる。
【0018】
蒸発管内を導かれる流れ媒体に燃焼室の熱を特に良好に伝達するために、好適には、多数の蒸発管はその内周面にそれぞれ多条ねじ山を形成するフィンを有している。その場合好適には、管軸線に対して垂直な平面と管内周面に設けられたフィンのフランクとの成す傾斜角αは、60°より小さく、好適には55°より小さい。
【0019】
つまり、内側フィンのない蒸発管(いわゆる平滑管)として形成された蒸発管の場合、所定の蒸気含有量からは、特に良好な熱伝達にとって必要な管壁の湿りがもはや維持されない。湿りが不足すると、所々に乾いた管壁が出現する。そのような乾いた管壁への移行は、熱伝達挙動が悪いいわゆる熱伝達危機を生じ、このために一般に、この個所において管壁温度が特に著しく上昇する。しかしこの熱伝達危機は、内側フィン付き蒸発管においては平滑管と異なり、蒸気含有量が0.9より大きい場合に、即ち蒸発の完了直前に初めて生ずる。その理由は、流れにスパイラル状フィンによって旋回が与えられることにある。水分は異なった遠心力に基づいて蒸気分から分離され、管壁を伝って搬送される。これによって、管壁の湿りは高い蒸気含有量まで維持され、従って熱伝達危機の場所に高い流速が出現する。これは熱伝達危機にもかかわらず比較的良好な熱伝達を生じさせ、その結果管壁温度が低くされる。
【0020】
好適には、燃焼室の多数の蒸発管は、流れ媒体の流量を減少させる手段を有している。その手段が絞り装置として形成されていると特に有利である。その絞り装置は例えば、それぞれの蒸発管の内部の或る個所で管内径を狭める蒸発管内への組込み物である。燃焼室の蒸発管に流れ媒体を供給する多数の並列配管を有する配管系の流量を減少させる手段も有利である。その配管系は、流れ媒体を並行に供給される蒸発管の入口管寄せ装置にも前置接続される。この配管系の1つあるいは複数の配管に例えば絞り弁が設けられる。蒸発管を通る流れ媒体の流量を減少させるためのそのような手段によって、個々の蒸発管を通る流れ媒体の流量が、燃焼室におけるその都度の加熱量に合わせられる。これによって、蒸発管の出口における流れ媒体の温度差が追加的に特に確実に小さくされる。
【0021】
水平煙道の側壁及び/又は垂直煙道の側壁は、好適には、垂直に配置され互いに気密に溶接され且つ並行に流れ媒体を供給される蒸気発生管で形成されている。
【0022】
隣接する蒸発管ないしは蒸気発生管はその長手側が、好適には、帯金いわゆる“ひれ”を介して互いに気密に溶接されている。このひれは管の製造過程に管と固く結合され、これと共に単一品を形成している。管とひれとから成るこの単一品はひれ付き管とも呼ばれる。ひれ幅は蒸発管ないしは蒸気発生管への入熱量に影響を与える。従ってひれ幅は、貫流ボイラにおけるそれぞれの蒸発管ないしは蒸気発生管のそれぞれの位置に関係して、高温ガス側の予設定できる加熱温度分布に合わされている。その加熱温度分布として、経験値から求められた代表的な加熱温度分布あるいは例えば段階的な加熱温度分布のような大体の推定でもよい。適当に選定されたひれ幅によって、種々の蒸発管ないしは蒸気発生管が著しく異なって加熱される場合でも、すべての蒸発管ないしは蒸気発生管への入熱量は、蒸発管ないしは蒸気発生管の出口における温度差が特に小さくされるように、得られる。このようにして、材料の早過ぎる疲労は確実に防止される。これによって、貫流ボイラは特に長い寿命を有するようになる。
【0023】
好適には、水平煙道内に複数の過熱器が配置され、これらの過熱器は高温ガスの主流れ方向に対してほぼ垂直に配置され、その管は流れ媒体の貫流に対して並列接続されている。懸垂構造で配置され且つ隔壁加熱器とも呼ばれるこれらの過熱器は、主に対流加熱され、流れ媒体側において燃焼室の蒸発管に後置接続されている。これによって、高温ガス熱の特に良好な利用が保証される。
【0024】
好適には、垂直煙道は複数の対流加熱器を有し、これらの対流加熱器は高温ガスの主流れ方向に対してほぼ垂直に配置された管で形成されている。対流加熱器のこれらの管は、流れ媒体の貫流に対して並列接続されている。これらの対流加熱器も主に対流加熱される。
【0025】
更に高温ガスの熱の特に完全な利用を保証するために、垂直煙道は好適にはエコノマイザを有している。
【0026】
好適には、バーナが燃焼室の正面壁に配置され、即ち、燃焼室の水平煙道への流出開口に対向して位置する壁に配置されている。そのように形成された貫流ボイラは特に簡単に燃料の燃焼長に合わされる。燃料の燃焼長とは、所定の平均高温ガス温度における水平方向の高温ガス速度と、燃料の火炎の燃焼時間tとの積を意味する。その都度の貫流ボイラにおける最大燃焼長は、貫流ボイラの全負荷時、いわゆる全負荷運転時における蒸気出力Mの際に生ずる。燃料の火炎の燃焼時間tは、平均粒度の微粉炭が所定の平均高温ガス温度で完全燃焼するために必要とする時間である。
【0027】
例えば高温溶融灰の侵入に基づく水平煙道の材料損傷および望ましくない汚れを特に僅かにするために、燃焼室の正面壁から水平煙道の入口範囲までの距離で規定された燃焼室の長さは、好適には、貫流ボイラの全負荷時における燃料の燃焼長と少なくとも同じである。燃焼室のこの水平長さは、一般に、灰出しホッパ上縁から燃焼室天井までの燃焼室高さの少なくとも80%である。
【0028】
化石燃料の燃焼熱を特に良好に利用するために、好適には、燃焼室の長さL(m)は、全負荷時における貫流ボイラの蒸気出力M(kg/s)と、化石燃料の火炎の燃焼時間t(s)と、燃焼室からの高温ガスの出口温度TBRK(℃)との関数として選定される。その場合、全負荷時における貫流ボイラの予め定められた蒸気出力Mの場合に、近似的に、次の(1)式および(2)式の大きい方の値が適用される。
L(M、t)=(C+C×M)×t (1)
L(M、TBRK)=(C×TBRK+C)×M+C(TBRK
+C×TBRK+C (2)
【0029】
ここで、C=8m/s
=0.0057m/kg
=−1.905×10−4(m×s)/(kg℃)
=0.286(s×m)/kg
=3×10−4(m/(℃)
=−0.842m/℃
=603.41m
である。
【0030】
ここで近似的とは、それぞれの式で規定された値の+20/−10%が許容偏差であることを意味する。
【0031】
本発明によって得られる利点は特に、並列接続された多数の蒸発管における全負荷時の貫流ボイラの蒸気出力と、これらの蒸発管の総内側横断面積との比を適当に選定することによって、蒸発管を通る流れ媒体の流量を加熱量に特に良好に合わせることができ、これによって蒸発管の出口における温度をほぼ一様にできることにある。隣接する蒸発管間の温度差によってひき起こされる燃焼室の囲壁における熱応力は、貫流ボイラの運転中、例えば管亀裂を生ずる恐れがある値よりもかなり低く保たれる。これによって、貫流ボイラに水平燃焼室を比較的長い寿命で使用することができる。燃焼室を高温ガスのほぼ水平の主流れ方向用として設計することによって、貫流ボイラの構造は特にコンパクトになる。これは、この貫流ボイラを蒸気タービンを備えた発電所に組み入れた場合に、貫流ボイラから蒸気タービンまでの接続管を特に短くすることを可能にする。
【0032】
以下において図を参照して本発明の実施例を詳細に説明する。なお各図において同一部分には同一符号が付されている
【0033】
図1における貫流ボイラ2は、蒸気タービン設備も有する発電所(図示せず)に付設されている。その貫流ボイラは全負荷時に少なくとも80kg/sの蒸気出力用として設計されている。貫流ボイラ2で発生された蒸気は蒸気タービンを駆動するために利用され、この蒸気タービンは発電機を駆動する。発電機で発生された電流は、複合電力系統あるいは島状電力系統に供給するために利用される。
【0034】
化石燃料貫流ボイラ2は、水平構造に形成された燃焼室4を有している。この燃焼室4の高温ガス側は、水平煙道6を介して垂直煙道8が後置接続されている。燃焼室4の囲壁9は、垂直に配置され互いに気密に溶接された多数の蒸発管10で形成されている。そのN本の蒸発管10は並行に流れ媒体Sを供給される。正面壁11は燃焼室4の囲壁9である。追加的に水平煙道6の側壁12ないしは垂直煙道8の側壁14も、垂直に配置され互いに気密に溶接された多数の蒸気発生管16、17で形成される。この場合、その蒸気発生管16、17はそれぞれ並行して流れ媒体Sが供給される。
【0035】
燃焼室4の多数の蒸発管10の流れ媒体側には、流れ媒体Sに対する入口管寄せ装置18が前置接続され、出口管寄せ装置20が後置接続されている。入口管寄せ装置18は多数の並行入口管寄せを有している。蒸発管10の入口管寄せ装置18に流れ媒体Sを供給するために、配管系19が設けられている。この配管系19は並列接続された多数の配管を有し、これらの配管はそれぞれ、入口管寄せ装置18の1つの入口管寄せに接続されている。
【0036】
蒸発管10は(図2に示されているように)管内径Dを有し、その内周面にフィン40を有している。このフィン40は多条ねじ山の形をし、フィン高さRを有している。その管軸線に対して垂直な平面42と管内周面に設けられたフィン40のフランク44との成す傾斜角αは55°より小さくされている。これによって、蒸発管10の内壁から蒸発管10内を導かれる流れ媒体Sへの特に高い熱伝達が得られ、同時に特に低い管壁温度が得られる。
【0037】
燃焼室4の蒸発管10の管内径Dは、燃焼室4内における蒸発管10のそれぞれの位置に関係して選定される。このようにして、貫流ボイラ2は蒸発管10の種々の強さの加熱に合わされる。このような燃焼室4の蒸発管10の設計は、蒸発管10の出口における温度差が特に小さくされることを特に確実に保証する。
【0038】
流れ媒体Sの流量を減少させる手段として、蒸発管10の一部に絞り装置(図示せず)が装備されている。この絞り装置は或る個所において管内径Dを狭めている孔開き絞り板として形成され、貫流ボイラ2の運転中に、低加熱の蒸発管10における流れ媒体Sの流量を減少させ、これによって、流れ媒体Sの流量が加熱量に合わされる。更に、蒸発管10内における流れ媒体Sの流量を減少させる手段として、配管系19の1つあるいは複数の配管に、絞り装置(特に絞り弁)が装備されている(図示せず)。
【0039】
互いに隣接する蒸発管10ないしは蒸気発生管16、17は、それらの長手側が“ひれ”を介して、詳述していないようにして、互いに気密に溶接されている。つまり、そのひれ幅を適当に選定することによって、蒸発管10ないしは蒸気発生管16、17の加熱量が制御される。従って、それぞれのひれ幅は、貫流ボイラ2におけるそれぞれの蒸発管10ないしは蒸気発生管16、17の位置に関係する予め設定できる高温ガス側の加熱温度分布に合わされている。その加熱温度分布は、経験値から求められた代表的な加熱温度分布であるか、あるいは大体の推定でもよい。これによって、蒸発管10ないしは蒸気発生管16、17が著しく異なって加熱される場合でも、蒸発管10ないしは蒸気発生管16、17の出口における温度差は、特に小さくされる。このようにして、材料の疲労が確実に防止され、これによって貫流ボイラ2の長い寿命が保証される。
【0040】
水平燃焼室4を配管敷設して形成する際、互いに気密に溶接された個々の蒸発管10の加熱量が貫流ボイラ2の運転中に非常に異なることについて考慮しなければならない。そのために、蒸発管10の内側フィン、隣接する蒸発管10への“ひれ”結合および管内径Dについての設計は、すべての蒸発管10が異なった加熱量にもかかわらずほぼ同じ出口温度を有し、貫流ボイラ2のあらゆる運転状態において全蒸発管10の十分な冷却が保証されるように、行われる。貫流ボイラ2の運転中における若干の蒸発管10の低加熱は、絞り装置の組込みによって補助的に考慮される。
【0041】
燃焼室4における蒸発管10の管内径Dは、燃焼室4内における蒸発管10のそれぞれの位置に関係して選定される。貫流ボイラ2の運転中に強く加熱される蒸発管10は、貫流ボイラ2の運転中に弱く加熱される蒸発管10よりも、大きな管内径Dを有している。これによって、管内径がすべて同じにされている場合に比べて、大きな管内径Dを有する蒸発管10内における流れ媒体Sの流量が増大され、これによって、異なった加熱量による蒸発管10の出口における温度差が減少する。蒸発管10内における流れ媒体Sの流量を加熱量に合わせる別のやり方は、蒸発管10の一部に及び/又は流れ媒体Sを供給するために設けられた配管系19に、絞り装置を組み込むことにある。これとは逆に、加熱量を蒸発管10内における流れ媒体Sの流量に合わせるために、ひれ幅が燃焼室4内における蒸発管10の位置に関係して選定される。上述のすべてのやり方は、個々の蒸発管10が大きく異なって加熱されるにもかかわらず、貫流ボイラ2の運転中に、蒸発管10内を導かれる流れ媒体Sの比熱量がほぼ同じとなり、これによって蒸発管10の出口における温度差が小さくなる。蒸発管10の内側フィンは、貫流ボイラ2のあらゆる負荷状態において、異なった加熱量および流れ媒体Sの異なった流量にもかかわらず、蒸発管10の特に確実な冷却が保証されるように、設計されている。
【0042】
水平煙道6は隔壁伝熱面として形成された多数の過熱器22を有している。これらの過熱器22は高温ガスGの主流れ方向24に対して垂直に懸垂構造で配置され、その管は流れ媒体Sの貫流に対してそれぞれ並列接続されている。過熱器22は主に対流加熱され、流れ媒体側において燃焼室4の蒸発管10に後置接続されている。
【0043】
垂直煙道8は主に対流加熱される多数の対流加熱器26を有している。これらの対流加熱器26は高温ガスGの主流れ方向26に対してほぼ垂直に配置された管で構成されている。これらの管は流れ媒体Sの貫流に対してそれぞれ並列接続されている。更に垂直煙道8内にエコノマイザ28が配置されている。垂直煙道8の出口側は別の熱交換器(例えば空気予熱器)に開口し、そこから集塵機を介して煙突に通じている。垂直煙道8に後置接続された構造部品は図1には示されていない。
【0044】
貫流ボイラ2は特に低い全高の水平燃焼室4で実行され、従って特に安価な製造費および組立費で建設できる。このために、貫流ボイラ2の燃焼室4は化石燃料用の多数のバーナ30を有している。これらのバーナ30は燃焼室4の正面壁11に水平煙道6の高さに配置されている。
【0045】
特に高い効率を得るために化石燃料Bが特に完全燃焼し、例えば高温溶融灰の侵入による、高温ガス側から見て水平煙道6の最初の過熱器22の材料損傷およびその過熱器22の汚染が特に確実に防止されるようにするために、燃焼室4の長さLは、これが貫流ボイラ2の全負荷運転中に燃料Bの燃焼長を越えているように、選定されている。長さLは燃焼室4の正面壁11から水平煙道6の入口範囲32までの距離である。燃料Bの燃焼長は、所定の平均高温ガス温度時における水平方向の高温ガス速度と、燃料Bの火炎Fの燃焼時間tとの積として規定される。その都度の貫流ボイラ2における最大燃焼長は、その貫流ボイラ2の全負荷運転中に生ずる。燃料Bの火炎Fの燃焼時間tは、例えば平均粒度の微粉炭が所定の平均高温ガス温度時に完全燃焼するために必要とする時間である。
【0046】
化石燃料Bの燃焼熱の特に良好な利用を保証するために、燃焼室4の長さL(m)は、全負荷時における燃焼室4からの高温ガスGの出口温度TBRK(℃)と、燃料Bの火炎Fの燃焼時間t(s)と、貫流ボイラ2の蒸気出力M(kg/s)とに関係して適当に選定される。燃焼室4のこの水平長さLは燃焼室4の高さHの少なくとも約80%である。高さHは、図1において終点X、Yを含む線で示されている燃焼室4の灰出しホッパ上縁から燃焼室天井までの距離である。燃焼室4の長さLは近似的に次の式(1)、(2)によって決定される。
L(M、t)=(C+C×M)×t (1)
L(M、TBRK)=(C×TBRK+C)×M+C(TBRK
+C×TBRK+C (2)
【0047】
ここで、C=8m/s
=0.0057m/kg
=−1.905×10−4(m×s)/(kg℃)
=0.286(s×m)/kg
=3×10−4(m/(℃)
=−0.842m/℃
=603.41m
である。
【0048】
この場合の許容偏差は、近似的に、それぞれの式で規定される値の+20%/−10%である。全負荷時における貫流ボイラ2の所定の蒸気出力M用として貫流ボイラ2を設計する際、燃焼室4の長さLに対して、式(1)、(2)からの大きい方の値が適用される。
【0049】
貫流ボイラ2の考え得る設計例として、全負荷時における貫流ボイラ2の蒸気出力Mに関する燃焼室4の長さLに対して、図3の座標系に、6つの曲線K〜Kが記されている。それらの曲線には、次のパラメータが対応している。即ち、K、K、Kにそれぞれ式(1)におけるt=3s、t=2.5s、t=2sが対応し、K、K、Kにそれぞれ式(2)におけるTBRK=1200℃、TBRK=1300℃、TBRK=1400℃が対応している。
【0050】
従って、燃焼室4の長さLを決定するために、例えば燃焼時間t=3sおよび燃焼室4からの高温ガスGの出口温度TBRK=1200℃に対して、曲線K、Kが関与する。これにより、全負荷時における貫流ボイラ2の蒸気出力Mが予め定められている場合、燃焼室4の長さLはそれぞれ曲線Kに基づいて次のようになる。
M= 80kg/sの場合、L=29m
M=160kg/sの場合、L=34m
M=560kg/sの場合、L=57m
【0051】
即ち常に、実線で示された曲線Kが適用される。
【0052】
燃料Bの火炎Fの燃焼時間t=2.5sおよび燃焼室4からの高温ガスGの出口温度TBRK=1300℃に対して、例えば曲線K、Kが関与する。これにより、全負荷時における貫流ボイラ2の蒸気出力Mが予め定められている場合、燃焼室4の長さLは次のようになる。
M= 80kg/sの場合、曲線Kに基づいてL=21m
M=180kg/sの場合、曲線K、Kに基づいてL=23m
M=560kg/sの場合、曲線Kに基づいてL=37m
【0053】
即ち、蒸気出力M=180kg/sまでは、実線として示された曲線Kの部分が適用され、このMの値の範囲では破線で示された曲線Kは適用されない。180kg/sより大きなMの値に対して、実線で示された曲線Kの部分が適用され、このMの値の範囲では破線で示された曲線Kは適用されない。
【0054】
燃料Bの火炎Fの燃焼時間t=2sおよび燃焼室4からの高温ガスGの出口温度TBRK=1400℃に対して、例えば曲線K、Kが関与する。これにより、全負荷時における貫流ボイラ2の蒸気出力Mが予め定められている場合、燃焼室4の長さLは次のようになる。
M= 80kg/sの場合、曲線Kに基づいてL=18m
M=465kg/sの場合、曲線K、Kに基づいてL=21m
M=560kg/sの場合、曲線Kに基づいてL=23m
【0055】
即ち、蒸気出力M=465kg/sまでは、この範囲において実線として示された曲線Kが適用され、この範囲では破線として示された曲線Kは適用されない。465kg/sより大きなMの値に対して、実線で示された曲線Kの部分が適用され、破線として示された曲線Kは適用されない。
【0056】
貫流ボイラ2の運転中、高加熱の蒸発管10に低加熱の蒸発管10よりも大きな流れ媒体S流量が自動的に生ずるようにするために、並列接続されたN本の蒸発管10に対して、全負荷時における貫流ボイラ2の蒸気出力M(kg/s)と、並行に流れ媒体Sを供給される管内径DのこれらN本の蒸発管10の総内側横断面積A(m)との商が、次式を満足するように選定される。
【数2】
Figure 0003571298
ここで、数1350の単位はkg/smであり、Dは、i=1〜NのN番目の蒸発管10の管内径である。
【0057】
貫流ボイラ2の運転中、バーナ30に化石燃料Bが供給される。バーナ30の火炎Fは水平に延びる。燃焼室4の構造によって、燃焼中に生ずる高温ガスGの流れはほぼ水平の主流れ方向24に発生される。この高温ガスGは水平煙道6を通ってほぼ底に向かって延びる垂直煙道8に到達し、そこから煙突(図示せず)を通って出る。
【0058】
エコノマイザ28に流入する流れ媒体Sは、垂直煙道8内に配置された対流加熱器26を通って、貫流ボイラ2の燃焼室4の蒸発管10の入口管寄せ装置18に到達する。貫流ボイラ2の燃焼室4の垂直に配置され互いに気密に溶接された多数の蒸発管10内において、流れ媒体Sの蒸発および場合によっては部分的な過熱が行われる。その際に生じた蒸気ないしは水・蒸気混合物は流れ媒体S用の出口管寄せ装置20内に集められる。蒸気ないしは水・蒸気混合物はそこから水平煙道6および垂直煙道8の壁を通って水平煙道6の過熱器22に到達する。この過熱器22において蒸気が一層過熱され、この蒸気は続いて使用に供され、例えば蒸気タービンの駆動に利用される。
【0059】
全負荷時における貫流ボイラ2の蒸気出力Mと蒸発管10の総内側横断面積Aとの商を、並行接続されたN本の蒸発管10に対して値1350kg/smに制限することによって、特に簡単に、貫流ボイラ2のあらゆる負荷状態における蒸発管10の確実な冷却、および隣接する蒸発管10間の特に小さな温度差が保証される。更に、蒸発管10の直列接続は特に、高温ガスGのほぼ水平の主流れ方向24の利用に対して設計されている。その場合、燃焼室4の長さLを全負荷時における貫流ボイラ2の蒸気出力Mに関係して選定することによって、化石燃料Bの燃焼熱が特に確実に利用されることが保証される。更に、貫流ボイラ2はその特に低い全高およびコンパクトな構造によって、特に安価な製造費および組立費で建設できる。その場合、非常に安い技術的費用で作れる架台を利用できる。蒸気タービンとそのような低い全高の貫流ボイラ2とを備えた発電所の場合、貫流ボイラ2から蒸気タービンまでの接続配管は特に短く設計できる。
【図面の簡単な説明】
【図1】二煙道形の化石燃料式貫流ボイラの概略側面図。
【図2】個々の蒸発管の概略縦断面図。
【図3】燃焼室の長さLと蒸気出力Mとの関係を示した曲線図。
【符号の説明】
2 貫流ボイラ
4 燃焼室
6 水平煙道
8 垂直煙道
9 燃焼室の囲壁
10 蒸発管
12 水平煙道の側壁
14 垂直煙道の側壁
16 蒸気発生管
17 蒸気発生管
18 入口管寄せ装置
19 配管系
20 出口管寄せ装置
22 過熱器
26 対流加熱器
30 バーナ
40 フィン
B 燃料

Claims (14)

  1. 化石燃料(B)用の燃焼室(4)を備え、高温ガス側においてこの燃焼室(4)に水平煙道(6)を介して垂直煙道(8)が後置接続され、燃焼室(4)の囲壁(9)が垂直に配置され互いに気密に溶接された多数の蒸発管(10)で形成され、
    燃焼室(4)は、水平煙道(6)の高さに配置された多数のバーナ(30)を有し、並行に流れ媒体(S)を供給される多数(N)の蒸発管(10)に対して、全負荷時における蒸気出力(M)(kg/s)と並行に流れ媒体(S)を供給されるこれらの蒸発管(10)の総内側横断面積(A)(m2)との商が1350(kg/sm2)より小さいように、設計され、
    燃焼室(4)の並行に流れ媒体(S)を供給される多数の蒸発管(10)に、流れ媒体側においてそれぞれ、流れ媒体(S)の共通の入口管寄せ装置(18)が前置接続され、共通の出口管寄せ装置(20)が後置接続され
    多数の蒸発管(10)がその内周面にそれぞれ多条ねじ山を形成するフィン(40)を有している
    ことを特徴とする化石燃料貫流ボイラ。
  2. 燃焼室(4)の正面壁(11)の蒸発管(10)が、流れ媒体側において、燃焼室(4)の他の囲壁(9)の蒸発管(10)に前置接続されている請求項記載の貫流ボイラ。
  3. 燃焼室(4)の多数の蒸発管(10)の管内径(D)が、燃焼室(4)における蒸発管(10)のそれぞれの位置に関係して選定されている請求項1又は2記載の貫流ボイラ。
  4. 管軸線に対して垂直な平面(42)と管内周面に設けられたフィン(40)のフランク(44)との成す傾斜角(α)が60°より小さい請求項記載の貫流ボイラ。
  5. 多数の蒸発管(10)がそれぞれ絞り装置を有している請求項1乃至の1つに記載の貫流ボイラ。
  6. 流れ媒体(S)を燃焼室(4)の蒸発管(10)に供給するための配管系(19)が設けられ、その配管系(19)が流れ媒体(S)の流量を減少させるために多数の絞り装置を有している請求項1乃至の1つに記載の貫流ボイラ。
  7. 水平煙道(6)の側壁(12)が、垂直に配置され互いに気密に溶接され且つ並行に流れ媒体(S)を供給される蒸気発生管(16)で形成されている請求項1乃至の1つに記載の貫流ボイラ。
  8. 垂直煙道(8)の側壁(14)が、垂直に配置され互いに気密に溶接され且つ並行に流れ媒体(S)を供給される蒸気発生管(17)で形成されている請求項1乃至の1つに記載の貫流ボイラ。
  9. 隣接する蒸発管(10)ないしは蒸気発生管(16、17)がひれを介して互いに気密に溶接され、そのひれ幅が、燃焼室(4)における水平煙道(6)及び/又は垂直煙道(8)の蒸発管(10)ないしは蒸気発生管(16、17)のその都度の位置に関係して選定されている請求項1乃至の1つに記載の貫流ボイラ。
  10. 水平煙道(6)内に複数の過熱器(22)が懸垂構造で配置されている請求項1乃至の1つに記載の貫流ボイラ。
  11. 垂直煙道(8)内に複数の対流加熱器(26)が配置されている請求項1乃至10の1つに記載の貫流ボイラ。
  12. バーナ(30)が燃焼室(4)の正面壁(11)に配置されている請求項1乃至11の1つに記載の貫流ボイラ。
  13. 燃焼室(4)の正面壁(11)から水平煙道(6)の入口範囲(32)までの距離で規定される燃焼室(4)の長さ(L)が、貫流ボイラ(2)の全負荷時における燃料(B)の燃焼長と少なくとも同じである請求項1乃至12の1つに記載の貫流ボイラ。
  14. 燃焼室(4)の長さL(m)が、全負荷時における蒸気出力(M)、燃料(B)の火炎(F)の燃焼時間(tA)及び/又は燃焼室(4)からの高温ガス(G)の出口温度(TBRK)の関数として、近似的に次式で選定され、
    L(M、tA)=(C1+C2×M)×tA
    L(M、TBRK)=(C3×TBRK+C4)×M+C5(TBRK2 +C6×TBRK+C7
    ここで、C1=8m/s
    2=0.0057m/kg
    3=−1.905×10-4(m×s)/(kg℃)
    4=0.286(s×m)/kg
    5=3×10-4(m/(℃)2
    6=−0.842m/℃
    7=603.41m
    であり、全負荷時における予め定められた蒸気出力(M)に対して、それぞれ燃焼室(4)の大きい方の長さ(L)が適用される請求項1乃至13の1つに記載の貫流ボイラ。
JP2000589873A 1998-12-18 1999-12-06 化石燃料貫流ボイラ Expired - Fee Related JP3571298B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19858780.5 1998-12-18
DE19858780A DE19858780C2 (de) 1998-12-18 1998-12-18 Fossilbeheizter Durchlaufdampferzeuger
PCT/DE1999/003896 WO2000037851A1 (de) 1998-12-18 1999-12-06 Fossilbeheizter durchlaufdampferzeuger

Publications (2)

Publication Number Publication Date
JP2002533643A JP2002533643A (ja) 2002-10-08
JP3571298B2 true JP3571298B2 (ja) 2004-09-29

Family

ID=7891779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000589873A Expired - Fee Related JP3571298B2 (ja) 1998-12-18 1999-12-06 化石燃料貫流ボイラ

Country Status (12)

Country Link
US (1) US6446580B2 (ja)
EP (1) EP1141625B1 (ja)
JP (1) JP3571298B2 (ja)
KR (1) KR100685074B1 (ja)
CN (1) CN1192186C (ja)
AT (1) ATE219828T1 (ja)
CA (1) CA2355101C (ja)
DE (2) DE19858780C2 (ja)
DK (1) DK1141625T3 (ja)
ES (1) ES2179696T3 (ja)
RU (1) RU2212582C2 (ja)
WO (1) WO2000037851A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2501086A1 (en) * 2002-10-04 2004-04-22 Nooter/Eriksen, Inc. Once-through evaporator for a steam generator
US20050072379A1 (en) * 2003-08-15 2005-04-07 Jupiter Oxygen Corporation Device and method for boiler superheat temperature control
US7878157B2 (en) * 2004-09-23 2011-02-01 Siemens Aktiengesellschaft Fossil-fuel heated continuous steam generator
EP2065641A3 (de) * 2007-11-28 2010-06-09 Siemens Aktiengesellschaft Verfahren zum Betrieben eines Durchlaufdampferzeugers sowie Zwangdurchlaufdampferzeuger
EP2194320A1 (de) * 2008-06-12 2010-06-09 Siemens Aktiengesellschaft Verfahren zum Betreiben eines Durchlaufdampferzeugers sowie Zwangdurchlaufdampferzeuger
EP2182278A1 (de) * 2008-09-09 2010-05-05 Siemens Aktiengesellschaft Durchlaufdampferzeuger
EP2180250A1 (de) * 2008-09-09 2010-04-28 Siemens Aktiengesellschaft Durchlaufdampferzeuger
DE102009012321A1 (de) * 2009-03-09 2010-09-16 Siemens Aktiengesellschaft Durchlaufverdampfer
DE102010040208B4 (de) * 2010-09-03 2012-08-16 Siemens Aktiengesellschaft Solarthermische Durchlaufverdampfer-Heizfläche mit lokaler Querschnittsverengung an ihrem Eintritt
DE102013215456A1 (de) * 2013-08-06 2015-02-12 Siemens Aktiengesellschaft Durchlaufdampferzeuger
BR112016014935B1 (pt) * 2013-12-27 2022-06-14 Mitsubishi Power, Ltd Tubo de transferência de calor, caldeira e dispositivo de turbina a vapor

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3136298A (en) * 1962-06-27 1964-06-09 Babcock & Wilcox Co Vapor generator
US3927646A (en) * 1965-04-13 1975-12-23 Babcock & Wilcox Co Vapor generator
US3527261A (en) * 1968-11-12 1970-09-08 Babcock & Wilcox Co Tube guide apparatus
DE2557427A1 (de) * 1975-12-19 1977-06-30 Kraftwerk Union Ag Schaltung einer feuerraumnase bei einem durchlaufkessel mit gasdicht verschweissten waenden in zweizugbauweise
US4290389A (en) * 1979-09-21 1981-09-22 Combustion Engineering, Inc. Once through sliding pressure steam generator
EP0349834B1 (de) * 1988-07-04 1996-04-17 Siemens Aktiengesellschaft Durchlaufdampferzeuger
US5199384A (en) * 1988-12-22 1993-04-06 Miura Co., Ltd. Quadrangular type multi-tube once-through boiler
ATE117420T1 (de) * 1991-04-18 1995-02-15 Siemens Ag Durchlaufdampferzeuger mit einem vertikalen gaszug aus im wesentlichen vertikal angeordneten rohren.
DE4427859A1 (de) * 1994-08-05 1995-10-26 Siemens Ag Rohr mit auf seiner Innenseite ein mehrgängiges Gewinde bildenden Rippen sowie Dampferzeuger zu seiner Verwendung
DE4431185A1 (de) * 1994-09-01 1996-03-07 Siemens Ag Durchlaufdampferzeuger
DE19645748C1 (de) * 1996-11-06 1998-03-12 Siemens Ag Verfahren zum Betreiben eines Durchlaufdampferzeugers und Durchlaufdampferzeuger zur Durchführung des Verfahrens
DE19651678A1 (de) * 1996-12-12 1998-06-25 Siemens Ag Dampferzeuger
CA2334699C (en) * 1998-06-10 2008-11-18 Siemens Aktiengesellschaft Fossil-fuel-fired steam generator

Also Published As

Publication number Publication date
EP1141625A1 (de) 2001-10-10
DE59901884D1 (de) 2002-08-01
KR100685074B1 (ko) 2007-02-22
RU2212582C2 (ru) 2003-09-20
US6446580B2 (en) 2002-09-10
CN1330751A (zh) 2002-01-09
DE19858780C2 (de) 2001-07-05
DK1141625T3 (da) 2002-10-14
KR20010082364A (ko) 2001-08-29
CA2355101C (en) 2005-07-26
JP2002533643A (ja) 2002-10-08
ES2179696T3 (es) 2003-01-16
EP1141625B1 (de) 2002-06-26
DE19858780A1 (de) 2000-07-06
ATE219828T1 (de) 2002-07-15
WO2000037851A1 (de) 2000-06-29
CN1192186C (zh) 2005-03-09
CA2355101A1 (en) 2000-06-29
US20020000208A1 (en) 2002-01-03

Similar Documents

Publication Publication Date Title
JP4242564B2 (ja) 化石燃料用ボイラ
JP3571298B2 (ja) 化石燃料貫流ボイラ
JP3806350B2 (ja) 燃焼ガス用脱窒装置付きの化石燃料ボイラ
JP4489306B2 (ja) 化石燃料貫流ボイラ
JP4953506B2 (ja) 化石燃料ボイラ
JP4489307B2 (ja) 化石燃料貫流ボイラ
JP3652988B2 (ja) 化石燃料ボイラ
JP5345217B2 (ja) 貫流ボイラ
US2287798A (en) Vapor generator
RU2001129291A (ru) Прямоточный парогенератор, работающий на ископаемом топливе
RU89884U1 (ru) Паровой котел
US3280559A (en) Ship propulsion power plant
US3153402A (en) Steam generator

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040623

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees