JP3569796B2 - Detoxification of incinerated ash or molten ash - Google Patents

Detoxification of incinerated ash or molten ash Download PDF

Info

Publication number
JP3569796B2
JP3569796B2 JP22697598A JP22697598A JP3569796B2 JP 3569796 B2 JP3569796 B2 JP 3569796B2 JP 22697598 A JP22697598 A JP 22697598A JP 22697598 A JP22697598 A JP 22697598A JP 3569796 B2 JP3569796 B2 JP 3569796B2
Authority
JP
Japan
Prior art keywords
ash
molten
incinerated
sio
detoxification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22697598A
Other languages
Japanese (ja)
Other versions
JP2000051818A (en
Inventor
通孝 古林
力男 篠原
喜一 長屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP22697598A priority Critical patent/JP3569796B2/en
Publication of JP2000051818A publication Critical patent/JP2000051818A/en
Application granted granted Critical
Publication of JP3569796B2 publication Critical patent/JP3569796B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fire-Extinguishing Compositions (AREA)
  • Processing Of Solid Wastes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、焼却炉から出る焼却灰もしくは溶融炉から出る溶融灰中に含まれるダイオキシン等の有害な有機化合物を無害化する方法に関する。
【0002】
【従来の技術】
焼却灰や溶融灰中のダイオキシン等の有害な有機化合物を無害化する方法の1つとして、加熱処理がある。これは焼却灰や溶融灰を300℃以上に加熱することによって、灰中の有機化合物を熱分解させる方法である。
【0003】
最近、廃棄物の多様化に伴って産業廃棄物焼却炉から排出される焼却灰には、一般廃棄物焼却炉から排出される焼却灰とは組成を異にするものがあることが判った。産業廃棄物焼却灰の分析例を表1に、一般廃棄物焼却灰の分析例を表2にそれぞれ示す。
【0004】
【表1】

Figure 0003569796
【0005】
【表2】
Figure 0003569796
【0006】
ここで両者の間で大きく異なる点は、後者の焼却灰にはSiOやAlのような難分解性酸化物が50重量%以上存在しているのに対し、前者の焼却灰にはこのような難分解性酸化物はほとんど存在せず、90重量%以上が塩化物として存在している。また、前者の焼却灰には重金属類も多い。一般に重金属類の塩化物は低い融点を有する。さらに、複数の重金属類の塩化物が共存すると、この混合物の融点は単独のときの融点より低くなる。そのため、加熱処理による無害化処理を行う場合、一般廃棄物焼却灰は300℃加熱で溶けることはないが、産業廃棄物焼却灰は300℃加熱で溶ける可能性がある。焼却灰が300℃加熱で溶けると、以下のような問題が生じる。
【0007】
▲1▼塩化物の融液が金属腐食を引き起こす。
▲2▼無害化処理後の灰が冷却時に固まってしまい、装置閉塞を引き起こす。
▲3▼無害化処理効率が低い(300℃加熱でもダイオキシンが分解しない例がある)。
【0008】
また、このような産業廃棄物焼却灰と、一般・産業廃棄物溶融飛灰とは同様な組成を有する。一般・産業廃棄物溶融飛灰の組成を表3に示す。
【0009】
【表3】
Figure 0003569796
【0010】
このため、一般・産業廃棄物溶融飛灰を加熱処理により無害化処理する場合にも、上記のような問題が生じる。
【0011】
【発明が解決しようとする課題】
本発明は、焼却灰もしくは溶融灰の無害化を確実に行うことができる方法を提供することを目的とするものである。
【0012】
【課題を解決するための手段】
本発明による焼却灰もしくは溶融灰の無害化方法は、ダイオキシン等の有害な有機化合物を含有する低融点の焼却灰または溶融灰を300℃程度の加熱処理により無害化するに当たり、前処理として、高融点・難分解性酸化物であるSiOおよび/またはAlを主成分として含む鉱物を灰に混入することにより、灰の融点を上げることを特徴とする方法である。SiOを主成分として含む鉱物の代表例としてはけいそう土が挙げられる。
【0013】
本発明方法で用いる、SiO および/またはAl を主成分として含む鉱物は、焼却灰または溶融灰中のSiOとAlの和が好ましくは10重量%以上、より好ましくは10〜30重量%の範囲になるように混入する。
【0014】
Alを主成分として含む鉱物の代表例としてはアルミナが挙げられる。SiOとAlを共に主成分として含む鉱物の代表例としては砂が挙げられる。砂の粒径は飛灰の粒径と同様の10μm程度であることが好ましい。
【0015】
【発明の実施の形態】
つぎに、本発明の実施例を挙げるが、本発明はこれに限定されるものではない。
【0016】
焼却灰もしくは溶融灰を含む排ガスを、バグフィルターや電気集塵機等の集塵装置に通し、除塵後の排ガスを煙突から大気中へ放出した。集塵装置で集めた焼却灰もしくは溶融灰を無害化装置へ送る前に、飛灰に砂を混入した。砂は、SiOとAlを共に主成分として含む鉱物である。砂の混入比は、焼却灰または溶融灰中のSiOとAlの和が15重量%になるように決めた。
【0017】
その後、砂を含む飛灰を無害化処理装置内で加熱処理して、ダイオキシン等の有機化合物を無害化した後、装置外へ排出した。
【0018】
表4は、産業廃棄物焼却灰を300℃で20時間加熱処理した後の性状およびダイオキシン分解率をけいそう土混入率に対して示したものである。
【0019】
【表4】
Figure 0003569796
【0020】
このように低融点灰中にSiOとAlのような高融点・難分解性酸化物を混入すると、灰自身の融点は高くなり、そのときのダイオキシン分解率も高くなった。すなわち従来の技術の項で示した▲1▼〜▲3▼の問題点がいずれも解決された。
【0021】
また、一般・産業廃棄物溶融飛灰についても表4の結果と同様な傾向が得られた。
【0022】
【発明の効果】
SiOおよび/またはAlのような高融点・難分解性酸化物を低融点の焼却灰や溶融灰に混入することによって、
▲1▼灰自身の融点が上がる、
▲2▼灰の加熱無害化処理において、塩化物の融液が生じない、
▲3▼灰の加熱無害化処理において、灰が固化することがなくなり、安定して運転できる、および、
▲4▼灰の加熱無害化処理において、従来の一般廃棄物焼却灰の加熱無害化処理の場合と同様のダイオキシン分解率が得られる、
といった効果が発揮される。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for detoxifying harmful organic compounds such as dioxin contained in incineration ash from an incinerator or molten ash from a melting furnace.
[0002]
[Prior art]
Heat treatment is one method of detoxifying harmful organic compounds such as dioxin in incinerated ash and molten ash. This is a method in which organic compounds in ash are thermally decomposed by heating incinerated ash or molten ash to 300 ° C. or higher.
[0003]
Recently, it has been found that incineration ash discharged from industrial waste incinerators due to diversification of wastes has a different composition from incineration ash discharged from general waste incinerators. Table 1 shows an example of analysis of industrial waste incineration ash, and Table 2 shows an example of analysis of general waste incineration ash.
[0004]
[Table 1]
Figure 0003569796
[0005]
[Table 2]
Figure 0003569796
[0006]
Here, the major difference between the two is that the latter incineration ash contains 50% by weight or more of a hardly decomposable oxide such as SiO 2 or Al 2 O 3 , whereas the former incineration ash does not. Almost no such hardly decomposable oxide is present, and 90% by weight or more is present as chloride. The former incinerated ash contains many heavy metals. Generally, chlorides of heavy metals have a low melting point. Furthermore, when a plurality of heavy metal chlorides coexist, the melting point of this mixture becomes lower than the melting point when used alone. Therefore, when performing the detoxification treatment by the heat treatment, the incineration ash of general waste does not melt at 300 ° C. heating, but the incineration ash of industrial waste may melt at 300 ° C. heating. When the incinerated ash is melted by heating at 300 ° C., the following problems occur.
[0007]
{Circle around (1)} The chloride melt causes metal corrosion.
{Circle around (2)} The ash after the detoxification process solidifies during cooling, causing blockage of the device.
{Circle around (3)} Detoxification efficiency is low (dioxin does not decompose even when heated at 300 ° C.).
[0008]
Further, such industrial waste incinerated ash and general / industrial waste molten fly ash have the same composition. Table 3 shows the composition of general and industrial waste molten fly ash.
[0009]
[Table 3]
Figure 0003569796
[0010]
For this reason, the above-described problem also occurs when detoxifying the molten fly ash from general and industrial wastes by heat treatment.
[0011]
[Problems to be solved by the invention]
An object of the present invention is to provide a method capable of reliably detoxifying incinerated ash or molten ash.
[0012]
[Means for Solving the Problems]
The method for detoxifying incinerated ash or molten ash according to the present invention is a method for detoxifying low-melting incinerated ash or molten ash containing a harmful organic compound such as dioxin by a heat treatment at about 300 ° C. This is a method characterized by increasing the melting point of the ash by mixing a mineral containing SiO 2 and / or Al 2 O 3 , which is a melting point and hardly decomposable oxide, as a main component into the ash. Diatomaceous earth is a typical example of a mineral containing SiO 2 as a main component.
[0013]
In the mineral containing SiO 2 and / or Al 2 O 3 as a main component used in the method of the present invention, the sum of SiO 2 and Al 2 O 3 in incinerated ash or molten ash is preferably at least 10% by weight, more preferably It is mixed so as to be in the range of 10 to 30% by weight.
[0014]
A typical example of a mineral containing Al 2 O 3 as a main component is alumina. A typical example of a mineral containing both SiO 2 and Al 2 O 3 as main components is sand. The particle size of the sand is preferably about 10 μm, which is the same as the particle size of the fly ash.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, examples of the present invention will be described, but the present invention is not limited thereto.
[0016]
Exhaust gas containing incinerated ash or molten ash was passed through a dust collector such as a bag filter or an electric dust collector, and the exhaust gas after dust removal was discharged into the atmosphere from a chimney. Before incineration ash or molten ash collected by the dust collector was sent to the detoxification device, sand was mixed into the fly ash. Sand is a mineral containing both SiO 2 and Al 2 O 3 as main components. The mixing ratio of sand was determined such that the sum of SiO 2 and Al 2 O 3 in the incinerated ash or molten ash was 15% by weight.
[0017]
Thereafter, the fly ash containing sand was heat-treated in a detoxifying apparatus to detoxify organic compounds such as dioxin, and then discharged outside the apparatus.
[0018]
Table 4 shows the properties and the dioxin decomposition rate after the heat treatment of the industrial waste incinerated ash at 300 ° C. for 20 hours with respect to the diatomaceous earth mixing rate.
[0019]
[Table 4]
Figure 0003569796
[0020]
When a high melting point and hardly decomposable oxide such as SiO 2 and Al 2 O 3 are mixed in the low melting point ash, the melting point of the ash itself increases and the dioxin decomposition rate at that time also increases. That is, all of the problems (1) to (3) described in the section of the prior art were solved.
[0021]
The same tendency as in the results of Table 4 was obtained for the molten fly ash of general and industrial wastes.
[0022]
【The invention's effect】
By mixing a high melting point and hardly decomposable oxide such as SiO 2 and / or Al 2 O 3 into low melting point incineration ash or molten ash,
(1) The melting point of the ash itself rises.
(2) In the heat detoxification treatment of ash, no chloride melt is produced.
(3) In the ash heat detoxification treatment, the ash does not solidify and can be operated stably; and
(4) In the heat detoxification treatment of ash, the same dioxin decomposition rate as in the case of conventional heat detoxification treatment of incinerated ash can be obtained.
Such an effect is exhibited.

Claims (2)

ダイオキシン等の有害な有機化合物を含有する低融点の焼却灰または溶融灰を300℃程度の加熱処理により無害化するに当たり、前処理として、高融点・難分解性酸化物であるSiOおよび/またはAlを主成分として含む鉱物を灰に混入することにより、灰の融点を上げることを特徴とする、焼却灰もしくは溶融灰の無害化方法。 In detoxifying low-melting incineration ash or molten ash containing a harmful organic compound such as dioxin by a heat treatment at about 300 ° C. , as a pretreatment, SiO 2 which is a high-melting-point and hardly decomposable oxide and / or A method for detoxifying incinerated ash or molten ash, characterized by increasing the melting point of ash by mixing a mineral containing Al 2 O 3 as a main component into the ash. SiO および/またはAl を主成分として含む鉱物を、焼却灰または溶融灰中のSiOとAlの和が10重量%以上になるように混入することを特徴とする請求項1記載の無害化方法。A mineral containing SiO 2 and / or Al 2 O 3 as a main component is mixed so that the sum of SiO 2 and Al 2 O 3 in incinerated ash or molten ash becomes 10% by weight or more. Item 6. The harmless method according to Item 1.
JP22697598A 1998-08-11 1998-08-11 Detoxification of incinerated ash or molten ash Expired - Fee Related JP3569796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22697598A JP3569796B2 (en) 1998-08-11 1998-08-11 Detoxification of incinerated ash or molten ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22697598A JP3569796B2 (en) 1998-08-11 1998-08-11 Detoxification of incinerated ash or molten ash

Publications (2)

Publication Number Publication Date
JP2000051818A JP2000051818A (en) 2000-02-22
JP3569796B2 true JP3569796B2 (en) 2004-09-29

Family

ID=16853557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22697598A Expired - Fee Related JP3569796B2 (en) 1998-08-11 1998-08-11 Detoxification of incinerated ash or molten ash

Country Status (1)

Country Link
JP (1) JP3569796B2 (en)

Also Published As

Publication number Publication date
JP2000051818A (en) 2000-02-22

Similar Documents

Publication Publication Date Title
US5413621A (en) Process for cooling and purifying hot, dust-laden flue gases containing dioxins and other toxic substances
KR20010022212A (en) Method for operating a sintering plant, and sintering plant
US5297495A (en) Process of incinerating waste materials
JP3569796B2 (en) Detoxification of incinerated ash or molten ash
JP3513797B2 (en) Fly ash detoxification treatment method
JPH11128876A (en) Treatment of incineration fly ash containing used waste gas treating agent
JP2000274646A (en) Melting method for coal ash and fly ash of refuse incineration
JP3546108B2 (en) Exhaust gas treatment method and apparatus in ash melting furnace
JP2005195228A (en) Waste material melting treatment system
JPH07195055A (en) Melt solidification method of waste incineration ash
JP3374728B2 (en) How to treat incinerated dust
JP2004081990A (en) Agent and equipment for removing toxic substance in combustion exhaust gas
JP3970065B2 (en) Waste treatment equipment
JP2962783B2 (en) Dust collection and solidification of fluidized bed municipal solid waste incinerator fly ash
JP3867125B2 (en) Detoxification method for incineration fly ash, etc. (high temperature)
JP3513796B2 (en) Method for decomposing dioxins in fly ash
JPH05261359A (en) Method for treating incineration fly ash of waste
JP2007154236A (en) Method for separating lead from combustion ash
JPH11244657A (en) Treatment of waste gas of ash melting furnace and device therefor
JP3893266B2 (en) Detoxification / recycling method and apparatus of incineration residue in waste incineration process
JP6834165B2 (en) Method for treating radioactive cesium-containing inorganic substances
JP3866832B2 (en) Method for treating fly ash in exhaust gas in waste treatment equipment
JP3714438B2 (en) Waste treatment method and apparatus
JP2002119945A (en) Method for treating waste incineration exhaust gas and dust
JP2002028612A (en) Method for treating fly ash

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040607

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees