JP3568289B2 - Electrolyzed water generator - Google Patents

Electrolyzed water generator Download PDF

Info

Publication number
JP3568289B2
JP3568289B2 JP24490895A JP24490895A JP3568289B2 JP 3568289 B2 JP3568289 B2 JP 3568289B2 JP 24490895 A JP24490895 A JP 24490895A JP 24490895 A JP24490895 A JP 24490895A JP 3568289 B2 JP3568289 B2 JP 3568289B2
Authority
JP
Japan
Prior art keywords
compartment
water
compartments
electrode
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24490895A
Other languages
Japanese (ja)
Other versions
JPH0985247A (en
Inventor
裕 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP24490895A priority Critical patent/JP3568289B2/en
Publication of JPH0985247A publication Critical patent/JPH0985247A/en
Application granted granted Critical
Publication of JP3568289B2 publication Critical patent/JP3568289B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、次亜塩素酸、次亜塩素酸ナトリウム等を含有し殺菌作用、消毒作用を有するpH3〜7の範囲の酸性〜中性で、かつ高濃度の有効成分を有する電解水を製造するための電解水生成装置に関する。
【0002】
【従来の技術】
次亜塩素酸、次亜塩素酸ナトリウム等を含有し殺菌作用、消毒作用を有する電解水を製造するための電解水生成装置の一形式として、特公平4−42077号公報に示されているように、電解槽内をイオン透過能を有する隔膜にて区画して形成された一対の隔室にそれぞれ電極を配置して陽極室と陰極室とを構成し、これら両電極室に供給される希薄食塩水を両電極間で電解する電解水生成装置がある。当該電解水生成装置においては、陽極室内で生成され陽極室側生成水が次亜塩素酸を含む酸性水であり、また陰極室内で生成される陰極室側生成水がアルカリ性水である。
【0003】
【発明が解決しようとする課題】
ところで、当該電解水生成装置においては、陽極室側生成水はpHが2〜3という強い酸性となる。次亜塩素酸、次亜塩素酸ナトリウム等を含む水溶液においてはpHが低い程殺菌力は高く、殺菌力の点からすれば低いpH程好ましいが、処理すべき食品等の特性の点から最適なpHは異なる。このため、電解水生成装置においては、運転条件を変更することにより、陽極室側生成水のpHを酸性〜中性程度の範囲で任意に変更し得ることが望ましく、またこの場合には有効成分が高濃度であることも好ましい。
【0004】
本出願人は、運転条件を適宜変更することにより陽極室側生成水のpHを酸性〜中性程度の範囲で任意に変更し得る電解水生成装置を特願平6−245602号出願にて提供しており、また陽極室側生成水の有効成分を高濃度にし得る電解水生成装置を特願平6−200890号出願にて提供している。
【0005】
しかしながら、これら両出願に係る電解水生成装置は、pHの任意の変更と高濃度の有効成分を得ることの両方の要請には応じることができない。従って、本発明の目的はこれらの要請に同時に対応し得る電解水生成装置を提供することにある。
【0006】
【課題を解決するための手段】
本発明の第1の発明は、イオン透過能を有する2枚の隔膜にて内部を互いに並列する中央隔室および両側方隔室の3つの隔室に区画された電解槽と、同電解槽の一方の側方隔室にて所定間隔を保持して配設された一対の電極と、同電解槽の他方の側方隔室に配設された電極と、前記中央隔室に接続されて同室へ塩水を供給する塩水供給管路と、前記各側方隔室に接続されてこれら各側方隔室へ略中性の水を供給する水供給管路を備え、前記一方の側方隔室を電解室に構成し、かつ前記他方の側方隔室を電気透析室に構成したことを特徴とするものである。
【0007】
また、本発明の第2の発明は、イオン透過能を有する2枚の隔膜にて内部を互いに並列する中央隔室および両側方隔室に区画された電解槽と、同電解槽の一方の側方隔室にて所定間隔を保持して配設された一対の電極と、同電解槽の他方の側方隔室にて所定間隔を保持して配設された一対の電極と、前記中央隔室に接続されて同室へ塩水を供給する塩水供給管路と、前記各側方隔室に接続されてこれら各側方隔室へ略中性の水を供給する水供給管路を備え、前記各電極に印加する電圧の極性を切替えることにより、前記一方の側方隔室を電解室および電気透析室に選択的に構成することを可能とし、かつ前記他方の側方隔室を電気透析室および電解室に選択的に構成することを可能としたことを特徴とするものである。
【0008】
【発明の作用・効果】
本発明の第1の発明に係る電解水生成装置においては、運転時には中央隔室に高濃度の食塩水が供給されるとともに、両側方隔室には水道水等略中性の水が供給される。また、各隔室に配設した電極に対しては電圧が印加されるが、一方の側方隔室に配設した一方の電極に対しては正の極性、他方の側方隔室に配設した電極には負の極性の電圧が印加されるとともに、一方の側方隔室に配設した一方の電極と他方の側方隔室に配設した電極間に位置する他方の電極にはこれら両電極に印加される電圧の中間の電位の電圧が印加される。
【0009】
これにより、一方の側方隔室は電解室に構成されるとともに、他方の側方隔室は電気透析室に構成され、一方の側方隔室には中央隔室内の食塩水中の塩素イオン等の陰イオンが隔膜を透過して侵入するとともに、他方の側方隔室には中央隔室内の食塩水中のナトリウムイオン等の陽イオンが隔膜を透過して侵入して、一方の側方隔室内にて電解がなされる。これにより、一方の側方隔室内では塩素イオンに起因する次亜塩素酸を含有する酸性の電解水が生成され、また他方の側方隔室内ではナトリウムイオンに起因するアルカリ性水が生成される。
【0010】
この場合、中央隔室から他方の側方隔室内へのナトリウムイオン等の陽イオンの移動量に応じて電解水のpHが調整されるが、陽イオンの移動量は一方の側方隔室内の他方の電極と他方の側方隔室内の電極間の付与される電流の増減に応じて増減することから、これら両電極に付与する電流を調整することにより電解水のpHを任意に調整し得て、電解水を酸性〜中性の範囲の任意のpHに調整することができる。
【0011】
また、中央隔室へ供給する食塩水の濃度の増減に応じて一方の側方隔室への塩素イオン等の陰イオンの移動量が増減することから、中央隔室へ供給する食塩水の濃度を調整することにより電解水中の有効成分の濃度を調整することができ、食塩水の濃度を高めることにより高濃度の有効成分を含有する電解水を生成することができる。
【0012】
本発明の第2の発明に係る電解水生成装置においては、運転時には一方の側方隔室を電解室とし他方の側方隔室を電気透析室とする第1の電解態様と、これとは逆に他方の側方隔室を電解室とし一方の側方隔室を電気透析室とする第2の電解態様を選択的に切替ることができる。これらの各電解態様においては、第1の発明に係る電解水生成装置と作動は同様であるが、一方の電解態様での運転中に電解室および各電極にスケール等が発生して電解効率が低下した場合に、他方の電解態様に切替えて運転することができる。
【0013】
これにより、一方の電解態様で発生したスケールを除去することができて、電解効率を向上させることができる。この場合、他方の電解態様をこのまま続行するようにすれば、電解効率を一層向上させることができるとともに、長期間の連続運転を行うことができるという利点がある。
【0014】
【発明の実施の形態】
以下本発明を図面に基づいて説明するに、図1には本発明に係る電解水生成装置の第1の実施の形態が示されている。当該電解水生成装置10は電解槽11と、第1,第2隔膜12a,12bと、第1,第2,第3電極13a,13b,13cを備えている。第1隔膜12aは陰イオン透過能を有し、かつ第2隔膜12bは陽イオン透過能を有するもので、これら両隔膜12a,12bは電解槽11内に配設されて、電解槽11内を中央の第1隔室14aと、これに並列する両側方の第2,第3隔室14b,14cの3つの隔室に区画している。
【0015】
第1電極13aおよび第2電極13bは、第2隔室14b内にて所定の間隔を保持して配設されて対向している。第1電極13aは平板状のものであって、第1隔膜12aより離れて位置し、また第2電極13bはラスメタル等の多孔質で通水性の板状のもので、第1隔膜12aに近接して位置している。一方、第3電極13cは平板状のもので、第3隔室14c内にて第2隔膜12bから離れて位置している。各電極においては、直流電源15に対して、第1電極13aが陽極側に接続されているとともに第3電極13cが陰極側に接続され、かつ第2電極13bは直流電源の中間の電位の部位に接続されている。
【0016】
第1隔室14aには、高濃度の食塩水を貯溜する塩水タンク16aに接続された塩水供給管路16bと、塩水タンク16aに接続された流出管路16cとが接続されている。また、第2隔室14bには、水道水の供給源に接続された水供給管路17aと図示しない貯溜タンクに接続された流出管路17bが接続され、同様に第3隔室14cには、水道水の供給源に接続された水供給管路18aと図示しない貯溜タンクに接続された流出管路18bが接続されている。
【0017】
なお、図中、符号16dは供給ポンプ、符号16eは開閉バルブを示し、また符号17cおよび18cは開閉バルブを示している。
【0018】
このように構成した電解水生成装置10においては、運転時には第1隔室14aに10重量%〜20重量%の高濃度の食塩水が供給されるとともに、第2,第3隔室14b,14cには水道水が供給される。また、各隔室に配設した電極に対しては電圧が印加されるが、第2隔室14bに配設した第1電極13aには正の極性、第3隔室14cに配設した第3電極13cには負の極性の電極が印加されるとともに、第2隔室14bに配設した第2電極13bには第1電極13aに対しては負の極性で第3電極13cに対しては正の極性の電圧が印加される。
【0019】
これにより、第2隔室14bは電解室に構成されるともとに、第3隔室14cは電気透析室に構成され、第2隔室14bには第1隔室14a内の食塩水中の塩素イオン等の陰イオンが第1隔膜12aを透過して侵入するとともに、第3隔室14cには第1隔室14a内の食塩水中のナトリウムイオン等の陽イオンが第2隔膜12bを透過して侵入する。しかして、第1隔室14bでは電解がなされ、かつ第3隔室14cでは電気透析がなされる。これにより、第2隔室14b内では塩素イオンに起因する次亜塩素酸を含有する酸性の電解水が生成され、また第3隔室14c内ではナトリウムイオンに起因するアルカリ性水が生成される。
【0020】
第2隔室14b内にて生成された酸性水は流出管路17bを経て貯溜タンクへ流出され、また第3隔室14c内にて生成されたアルカリ性水は流出管路18bを経て貯溜タンクへ流出される。なお、第1隔室14aに対しては、食塩水を塩水タンク16aを経由して循環供給してもよく、また食塩水を一旦供給した後所定時間経過して食塩水の濃度が所定濃度に低下した際に流出管路16cが流出させて排出するか、または塩水タンク16aへ還流するようにしてもよい。
【0021】
この運転時には、第1隔室14aから第3隔室14c内へのナトリウムイオン等の陽イオンの移動量に応じて第2隔室14b内で生成される電解水のpHが調整されるが、陽イオンの移動量は第2電極13bと第3電極13c間に付与される電流の増減に応じて増減することから、これら両電極13b,13cに付与する電流を調整することにより電解水のpHを任意に調整し得て、電解水を酸性〜中性の範囲の任意のpHに調整することができる。
【0022】
また、第1隔室14aへ供給する食塩水の濃度の増減に応じて第2隔室14bへの塩素イオン等の陰イオンの移動量が増減することから、第1隔室14aへ供給する食塩水の濃度を調整することにより、第2隔室14b内で生成される電解水中の有効成分の濃度を調整することができ、食塩水の濃度を高めることにより高濃度の有効成分を含有する電解水を生成することができる。
【0023】
図2には本発明に係る電解水生成装置の第2の実施の形態が示されている。当該電解水生成装置20は電解槽21と、第1,第2隔膜22a,22bと、第1,第2,第3,第4電極23a,23b,23c,23dを備えている。第1隔膜22aは陰イオン透過能を有し、かつ第2隔膜22bは陽イオン透過能を有するもので、これら両隔膜22a,22bは電解槽21内に配設されて、電解槽21内を中央の第1隔室24aと、これに並列する両側方の第2,第3隔室24b,24cの3つの隔室に区画している。
【0024】
第1電極23aおよび第2電極23bは第2隔室24b内にて所定の間隔を保持して配設されて対向し、また第3電極23cおよび第4電極23dは第2隔室24b内にて所定の間隔を保持して配設されて対向している。第1電極23aおよび第4電極23dは平板状のもので、第1隔膜22aまたは第2隔膜22bから離れて位置し、また第2電極23bおよび第3電極23cはラスメタル等の多孔質で通水性の板状のもので、第1隔膜22aまたは第2隔膜22bに近接して位置している。
【0025】
第1隔室24aには、高濃度の食塩水を貯溜する塩水タンク26aに接続された塩水供給管路26bと、塩水タンク26aに接続された流出管路26cとが接続されている。また、第2隔室24bには、水道水の供給源に接続された水供給管路27aと図示しない貯溜タンクに接続された流出管路27bが接続され、同様に第3隔室24cには、水道水の供給源に接続された水供給管路28aと図示しない貯溜タンクに接続された流出管路28bが接続されている。なお、図中、符号26dは供給ポンプ、符号26eは開閉バルブを示し、また符号27cおよび28cは開閉バルブを示している。
【0026】
しかして、各電極23a〜23dは3つの切替スイッチ29a〜29cを介して直流電源25に接続されている。各切替スイッチ29a〜29cは図2に示す実線の接続状態と2点鎖線の接続状態とに切替え動作可能に構成されており、各切替スイッチ29a〜29cの切替え動作により、第1電極23a、第2電極23bおよび第3電極23cに電圧を同時に印加することができるとともに(実線の接続状態を参照)、第2電極23b、第3電極23cおよび第4電極23dに電圧を同時に印加することができる(2点鎖線の接続状態を参照)。
【0027】
各切替スイッチ29a〜29cが実線の接続状態では、第2隔室24bが電解室として機能するとともに第3隔室24cが電気透析室として機能する第1の電解態様が構成される。また、各切替スイッチ29a〜29cが2点鎖線の接続状態では、第3隔室24cが電解室として機能するとともに第2隔室24bが電気透析室として機能する第2の電解態様が構成される。これら両電解態様は各切替スイッチ29a〜29cの切替え動作により、選択的に構成される。
【0028】
このように構成した電解水生成装置20においては、運転時には第2隔室24bを電解室とし第3隔室24cを電気透析室とする第1の電解態様と、これとは逆に第3隔室24cを電解室とし第2隔室24bを電気透析室とする第2の電解態様とを選択的に切替えることができる。これらの各電解態様においては、上記した電解水生成装置10と同様の条件で運転され、電解室内では酸性の電解水が生成されるとともに、電気透析室内ではアルカリ性水が生成され、同様の作用効果を奏するものである。
【0029】
ところで、当該電解水生成装置20においては、一方の電解態様での運転中に電解室および各電極にスケール等が発生して電解効率が低下した場合に、他方の電解態様に切替えて運転する。これにより、一方の電解態様で発生したスケールを除去することができて、電解効率を向上させることができる。この場合、他方の電解態様を所定時間続行し、その後電解態様を切替える運転を繰り返し行うようにすれば、電解効率を一層向上させることができるとともに、長期間の連続運転を行うことができるという利点がある。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係る電解水生成装置の概略的構成図である。
【図2】本発明の第2の実施の形態に係る電解水生成装置の概略的構成図である。
【符号の説明】
10,20…電解水生成装置、11,21…電解槽、12a,12b,22a,22b…隔膜、13a,13b,13c,23a,23b,23c,23d…電極、14a,24a…第1隔室(中央隔室)、14b,24b…第2隔室(側方隔室)、14c,24c…第3隔室(側方隔室)、15,25…直流電源、16b,26b…塩水供給管路、17a,18a,27a,28a…水供給管路、29a,29b,29c…切替スイッチ。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention produces an electrolyzed water containing hypochlorous acid, sodium hypochlorite, etc., which has a bactericidal action and a disinfecting action, is acidic to neutral in the range of pH 3 to 7, and has a high concentration of an active ingredient. To an electrolyzed water generating apparatus for use.
[0002]
[Prior art]
As one type of electrolyzed water generating apparatus for producing electrolyzed water containing hypochlorous acid, sodium hypochlorite and the like, which has a bactericidal action and a disinfecting action, it is disclosed in Japanese Patent Publication No. 4-42077. The electrodes are arranged in a pair of compartments formed by partitioning the inside of the electrolytic cell with a membrane having ion permeability, thereby forming an anode compartment and a cathode compartment. There is an electrolyzed water generator for electrolyzing a saline solution between both electrodes. In the electrolyzed water generator, the water generated in the anode chamber and generated in the anode chamber is acidic water containing hypochlorous acid, and the water generated in the cathode chamber is alkaline water.
[0003]
[Problems to be solved by the invention]
By the way, in the electrolyzed water generating apparatus, the generated water on the anode chamber side has a strong acidity of pH 2 to 3. In an aqueous solution containing hypochlorous acid, sodium hypochlorite, etc., the lower the pH, the higher the bactericidal activity, and the lower the pH, the better from the viewpoint of the bactericidal activity. The pH is different. For this reason, in the electrolyzed water generation device, it is desirable that the pH of the anode-room-side generated water can be arbitrarily changed in the range of acidic to neutral by changing the operating conditions. Is also preferably high.
[0004]
The present applicant provides an electrolyzed water generating apparatus capable of arbitrarily changing the pH of the anode chamber side generated water in an acidic to neutral range by appropriately changing the operating conditions in Japanese Patent Application No. 6-245602. Further, an electrolyzed water generating apparatus capable of increasing the concentration of the effective component of the generated water on the anode chamber side is provided in Japanese Patent Application No. 6-200890.
[0005]
However, the electrolyzed water generating apparatuses according to both of these applications cannot meet both demands for arbitrarily changing the pH and obtaining a high-concentration active ingredient. Accordingly, an object of the present invention is to provide an electrolyzed water generation device that can simultaneously meet these demands.
[0006]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided an electrolytic cell partitioned into three compartments, a central compartment and two lateral compartments, each of which is parallel to each other by two diaphragms having ion permeability, A pair of electrodes disposed at a predetermined interval in one side compartment, an electrode disposed in the other side compartment of the electrolytic cell, and the same compartment connected to the central compartment; A salt water supply line for supplying salt water to the side compartments, and a water supply line connected to each of the side compartments to supply substantially neutral water to each of the side compartments. In an electrolysis chamber, and the other side compartment is an electrodialysis chamber.
[0007]
Further, the second invention of the present invention is directed to an electrolytic cell partitioned into a central compartment and two-sided compartments whose interiors are parallel to each other by two diaphragms having ion permeability, and one side of the electrolytic bath. A pair of electrodes disposed at a predetermined interval in the compartment, a pair of electrodes disposed at a predetermined interval in the other side compartment of the electrolytic cell, and A salt water supply pipe connected to the chamber and supplying salt water to the same chamber, and a water supply pipe connected to each of the side compartments and supplying substantially neutral water to each of the side compartments, By switching the polarity of the voltage applied to each electrode, it is possible to selectively configure the one side compartment as an electrolysis room and an electrodialysis room, and to make the other side compartment an electrodialysis room. And an electrolysis chamber can be selectively configured.
[0008]
[Action and Effect of the Invention]
In the electrolyzed water generating apparatus according to the first aspect of the present invention, during operation, high-concentration saline is supplied to the central compartment, and substantially neutral water such as tap water is supplied to both side compartments. You. A voltage is applied to the electrodes arranged in each compartment, but a positive polarity is applied to one electrode arranged in one lateral compartment, and the other electrode is arranged in the other lateral compartment. A negative polarity voltage is applied to the provided electrode, and the other electrode located between one electrode provided in one lateral compartment and the electrode provided in the other lateral compartment is applied to the other electrode. A voltage having an intermediate potential between the voltages applied to these two electrodes is applied.
[0009]
As a result, one side compartment is configured as an electrolysis room, the other side compartment is configured as an electrodialysis room, and one side compartment is provided with chlorine ions in saline in the central compartment. Anions penetrate through the septum and penetrate, while cations such as sodium ions in saline in the central compartment penetrate the septum through the septum and penetrate into the other lateral compartment. Electrolysis is carried out. As a result, acidic electrolyzed water containing hypochlorous acid due to chlorine ions is generated in one lateral compartment, and alkaline water due to sodium ions is generated in the other lateral compartment.
[0010]
In this case, the pH of the electrolyzed water is adjusted according to the movement amount of cations such as sodium ions from the central compartment to the other side compartment, but the movement amount of the cations is one of the side compartments. Since the current increases and decreases according to the increase and decrease of the current applied between the other electrode and the electrode in the other lateral compartment, the pH of the electrolyzed water can be arbitrarily adjusted by adjusting the current applied to both electrodes. Thus, the electrolyzed water can be adjusted to any pH in the acidic to neutral range.
[0011]
Also, since the amount of movement of anions such as chloride ions to one side compartment increases or decreases in accordance with the increase or decrease in the concentration of saline supplied to the central compartment, the concentration of saline supplied to the central compartment is increased. By adjusting the concentration, the concentration of the active ingredient in the electrolyzed water can be adjusted, and by increasing the concentration of the saline solution, it is possible to generate electrolyzed water containing a high concentration of the active ingredient.
[0012]
In the electrolyzed water generation apparatus according to the second invention of the present invention, a first electrolysis mode in which one side compartment is an electrolysis chamber and the other side compartment is an electrodialysis chamber during operation, Conversely, it is possible to selectively switch the second electrolysis mode in which the other lateral compartment is used as an electrolysis chamber and one side compartment is used as an electrodialysis room. In each of these electrolysis modes, the operation is the same as that of the electrolyzed water generating apparatus according to the first invention. When it has decreased, the operation can be switched to the other electrolysis mode.
[0013]
Thereby, the scale generated in one electrolysis mode can be removed, and the electrolysis efficiency can be improved. In this case, if the other electrolysis mode is continued as it is, there is an advantage that the electrolysis efficiency can be further improved and a long-term continuous operation can be performed.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described with reference to the drawings. FIG. 1 shows a first embodiment of an electrolyzed water generating apparatus according to the present invention. The electrolyzed water generator 10 includes an electrolytic cell 11, first and second diaphragms 12a and 12b, and first, second, and third electrodes 13a, 13b, and 13c. The first diaphragm 12a has an anion permeability, and the second diaphragm 12b has a cation permeability. Both the diaphragms 12a and 12b are disposed in the electrolytic cell 11, and the inside of the electrolytic cell 11 is formed. It is divided into three compartments: a first compartment 14a at the center and second and third compartments 14b and 14c on both sides in parallel with the first compartment.
[0015]
The first electrode 13a and the second electrode 13b are disposed at a predetermined interval in the second compartment 14b and face each other. The first electrode 13a is of a flat plate shape and is located apart from the first diaphragm 12a, and the second electrode 13b is of a porous and water-permeable plate shape of lath metal or the like, and is close to the first diaphragm 12a. Is located. On the other hand, the third electrode 13c has a flat plate shape, and is located apart from the second diaphragm 12b in the third compartment 14c. In each electrode, with respect to the DC power supply 15, the first electrode 13a is connected to the anode side, the third electrode 13c is connected to the cathode side, and the second electrode 13b is a part of the intermediate potential of the DC power supply. It is connected to the.
[0016]
The first compartment 14a is connected to a salt water supply line 16b connected to a salt water tank 16a for storing a high-concentration saline solution, and an outlet line 16c connected to the salt water tank 16a. In addition, a water supply line 17a connected to a supply source of tap water and an outflow line 17b connected to a storage tank (not shown) are connected to the second compartment 14b. Similarly, the third compartment 14c is connected to the third compartment 14c. A water supply line 18a connected to a supply source of tap water and an outflow line 18b connected to a storage tank (not shown) are connected.
[0017]
In the drawing, reference numeral 16d indicates a supply pump, reference numeral 16e indicates an on-off valve, and reference numerals 17c and 18c indicate on-off valves.
[0018]
In the electrolyzed water generating apparatus 10 configured as described above, during operation, the first compartment 14a is supplied with a high-concentration saline solution of 10 to 20% by weight, and the second and third compartments 14b, 14c. Is supplied with tap water. Further, a voltage is applied to the electrodes arranged in each compartment, but the first electrode 13a arranged in the second compartment 14b has a positive polarity and the first electrode 13a arranged in the third compartment 14c has a positive polarity. A negative polarity electrode is applied to the third electrode 13c, and the second electrode 13b provided in the second compartment 14b has a negative polarity with respect to the first electrode 13a and a third polarity with respect to the third electrode 13c. Is applied with a voltage having a positive polarity.
[0019]
Thus, the second compartment 14b is configured as an electrolysis chamber, the third compartment 14c is configured as an electrodialysis compartment, and the second compartment 14b is provided with chlorine in saline in the first compartment 14a. Anions such as ions penetrate through the first diaphragm 12a and enter, and cations such as sodium ions in a saline solution in the first compartment 14a pass through the second diaphragm 12b into the third compartment 14c. invade. Thus, electrolysis is performed in the first compartment 14b, and electrodialysis is performed in the third compartment 14c. As a result, acidic electrolyzed water containing hypochlorous acid due to chloride ions is generated in the second compartment 14b, and alkaline water due to sodium ions is produced in the third compartment 14c.
[0020]
The acidic water generated in the second compartment 14b flows out to the storage tank through the outflow line 17b, and the alkaline water generated in the third compartment 14c flows into the storage tank through the outflow line 18b. Is leaked. In addition, the salt solution may be circulated and supplied to the first compartment 14a via the salt water tank 16a, and the concentration of the salt solution becomes the predetermined concentration after a lapse of a predetermined time after the supply of the saline solution. When lowered, the outflow conduit 16c may be discharged and discharged, or may be returned to the salt water tank 16a.
[0021]
During this operation, the pH of the electrolyzed water generated in the second compartment 14b is adjusted according to the amount of movement of cations such as sodium ions from the first compartment 14a into the third compartment 14c, Since the amount of movement of the cations increases and decreases in accordance with the increase and decrease of the current applied between the second electrode 13b and the third electrode 13c, the pH of the electrolyzed water is adjusted by adjusting the currents applied to the two electrodes 13b and 13c. Can be arbitrarily adjusted, and the electrolyzed water can be adjusted to any pH in the acidic to neutral range.
[0022]
Further, since the amount of movement of anions such as chloride ions to the second compartment 14b increases or decreases in accordance with the increase or decrease in the concentration of the saline solution supplied to the first compartment 14a, the salt supplied to the first compartment 14a. By adjusting the concentration of water, the concentration of the active ingredient in the electrolytic water generated in the second compartment 14b can be adjusted, and by increasing the concentration of the saline solution, the concentration of the active ingredient containing a high concentration of the active ingredient can be adjusted. Can produce water.
[0023]
FIG. 2 shows a second embodiment of the electrolyzed water generating apparatus according to the present invention. The electrolyzed water generator 20 includes an electrolysis tank 21, first and second diaphragms 22a and 22b, and first, second, third, and fourth electrodes 23a, 23b, 23c, and 23d. The first diaphragm 22a has an anion permeability, and the second diaphragm 22b has a cation permeability. The two diaphragms 22a and 22b are disposed in the electrolytic cell 21, and the inside of the electrolytic vessel 21 It is divided into three compartments: a first compartment 24a at the center, and second and third compartments 24b and 24c on both sides in parallel with the first compartment.
[0024]
The first electrode 23a and the second electrode 23b are disposed at a predetermined interval in the second compartment 24b and face each other, and the third electrode 23c and the fourth electrode 23d are placed in the second compartment 24b. They are arranged at predetermined intervals to face each other. The first electrode 23a and the fourth electrode 23d are plate-shaped, and are located apart from the first diaphragm 22a or the second diaphragm 22b. The second electrode 23b and the third electrode 23c are porous and water-permeable such as lath metal. And is located close to the first diaphragm 22a or the second diaphragm 22b.
[0025]
The first compartment 24a is connected to a salt water supply line 26b connected to a salt water tank 26a for storing a high-concentration saline solution, and an outlet line 26c connected to the salt water tank 26a. Further, a water supply pipe 27a connected to a supply source of tap water and an outflow pipe 27b connected to a storage tank (not shown) are connected to the second compartment 24b. Similarly, the third compartment 24c is connected to the third compartment 24c. A water supply line 28a connected to a supply source of tap water and an outflow line 28b connected to a storage tank (not shown) are connected. In the drawing, reference numeral 26d indicates a supply pump, reference numeral 26e indicates an on-off valve, and reference numerals 27c and 28c indicate on-off valves.
[0026]
Thus, each of the electrodes 23a to 23d is connected to the DC power supply 25 via three changeover switches 29a to 29c. Each of the changeover switches 29a to 29c is configured to be operable to switch between a solid line connection state and a two-dot chain line connection state shown in FIG. 2. A voltage can be applied to the second electrode 23b and the third electrode 23c at the same time (see the solid line connection state), and a voltage can be simultaneously applied to the second electrode 23b, the third electrode 23c, and the fourth electrode 23d. (Refer to the connection state of the two-dot chain line).
[0027]
When the changeover switches 29a to 29c are connected by solid lines, a first electrolysis mode is configured in which the second compartment 24b functions as an electrolysis chamber and the third compartment 24c functions as an electrodialysis chamber. Further, when the changeover switches 29a to 29c are connected in a two-dot chain line, a second electrolysis mode in which the third compartment 24c functions as an electrolysis chamber and the second compartment 24b functions as an electrodialysis chamber is configured. . These two electrolysis modes are selectively configured by switching operations of the changeover switches 29a to 29c.
[0028]
In the electrolyzed water generator 20 configured as described above, the first electrolysis mode in which the second compartment 24b is an electrolysis chamber and the third compartment 24c is an electrodialysis chamber during operation, The second electrolysis mode in which the chamber 24c is an electrolysis chamber and the second compartment 24b is an electrodialysis chamber can be selectively switched. In each of these electrolysis modes, the apparatus is operated under the same conditions as the above-described electrolyzed water generation apparatus 10, and acidic electrolyzed water is generated in the electrolysis chamber, and alkaline water is generated in the electrodialysis chamber. Is played.
[0029]
By the way, in the electrolyzed water generating apparatus 20, when scale or the like is generated in the electrolysis chamber and each electrode during the operation in one electrolysis mode and the electrolysis efficiency is reduced, the operation is switched to the other electrolysis mode to operate. Thereby, the scale generated in one electrolysis mode can be removed, and the electrolysis efficiency can be improved. In this case, if the other electrolysis mode is continued for a predetermined time and then the operation for switching the electrolysis mode is repeatedly performed, the electrolysis efficiency can be further improved and the long-term continuous operation can be performed. There is.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an electrolyzed water generation device according to a first embodiment of the present invention.
FIG. 2 is a schematic configuration diagram of an electrolyzed water generation device according to a second embodiment of the present invention.
[Explanation of symbols]
10, 20 ... electrolyzed water generator, 11, 21 ... electrolytic bath, 12a, 12b, 22a, 22b ... diaphragm, 13a, 13b, 13c, 23a, 23b, 23c, 23d ... electrode, 14a, 24a ... first compartment (Central compartment), 14b, 24b ... second compartment (side compartment), 14c, 24c ... third compartment (side compartment), 15, 25 ... DC power supply, 16b, 26b ... salt water supply pipe Roads, 17a, 18a, 27a, 28a ... water supply pipes, 29a, 29b, 29c ... changeover switches.

Claims (2)

イオン透過能を有する2枚の隔膜にて内部を互いに並列する中央隔室および両側方隔室の3つの隔室に区画された電解槽と、同電解槽の一方の側方隔室にて所定間隔を保持して配設された一対の電極と、同電解槽の他方の側方隔室に配設された電極と、前記中央隔室に接続されて同室へ塩水を供給する塩水供給管路と、前記各側方隔室に接続されてこれら各側方隔室へ略中性の水を供給する水供給管路を備え、前記一方の側方隔室を電解室に構成し、かつ前記他方の側方隔室を電気透析室に構成したことを特徴とする電解水生成装置。An electrolytic cell partitioned into three compartments, a central compartment and two-side compartments, the interior of which is parallel to each other by two membranes having ion permeability, and a predetermined compartment in one side compartment of the electrolytic bath. A pair of electrodes disposed at intervals, an electrode disposed in the other side compartment of the electrolytic cell, and a salt water supply line connected to the central compartment to supply salt water to the same compartment A water supply line connected to the side compartments to supply substantially neutral water to the side compartments, wherein the one side compartment is configured as an electrolysis chamber, and An electrolyzed water generator, wherein the other side compartment is configured as an electrodialysis compartment. イオン透過能を有する2枚の隔膜にて内部を互いに並列する中央隔室および両側方隔室に区画された電解槽と、同電解槽の一方の側方隔室にて所定間隔を保持して配設された一対の電極と、同電解槽の他方の側方隔室にて所定間隔を保持して配設された一対の電極と、前記中央隔室に接続されて同室へ塩水を供給する塩水供給管路と、前記各側方隔室に接続されてこれら各側方隔室へ略中性の水を供給する水供給管路を備え、前記各電極に印加する電圧の極性を切替えることにより、前記一方の側方隔室を電解室および電気透析室に選択的に構成することを可能とし、かつ前記他方の側方隔室を電気透析室および電解室に選択的に構成することを可能としたことを特徴とする電解水生成装置。An electrolytic cell partitioned into a central compartment and two-sided compartments whose interiors are parallel to each other with two diaphragms having ion permeability, and a predetermined interval is maintained in one side compartment of the electrolytic bath. A pair of electrodes disposed, a pair of electrodes disposed at a predetermined interval in the other lateral compartment of the electrolytic cell, and a salt water connected to the central compartment and supplying the same with the central compartment. A salt water supply line, and a water supply line connected to each of the side compartments for supplying substantially neutral water to each of the side compartments, and switching a polarity of a voltage applied to each of the electrodes. Thus, it is possible to selectively configure the one lateral compartment into an electrolysis room and an electrodialysis room, and selectively configure the other side compartment into an electrodialysis room and an electrolysis room. An electrolyzed water generator characterized by being made possible.
JP24490895A 1995-09-22 1995-09-22 Electrolyzed water generator Expired - Fee Related JP3568289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24490895A JP3568289B2 (en) 1995-09-22 1995-09-22 Electrolyzed water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24490895A JP3568289B2 (en) 1995-09-22 1995-09-22 Electrolyzed water generator

Publications (2)

Publication Number Publication Date
JPH0985247A JPH0985247A (en) 1997-03-31
JP3568289B2 true JP3568289B2 (en) 2004-09-22

Family

ID=17125761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24490895A Expired - Fee Related JP3568289B2 (en) 1995-09-22 1995-09-22 Electrolyzed water generator

Country Status (1)

Country Link
JP (1) JP3568289B2 (en)

Also Published As

Publication number Publication date
JPH0985247A (en) 1997-03-31

Similar Documents

Publication Publication Date Title
JP3349710B2 (en) Electrolyzer and electrolyzed water generator
EP2245693B1 (en) Device and method for performing a reverse electrodialysis process
JPH11169856A (en) Electrolytic water producing device
JP7271612B2 (en) Electrolyzed water generator and electrolyzed water generation method
WO2016016954A1 (en) Electrolytic ion water generation method and electrolytic ion water generation apparatus
JPH08229565A (en) Electrolyzed water producing device
JP3575713B2 (en) Method and apparatus for generating electrolyzed water
JP3667405B2 (en) Electrolyzed water generator
JP3568289B2 (en) Electrolyzed water generator
JP3802580B2 (en) Electrolyzed water generator
JP2001137850A (en) Electrolysis method of water and produced water
JP3353964B2 (en) Method and apparatus for producing electrolyzed water
JP3509999B2 (en) Electrolyzed water generator
JP3568290B2 (en) Electrolyzed water generator
JP3561346B2 (en) Electrolyzed water generator
JP3575712B2 (en) Electrolyzed water generator
JPH09206755A (en) Formation of alkaline ionized and hypochlorous acid sterilizing water and device therefor
JP2009006287A (en) Production apparatus of electrolytic water, production method of electrolytic water, and electrolytic water
JPH09108673A (en) Method of electrolyzing salt water
JPH06312185A (en) Electrolytic water forming apparatus
JP3677331B2 (en) Electrolyzed water generator
KR102508310B1 (en) a three chamber electrolyte that produces pure hypochlorous acid water
JP3398173B2 (en) Electrolysis method of saline solution
JP3653129B2 (en) Electrolyzed water generator
JPH09108677A (en) Electrolytic water generator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040615

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees