JP3569167B2 - Positioning and guidance system for ground improvement construction machine using GPS - Google Patents

Positioning and guidance system for ground improvement construction machine using GPS Download PDF

Info

Publication number
JP3569167B2
JP3569167B2 JP22054199A JP22054199A JP3569167B2 JP 3569167 B2 JP3569167 B2 JP 3569167B2 JP 22054199 A JP22054199 A JP 22054199A JP 22054199 A JP22054199 A JP 22054199A JP 3569167 B2 JP3569167 B2 JP 3569167B2
Authority
JP
Japan
Prior art keywords
construction machine
gps
mobile station
stroke
predetermined length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22054199A
Other languages
Japanese (ja)
Other versions
JP2001040648A (en
Inventor
敏博 出口
法生 勝原
Original Assignee
不動建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 不動建設株式会社 filed Critical 不動建設株式会社
Priority to JP22054199A priority Critical patent/JP3569167B2/en
Publication of JP2001040648A publication Critical patent/JP2001040648A/en
Application granted granted Critical
Publication of JP3569167B2 publication Critical patent/JP3569167B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)
  • Operation Control Of Excavators (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、GPSによる地盤改良施工機の位置決め、もしくは誘導システムに関する。
【0002】
【従来の技術】
地盤改良装置、既製杭の貫入装置などを用い地盤中に各種砂杭を打設・造成する砂杭造成法とか、地盤に固化材を混合、撹拌してパイルを造成する固化工法、既製コンクリート杭、鋼管杭を貫入するとか、遮水板の貫入などの基礎強化工法において、改良計画に従って順次、地盤中に造成装置、掘削軸などを打設するのに、従来、一対の移動局GPSを施工機に搭載して、造成装置の中心とこれら移動局GPSとの相互位置をあらかじめ計測しておいて、施工に当り、各移動局GPSの座標位置を計測することにより造成装置の現在位置、施工機の方位を確認し、計画図上の打設予定位置に精度よく、かつ、効率的に前記施工機を誘導することが行なわれていた。
【0003】
したがって、この種の工法においては従来、一台の施工機につき少なくとも2台の移動局GPSを設備することが必要であったが、高価格な移動局GPSを一つの装置に複数台設備することは多額な設備費を要し、固定費が嵩んで必ずしも得策とはいえなかった。
【0004】
【発明が解決しようとする課題】
ところが、一つの移動局GPSを前記施工機に搭載するだけ、もしくは当該G移動局PSに補助手段を併設するだけで、従来工法同様、造成装置(ここでは、施工機に対し、地盤に貫入・抜出する「打設軸・管」などを含む上下方向に移動可能な部材・装置をいう。)を精度よく、かつ、効果的に計画図上の打設予定位置に誘導することができ得るシステムが開発可能であることが判った。
そこで、本発明は、従来工法に内在する上記諸問題を解消すると共に、誘導機能、精度を落とすことなく可及的に簡単、経済的に設備、運用することができる移動局GPSを用いた地盤改良施工機の位置決め、誘導システムを提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明は、上記目的を達成するため、次ぎに述べるとおりの各構成要件からなる。
(1)施工機本体側に、移動局GPSを所定長移動可能に設置すると共に、前記施工機にジャイロを搭載し、
施工機を次打設目標位置に移動させる前に、前記GPSを所定長移動させ各行程端における移動局GPS座標を計測して、前記施工機の現在位置と方位とを検出し、
当該検出値を基準にして施工機の移動方位の変化角を前記ジャイロに基づいて求め、前記施工機を次打設目標位置に誘導することを特徴とする
GPSを用いた地盤改良施工機の位置決め、誘導システム。
【0006】
(2)施工機本体側に、移動局GPSを所定長移動可能に設置すると共に、
前記GPSを数秒間隔毎に所定長の一行程作動させて、その一行程毎に各行程端における前記移動局GPS座標を計測して、その時々における前記施工機の現在位置と方位とを検出し、
当該検出値を基準にして施工機の移動方位を修正し、前記施工機を次打設目標位置に誘導することを特徴とする
GPSを用いた地盤改良施工機の位置決め、誘導システム。
【0007】
(3)リーダー上端部適所に、ほぼ水平面内において直線に沿い所定長さ往復移動を可能にした移動局GPSを設置し、前記GPSの往復動行程の一方端をアタッチメントの吊りセンターの延長線上に一致させることよりなる
上記第(1)項または(2)項記載のGPSを用いた地盤改良施工機の位置決め、誘導システム。
【0008】
【発明の実施の形態】
地盤に貫入する打設軸・管等の造成装置を有する施工機(リーダーを含む施工車両)に移動局GPSと付帯設備とを設置し、それら検出値から施工機全体の方位、移動状況を検出・把握し、これを施工管理指標とする。
【0009】
【実施例】
図1は、本発明システムの好ましい一実施例(「実施例1」という)の概略側面図、要部平面図を示し、図1(a)中、走行装置1上には運転・操作室を有する施工車両本体2を、前側には垂直方向に立つリーダー3の下端部を支承する軸受部材を、それぞれ設備している。施工車両本体2には、そのほぼ中心部にジャイロ4を搭載し、前側に設けた造成装置6をリーダー3に沿って上下方向に移動可能としている。図示してはないが、前記リーダー3の上部と施工車両本体2の後部との間には、長さの調節が可能な一対のステーが架け渡してあってリーダー3の垂直性を保持し、もしくは角度調整するようにされている。
【0010】
リーダー3の上端部には、笠木5を水平、かつ施工車両本体2のセンター方向に沿って設けてあり、この実施例1では、前記笠木5の下側前面に吊下される造成装置6に上端を連結する打設軸・管7が、リーダー3に並行して配置されている。
造成装置6は、笠木5に軸受けされたプーリーにワイヤーを介して吊下され、前記ワイヤーの他端を施工車両本体2に搭載した巻取りドラムに連結して、前記ドラムの操作によって造成装置6及び打設軸・管7をリーダー3に沿って上下動させ、前記軸・管を地盤中に貫入、抜き出すようにしている。
造成装置6は、たとえば、回転駆動装置であったり、バイブロハンマーであったりする。
【0011】
図1(b)は、リーダー3の上端部に設けた笠木5の平面図であって、前記笠木5の上側面に、先端に移動局GPS8を取り付けたエアシリンダー9を設け、前記エアシリンダー9を操作させることによりGPS8を笠木5の前後中心線方向、直線上に1mの行程だけ往復移動できるようにしている。
その際、エアシリンダー9を伸ばした側の行程端の移動局GPS8の位置Aが、前記造成装置6及び打設軸・管7を貫く中心軸の延長線上、すなわち、アタッチメントの吊りセンター上にあるように相互位置を定めている。
【0012】
尤も、前記エアシリンダー9を伸ばした側の行程端のGPS8の位置Aと、アタッチメントの吊りセンターとの相互位置関係は、必ずしも、上述に限られることではなく、要するに、移動局GPS8の移動方向、始端もしくは終了端位置とアタッチメントの吊りセンターとの相互位置関係とが予め定まっていれば、当該既知の関係数値を検出データに付加するだけで、上述と同一の結果を得ることができることは明らかである。
また、移動局GPS8をリーダー3の上端部の笠木5の上側面に配置したことは、実用上、可及的にGPS8の受信を妨げる恐れのある障害物が少ない位置を選択したに過ぎない。
次に、操作方法について説明する。
【0013】
図2を参照して、図は、地盤改良施工機の方位の求め方、誘導の手段を示す模式図であって、座標軸N−Eは、北−東軸により示される地盤改良領域の地表面を表わしている。
▲1▼ 施工機を次の打設予定位置に移動させる前にエアシリンダー9を伸縮して、移動局GPS8を移動させる。
▲2▼ シリンダー9の伸縮の開始(原)点B、終了(伸長)点Aにおいてそれぞれ前記GPS8の座標を計測して、その時のリーダー及び施工機の現在位置並びに方位を求める。
【0014】
図中、B(X0,Y0)は、エアシリンダー9を行程の開始点にセットしたとき求められたGPS8の座標位置、A(X1,Y1)は、エアシリンダー9を伸長して終了点Aにセットしたとき、すなわち、移動局GPS8の位置がアタッチメントの吊りセンターの上にあるときのGPS8の座標位置である(本実施例では、説明を簡略化するため、GPS8の位置A(伸長終了点)が、アタッチメントの吊りセンター上にあるとしたが、それ以外の場合でも成立することは、さきに述べた。)。
B(X0,Y0)−A(X1,Y1)方向が、打設点(X1,Y1)位置における施工機全体の方位を示す。
【0015】
▲3▼ 求められた方位を基準にして、その後は施工機の変化角度をジャイロから求め、次の目標打設位置に対する前記施工機の移動方位を計算する。
▲4▼ 1台の移動局GPS8の座標と施工機の移動方位とから、次の目標打設位置までのズレ量を計算して、オペレータに指示する。
【0016】
精度
▲1▼ 移動局GPSによる方位計測とジャイロの精度とによって決まる。
短時間の移動であれば、ジャイロ4のドリフトを無視することができる。
▲2▼ 本実施例の位置決め、誘導システムの方位検出手段によれば、目標位置に近付く程に、誘導誤差を少なくすることができる。
本実施例システムでは、移動局GPS8を一台装備するだけで済むから、従来装置に比較して機械装置費がジャイロを含めて1/2近くまで低減する。
ただし、上記費用にはGPS固定局の設備費は含まない。
【0017】
移動局GPS8とジャイロ4とによる位置決め、誘導システムをさらに簡素化すると、移動局GPS1台で、誘導・位置決めを行なうことができる。
すなわち、施工機に搭載した移動局GPS8を数秒サイクルで間歇的に往復作動させて、各行程端ごとのGPSの座標値を計測することにより、その時々における前記施工機の位置、方位を求め、誘導ズレ量を計算する手法を開発した。
【0018】
図3は、本発明システムの好ましい他の実施例(「実施例2」という)の概略側面図、要部平面図を示し、図中、実施例1について説明した場合と同一符号を付した部材は、実施例1のそれと同一である。また、各部材の組付け位置関係、エアシリンダー9の行程長も、実施例1のそれと変わりはない。
ただし、実施例2では、ジャイロは不要である。
その代わりに、笠木5上に設置したエアシリンダー9を数秒間隔で間歇的に往復作動させ、その行程端毎に、その都度GPS8の座標を検出するようにして、その時々の施工機の位置、方位を計測する。
ここで、さきにも述べたとおり、施工機本体に搭載した移動局GPS8位置は、必ずしもリーダーの笠木5上に設置することを要しない。
【0019】
図4(a)は、施工機の位置、方位を計測する手順を示したもので、図中、x軸は時間の経過〔図4(b),(c)も同じ〕を表わし、軸上のA0,B1,A1,B2……は、それぞれ移動局GPS位置を示す信号である。移動局GPSがエアシリンダー9の行程の開始点Bまたは終了点Aにあるときにスィッチを作動させて、前記GPSの現在位置を示す必要がある。本実施例では、移動局GPS8がA0位置からB1位置に移動する時間は1.5秒で、この時間はシリンダー9の伸縮に要する時間である。GPS8がA0位置を占めている間、たとえば、0.5秒の間にGPSデータを複数個取り込み、その値を平均化して、A0座標を検出する。
【0020】
たとえば、間歇的に2秒間隔でエアシリンダー9を伸縮移動させ、移動局GPS8を開始点Bまたは終了点A位置にそれぞれ0.5秒間停止させて、その都度、各行程端における移動局GPS位置データを複数個取り込み、その値を平均化して、その時点における施工機の位置を、一行程により方位を計測する。
図4(b)は、移動局GPS8が、それぞれA,B,A……にある時々の各移動局GPS8の位置データの読み込みサイクルを示している。
移動局GPS8がB に位置することを示す信号が入力してから0.5秒間にGPS8が取り込む複数個の位置データを平均化した値が(X,Yあることを表示している。
図4(c)は、目標に対するズレ量の表示サイクルを示すもので、たとえば、2秒間隔でズレ表示の基準位置を変えるようにすれば、移動局GPS位置、方位の計測の手続中、シリンダー9の伸縮時間を無駄にすることなく誘導効果を高めることができる。
【0021】
図4(d)は、エアシリンダー9の作動とGPS位置データとの関係を示した模式図で、施工機の現在位置と方位を例示するもの、B1(X0,Y0)は、エアシリンダー8の行程開始点Bを移動局GPSが占めていたときのGPSデータによる座標位置計測、A1(X1,Y1)は、エアシリンダー9の行程終了点A、すなわち、吊りセンター位置を移動局GPSが占めていたときのGPSデータによる座標を示すものであって、線A1−B1方向が前記施工機の方位を、
点A1座標が施工機の現在位置を示している。
これらの表示から目標位置とのズレ量が判る。施工機を移動させる傍ら、本実施例では、2秒毎に新たに移動後の位置と線A1−B1情報が表示されるから、当該情報に基づいて施工機と目標位置とのズレ量を計算し、施工機を誘導する。
その際の誘導精度は、実施例1の場合と大差は無い。
【0022】
【発明の効果】
以上説明したように本発明システムは、従来システムに劣らぬ誘導精度を保ちながら、移動局GPSの使用台数を減らし、システムの設備費を低減することができる。
また、リーダー頂部吊りセンターにGPSを配置したときは、位置計測、誘導の精度を向上させることができる。
など、従来使用されているシステムでは期待することができない、格別の作用、効果を奏するものとなる。
【図面の簡単な説明】
【図1】本発明システムの好ましい一実施例の概略側面図及び要部平面図を示す。
【図2】本発明システムにおける施工機の方位検出とジャイロ検出角度との関係を示す模式図、施工機の位置、方位を表わす。
【図3】本発明システムの好ましい他の実施例の概略側面図、要部平面図を示す。
【図4】施工機の位置、方位を計測する手順を表示した模式図、施工機の現在位置と方位を例示する。
【符号の説明】
1 走行装置
2 施工機本体
3 リーダー
4 ジャイロ
5 笠木
6 造成装置
7 打設軸(管)
8 移動局GPS
9 エアシリンダー
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a positioning or guidance system for a ground improvement construction machine using GPS.
[0002]
[Prior art]
A sand pile forming method in which various types of sand piles are driven and formed in the ground using a ground improvement device, a ready-made pile intrusion device, etc., a solidification method in which a solidified material is mixed with the ground and stirred to form a pile, a ready-made concrete pile Conventionally, a pair of mobile stations GPS was used to place construction equipment, excavation shafts, etc. in the ground sequentially according to the improvement plan in the foundation strengthening method such as penetrating steel pipe piles or penetrating water impervious plates. On the machine, the mutual position between the center of the development device and these mobile stations GPS is measured in advance, and at the time of construction, by measuring the coordinate position of each mobile station GPS, the current position of the development device and the construction The direction of the machine has been confirmed, and the construction machine has been accurately and efficiently guided to the planned driving position on the plan drawing.
[0003]
Therefore, in this type of construction method, conventionally, it was necessary to install at least two mobile stations GPS per one construction machine. However, it is necessary to install a plurality of expensive mobile station GPSs in one apparatus. However, it requires a large amount of equipment costs and fixed costs are high, which is not always an advantageous measure.
[0004]
[Problems to be solved by the invention]
However, just by mounting one mobile station GPS on the construction machine or by attaching auxiliary means to the G mobile station PS, similarly to the conventional construction method, the construction apparatus (here, the construction machine is penetrated into the ground). A member / apparatus that can be moved in the vertical direction, including a “placement shaft / pipe” to be extracted) can be accurately and effectively guided to a planned placement position on a plan drawing. It turns out that the system can be developed.
Accordingly, the present invention solves the above-described problems inherent in the conventional method, and furthermore, uses a mobile station GPS that can easily and economically install and operate a mobile station without reducing the guidance function and accuracy. An object of the present invention is to provide an improved construction machine positioning and guidance system.
[0005]
[Means for Solving the Problems]
The present invention has the following components to achieve the above object.
(1) A mobile station GPS is installed on the construction machine main body side so as to be movable for a predetermined length, and a gyro is mounted on the construction machine,
Before moving the construction machine to the next casting target position, the GPS is moved by a predetermined length, the mobile station GPS coordinates at each end of the stroke are measured, and the current position and orientation of the construction machine are detected,
Locating the ground improvement construction machine using GPS, wherein the change angle of the movement direction of the construction machine is determined based on the gyro based on the detected value, and the construction machine is guided to the next placement target position. , Guidance system.
[0006]
(2) The mobile station GPS is installed on the construction machine body side so that it can move for a predetermined length,
The GPS is operated for one stroke of a predetermined length at intervals of several seconds, the GPS coordinates of the mobile station at the end of each stroke are measured for each stroke, and the current position and orientation of the construction machine at each time are detected. ,
A positioning and guiding system for a ground improvement construction machine using a GPS, wherein a movement direction of the construction machine is corrected based on the detected value, and the construction machine is guided to a next placement target position.
[0007]
(3) A mobile station GPS capable of reciprocating a predetermined length along a straight line substantially in a horizontal plane is installed at an appropriate position at the upper end of the reader, and one end of the reciprocating movement of the GPS is positioned on an extension of the suspension center of the attachment. A positioning and guidance system for a ground improvement construction machine using the GPS according to the above (1) or (2), wherein the positioning and the guidance are performed by matching.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
A mobile station GPS and auxiliary equipment are installed on a construction machine (construction vehicle including a leader) having a construction device such as a casting shaft and a pipe that penetrates into the ground, and the direction and movement status of the entire construction machine are detected from the detected values.・ Understand and use this as a construction management index.
[0009]
【Example】
FIG. 1 shows a schematic side view and a main part plan view of a preferred embodiment of the system of the present invention (referred to as “embodiment 1”). In FIG. The construction vehicle main body 2 is provided with a bearing member for supporting a lower end portion of the leader 3 which stands vertically in the front side. A gyro 4 is mounted on the construction vehicle main body 2 at a substantially central portion thereof, and a creation device 6 provided on the front side can be moved vertically along the leader 3. Although not shown, between the upper part of the leader 3 and the rear part of the construction vehicle main body 2, a pair of stays whose length can be adjusted are bridged to maintain the verticality of the leader 3, Alternatively, the angle is adjusted.
[0010]
At the upper end of the leader 3, a cap 5 is provided horizontally and along the center of the construction vehicle main body 2. A driving shaft / pipe 7 connecting the upper ends is arranged in parallel with the leader 3.
Construction device 6, coping the bearing has been pulleys 5 purchase decisions suspended via a wire, and connected to the take-up drum equipped with the other end of the wire construction vehicle body 2, Construction by the operation of the drum The apparatus 6 and the casting shaft / pipe 7 are moved up and down along the leader 3, so that the shaft / pipe penetrates into and out of the ground.
The formation device 6 is, for example, a rotary drive device or a vibro hammer.
[0011]
FIG. 1B is a plan view of a cap 5 provided at the upper end of the leader 3. An air cylinder 9 having a mobile station GPS 8 attached to the tip thereof is provided on the upper surface of the cap 5. By operating the GPS, the GPS 8 can be reciprocated by a stroke of 1 m in a straight line in the front-rear center line of the shade 5.
At this time, the position A of the mobile station GPS 8 at the stroke end on the side where the air cylinder 9 is extended is on an extension of the central axis passing through the forming device 6 and the driving shaft / pipe 7, that is, on the suspension center of the attachment. Position is determined as follows.
[0012]
However, the mutual positional relationship between the position A of the GPS 8 at the stroke end on the side where the air cylinder 9 is extended and the suspension center of the attachment is not necessarily limited to the above, that is, the moving direction of the mobile station GPS 8, If the mutual positional relationship between the start or end position and the hanging center of the attachment is predetermined, it is clear that the same result as described above can be obtained simply by adding the known relationship value to the detection data. is there.
In addition, the fact that the mobile station GPS 8 is disposed on the upper surface of the cover 5 at the upper end of the reader 3 merely selects a position with as few obstacles as possible that may hinder the reception of the GPS 8 in practical use.
Next, the operation method will be described.
[0013]
Referring to FIG. 2, the figure is a schematic view showing a method of determining the direction of the ground improvement construction machine and guidance means, and the coordinate axis NE is the ground surface of the ground improvement area indicated by the north-east axis. Represents.
(1) Before moving the construction machine to the next scheduled driving position, the air cylinder 9 is expanded and contracted to move the mobile station GPS8.
(2) At the start (original) point B and the end (extend) point A of the expansion and contraction of the cylinder 9, the coordinates of the GPS 8 are measured, and the current position and orientation of the leader and the construction machine at that time are obtained.
[0014]
In the figure, B (X0, Y0) is the coordinate position of GPS 8 obtained when the air cylinder 9 is set at the start point of the stroke, and A (X1, Y1) is the point at which the air cylinder 9 is extended to the end point A. When set, that is, the coordinate position of the GPS 8 when the position of the mobile station GPS 8 is above the suspension center of the attachment (in this embodiment, for simplicity of explanation, the position A of the GPS 8 (extension end point) However, it was stated that it was located on the suspension center of the attachment, but it was already stated that this would also be true in other cases.)
The direction B (X0, Y0) -A (X1, Y1) indicates the direction of the entire construction machine at the position of the casting point (X1, Y1).
[0015]
{Circle around (3)} Based on the obtained azimuth, thereafter, the change angle of the construction machine is obtained from the gyro, and the movement azimuth of the construction machine with respect to the next target casting position is calculated.
(4) From the coordinates of one mobile station GPS8 and the moving direction of the construction machine, calculate the amount of deviation to the next target driving position and instruct the operator.
[0016]
Accuracy (1) Determined by the azimuth measurement by the mobile station GPS and the accuracy of the gyro.
If the movement is for a short time, the drift of the gyro 4 can be ignored.
{Circle around (2)} According to the azimuth detecting means of the positioning and guidance system of the present embodiment, the guidance error can be reduced as the position approaches the target position.
In the system of the present embodiment, only one mobile station GPS 8 is required, so that the cost of the mechanical device including the gyro is reduced to nearly 1/2 compared to the conventional device.
However, the above cost does not include equipment costs for GPS fixed stations.
[0017]
If the positioning and guidance system by the mobile station GPS 8 and the gyro 4 is further simplified, guidance and positioning can be performed by one mobile station GPS.
That is, the mobile station GPS8 mounted on the construction machine is intermittently reciprocated in a cycle of several seconds to measure the GPS coordinate value for each stroke end, thereby obtaining the position and orientation of the construction machine at each time. A method to calculate the amount of induced displacement has been developed.
[0018]
FIG. 3 is a schematic side view and a plan view of a main part of another preferred embodiment of the system of the present invention (referred to as “embodiment 2”). Is the same as that of the first embodiment. Further, the positional relationship between the components and the stroke length of the air cylinder 9 are not different from those of the first embodiment.
However, in the second embodiment, no gyro is required.
Instead, the air cylinder 9 installed on the cap 5 is reciprocated intermittently at intervals of several seconds, and at each stroke end, the coordinates of the GPS 8 are detected each time. Measure the bearing.
Here, as described above, the position of the mobile station GPS 8 mounted on the construction machine main body does not necessarily need to be set on the Kasagi 5 of the leader.
[0019]
FIG. 4 (a) shows a procedure for measuring the position and orientation of the construction machine. In the figure, the x-axis represents the passage of time (FIGS. 4 (b) and 4 (c) are also the same). A0, B1, A1, B2... Are signals indicating the mobile station GPS position. When the mobile station GPS is at the start point B or end point A of the stroke of the air cylinder 9, it is necessary to operate the switch to indicate the current position of the GPS. In this embodiment, the time required for the mobile station GPS8 to move from the A0 position to the B1 position is 1.5 seconds, and this time is the time required for the cylinder 9 to expand and contract. While the GPS 8 occupies the A0 position, for example, a plurality of GPS data are taken in 0.5 seconds, the values are averaged, and the A0 coordinates are detected.
[0020]
For example, the air cylinder 9 is intermittently expanded and contracted at intervals of 2 seconds, and the mobile station GPS 8 is stopped at the start point B or the end point A for 0.5 seconds each time. A plurality of data are fetched, their values are averaged, and the position of the construction machine at that time is measured in one stroke.
FIG. 4B shows a read cycle of the position data of each mobile station GPS8 when the mobile station GPS8 is located at A 0 , B 1 , A 1 ,.
Mobile station GPS8 has averaged a plurality of position data GPS8 captures 0.5 seconds after the input is a signal indicating that position to B 1 value indicates that a (X 0, Y 0) ing.
FIG. 4C shows a display cycle of the deviation amount with respect to the target. For example, if the reference position of the deviation display is changed every two seconds, the cylinder position is measured during the procedure of measuring the GPS position and the azimuth of the mobile station. The guiding effect can be enhanced without wasting the expansion / contraction time of the step 9.
[0021]
FIG. 4D is a schematic diagram showing the relationship between the operation of the air cylinder 9 and the GPS position data, and exemplifies the current position and orientation of the construction machine. B1 (X0, Y0) indicates the position of the air cylinder 8. When the mobile station GPS occupies the stroke start point B, the coordinate position is measured by the GPS data. A1 (X1, Y1) indicates the stroke end point A of the air cylinder 9, that is, the suspension center position is occupied by the mobile station GPS. Shows the coordinates according to the GPS data when the line A1-B1 direction is the direction of the construction machine,
The coordinates of the point A1 indicate the current position of the construction machine.
From these displays, the amount of deviation from the target position can be determined. While the construction machine is moved, in this embodiment, the position after the movement and the line A1-B1 information are newly displayed every two seconds, so that the deviation amount between the construction machine and the target position is calculated based on the information. And guide the construction machine.
The guidance accuracy at that time is not much different from that of the first embodiment.
[0022]
【The invention's effect】
As described above, the system of the present invention can reduce the number of mobile stations GPS used and reduce the equipment cost of the system while maintaining guidance accuracy equal to that of the conventional system.
In addition, when the GPS is arranged at the leader top suspension center, the accuracy of position measurement and guidance can be improved.
For example, a special operation and effect that cannot be expected with a conventionally used system are obtained.
[Brief description of the drawings]
FIG. 1 shows a schematic side view and a main part plan view of a preferred embodiment of the system of the present invention.
FIG. 2 is a schematic diagram showing the relationship between the azimuth detection of the construction machine and the gyro detection angle in the system of the present invention, and shows the position and orientation of the construction machine.
FIG. 3 shows a schematic side view and a main part plan view of another preferred embodiment of the system of the present invention.
FIG. 4 is a schematic view showing a procedure for measuring the position and orientation of the construction machine, and exemplifies the current position and orientation of the construction machine.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Traveling device 2 Construction machine main body 3 Leader 4 Gyro 5 Kasagi 6 Development device 7 Casting shaft (pipe)
8 mobile station GPS
9 Air cylinder

Claims (3)

施工機本体側に、移動局GPSを所定長移動可能に設置すると共に、前記施工機にジャイロを搭載し、
施工機を次打設目標位置に移動させる前に、前記GPSを所定長移動させ各行程端における移動局GPS座標を計測して、前記施工機の現在位置と方位とを検出し、
当該検出値を基準にして施工機の移動方位の変化角を前記ジャイロに基づいて求め、前記施工機を次打設目標位置に誘導することを特徴とする
GPSを用いた地盤改良施工機の位置決め、誘導システム。
On the construction machine main body side, the mobile station GPS is installed so as to be movable for a predetermined length, and the gyro is mounted on the construction machine,
Before moving the construction machine to the next casting target position, the GPS is moved by a predetermined length, the mobile station GPS coordinates at each end of the stroke are measured, and the current position and orientation of the construction machine are detected,
Locating the ground improvement construction machine using GPS, wherein the change angle of the movement direction of the construction machine is determined based on the gyro based on the detected value, and the construction machine is guided to the next placement target position. , Guidance system.
施工機本体側に、移動局GPSを所定長移動可能に設置すると共に、
前記GPSを数秒間隔毎に所定長の一行程作動させて、その一行程毎に各行程端における前記移動局GPS座標を計測して、その時々における前記施工機の現在位置と方位とを検出し、
当該検出値を基準にして施工機の移動方位を修正し、前記施工機を次打設目標位置に誘導することを特徴とする
GPSを用いた地盤改良施工機の位置決め、誘導システム。
The mobile station GPS is installed on the construction machine body side so that it can move for a predetermined length,
The GPS is operated for one stroke of a predetermined length at intervals of several seconds, the GPS coordinates of the mobile station at the end of each stroke are measured for each stroke, and the current position and orientation of the construction machine at each time are detected. ,
A positioning and guiding system for a ground improvement construction machine using a GPS, wherein a movement direction of the construction machine is corrected based on the detected value, and the construction machine is guided to a next placement target position.
リーダー上端部適所に、ほぼ水平面内において直線に沿い所定長さ往復移動を可能にした移動局GPSを設置し、前記GPSの往復動行程の一方端をアタッチメントの吊りセンターの延長線上に一致させることよりなる
請求項1または2記載のGPSを用いた地盤改良施工機の位置決め、誘導システム。
A mobile station GPS capable of reciprocating a predetermined length along a straight line in a substantially horizontal plane at an appropriate position at the upper end of the reader, and aligning one end of the reciprocating stroke of the GPS with the extension of the suspension center of the attachment. A positioning and guiding system for a ground improvement construction machine using GPS according to claim 1 or 2.
JP22054199A 1999-08-03 1999-08-03 Positioning and guidance system for ground improvement construction machine using GPS Expired - Fee Related JP3569167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22054199A JP3569167B2 (en) 1999-08-03 1999-08-03 Positioning and guidance system for ground improvement construction machine using GPS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22054199A JP3569167B2 (en) 1999-08-03 1999-08-03 Positioning and guidance system for ground improvement construction machine using GPS

Publications (2)

Publication Number Publication Date
JP2001040648A JP2001040648A (en) 2001-02-13
JP3569167B2 true JP3569167B2 (en) 2004-09-22

Family

ID=16752619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22054199A Expired - Fee Related JP3569167B2 (en) 1999-08-03 1999-08-03 Positioning and guidance system for ground improvement construction machine using GPS

Country Status (1)

Country Link
JP (1) JP3569167B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100623198B1 (en) * 2004-03-03 2006-09-18 삼성물산 주식회사 Installer of Drain Board
JP2011153854A (en) * 2010-01-26 2011-08-11 Nippon Telegr & Teleph Corp <Ntt> Device and method for measurement of azimuth
JP5920931B2 (en) * 2013-03-25 2016-05-18 株式会社不動テトラ Construction management system for ground improvement work and pile foundation work
KR20200004934A (en) 2018-07-04 2020-01-15 주식회사 준건설 PDB construction system using GPS and the construction method
JP6901796B2 (en) * 2018-12-21 2021-07-14 株式会社オートセット Plane position detection structure of soil cement column and soil cement column position coordinate recording system using this
CN110904968B (en) * 2019-12-10 2021-05-04 西安科技大学 Pile foundation point location real-time lofting device suitable for pile driver
JP7384769B2 (en) 2020-09-11 2023-11-21 あおみ建設株式会社 Heavy equipment construction management system
CN112099531B (en) * 2020-10-19 2023-04-07 中国空气动力研究与发展中心 Distributed unmanned aerial vehicle formation form transformation method
CN113338276A (en) * 2021-07-01 2021-09-03 中铁一局集团(广州)建设工程有限公司 Prestressed pipe pile construction process

Also Published As

Publication number Publication date
JP2001040648A (en) 2001-02-13

Similar Documents

Publication Publication Date Title
JP4138921B2 (en) Apparatus and method for determining the position of a point on a work implement attached to and movable relative to a mobile machine
CN111380522B (en) Navigation positioning and automatic cutting method of cantilever type tunneling machine
JP3569167B2 (en) Positioning and guidance system for ground improvement construction machine using GPS
US20070010925A1 (en) Construction target indicator device
CN113047353B (en) Intelligent construction guiding system and method for excavator
CN111485879A (en) Heading machine vehicle body and positioning method and positioning system of cutting drum of heading machine vehicle body
JPWO2019012650A1 (en) Calibration method for measuring jig and hydraulic excavator
JP2016133857A (en) Railway maintenance operation support information processing device, information processing method, and program
JP7386592B2 (en) Construction machinery operation assistance system
JP7215742B2 (en) Construction Machinery Management System, Construction Machinery Management Program, Construction Machinery Management Method, Construction Machinery and External Management Device for Construction Machinery
CN106744325A (en) A kind of method and apparatus measured with forecast crane arm support head sidesway
KR101629716B1 (en) Coordinate Measuring System for Excavating Work and Method Thereof
JP3676277B2 (en) Pile driving method
JP5823841B2 (en) Tunnel face shaping system and shaping method
US20220056669A1 (en) Construction machine management system, construction machine management program, construction machine management method, construction machine, and external management device for construction machine
CN103711127A (en) Real-time monitoring and locating system and method of vibrating machine
CN106323170A (en) Laser three-dimensional positioning-based concrete vibrating quality real-time monitoring method
JP3124780B2 (en) Shield surveying method
JP4708558B2 (en) Position guidance device
JP2007002429A (en) Self-propelled working machine and remote control system for self-propelled working machine
JP3571585B2 (en) Position / depth measurement device of land preparation equipment such as ground improvement using GPS
JP2020094469A (en) Construction machine management system, construction machine management program, construction machine management method, construction machine and external management device of construction machine
JP2002339407A (en) Civil engineering work system
JPH0829165A (en) Method and device for detecting position of underground boring machine
JP6901796B2 (en) Plane position detection structure of soil cement column and soil cement column position coordinate recording system using this

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040617

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees