JP3571212B2 - Metal and alloy melting method and melting casting method - Google Patents

Metal and alloy melting method and melting casting method Download PDF

Info

Publication number
JP3571212B2
JP3571212B2 JP11917198A JP11917198A JP3571212B2 JP 3571212 B2 JP3571212 B2 JP 3571212B2 JP 11917198 A JP11917198 A JP 11917198A JP 11917198 A JP11917198 A JP 11917198A JP 3571212 B2 JP3571212 B2 JP 3571212B2
Authority
JP
Japan
Prior art keywords
melting
metal
molten metal
crucible
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11917198A
Other languages
Japanese (ja)
Other versions
JPH11310833A (en
Inventor
龍彦 草道
浩一 坂本
斉 石田
伸吾 蜷川
元裕 長尾
克之 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP11917198A priority Critical patent/JP3571212B2/en
Publication of JPH11310833A publication Critical patent/JPH11310833A/en
Application granted granted Critical
Publication of JP3571212B2 publication Critical patent/JP3571212B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • General Induction Heating (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、チタン等の活性金属やその合金、あるいはクロム等の高融点金属やその合金、又は超高清浄性が要求される各種金属合金材料についての溶解技術及び溶解鋳造技術に関する。
【0002】
【従来の技術】
チタン等の活性な金属・合金の溶解鋳造方法としては、真空アーク溶解法や電子ビーム溶解法、プラズマアーク溶解法などが工業的規模での溶解鋳造法に適しているところから、従来から多用されている。
【0003】
これらの溶解法はいずれも原理的に溶融金属の表面のみを加熱する方式であるため、多量の溶融金属浴を形成することが困難である。このため、一括して溶融し、溶湯での成分調整を行った後、出湯して鋳塊を製造する溶解鋳造方式が採用できなく、それに替わって溶解材料自体で成分調整を行い、これを逐次溶解しては凝固させて鋳塊を製造する方法が用いられている。このような溶解鋳造方法は、チタン等の活性金属・合金の溶解法としては幾らかの実績がある方法ではあるが、様々な形状・組成を有するスクラップの有効活用の見地からすると大きな制約がある。
【0004】
また、チタン等の活性金属・合金の溶解に際しては、るつぼ材として石灰系の耐火物を用いる方法も試みられているが、溶融金属浴温度が1700℃以上になると著しくるつぼ耐火物と反応して、溶湯中の酸素含有量が数千ppmにも達して、材料としての仕様を外れてしまうことが知られている。これは、溶融金属がるつぼ材と反応して、溶融金属浴自体が汚染されるためである。
【0005】
このため、工業的には水冷した銅材でるつぼを構成し、この銅るつぼと接した溶湯が直ちに凝固して凝固層を形成し、溶融金属浴はその凝固層の内側に保持される方式で、真空アーク溶解法や電子ビーム溶解法、プラズマアーク溶解法などによる溶解が行われている。
【0006】
【発明が解決しようとする課題】
従来から用いられているコールドクルーシブル誘導溶解法と称される水冷銅るつぼ利用の誘導溶解法は、原理的には種々の形状の溶解原料が利用でき、これを一括溶融して成分調整した後、鋳造を行うことができる溶解法ではあるが、工業規模で利用できるるつぼサイズでの溶解技術が未だ確立されておらず、従って、現実には利用できない状況にある。
【0007】
本発明は、このような従来の懸案とされる問題点の解消を図るために成されたものであり、従って、本発明の目的は、様々の形状の溶解原料を一括して溶融して、溶湯での成分調整を行うことができ、さらに、溶融直後において出湯して鋳塊を製造することができて、しかもこれを工業的規模で高純度かつ高均質の下に達成し得る如き新規な溶解鋳造方式を提供することにある。
【0008】
【課題を解決するための手段】
本発明は、上記の目的を達成するため以下に述べる構成としたものである。即ち、本発明に関して請求項1の発明は、チタン、ジルコニウム、希土類元素、シリコン、アルミニウムを含む活性金属元素を主成分とする金属・合金、あるいはクロム、バナジウムを含む融点の高い金属元素を主成分とする金属・合金、又は非金属介在物含有量の極めて少ない超高清浄性が要求される鉄基、ニッケル基、コバルト基合金、銅基を含む金属・合金の鋳塊を製造するに際して、高周波誘導加熱を加熱原理として溶解処理する金属・合金の溶解方法において、内部が水冷される角形又は丸形の長尺棒状の銅材を複数本筒状に組み合わせて形成される周胴部と内部が水冷される銅材で形成される底部とにより内径が400mm以上の溶解用るつぼを構成し、前記周胴部の外側に高周波誘導コイルを巻装して、前記高周波誘導コイルに対し次式で示す周波数範囲を満足する高周波電流を高周波電源から通電することにより、るつぼ内の溶融金属浴の側周面部を前記高周波電流により加振状態で保持して溶融金属浴の側周面部が銅るつぼと強固に接触することを抑制し、前記底部の上に溶融金属・合金の凝固物、溶解原料自体から成る固相の領域を形成させて、この固相の上に溶融浴を保持させつつ溶解原料の溶解を行うことを特徴とする金属・合金の溶解方法。
7.8−2×log(D)≦log(F)≦8.7−2×log(D)
但し、F:高周波電源の周波数(Hz)
D:るつぼの内径(mm)
【0009】
また、本発明における請求項2の発明は、上記請求項1の発明に関して、前記溶解原料を溶解用るつぼに装入するに先立って、それまでの溶解により形成されてなる固相物を前記底部上側に載置したままで、溶解原料をその上に装入した後、高周波誘導コイルに高周波電流を通電して加熱溶融を行い、かつ所定量になるまで溶解原料を追加装入することを特徴とする金属・合金の溶解方法である。
【0010】
また、本発明における請求項3の発明は、上記請求項1又は2の発明に関して、前記溶解原料の溶解に際して、フッ化物、塩化物、酸化物等から構成される添加物を装入して同時に加熱溶融させるか、又は金属浴が形成された後に前記添加物を装入することを特徴とする金属・合金の溶解方法である。
【0011】
また、本発明における請求項4の発明は、上記請求項1、2又は3の発明に関して、形成された溶融金属浴から成分分析用試料を採取し、その速やかな分析の結果に基づいて、前記溶解原料を追加装入することにより、所定の合金成分組成に調整することを特徴とする金属・合金の溶解方法である。
【0012】
また、本発明における請求項5の発明は、上記請求項1、2、3又は4の発明に関して、溶解、出湯の操作を真空雰囲気下又は不活性ガスの減圧・常圧・加圧雰囲気下で実施することを特徴とする金属・合金の溶解方法である。
【0013】
また、本発明における請求項6の発明は、上記請求項1、2、3、4又は5の金属・合金の溶解方法による溶解工程と、その直後において前記金属・合金の鋳塊を製造する鋳造工程とを備える溶解鋳造方法であって、水冷される栓が取付けられた溶融金属浴出湯用のノズルの1個以上が前記溶解用るつぼの底部又は/及び周胴部下方部分に取付けられるとともに、前記ノズルの下部に鋳型が設けられて、前記栓を取り除いて、溶解用るつぼの底部又は周胴部下方部分に形成されてなる固相部を溶融金属浴自体の熱により溶融させて、溶解用るつぼ内の溶融金属をノズルより出湯させ、前記鋳型内に注入して凝固させて鋳塊を製造することを特徴とする金属・合金の溶解鋳造方法である。
【0014】
また、本発明における請求項7の発明は、上記請求項6の発明に関して、内部が水冷される角形又は丸形の長尺棒状の銅材を複数本筒状に組み合わせて前記溶融金属浴出湯用のノズルが形成されるとともに、その外側に高周波誘導コイルが巻装されてなり、前記溶解用るつぼ内の溶融金属浴を出湯する際に、前記ノズル内で凝固してなる金属塊を、前記高周波誘導コイルに高周波電流を通電することにより加熱溶融して、溶解用るつぼ内の溶融金属浴を出湯させることを特徴とする金属・合金の溶解鋳造方法である。
【0015】
また、本発明における請求項8の発明は、上記請求項6又は7の発明に関して、前記溶融金属浴出湯用のノズルより出湯される溶融金属を水冷される鋳型内に注入して、上表面側では溶融した状態を維持させつつ下方側より凝固させて、溶融金属注入速度に対応する速度で凝固塊の引き抜きを行い、鋳塊を製造することを特徴とする金属・合金の溶解鋳造方法である。
【0016】
また、本発明における請求項9の発明は、上記請求項6、7又は8の発明に関して、溶解、出湯、鋳造の操作を真空雰囲気下又は不活性ガスの減圧・常圧・加圧雰囲気下で実施することを特徴とする金属・合金の溶解鋳造方法である。
【0017】
【発明の実施の形態】
以下、本発明の好ましい実施形態を、添付図面を参照しながら具体的に説明する。図1には本発明の実施の形態に係る溶解鋳造手段が概念図で示される。また図2には本発明の実施の形態に係る溶解用るつぼの直径と高周波電源周波数との関係線図が示される。
【0018】
図1を参照して、溶解原料mである金属又は/及び金属合金は、原料室1内の供給バケット10に収納され、所定量が直下に配設された真空誘導溶解炉2内の溶解用るつぼ4に供給される。この真空誘導溶解炉2内には、角形又は丸形の長尺棒状を成して内部が水冷される複数個の水冷銅セグメントを縦円筒状に組み合わせて形成される周胴部と、内部が水冷される銅材で形成される底部とにより分割型水冷銅鋳型に構成される溶解用るつぼ4と、このるつぼ4の外周に囲ませて設けられる高周波誘導コイル5と、溶解用るつぼ4の底部に連結された出湯用ノズル7とが収設されており、また、真空誘導溶解炉2の真空チャンバーには、真空排気手段6が接続されている。
【0019】
溶解用るつぼ4に供給された溶解原料mは、真空排気手段6により排気されてなる真空チャンバー内の減圧雰囲気下で高周波誘導コイル5による加熱によって溶解され、その際、溶解用るつぼ4内は、例えば脱酸剤付加と、133.322×10−3〜10−4Paの真空又はAr等不活性ガスの雰囲気との条件が維持される。
【0020】
溶解用るつぼ4内で溶解された溶解原料mは、出湯用ノズル7から取り出され、その直下に設けられた鋳造室内の例えば鋳型3に供給されて鋳造された後、インゴット9として鋳型3から取り出される。前記出湯用ノズル7は、内部が水冷される角形又は丸形の長尺棒状を成す銅材を複数本組み合わせて縦筒状に形成したノズル本体部11と、その外側に巻装させた高周波誘導コイル12とを備えている。
【0021】
溶解原料mを例えば高融点の金属系であるとして、水冷銅構造の溶解用るつぼ4を用いる誘導溶解技術が、るつぼ内径(直径)が400mm以上の工業規模のものでも成立することは、本発明者等が行った検討・実験の結果に基づいて明らかとなった。本発明が対象とする溶解法についてはこれまで、直径300mm以下程度の実験設備においての実績はあるが、工業規模の大型炉での安定操業に必要な諸条件を明確にした事例は今のところ全く見当たらない。そこで、本発明者等は、工業規模の大型炉でも本発明方法を適用することにより工業的に成立し得ることを明らかにしたのである。
【0022】
融点が著しく低い金属材料、例えば錫(融点,232℃)の場合、水冷銅構造の溶解用るつぼ4自体と反応して、該るつぼ4を溶損するためこの溶解法には適用できない。これは、水冷銅からなるるつぼの銅材自体の温度は高温部で100〜250℃程度の温度になるため、溶解材料の融点がこれと同程度の場合、銅るつぼに溶融金属が接触しても凝固層を形成することができず、そのために銅自体を溶融させてしまうからである。従って、溶解対象となる材料はその融点が500℃程度以上である高融点の金属・合金材料に限定する必要がある。
【0023】
本発明に係る溶解法は、水冷銅からなるるつぼ内に金属浴を形成させて溶解し、合金を製造する方法であるが、るつぼ底面と接する部分には溶融金属合金自体による固相物8の層(凝固層)を形成させてその上側に溶融金属浴を保持させており、一方、溶融金属浴の側周面部を高周波誘導コイル5の高周波電流による電磁気力によって加振状態で保持させることにより、溶融金属浴の側周面部が銅るつぼと強固に接触することを抑制しつつ溶解を維持し得る点に特徴を有する方式であり、このような態様を確実に維持するには、高周波電源の周波数範囲を適切な条件に設定する必要がある。すなわち、周波数が低すぎると、溶融金属浴の攪拌が激しくなりすぎて、溶融金属浴の乱れが大きくなり、銅るつぼと接触しやすくなって溶解が不安定となる。
【0024】
この周波数範囲の下限周波数に関して、本発明者等は、従来の小型試験炉での幾多の実験結果を検討することにより、図2に示すように、るつぼ直径(胴体部直径D:mm)と下限周波数値(Fmin :HZ )との間に下記 (1)式の関係が成立することを見出した。
7.8−2×log(D)=log(Fmin ) …… (1)
【0025】
この場合、るつぼ直径によって決まる下限の周波数値より低い値の周波数を用いると、溶融金属浴が電磁気力により強く攪拌されて、溶融金属の一部が水冷銅るつぼと接触して凝固し、銅るつぼへの伝熱量がさらに増大して、溶融金属浴を保持すること自体が困難となる。
【0026】
一方、周波数が高すぎると、水冷銅るつぼでの電力損失が大きくなりすぎて、実質上工業的に成立しにくい状況となる。例えば直径が1200mmの水冷銅るつぼを用いる際の所要電力量を高周波電源の周波数毎に計算した結果の一例は、下記〔表1〕に示す通りである。
【表1】

Figure 0003571212
【0027】
直径1200mmのるつぼでの下限周波数値は、 (1)式より44HZ となるので、50HZ 、200HZ 、500HZ の場合について所要の電源出力を計算した結果、周波数が高くなるにつれて著しく高い電力(例えば500HZ では50HZ の約3倍)が必要となることが明らかとなった。工業的な成立性を考慮すると、過大な電源容量を必要とする周波数は不適切であると考えられる。実用的に許容できる電源容量は、下限周波数の場合の3倍程度と考えられるので、これを満足するためには、上限周波数Fmax を設定する必要があり、下記の (2)式の関係式(図2参照)で示される上限周波数Fmax の値より低い周波数を用いることが望ましいといえる。
log(Fmax )=8.7−2×log(D) …… (2)
【0028】
このようなことから、本発明者等は、小型試験炉での操業結果報告の解析結果や、磁場解析と伝熱解析に基づく大型炉での解析検討の結果から、 (1)式と (2)式との間の適切な周波数、即ち、特許請求の範囲の請求項1記載の下記式(3)
7.8−2×log(D)≦log(F)≦8.7−2×log(D)… (3)を満足し得る範囲(図2において細平行線を付した個所)の周波数を用いれば、前述するチタン、ジルコニウム、希土類元素、シリコン、アルミニウムを含む活性金属元素を主成分とする金属・合金、あるいはクロム、バナジウムを含む融点の高い金属元素を主成分とする金属・合金、又は非金属介在物含有量の極めて少ない超高清浄性が要求される鉄基、ニッケル基、コバルト基合金、銅基を含む金属・合金に関して、安定して溶解できることを見出したのである。
【0029】
次に請求項2に係る本発明溶解方法では、水冷銅るつぼと接する領域に、溶解金属合金による固相物の層(凝固層)を形成させるのである。この固相物は、その内部の溶融金属浴が出湯された後にるつぼ内に残留して、冷却されると凝固収縮して水冷銅るつぼ内径より小さくなる。従って、溶解操作終了後に、この固相物を取り出すことが可能であり、また、別の溶解の際にこの固相物を水冷銅るつぼ内に装入して、その上に溶解原料を装入することが可能である。
【0030】
水冷銅るつぼ内に装入した溶解原料は、通常、嵩密度が溶湯状態の1/2から1/4程度のことが多いため、装入溶解原料が溶融するとるつぼ内での容積が減少することから、本溶解方法においても、溶解原料を追加装入する溶解法が不可欠となる。
【0031】
また、請求項3に係る本発明溶解方法では、水冷銅るつぼ内で金属合金を溶融する際に、金属浴の精錬効果を奏するフッ化物、塩化物、酸化物等を同時に添加して溶解することや、金属浴が形成された後に添加することが可能である。この場合、フッ化物としては、CaF2 、BaF2 、MgF2 、NaF、KF、希土類フッ化物等が挙げられ、塩化物としては、NaCl、KCl、CaCl2 、MgCl2 等が挙げられ、また、酸化物としては、CaO、BaO、MgO、Na2 O、SiO2 、Al2 O3 等が挙げられる。
【0032】
通常の耐火物を用いる溶解法では、活性度の高いフッ化物、塩化物、酸化物等を精錬材として用いると、精錬材による耐火物の浸食が著しくなり、安定して溶融することが困難となるが、本溶解法では、水冷銅るつぼを用いるため、るつぼ浸食などの問題を引き起こすことなく、安定した溶解精錬操作を行うことができる。
【0033】
また、請求項4に係る本発明溶解方法では、水冷銅るつぼ内に安定して金属合金浴が形成できることから、溶融金属合金浴の一部を採取して迅速に成分分析を行うことが可能となる。そして、その分析結果を基に、様々な合金成分を添加することができ、所定の合金組成に成分調整することが可能となる。
【0034】
以上述べた請求項1乃至請求項4に係る本発明溶解方法では、溶解、出湯の操作が真空或いは不活性ガスの雰囲気下で実施されることが、前掲の各溶解原料のの処理の場合に望ましいことである。
【0035】
次に、請求項6に係る本発明溶解鋳造方法は、水冷銅るつぼの底面又は/及び周胴部下方部分と接する領域に、溶融金属合金浴自体が凝固した固相物層(凝固層)が形成されている状態であるのに対して有効な手法である。すなわち、溶融金属合金浴のるつぼ外への取り出しに当たっては、水冷銅るつぼの底面又は/及び周胴部下方部分に溶融金属浴出湯用のノズルと該ノズルの水冷式栓を設けた構成としているので、該水冷式栓を取り除くことにより、このノズルと接する領域の凝固層の一部を溶融させて、溶湯を出湯させることが可能となる。この方法で出湯した溶湯を前記ノズル下に設けた鋳型内に注入して凝固させることにより、容易かつ効率よく鋳塊を製造することができる。
【0036】
また、請求項7に係る本発明溶解鋳造方法では、前記請求項6に係る出湯方式の場合に凝固層を内部の溶湯の熱により溶融させるため、出湯の制御性に若干の問題があることに対して有効な手法である。即ち、請求項7に係る出湯方式は、水冷銅るつぼに接続するノズル部もまた該水冷銅るつぼに類似した基本的構造と成し、内部を水で冷却した複数本の角形又は丸形の長尺棒状銅材で形成して、その外側に高周波加熱用の高周波誘導コイルを設けた構造としていて、ノズル内で凝固している金属浴を加熱溶融して、その熱も利用して水冷銅るつぼ内に形成されている凝固層を溶融することにより、るつぼ内の金属溶湯を取り出すことができるため、出湯の状況をより精密に制御することが可能である。このようにして出湯した溶湯を鋳型内で凝固させることにより、容易かつ効率よく鋳塊を製造することができる。
【0037】
また、請求項8に係る本発明溶解鋳造方法では、溶融金属浴出湯用のノズルより出湯される溶融金属を水冷される鋳型内に注入して、上表面側では溶融した状態を維持させつつ下方側より凝固させて、溶融金属注入速度に対応する速度で凝固塊の引き抜きを行わせるようにすることにより、高純度の金属・合金を効率よく連続的に鋳造することができる。
【0038】
なお、以上述べた請求項6乃至請求項8に係る本発明溶解方法では、溶解、出湯、鋳造の操作が真空或いは不活性ガスの雰囲気下で実施されることが、前掲の各溶解原料を対象とした場合により望ましいことである。
【0039】
【実施例】
以下、本発明の実施例について図1を参照しながら説明する。
内部が水冷される銅製の角形の長尺棒状物の複数本によって内径430mmと530mmとの溶解用るつぼ4を構成し、その外側に水冷銅製の高周波誘導コイル5を設けて、それらを真空チャンバ内に収設することにより真空誘導溶解炉2を構成し、この真空誘導溶解炉2を用いて、チタン、クロム、炭素鋼の溶解試験を行った。
【0040】
内径430mmの溶解用るつぼの場合は、高周波電源周波数の範囲は、前記式(3) から340〜2700HZ となり、内径530mmの溶解用るつぼの場合は225〜1780HZ となる。なお、内径430mmの溶解用るつぼの試験では、周波数1000HZ 、500HZ 程度の高周波電源を使用した。また、内径530mmの溶解用るつぼの試験では、周波数800HZ 、400HZ 程度の高周波電源を使用した。
【0041】
430mmと530mmの溶解用るつぼでは、チタン、鋼については出力1000kw以上で溶解が可能であり、クロムでは1500kw以上で溶解が可能なことが確認された。一方、周波数の影響については、500HZ 、400HZ の電源でも溶解は可能であったが、溶湯の攪拌による乱れが大きく、1000HZ 、800HZ の電源に比較すると、やや不安定と見られる溶解状況となった。
【0042】
るつぼのボトムからの出湯については、直径5〜100mmの黒鉛製のノズルと水冷栓の組合せにより、出湯可能なことを確認できた。また、水冷銅製のノズルと高周波誘導コイルの組合せになるものにおいては、周波数5〜20kHZ の高周波電源を用いることにより出湯可能なことを確認した。
【0043】
金属の溶解と同時にCaF2 、BaF2 、CaO、SiO2 などを溶湯重量の5%分装入して、金属浴の熱により溶融させてスラグ浴を形成させると、金属浴の上側るつぼ壁近傍部にスラグ浴が形成できた。このスラグ浴による種々の精錬効果が期待できる。なお、スラグ浴は金属浴の上側の側面側に形成されるため、るつぼ底から金属浴を出湯させることにより、スラグ浴を残して金属浴だけを取り出すことが可能である。
【0044】
【発明の効果】
本発明は、以上説明したような形態で実施され、以下に記載されるような効果を奏する。
【0045】
即ち、本発明によれば、様々の形状の溶解原料を一括して溶融し、かつ溶湯側で成分を調整することが可能となり、従って、溶解工程での操作制御性が格段に優れていて、高純度の金属・合金を量産することができる。また、溶融直後において出湯して鋳塊を製造できるので、工業的規模での溶解鋳造を効率よく行える。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る溶解鋳造手段の概念図である。
【図2】本発明の実施の形態に係る溶解用るつぼの直径と高周波電源周波数との関係線図である。
【符号の説明】
1…原料室 2…真空誘導溶解炉 3…鋳型
4…溶解用るつぼ 5…高周波誘導コイル 6…真空排気手段
7…出湯用ノズル 8…固相物 9…インゴット
10…供給バケット 11…ノズル本体部 12…高周波誘導コイル[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a melting technique and a melting casting technique for an active metal such as titanium or an alloy thereof, a high melting point metal such as chromium or an alloy thereof, or various metal alloy materials requiring ultra-high cleanliness.
[0002]
[Prior art]
As a method of melting and casting active metals and alloys such as titanium, vacuum arc melting, electron beam melting, plasma arc melting, etc. are widely used because they are suitable for industrial scale melting and casting. ing.
[0003]
Since each of these melting methods is a method of heating only the surface of the molten metal in principle, it is difficult to form a large amount of molten metal bath. For this reason, it is impossible to adopt a melting and casting method in which the molten metal is melted all at once and the components are adjusted in the molten metal, and then the molten metal is melted out, and the components are adjusted in the molten material itself. A method of producing an ingot by melting and solidifying is used. Although such a melting casting method is a method that has some results as a method for melting active metals and alloys such as titanium, there is a great limitation from the viewpoint of effective use of scrap having various shapes and compositions. .
[0004]
In addition, when dissolving an active metal or alloy such as titanium, a method using a lime-based refractory as a crucible material has been attempted. However, when the molten metal bath temperature is 1700 ° C. or more, the refractory reacts remarkably with the crucible. It has been known that the oxygen content in the molten metal reaches several thousand ppm, which deviates from the specification as a material. This is because the molten metal reacts with the crucible material and contaminates the molten metal bath itself.
[0005]
For this reason, industrially, a crucible is made of a water-cooled copper material, and the molten metal in contact with the copper crucible is immediately solidified to form a solidified layer, and the molten metal bath is held inside the solidified layer. Melting is performed by vacuum arc melting, electron beam melting, plasma arc melting, or the like.
[0006]
[Problems to be solved by the invention]
The induction melting method using a water-cooled copper crucible called the cold crucible induction melting method, which has been conventionally used, can use various shapes of melting raw materials in principle, and melts them all at once to adjust the components. Although it is a melting method capable of performing casting, a melting technique in a crucible size that can be used on an industrial scale has not yet been established, and therefore, it cannot be used in practice.
[0007]
The present invention has been made in order to solve such a conventional problem, and therefore, an object of the present invention is to melt molten raw materials of various shapes at once, It is possible to carry out component adjustment in the molten metal, and furthermore, it is possible to produce an ingot by pouring the molten metal immediately after melting, and to achieve this with high purity and high homogeneity on an industrial scale. It is to provide a melting casting method.
[0008]
[Means for Solving the Problems]
The present invention has the following configuration to achieve the above object. That is, the invention of claim 1 relates to a metal / alloy mainly containing an active metal element including titanium, zirconium, rare earth element, silicon and aluminum, or a metal element having a high melting point including chromium and vanadium. When manufacturing ingots of metals and alloys containing metals, alloys containing iron or nickel, cobalt based alloys and copper bases that require ultra-high cleanliness with extremely low content of non-metallic inclusions, In the method of melting metals and alloys that performs melting treatment using induction heating as a heating principle, a peripheral body formed by combining a plurality of rectangular or round long rod-shaped copper materials whose inside is water-cooled into a cylindrical shape and the inside is water-cooled. A melting crucible having an inner diameter of 400 mm or more by the bottom portion formed of a copper material, and a high-frequency induction coil wound around the outer trunk portion; By applying a high frequency current satisfying the frequency range represented by the following formula against the high-frequency power source, the side peripheral surface portion of the molten metal bath to hold the side peripheral surface portion of the molten metal bath in the crucible in a vibration state by the high-frequency current Suppresses firm contact with the copper crucible , forms a solid phase region consisting of the molten metal / alloy solidified material and the molten raw material itself on the bottom, and holds the molten bath on the solid phase. A method for melting metals and alloys, comprising melting a raw material while melting.
7.8-2 × log (D) ≦ log (F) ≦ 8.7-2 × log (D)
Here, F: frequency of high frequency power supply (Hz)
D: Internal diameter of crucible (mm)
[0009]
Further, the invention according to claim 2 of the present invention relates to the invention according to claim 1, wherein, prior to charging the melting raw material into the melting crucible, the solid material formed by the melting up to that time is mixed with the bottom. After the molten raw material is loaded on top of it while placed on the upper side, high-frequency current is applied to the high-frequency induction coil to perform heating and melting, and the molten raw material is additionally charged until a predetermined amount is reached. It is a method of melting metals and alloys.
[0010]
Further, the invention of claim 3 according to the present invention relates to the invention of claim 1 or 2, wherein at the time of dissolving the dissolving raw material, an additive composed of fluoride, chloride, oxide or the like is charged and A method for melting a metal or alloy, which comprises heating and melting or charging the additive after a metal bath is formed.
[0011]
Further, the invention of claim 4 in the present invention relates to the invention of claim 1, 2 or 3, wherein a sample for component analysis is collected from the formed molten metal bath, and based on the result of the prompt analysis, A metal / alloy melting method characterized by adjusting a predetermined alloy component composition by additionally charging a melting raw material.
[0012]
Further, the invention of claim 5 according to the present invention relates to the invention of claim 1, 2, 3 or 4, wherein the operations of melting and tapping are performed under a vacuum atmosphere or under reduced pressure, normal pressure and pressurized atmosphere of an inert gas. This is a method for melting a metal or an alloy, which is performed.
[0013]
The invention according to claim 6 of the present invention is directed to a melting step of the metal / alloy melting method according to claim 1, 2, 3, 4 or 5, and a casting step for producing an ingot of the metal / alloy immediately after the melting step. And at least one nozzle for molten metal tapping with a water-cooled plug attached to the bottom or / and lower part of the peripheral body of the melting crucible, A mold is provided at the lower part of the nozzle, the plug is removed, and the solid phase formed at the bottom of the melting crucible or the lower part of the peripheral body is melted by the heat of the molten metal bath itself, and the melting is performed. A molten casting method for a metal or alloy, characterized in that molten metal in a crucible is discharged from a nozzle, poured into the mold and solidified to produce an ingot.
[0014]
The invention according to claim 7 of the present invention relates to the molten metal bath tapping water according to the invention according to claim 6, wherein a plurality of rectangular or round long rod-shaped copper materials whose insides are water-cooled are combined in a tubular shape. Is formed, and a high-frequency induction coil is wound around the nozzle, and when the molten metal bath in the melting crucible is discharged, a metal lump solidified in the nozzle is removed by the high-frequency wave. This is a method of melting and casting a metal / alloy, characterized in that a high-frequency current is applied to an induction coil to heat and melt the molten metal so as to discharge a molten metal bath in a melting crucible.
[0015]
The invention according to claim 8 of the present invention relates to the invention according to claim 6 or 7, wherein the molten metal discharged from the molten metal bath tapping nozzle is poured into a water-cooled mold, and the upper surface side In this method, solidification is performed from the lower side while maintaining the molten state, the solidified mass is drawn out at a speed corresponding to the molten metal injection speed, and an ingot is manufactured. .
[0016]
The invention of claim 9 in the present invention relates to the invention of claim 6, 7, or 8, wherein the operations of melting, tapping, and casting are performed under a vacuum atmosphere or under a reduced pressure, normal pressure, and pressurized atmosphere of an inert gas. This is a method for melting and casting a metal or an alloy, which is carried out.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be specifically described with reference to the accompanying drawings. FIG. 1 is a conceptual diagram showing a molten casting means according to an embodiment of the present invention. FIG. 2 is a diagram showing the relationship between the diameter of the melting crucible and the high frequency power supply frequency according to the embodiment of the present invention.
[0018]
Referring to FIG. 1, a metal and / or a metal alloy, which is a melting raw material m, is stored in a supply bucket 10 in a raw material chamber 1, and a predetermined amount is used for melting in a vacuum induction melting furnace 2 disposed immediately below. It is supplied to the crucible 4. In the vacuum induction melting furnace 2, a peripheral body formed by combining a plurality of water-cooled copper segments each having a rectangular or round long rod shape and the inside thereof being water-cooled into a vertical cylindrical shape, and the inside being water-cooled Melting crucible 4 constituted by a split type water-cooled copper mold with a bottom portion formed of a copper material, a high-frequency induction coil 5 provided to be surrounded by the outer periphery of the crucible 4, and a bottom portion of the melting crucible 4. The hot water supply nozzle 7 is housed therein, and a vacuum chamber 6 of the vacuum induction melting furnace 2 is connected to a vacuum exhaust means 6.
[0019]
The melting raw material m supplied to the melting crucible 4 is melted by heating by the high-frequency induction coil 5 under a reduced pressure atmosphere in a vacuum chamber evacuated by the vacuum evacuation means 6, and at this time, the melting crucible 4 For example, the conditions of adding a deoxidizing agent and maintaining a vacuum of 133.322 × 10 −3 to 10 −4 Pa or an atmosphere of an inert gas such as Ar are maintained.
[0020]
The molten raw material m melted in the melting crucible 4 is taken out from the tapping nozzle 7, supplied to, for example, the mold 3 in a casting chamber provided immediately below, and cast, and then taken out of the mold 3 as an ingot 9. It is. The tapping nozzle 7 has a nozzle body 11 formed in a vertical cylindrical shape by combining a plurality of rectangular or round long rod-shaped copper materials, the inside of which is water-cooled, and a high-frequency induction wound around the outside thereof. And a coil 12.
[0021]
Assuming that the melting raw material m is, for example, a metal material having a high melting point, the induction melting technique using the melting crucible 4 having a water-cooled copper structure is applicable to an industrial scale having a crucible inner diameter (diameter) of 400 mm or more. It became clear based on the results of examinations and experiments conducted by persons. So far, the melting method targeted by the present invention has been used in experimental equipment with a diameter of about 300 mm or less, but there are no cases where the conditions necessary for stable operation in a large-scale industrial furnace have been clarified. I can't find it at all. Therefore, the present inventors have clarified that even a large-scale furnace on an industrial scale can be industrially established by applying the method of the present invention.
[0022]
In the case of a metal material having a remarkably low melting point, for example, tin (melting point: 232 ° C.), it reacts with the melting crucible 4 itself having a water-cooled copper structure and dissolves the crucible 4, so that it cannot be applied to this melting method. This is because the temperature of the copper material itself in a crucible made of water-cooled copper becomes a temperature of about 100 to 250 ° C. in the high temperature part, so that when the melting point of the molten material is about the same, the molten metal contacts the copper crucible. This is also because a solidified layer cannot be formed, thereby melting the copper itself. Therefore, it is necessary to limit the material to be melted to a high melting point metal / alloy material whose melting point is about 500 ° C. or higher.
[0023]
The melting method according to the present invention is a method of producing a metal alloy by forming a metal bath in a crucible made of water-cooled copper and melting the same. By forming a layer (solidified layer) and holding the molten metal bath above the layer, the side peripheral surface of the molten metal bath is held in a vibrated state by the electromagnetic force generated by the high-frequency current of the high-frequency induction coil 5. The method is characterized in that melting can be maintained while suppressing the side peripheral surface portion of the molten metal bath from firmly contacting the copper crucible. It is necessary to set the frequency range to an appropriate condition. That is, when the frequency is too low, the stirring of the molten metal bath becomes too violent, the turbulence of the molten metal bath becomes large, and the molten metal bath easily comes into contact with the copper crucible, and the melting becomes unstable.
[0024]
Regarding the lower limit frequency of this frequency range, the present inventors examined a number of experimental results in a conventional small test furnace, and as shown in FIG. 2, determined the crucible diameter (body diameter D: mm) and the lower limit. It has been found that the relationship represented by the following equation (1) is established with respect to the frequency value (Fmin: HZ).
7.8-2 × log (D) = log (Fmin) (1)
[0025]
In this case, if a frequency lower than the lower limit frequency value determined by the crucible diameter is used, the molten metal bath is strongly stirred by the electromagnetic force, and a part of the molten metal comes into contact with the water-cooled copper crucible and solidifies to form a copper crucible. The amount of heat transferred to the molten metal further increases, and it becomes difficult to maintain the molten metal bath itself.
[0026]
On the other hand, when the frequency is too high, the power loss in the water-cooled copper crucible becomes too large, and it becomes a situation that it is practically difficult to establish industrially. For example, an example of the result of calculating the required power amount for each frequency of the high-frequency power supply when using a water-cooled copper crucible having a diameter of 1200 mm is as shown in [Table 1] below.
[Table 1]
Figure 0003571212
[0027]
The lower limit frequency value for a crucible having a diameter of 1200 mm is 44 HZ according to the equation (1). As a result of calculating the required power output for the cases of 50 HZ, 200 HZ, and 500 HZ, the power becomes remarkably higher as the frequency becomes higher (for example, 500 HZ). (Approximately three times 50 HZ). Considering industrial feasibility, a frequency that requires an excessive power supply capacity is considered inappropriate. The practically allowable power supply capacity is considered to be about three times that of the lower limit frequency. To satisfy this, it is necessary to set the upper limit frequency Fmax, and the following relational expression (2) It can be said that it is desirable to use a frequency lower than the value of the upper limit frequency Fmax shown in FIG. 2).
log (Fmax) = 8.7-2 × log (D) (2)
[0028]
Based on the above, the present inventors, based on the analysis results of the operation result report in the small test furnace and the analysis and study results in the large furnace based on the magnetic field analysis and the heat transfer analysis, show the equation (1) and (2) )), Ie the following equation (3) according to claim 1 of the claims:
7.8−2 × log (D) ≦ log (F) ≦ 8.7−2 × log (D)... (3) If used, the above-mentioned titanium, zirconium, rare earth elements, silicon, metals and alloys mainly containing an active metal element including aluminum, or chromium, metals and alloys mainly containing a high melting point metal element including vanadium, or The present inventors have found that metals and alloys containing an iron base, a nickel base, a cobalt base alloy, and a copper base, which require extremely low non-metallic inclusion content and extremely high cleanliness, can be stably dissolved.
[0029]
Next, in the melting method according to the second aspect of the present invention, a layer (solidified layer) of a solid phase material of a molten metal alloy is formed in a region in contact with the water-cooled copper crucible. This solid phase material remains in the crucible after the molten metal bath in it has been tapped, and when cooled, solidifies and contracts to become smaller than the inner diameter of the water-cooled copper crucible. Therefore, it is possible to take out the solid phase after the dissolution operation is completed, and to put the solid phase into a water-cooled copper crucible at the time of another melting, and then put the raw material for melting into the water-cooled copper crucible. It is possible to do.
[0030]
The molten raw material charged into a water-cooled copper crucible usually has a bulk density of about か ら to の of the molten state, so that when the charged molten raw material is melted, the volume in the crucible decreases. Therefore, also in the present dissolving method, a dissolving method for additionally charging a dissolving raw material is indispensable.
[0031]
Further, in the melting method of the present invention according to claim 3, when a metal alloy is melted in a water-cooled copper crucible, a fluoride, a chloride, an oxide, or the like that has a refining effect of a metal bath is added and dissolved at the same time. Alternatively, it can be added after the metal bath is formed. In this case, examples of the fluoride include CaF2, BaF2, MgF2, NaF, KF, and rare earth fluorides. Examples of the chloride include NaCl, KCl, CaCl2, and MgCl2, and examples of the oxide include: CaO, BaO, MgO, Na2O, SiO2, Al2O3 and the like can be mentioned.
[0032]
In the melting method using ordinary refractories, if highly active fluorides, chlorides, oxides, and the like are used as a refining material, erosion of the refractories by the refining materials becomes remarkable, and it is difficult to stably melt. However, in this melting method, since a water-cooled copper crucible is used, a stable melting and refining operation can be performed without causing problems such as crucible erosion.
[0033]
Further, in the melting method of the present invention according to claim 4, since the metal alloy bath can be formed stably in the water-cooled copper crucible, it is possible to extract a part of the molten metal alloy bath and quickly perform the component analysis. Become. Then, based on the analysis results, various alloy components can be added, and the components can be adjusted to a predetermined alloy composition.
[0034]
In the melting method of the present invention according to claims 1 to 4 described above, the operations of melting and tapping are performed in a vacuum or in an atmosphere of an inert gas. That is desirable.
[0035]
Next, in the melting casting method of the present invention according to claim 6, the solid-state material layer (solidified layer) in which the molten metal alloy bath itself has solidified is formed in a region in contact with the bottom surface of the water-cooled copper crucible and / or the lower part of the peripheral body. This is an effective method for the state in which it is formed. That is, when the molten metal alloy bath is taken out of the crucible, a nozzle for molten metal bath tapping and a water-cooled stopper of the nozzle are provided on the bottom surface of the water-cooled copper crucible and / or the lower part of the peripheral body. By removing the water-cooled plug, it is possible to melt a part of the solidified layer in a region in contact with the nozzle and to discharge the molten metal. The ingot can be easily and efficiently manufactured by injecting and solidifying the molten metal discharged by this method into a mold provided below the nozzle.
[0036]
In the molten casting method according to the present invention according to claim 7, since the solidification layer is melted by the heat of the molten metal in the case of the tapping method according to claim 6, there is a slight problem in the controllability of the molten metal. This is an effective method. In other words, in the tapping method according to claim 7, the nozzle portion connected to the water-cooled copper crucible also has a basic structure similar to the water-cooled copper crucible, and has a plurality of rectangular or round long tubes whose insides are cooled by water. It is made of a rod-shaped copper material, and has a structure in which a high-frequency induction coil for high-frequency heating is provided on the outside, and heats and melts the solidified metal bath in the nozzle, and also uses the heat to make a water-cooled copper crucible. The molten metal in the crucible can be taken out by melting the solidified layer formed in the inside, so that the state of tapping can be controlled more precisely. By solidifying the molten metal thus discharged in the mold, an ingot can be easily and efficiently manufactured.
[0037]
In the molten casting method of the present invention according to claim 8, molten metal discharged from a molten metal bath tapping nozzle is injected into a water-cooled mold, and a molten state is maintained while maintaining a molten state on the upper surface side. By solidifying from the side and extracting the solidified mass at a speed corresponding to the molten metal injection speed, a high-purity metal / alloy can be efficiently and continuously cast.
[0038]
In the melting method of the present invention according to claims 6 to 8, the operations of melting, tapping, and casting are performed in a vacuum or in an atmosphere of an inert gas. Is more desirable.
[0039]
【Example】
Hereinafter, an embodiment of the present invention will be described with reference to FIG.
The melting crucible 4 having an inner diameter of 430 mm and 530 mm is constituted by a plurality of rectangular copper rods whose inside is water-cooled, and a high-frequency induction coil 5 made of water-cooled copper is provided on the outside thereof, and these are placed in a vacuum chamber. The vacuum induction melting furnace 2 was constructed by using the vacuum induction melting furnace 2, and a melting test of titanium, chromium, and carbon steel was performed using the vacuum induction melting furnace 2.
[0040]
In the case of a melting crucible having an inner diameter of 430 mm, the range of the high frequency power supply frequency is 340 to 2700 HZ from the above equation (3), and in the case of a melting crucible having an inner diameter of 530 mm, the range is 225 to 1780 HZ. In addition, in the test of the melting crucible having an inner diameter of 430 mm, a high-frequency power source having a frequency of about 1000 Hz and 500 Hz was used. In the test of the melting crucible having an inner diameter of 530 mm, a high-frequency power source having a frequency of about 800 Hz and 400 Hz was used.
[0041]
In the melting pots of 430 mm and 530 mm, it was confirmed that titanium and steel can be melted at an output of 1000 kW or more, and chromium can be melted at a power of 1500 kW or more. On the other hand, regarding the influence of the frequency, melting was possible even with a power supply of 500 HZ and 400 HZ, but the disturbance due to agitation of the molten metal was large, and the melting state was slightly unstable compared to a power supply of 1000 HZ and 800 HZ. .
[0042]
With respect to tapping from the bottom of the crucible, it was confirmed that tapping was possible with a combination of a graphite nozzle having a diameter of 5 to 100 mm and a water cooling tap. In addition, it was confirmed that tapping could be achieved by using a high-frequency power supply having a frequency of 5 to 20 kHz in a combination of a water-cooled copper nozzle and a high-frequency induction coil.
[0043]
At the same time as melting of the metal, CaF2, BaF2, CaO, SiO2, etc. are charged by 5% of the weight of the molten metal and melted by the heat of the metal bath to form a slag bath. A bath was formed. Various refining effects can be expected from this slag bath. Since the slag bath is formed on the upper side surface of the metal bath, it is possible to take out the metal bath from the bottom of the crucible and take out only the metal bath while leaving the slag bath.
[0044]
【The invention's effect】
The present invention is implemented in the form described above, and has the following effects.
[0045]
That is, according to the present invention, it is possible to melt the molten raw materials of various shapes at once, and to adjust the components on the molten metal side, and therefore, the operation controllability in the melting step is extremely excellent, High-purity metals and alloys can be mass-produced. In addition, since the ingot can be produced by tapping immediately after melting, it is possible to efficiently perform melting and casting on an industrial scale.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of a melting casting means according to an embodiment of the present invention.
FIG. 2 is a diagram showing a relationship between a diameter of a melting crucible and a high frequency power supply frequency according to the embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Raw material chamber 2 ... Vacuum induction melting furnace 3 ... Mold 4 ... Melting crucible 5 ... High frequency induction coil 6 ... Vacuum exhaust means 7 ... Hot water nozzle 8 ... Solid phase 9 ... Ingot 10 ... Supply bucket 11 ... Nozzle body 12 ... High frequency induction coil

Claims (9)

チタン、ジルコニウム、希土類元素、シリコン、アルミニウムを含む活性金属元素を主成分とする金属・合金、あるいはクロム、バナジウムを含む融点の高い金属元素を主成分とする金属・合金、又は非金属介在物含有量の極めて少ない超高清浄性が要求される鉄基、ニッケル基、コバルト基合金、銅基を含む金属・合金の鋳塊を製造するに際して、高周波誘導加熱を加熱原理として溶解処理する金属・合金の溶解方法において、内部が水冷される角形又は丸形の長尺棒状の銅材を複数本筒状に組み合わせて形成される周胴部と内部が水冷される銅材で形成される底部とにより内径が400mm以上の溶解用るつぼを構成し、前記周胴部の外側に高周波誘導コイルを巻装して、前記高周波誘導コイルに対し次式で示す周波数範囲を満足する高周波電流を高周波電源から通電することにより、るつぼ内の溶融金属浴の側周面部を前記高周波電流により加振状態で保持して溶融金属浴の側周面部が銅るつぼと強固に接触することを抑制し、前記底部の上に溶融金属・合金の凝固物、溶解原料自体から成る固相の領域を形成させて、この固相の上に溶融浴を保持させつつ溶解原料の溶解を行うことを特徴とする金属・合金の溶解方法。
7.8−2×log(D)≦log(F)≦8.7−2×log(D)
但し、F:高周波電源の周波数(Hz)
D:るつぼの内径(mm)
Contains metals and alloys mainly composed of active metal elements including titanium, zirconium, rare earth elements, silicon and aluminum, or metals and alloys mainly composed of high melting point metal elements including chromium and vanadium, or contains nonmetallic inclusions Metals and alloys that use a high-frequency induction heating as the heating principle when producing ingots of metals and alloys containing iron, nickel, cobalt-based alloys, and copper-based alloys that require extremely low cleanliness. In the dissolution method, the inner diameter is formed by a peripheral body formed by combining a plurality of rectangular or round long rod-shaped copper materials whose inside is water-cooled into a cylindrical shape and a bottom formed by a copper material whose inside is water-cooled. A melting crucible having a length of 400 mm or more is formed, and a high-frequency induction coil is wound around the outer trunk, and a high-frequency induction coil is formed so as to satisfy a frequency range represented by the following equation. By supplying a wave current from a high-frequency power source, the side peripheral surface of the molten metal bath in the crucible is held in a vibrating state by the high-frequency current so that the side peripheral surface of the molten metal bath comes into firm contact with the copper crucible. Suppressing, forming a solid phase region consisting of the solidified material of the molten metal / alloy and the molten raw material on the bottom, and melting the molten raw material while holding the molten bath on the solid phase. Characteristic metal / alloy melting method.
7.8-2 × log (D) ≦ log (F) ≦ 8.7-2 × log (D)
Here, F: frequency of high frequency power supply (Hz)
D: Internal diameter of crucible (mm)
前記溶解原料を溶解用るつぼに装入するに先立って、それまでの溶解により形成されてなる固相物を前記底部上側に載置したままで、溶解原料をその上に装入した後、高周波誘導コイルに高周波電流を通電して加熱溶融を行い、かつ所定量になるまで溶解原料を追加装入することを特徴とする請求項1記載の金属・合金の溶解方法。Prior to loading the melting raw material into the melting crucible, while the solid material formed by the previous melting is placed on the upper side of the bottom, the melting raw material is charged thereon, 2. The method for melting a metal or alloy according to claim 1, wherein a high-frequency current is applied to the induction coil to perform heating and melting, and a molten material is additionally charged until a predetermined amount is reached. 前記溶解原料の溶解に際して、フッ化物、塩化物、酸化物等から構成される添加物を装入して同時に加熱溶融させるか、又は金属浴が形成された後に前記添加物を装入することを特徴とする請求項1又は2に記載の金属・合金の溶解方法。In dissolving the melting raw material, an additive composed of fluoride, chloride, oxide and the like is charged and heated and melted at the same time, or the additive is charged after a metal bath is formed. The method for melting a metal or an alloy according to claim 1 or 2, wherein: 形成された溶融金属浴から成分分析用試料を採取し、その速やかな分析の結果に基づいて、前記溶解原料を追加装入することにより、所定の合金成分組成に調整することを特徴とする請求項1、2又は3に記載の金属・合金の溶解方法。A sample for component analysis is collected from the formed molten metal bath, and based on the result of the quick analysis, the melted raw material is additionally charged to adjust to a predetermined alloy component composition. Item 4. The method for dissolving a metal or alloy according to item 1, 2 or 3. 溶解、出湯の操作を真空雰囲気下又は不活性ガスの減圧・常圧・加圧雰囲気下で実施することを特徴とする請求項1、2、3又は4に記載の金属・合金の溶解方法。5. The method for melting a metal or alloy according to claim 1, wherein the melting and tapping operations are performed in a vacuum atmosphere or in a reduced pressure, normal pressure, or pressurized atmosphere of an inert gas. 請求項1、2、3、4又は5に記載の金属・合金の溶解方法による溶解工程と、その直後において前記金属・合金の鋳塊を製造する鋳造工程とを備える溶解鋳造方法であって、水冷される栓が取付けられた溶融金属浴出湯用のノズルの1個以上が前記溶解用るつぼの底部又は/及び周胴部下方部分に取付けられるとともに、前記ノズルの下部に鋳型が設けられて、前記栓を取り除いて、溶解用るつぼの底部又は周胴部下方部分に形成されてなる固相部を溶融金属浴自体の熱により溶融させて、溶解用るつぼ内の溶融金属をノズルより出湯させ、前記鋳型内に注入して凝固させて鋳塊を製造することを特徴とする金属・合金の溶解鋳造方法。A melting casting method comprising: a melting step according to the metal / alloy melting method according to claim 1, 2, 3, 4, or 5, and a casting step immediately after that to produce an ingot of the metal / alloy. One or more nozzles for tapping a molten metal bath to which a water-cooled plug is attached are attached to the bottom of the melting crucible or / and the lower part of the peripheral body, and a mold is provided below the nozzle, By removing the plug, the solid portion formed at the bottom or lower part of the peripheral body of the melting crucible is melted by the heat of the molten metal bath itself, and the molten metal in the melting crucible is discharged from the nozzle, A method for melting and casting a metal or alloy, wherein the method is performed by injecting into a mold and solidifying to form an ingot. 内部が水冷される角形又は丸形の長尺棒状の銅材を複数本筒状に組み合わせて前記溶融金属浴出湯用のノズルが形成されるとともに、その外側に高周波誘導コイルが巻装されてなり、前記溶解用るつぼ内の溶融金属浴を出湯する際に、前記ノズル内で凝固してなる金属塊を、前記高周波誘導コイルに高周波電流を通電することにより加熱溶融して、溶解用るつぼ内の溶融金属浴を出湯させることを特徴とする請求項6記載の金属・合金の溶解鋳造方法。A nozzle for the molten metal bath is formed by combining a plurality of rectangular or round long rod-shaped copper materials whose inside is water-cooled, and a high-frequency induction coil is wound around the nozzle. When tapping the molten metal bath in the melting crucible, the metal lump solidified in the nozzle is heated and melted by applying a high-frequency current to the high-frequency induction coil, and the molten metal in the melting crucible is melted. 7. The method according to claim 6, wherein the molten metal bath is tapped. 前記溶融金属浴出湯用のノズルより出湯される溶融金属を水冷される鋳型内に注入して、上表面側では溶融した状態を維持させつつ下方側より凝固させて、溶融金属注入速度に対応する速度で凝固塊の引き抜きを行い、鋳塊を製造することを特徴とする請求項6又は7に記載の金属・合金の溶解鋳造方法。The molten metal discharged from the molten metal bath tapping nozzle is injected into a water-cooled mold, and solidified from the lower side while maintaining a molten state on the upper surface side, corresponding to the molten metal injection speed. 8. The method for melting and casting a metal or alloy according to claim 6, wherein a solidified mass is drawn at a speed to produce an ingot. 溶解、出湯、鋳造の操作を真空雰囲気下又は不活性ガスの減圧・常圧・加圧雰囲気下で実施することを特徴とする請求項6、7又は8に記載の金属・合金の溶解鋳9. The molten casting of a metal or alloy according to claim 6, 7 or 8, wherein the operations of melting, tapping and casting are performed in a vacuum atmosphere or in a reduced-pressure / normal-pressure / pressurized atmosphere of an inert gas. 造方法。Construction method.
JP11917198A 1998-04-28 1998-04-28 Metal and alloy melting method and melting casting method Expired - Lifetime JP3571212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11917198A JP3571212B2 (en) 1998-04-28 1998-04-28 Metal and alloy melting method and melting casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11917198A JP3571212B2 (en) 1998-04-28 1998-04-28 Metal and alloy melting method and melting casting method

Publications (2)

Publication Number Publication Date
JPH11310833A JPH11310833A (en) 1999-11-09
JP3571212B2 true JP3571212B2 (en) 2004-09-29

Family

ID=14754679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11917198A Expired - Lifetime JP3571212B2 (en) 1998-04-28 1998-04-28 Metal and alloy melting method and melting casting method

Country Status (1)

Country Link
JP (1) JP3571212B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220052664A (en) * 2020-10-21 2022-04-28 (주)동아특수금속 Manufacturing technology of high-quality titanium alloy applied induction skull melt method

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4496623B2 (en) * 2000-08-18 2010-07-07 シンフォニアテクノロジー株式会社 Induction heating melting furnace
US7967057B2 (en) 2005-11-30 2011-06-28 Kobe Steel, Ltd. Induction melting apparatus employing halide type crucible, process for producing the crucible, method of induction melting, and process for producing ingot of ultrahigh-purity Fe-, Ni-, or Co-based alloy material
JP5261216B2 (en) * 2009-01-29 2013-08-14 株式会社神戸製鋼所 Method for melting long ingots
CN102471828B (en) 2009-07-15 2013-11-20 株式会社神户制钢所 Method for producing alloy ingots
JP6059389B1 (en) * 2016-06-20 2017-01-11 北芝電機株式会社 Melting control method for fast induction melting furnace
JP7043217B2 (en) * 2016-12-13 2022-03-29 株式会社神戸製鋼所 How to cast active metal
WO2018110370A1 (en) * 2016-12-13 2018-06-21 株式会社神戸製鋼所 Casting method for active metal
JP7355990B2 (en) * 2019-01-16 2023-10-04 シンフォニアテクノロジー株式会社 Cold crucible melting furnace and its maintenance method
CN113758255A (en) * 2021-08-24 2021-12-07 合肥科晶材料技术有限公司 Small-size ultra-temperature electromagnetic stirring alloy casting furnace
CN114769571A (en) * 2022-04-07 2022-07-22 昌航精铸有限公司 Metallurgical device
CN114833329B (en) * 2022-05-19 2023-07-04 中南大学 High-entropy alloy multi-section mixed casting device and method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220052664A (en) * 2020-10-21 2022-04-28 (주)동아특수금속 Manufacturing technology of high-quality titanium alloy applied induction skull melt method
KR102409182B1 (en) * 2020-10-21 2022-06-15 (주)동아특수금속 Casting method of titanium alloy using titanium scrap

Also Published As

Publication number Publication date
JPH11310833A (en) 1999-11-09

Similar Documents

Publication Publication Date Title
US6144690A (en) Melting method using cold crucible induction melting apparatus
AU608785B2 (en) Method for induction melting reactive metals and alloys
US7967057B2 (en) Induction melting apparatus employing halide type crucible, process for producing the crucible, method of induction melting, and process for producing ingot of ultrahigh-purity Fe-, Ni-, or Co-based alloy material
US20110094705A1 (en) Methods for centrifugally casting highly reactive titanium metals
JP3571212B2 (en) Metal and alloy melting method and melting casting method
US20090133850A1 (en) Systems for centrifugally casting highly reactive titanium metals
JP6896623B2 (en) A process for producing a low nitrogen, substantially nitride-free chromium and chromium and niobium-containing nickel-based alloy, and the resulting chromium and nickel-based alloy.
JP5048222B2 (en) Method for producing long ingots of active refractory metal alloys
CN102471828A (en) Method for producing alloy ingots
US5102450A (en) Method for melting titanium aluminide alloys in ceramic crucible
JP2007154214A (en) METHOD FOR REFINING ULTRAHIGH PURITY Fe-BASE, Ni-BASE AND Co-BASE ALLOY MATERIALS
Chronister et al. Induction skull melting of titanium and other reactive alloys
JP5395545B2 (en) Manufacturing method of ultra high purity alloy ingot
JP5379583B2 (en) Manufacturing method of ultra high purity alloy ingot
JP2011173172A (en) Method for producing long cast block of active high melting point metal alloy
CN110484742B (en) Method for preparing Fe-W intermediate alloy by electron beam melting and high purification
JPH02236232A (en) Method for melting and casting titanium and titanium alloy
US3508914A (en) Methods of forming and purifying nickel-titanium containing alloys
JPH0639635B2 (en) Electroslag remelting method for copper and copper alloys
JPS6092432A (en) Method and device for plasma arc melting
US2912731A (en) Method for casting group iv metals
JPH05154641A (en) Method for casting titanium-aluminum alloy cast product
RU2156816C1 (en) Method for remelting small-size waste and chips of non-ferrous metals
CN113613810A (en) Method for manufacturing steel ingot
JP2004300491A (en) METHOD FOR REFINING Al BASE ALLOY

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040623

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 9

EXPY Cancellation because of completion of term