JP3566069B2 - Method of forming a coating on the inner surface of stainless steel pipe - Google Patents

Method of forming a coating on the inner surface of stainless steel pipe Download PDF

Info

Publication number
JP3566069B2
JP3566069B2 JP08042498A JP8042498A JP3566069B2 JP 3566069 B2 JP3566069 B2 JP 3566069B2 JP 08042498 A JP08042498 A JP 08042498A JP 8042498 A JP8042498 A JP 8042498A JP 3566069 B2 JP3566069 B2 JP 3566069B2
Authority
JP
Japan
Prior art keywords
steel pipe
gas
stainless steel
pipe
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08042498A
Other languages
Japanese (ja)
Other versions
JPH11256308A (en
Inventor
源 丁場
有嗣 田代
Original Assignee
住金ステンレス鋼管株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住金ステンレス鋼管株式会社 filed Critical 住金ステンレス鋼管株式会社
Priority to JP08042498A priority Critical patent/JP3566069B2/en
Publication of JPH11256308A publication Critical patent/JPH11256308A/en
Application granted granted Critical
Publication of JP3566069B2 publication Critical patent/JP3566069B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、長尺のステンレス鋼管、特に半導体製造プロセス、高真空装置等の高清浄度を要求される装置の配管材として適するステンレス鋼管の内面のみにCr酸化物、Al酸化物、Si酸化物などの不動態被膜を酸化性ガスにより均一に形成する方法および該方法に使用する被膜形成処理ガスの供給装置に関する。
【0002】
【従来の技術】
半導体製造プロセスでは、比較的安定な一般ガス(O2 ,N2 ,H2 ,He)から反応性、腐食性および毒性の強いフッ素系、塩素系などのプロセスガスやクリーニングガスが使用される。これらのガスを使用する配管やチャンバーの材料には、ガスとの反応性、耐腐食性の他、強度、加工性、溶接性、管内外表面の仕上げ研磨性等を考慮して、オーステナイト系またはフェライト系のステンレス鋼が使用されており、より適するステンレス鋼材料の開発が進められている。ステンレス鋼は、乾燥ガス雰囲気では耐蝕性に優れているが、フッ素系や塩素系のガス雰囲気中で水分が存在する場合は容易に腐食されてしまうという問題がある。このため、ステンレス鋼管の表面を仕上げ研磨した後に何らかの耐蝕性処理が必要になる。
【0003】
耐蝕性処理方式としては、耐蝕性金属のメッキ方法や硝酸溶液中に浸漬して不動態被膜を形成する方法なども考えられるが、湿式の方法であるため、配管やチャンバー内面に水分や処理液が残留し、半導体製造プロセスの配管用ステンレス鋼管としては適さず、これに代わる方法としてドライガス雰囲気による不動態被膜の形成が着目され種々の方法が開発されている。
【0004】
例えば、酸化性雰囲気で500℃程度に1〜2時間程度加熱して金属表面に薄いCrの酸化物被膜を作る方法(特開昭63−169391号公報、特開平1−31956号公報、特開平1−87760号公報、特開平1−198463号公報、特開平2−141566号公報)が知られている。また、水素ガスまたは水素と不活性ガスとの混合ガス中に4ppm未満の酸素または500ppb未満の水分を含有するガス雰囲気、あるいは500ppb〜2%の水分を含有するガス雰囲気で300〜600℃に加熱して酸化被膜を形成する方法(特開平6−41629号公報、特開平6−116632号公報、特開平7−233476号公報)も知られている。
【0005】
比較的高温で加熱する方法としては、H2 雰囲気で900〜1200℃で加熱して水切れ性と耐蝕性を向上する方法(特許2541011号公報)、H2 ガスを流しながら固溶体熱処理してCr酸化膜を形成し、水切れ性と耐蝕性を向上する方法(特開平4−350180号公報)、酸素10ppm以下かつ水蒸気10ppm以下の雰囲気で750〜1200℃で加熱する方法(特開平7−62520号公報)が知られている。また、1〜6重量%の高Al含有のステンレス鋼を微量のO2 を含む不活性ガス雰囲気または大気中で800〜1100℃に1〜2分間加熱してAlの酸化物被膜を形成する方法(特開平7−60099号公報)も知られている。
【0006】
このような不動態被膜の形成装置としては、特開平2−43353号公報には、ステンレス鋼管の片側端部からガスを導入し、他の端部から排気し、ステンレス鋼管の内表面から脱離した水分などの不純物を酸化処理炉の外に排気することによりステンレス鋼管をドライな酸化処理雰囲気中で加熱酸化せしめ、これにより酸化処理雰囲気中の水分濃度を目的とする値以下に下げることができ、金属表面に良好な不動態被膜を形成可能としたものが開示されている。さらに、特開平3−111552号公報には、酸化炉を用いたステンレス鋼管の酸化処理装置を改良したものとして、ステンレス鋼管の両端にガス導入用の中空保持体と、ガス排出用の中空保持体を設け、鋼管を炉内に挿入した後バッチごとに炉内ガスをパージした後、ベーキングして出口からの水分量が5ppb以下になった後にO2 などの水分濃度10ppb以下のドライな酸化性ガスを鋼管内面に供給して酸化処理を開始するステンレス鋼管酸化処理装置が開示されている。
【0007】
【発明が解決しようとする課題】
半導体デバイスの製造プロセスに使用されるステンレス鋼管内部は、腐食性ガスによる腐食生成物の発生を防止するために鋼管内部を耐蝕性に優れたものとする必要がある。また、ステンレス鋼管内でパーチクルが出ないこと、水分の乾き性が良好なことも求められ、半導体チップの高集積化、シリコンウエハの大型化、エピタキシャルウエハの需要の高まりとともに、高耐蝕性ステンレス鋼管の要求が強まっている。
【0008】
ステンレス鋼管内面を被膜形成処理雰囲気とするためには鋼管内面に被膜形成処理ガスを流す必要がある。このため、従来、これらの鋼管を加熱炉内に装填し、酸化性ガスを炉内、または鋼管内面のみに流して処理する方法が提案されている。しかし、処理対象となるこれらの鋼管は通常約4m程度の長尺管として製造されており、小中径鋼管が一般的であり、特に1/4〜1/2インチの内径の小さい鋼管では鋼管内にガスが流れにくく滞留しやすいなどの問題がある。また、各鋼管の端部に被膜形成処理ガスの供給口を接続した場合も、その供給口は炉内にあるため、酸化性ガスが炉内の鋼管外面に流出して内面に比べて汚染されている外面に接触したガスが鋼管内面に侵入したり、鋼管外面に不純な酸化膜が形成されたりする問題もあった。
【0009】
このため、前記特開平3−111552号公報には、ステンレス鋼管の両端にガス導入用の中空保持体を設け、管の片側からガスを供給するとともに、反対側から吸引するようにして、炉内に挿入された管外面に酸化性のガスが流入しない装置を開示しているが、ステンレス鋼管を処理炉内に固定して処理するバッチ式の装置であり、炉内の雰囲気のパージやベーキング、酸化処理後の冷却処理が必要であり、温度500〜600度の比較的低温で長時間加熱して酸化処理するものであり、作業効率が低く、バッチ処理ごとの被膜の特性変動などの問題があった。本発明は、長尺ステンレス鋼管内面に不動態被膜を形成する方法において、高温で不動態被膜を形成し、かつ強制冷却する工程を簡易な手段を用いて連続化することにより作業効率の著しい向上と高性能の均一な被膜の形成を図ることを目的とする。
【0010】
【課題を解決するための手段】
本発明は、連続処理方法を採用して上記課題を解決したものであり、ステンレス鋼管内面に不動態被膜を形成する方法において、鋼管を長手方向に加熱炉に挿入して該炉内を前進させながら昇温加熱、均熱、降温冷却し、均熱部において被膜形成を行うようにし、その際、鋼管の後端に装着した可撓性ガス管から鋼管内面に被膜形成処理ガスを供給し、鋼管の端部が該炉の挿入側の一定の位置まで前進したときに該ガス管を外して、鋼管の後端部と該炉内に挿入する次の鋼管の先端部とを鋼管内部を塞ぐことがないようにジョイント部材で接続し、該次の鋼管に装着したガス管から該次の鋼管内部に被膜形成処理ガスを再度供給し、この一連の操作を繰り返すことにより複数の鋼管を連続的に繋げて加熱炉に挿入しながら繋がった複数の鋼管内面に被膜形成処理ガスを流通させ、炉の排出口に達した鋼管の先端から該処理ガスを排出するようにして、炉内に連続挿入される鋼管内面に不動態被膜を形成することを特徴とするステンレス鋼管内面の被膜形成方法を提供する。冷却は、マッフル管の外側に水冷槽を設け、マッフル管内を移動中のステンレス鋼管を強制冷却することが望ましい。
【0011】
ステンレス鋼管としてフェライト系ステンレス鋼管を対象とする場合は、例えば、被膜形成処理ガスが露点−50℃〜−63℃に制御されたH2 ガスまたはH2 +Ar混合ガスであり、均熱温度を700〜1100℃としてCr酸化物を主体とする優れた被膜を形成できる。被膜形成処理ガスの組成は、例えば、水蒸気1〜300体積ppm、水素10〜99.9999体積%を含有したH2ガスまたはH2+Arなどの不活性ガスとの混合ガスである。
また、ステンレス鋼管として、Al+Siを1〜6%含有するステンレス鋼管を用い、被膜形成処理ガスが露点−55℃〜−70℃に制御されたH2 ガスまたはH2 +Ar混合ガスであり、均熱温度を600〜1200℃としてAl酸化物および/またはSi酸化物を主体とする優れた被膜を形成できる。
加熱炉として、マッフル炉を用い、マッフル管内にH2 ガス等の不活性ガスを流してステンレス鋼管外面を光輝焼鈍仕上げすることができる。
【0012】
本発明の方法に使用する被膜形成処理ガス供給装置は、ガス成分調整器、該ガス成分調整器に接続したガス供給用の可撓性ガス管、該可撓性ガス管の先端に接続されてなりステンレス鋼管の後端に着脱自在に装着されるガス供給口からなるガス供給装置が好適である。ステンレス鋼管の端部同士を接続するには、鋼管同士の後端と先端を中空筒状のジョイントに嵌挿し、ジョイントをかしめることのできる部材が最適であるが、鋼管内部を塞ぐことがないようなジョイント部材であれば、適宜の構造のものでよい。
【0013】
【発明の実施の形態】
以下に図面を参照して本発明のステンレス鋼管内面の不動態被膜形成方法の実施の形態を詳述する。図1は、本発明の方法を実施するための装置の全体概念図である。図2の(A)は、図1のX−X線断面図である。図2の(B)は、図1のY−Y線断面図である。図3は、ステンレス鋼管の端部に着脱自在に装着するガス供給口の構造を示す断面図である。図4は、ステンレス鋼管の接続に好適なジョイントの一例を示す断面図である。図5は、本発明の方法の一実施態様におけるステンレス鋼管の昇温、均熱、降温の温度パターンを示す。
【0014】
本発明の不動態被膜形成方法に使用する加熱炉としては、マッフル炉1として公知のタイプの炉に水冷帯を付設したものが適する。図1に示すように、被処理材であるステンレス鋼管2をコンベヤロール3など公知の搬送手段により管長手方向に水平にマッフル炉1のマッフル管4の入り口に搬送し、マッフル管4内を進行するエンドレスコンベアベルト5上に移載させてマッフル管4内を前進させる。マッフル管4の大きさ、鋼管2の径に応じて、適宜複数本の鋼管2をベルト5上に並列に並べて搬送し、マッフル炉1内に並列に挿入する。
【0015】
マッフル炉1は、図2の(A)に断面を示すように、マッフル管4の上下に電熱ヒータ6、6を配置し、マッフル管4内に適宜温度計7を挿入するなどの手段により炉内温度を計測制御する。マッフル炉1の加熱帯Hに隣接して鋼管2の強制冷却用の水冷帯Cを設ける。水冷帯Cは、例えば、図2の(B)に断面図を示すように、マッフル管4の全体を水冷槽8内に配置して鋼管2をコンベアベルト5で搬送しながら水冷帯Cで間接的に冷却する。加熱されたままステンレス管が炉外へ出ると外面が大気によって酸化されるので、加熱帯の後に水冷帯を設けて外面の酸化反応が起こらない程度の温度まで強制冷却した後炉外へ排出する。水冷帯Cの近傍に設けた供給孔9からH2 ガスなどの不活性ガスを雰囲気ガスとしてマッフル管4内に流す。マッフル管4の入り口、出口はフレームカーテンでシールする。
【0016】
鋼管2の挿入側のマッフル炉1の近傍に被膜形成処理ガスを供給するためのガス調整器10を配置する。ガス調整器10は所定のガスを供給する図示しないガス供給源と接続する。またガス調整器10には、流量計11、露点計12などの所要の計器を介して、調整後の被膜形成処理ガスを鋼管2の内部へ供給するための可撓性のガス供給チューブ13を接続する。図3に示すように、ガス供給チューブ13の先端部のガス供給口14は、差し込み口の先端部と筒状部材16との間にゴムリング17を介在させ、その弾力を利用して気密に装着する。ガス供給口14にボルト18で回動可能に軸支した長円形回転板19と長円形板20を組み合わせた着脱機構を用い、回転板19を回転させて長円形板20を鋼管2の軸方向に移動可能とすることにより着脱自在とする。供給口14の構造および着脱機構は、これに限定されず、着脱自在で気密性が保たれる構造、機構であれば、適宜のものを使用できる。
【0017】
本発明の不動態被膜を形成する方法の工程を以下に説明する。ダミー材となる鋼管を複数本接続してその先端がマッフル炉の出口に達するまで前進させる。被膜を形成する最初のステンレス鋼管2をコンベアロール3で搬送する。図4に示すように、該鋼管2の先端には予めジョイント15を接続してカシメておく。また、該鋼管2の後端には、ガス供給口14を予め装着し、バルブV2は閉じておく。次いで、先行するダミー材に装着したガス供給口14をバルブV1は開けたまま取り外してからバルブV1を閉じる。該鋼管2に装着したガス供給口14のバルブV2を開いて、該鋼管2の先端にカシメたジョイント15を移動中のダミー材の後端に挿入してダミー材側のジョイント部分をカシメて接続作業を終了する。ダミー材にジョイント15を挿入すると同時に、ガス供給口14から被膜形成処理ガスが鋼管2の内部に流れる。
【0018】
ダミー材と繋がった該鋼管2はコンベヤベルト5に移載され、マッフル炉1に挿入され、該鋼管2内にガスが流れながらマッフル管4内を前進する。該鋼管2の前進につれてガス供給口14は、鋼管2の後端に装着されたままマッフル炉1の入り口近くまで前進するので、ガス供給チューブ13は可撓性のあるものとし、ガス供給口14の移動を可能とする。最初のステンレス鋼管2の後端がマッフル炉1の入り口近くの一定の位置まで前進したときに、上記ダミー材後端との接続と同様な手順で、該ガス供給口14のバルブV2を開けたまま該鋼管2から外して、バルブV2を締める。そして、予め先端にジョイント15をカシメ、かつ後端には予めガス供給口14を装着した次のステンレス鋼管2を先行する鋼管2の端部と接続する。鋼管同士の接続により鋼管の内面へ被膜形成処理ガスが再度流れ出す。
【0019】
この操作を繰り返すことにより、マッフル炉1内にはジョイント15により接続された複数本のステンレス鋼管2、2、2・・・が繋がって前進し、最後部のステンレス鋼管2の後端に装着されたガス供給口14から鋼管2の内側に被膜形成処理ガスが供給される。最初の鋼管2と次の鋼管2のジョイント15がマッフル炉1の排出口の外部へ達したらジョイント15を外す。被膜形成処理ガスは繋がった複数本のステンレス鋼管2、2、2・・・の最前部の鋼管の先端より排出され、ジョイント15を外すと次の鋼管の先端より排出されることになる。内面に不動態被膜が形成された鋼管2は排出側コンベヤ(図示せず)で次工程へ搬送する。ジョイント15としては、鋼などの金属製中空筒状体で、両鋼管2、2の端面の接触部から鋼管外面側へ被膜形成処理ガスが漏洩しない程度にカシメることのできるものであればよい。図4では、ジョイントを鋼管の内部に挿入する例を示しているが、鋼管の外部に挿入するものでもよい。
【0020】
ステンレス鋼管2を微量の水分を含む処理ガス雰囲気で高温に加熱して水蒸気処理してCr酸化物を主体とする不動態被膜を形成する方法は、耐蝕性被膜の形成方法として優れた方法である。この方法を実施するには、上記ガス調整器10は、水分添加器とする。水分添加器自体は、公知のものでよい。水分添加器には、図示しない供給源からH2 ガスを供給する。H2 および不活性ガスの含有量は流量制御器により、水蒸気は露点を計測して水蒸気添加器により調整する。処理ガスの流量は、ステンレス鋼管の内径、加熱炉の均熱部の長さ、鋼管が均熱部を通過する時間、酸化性ガス中の水蒸気および/または酸素濃度に応じて適切な不動態膜を形成するに好適な値を定める。
【0021】
本発明は、フェライト系ステンレス鋼管の内面を露点−50〜−63℃、温度850〜1000℃で処理してCr2 O3 主体の酸化被膜を形成する方法に特に適する。この場合、鋼管内面に流す被膜形成処理ガスの組成は、例えば、水蒸気1〜300体積ppm、水素10〜99.9999体積%を含有したH2ガスまたはH2 +Arなどの不活性ガスとの混合ガスである。
【0022】
また、ステンレス鋼管として、Al+Siを1〜6%含有するステンレス鋼管を用い、被膜形成処理ガスが露点−55℃〜−70℃に制御されたH2 ガスまたはH2 +Ar混合ガスであり、均熱温度を600〜1200℃としてAl酸化物および/またはSi酸化物を主体とする優れた被膜を形成できる。この場合、鋼管内面に流す被膜形成処理ガスの組成は、酸素ガスおよび/または水蒸気ガスからなる弱酸化性ガスが適する。マッフル管4内にはH2 ガスを流すことにより鋼管2の外面側はH2 ガス雰囲気とすることにより光輝焼鈍できる。
Al+Siを1〜6%含有するステンレス鋼管の組成は、Cr:12〜30,Ni:0〜35,Al+Si:1〜6%,Mo:0〜3,C≦0.03,Mn≦0.2,P≦0.03,S≦0.01,N≦0.05,O≦0.01,Fe残部からなる。
【0023】
炉内を移動するステンレス鋼管は、図6に示すように加熱帯で昇温され所定の均熱温度で一定時間加熱される。複数の鋼管を連続的に繋げて加熱炉に挿入しながら繋がった複数の鋼管内面に被膜形成処理ガスを流通させ、炉の排出口に達した鋼管の先端から該成処理ガスを排出するようにしても、酸化反応はこの均熱部分のみで起こる。ステンレス鋼管が均熱部以外にあるときには被膜形成反応は起きない。
【0024】
【実施例】
実施例1
ステンレス鋼管として下記の組成を有するフェライト系ステンレス鋼管を用いた。C≦0.01,Si≦0.1,Mn≦0.05,S≦0.002,Ni≦0.05,Cr26/27,Mo0.8/1.2,Al≦0.01,O≦0.005,Fe残部。鋼管のサイズは、長さ4000mm、外径6.35mm、内径4.35mmであった。半導体製造装置用クリーンガス配管には、通常、内面を電解研磨などで0.7ミクロン以下の鏡面に仕上げ研磨したステンレス鋼管が用いられており、本実施例でも、シームレスステンレス鋼管内面を内面粗さRmax≦0.7ミクロンに仕上げ研磨したものを用いた。
【0025】
上記サイズのステンレス鋼管4本を並列にコンベアロールに並べ、マッフル炉に供給した。マッフル炉の入り口と出口の間の距離が約20mの炉を用い、加熱帯は約6m、冷却帯は約10mとした。したがって、マッフル炉内には1列5本の鋼管が繋がって存在することになる。鋼管を接続するジョイントとしては、図4に示す構造のものを使用した。被膜形成処理ガスとしては、H2 ガスを用い、水分添加器で露点−53℃に調整し、流量10リットル/分でガスを鋼管内に供給した。また。マッフル管内にはH2 を流量7m3 /分で供給した。ステンレス鋼管は加熱帯で約5分で約900度に昇温され、該温度に10分以上維持し均熱されるように搬送速度制御と電熱ヒータの温度制御を行った。また、均熱後約5分で室温に降温するように冷却した。この不動態被膜形成処理により、長さ4mの鋼管1本の被膜の形成に要する処理時間は20分であった。鋼管内面には被膜厚さ約300オングストロームの均一な金色のCr2 O3 を主体とする酸化被膜が形成され、外面は光輝仕上げ面となった。
【0026】
【発明の効果】
本発明は、マッフル炉などの従来公知の加熱炉の構造を格別変更することなく長尺ステンレス鋼管を、炉内で高温、短時間加熱処理するものであり、被膜形成ガス供給用チューブおよびガス供給口手段と、鋼管のジョイント部材を用いるのみで連続処理を可能としたので、効率的で生産性が大である。また、鋼管外面に酸化性ガスを漏洩せずに鋼管内面のみを被膜形成処理雰囲気とするものであるから、内面のみに不動態被膜を形成し、外面を光輝焼鈍仕上げした光沢面とすることもできる。
【図面の簡単な説明】
【図1】本発明の装置の全体概念図である。
【図2】(A)は、図1のX−X線断面図であり、(B)は、図1のY−Y線断面図である。
【図3】ステンレス鋼管の端部に着脱自在に装着するガス供給口の構造を示す断面図である。
【図4】ステンレス鋼管の接続に好適なジョイントの一例を示す断面図である。
【図5】本発明の方法の一実施態様の昇温、均熱、降温の温度パターンを示す図である。
【符号の説明】
1 マッフル炉
2 ステンレス鋼管
4 マッフル管
10 ガス調整器
14 ガス供給口
15 ジョイント
[0001]
[Industrial applications]
The present invention is applicable to a long stainless steel tube, especially a stainless steel tube suitable as a piping material for a device requiring high cleanliness, such as a semiconductor manufacturing process and a high vacuum device. The present invention relates to a method for uniformly forming a passivated film such as an oxidizing gas, and an apparatus for supplying a film forming process gas used in the method.
[0002]
[Prior art]
In a semiconductor manufacturing process, a process gas or a cleaning gas such as a fluorine-based or chlorine-based highly reactive, corrosive, or toxic gas, or a relatively stable general gas (O2, N2, H2, He) is used. Materials for pipes and chambers using these gases include austenitic or austenitic materials in consideration of the reactivity with the gas, corrosion resistance, strength, workability, weldability, finish polishing of the inner and outer surfaces of the pipe, etc. Ferritic stainless steel is used, and the development of a more suitable stainless steel material is in progress. Stainless steel has excellent corrosion resistance in a dry gas atmosphere, but has a problem that it is easily corroded when moisture is present in a fluorine-based or chlorine-based gas atmosphere. For this reason, some kind of corrosion resistance treatment is required after the surface of the stainless steel pipe is finish-polished.
[0003]
Examples of the corrosion-resistant treatment method include a method of plating a corrosion-resistant metal and a method of forming a passivation film by dipping in a nitric acid solution. Remains and is not suitable as a stainless steel pipe for piping in a semiconductor manufacturing process. As an alternative method, formation of a passive film in a dry gas atmosphere has been focused on, and various methods have been developed.
[0004]
For example, a method in which a thin Cr oxide film is formed on a metal surface by heating to about 500 ° C. for about 1 to 2 hours in an oxidizing atmosphere (JP-A-63-169391, JP-A-1-31956, 1-87760, JP-A-1-198463, and JP-A-2-141566) are known. Heating to 300 to 600 ° C. in a gas atmosphere containing less than 4 ppm of oxygen or less than 500 ppb of moisture or a gas atmosphere containing 500 ppb to 2% of moisture in hydrogen gas or a mixed gas of hydrogen and an inert gas. (JP-A-6-41629, JP-A-6-116632 and JP-A-7-233476) are also known.
[0005]
As a method of heating at a relatively high temperature, a method of heating at 900 to 1200 ° C. in an H 2 atmosphere to improve drainage and corrosion resistance (Japanese Patent No. 2541011), a solid solution heat treatment while flowing H 2 gas to form a Cr oxide film A method of forming and improving water drainage and corrosion resistance (JP-A-4-350180) and a method of heating at 750 to 1200 ° C. in an atmosphere of 10 ppm or less of oxygen and 10 ppm or less of steam (JP-A-7-62520). Are known. Also, a method of forming an Al oxide film by heating 1 to 6% by weight of a high Al content stainless steel at 800 to 1100 ° C. for 1 to 2 minutes in an inert gas atmosphere or atmosphere containing a small amount of O 2 ( Japanese Patent Application Laid-Open No. Hei 7-60099) is also known.
[0006]
As an apparatus for forming such a passive film, Japanese Patent Application Laid-Open No. 2-43353 discloses that a gas is introduced from one end of a stainless steel pipe, exhausted from the other end, and desorbed from the inner surface of the stainless steel pipe. The stainless steel tube is heated and oxidized in a dry oxidizing atmosphere by exhausting impurities such as the water that has been removed from the oxidizing furnace, thereby reducing the water concentration in the oxidizing atmosphere to a target value or less. In addition, there has been disclosed a device capable of forming a good passivation film on a metal surface. Further, Japanese Patent Application Laid-Open No. 3-111552 discloses an improved apparatus for oxidizing a stainless steel pipe using an oxidation furnace, in which a hollow holder for introducing gas and a hollow holder for discharging gas are provided at both ends of the stainless steel pipe. After the steel pipe is inserted into the furnace, the furnace gas is purged for each batch after purging, and after baking, the water content from the outlet becomes 5 ppb or less, and then the dry oxidizing gas having a water concentration of 10 ppb or less such as O2. A stainless steel pipe oxidation treatment apparatus that supplies oxidized water to the inside of a steel pipe to start oxidation treatment is disclosed.
[0007]
[Problems to be solved by the invention]
The inside of a stainless steel pipe used in a semiconductor device manufacturing process needs to have excellent corrosion resistance in order to prevent the generation of corrosion products due to corrosive gas. In addition, it is required that particles do not come out in the stainless steel pipe and that the moisture dryness is good. With the high integration of semiconductor chips, the enlargement of silicon wafers, and the growing demand for epitaxial wafers, high corrosion resistance stainless steel pipes are required. Demands are growing.
[0008]
In order for the inner surface of the stainless steel pipe to have a film forming treatment atmosphere, it is necessary to flow a film forming process gas over the inner surface of the steel tube. For this reason, conventionally, a method has been proposed in which these steel pipes are loaded into a heating furnace and an oxidizing gas is allowed to flow in the furnace or only on the inner surface of the steel pipe for treatment. However, these steel pipes to be treated are usually manufactured as long pipes of about 4 m, and small-medium-diameter steel pipes are generally used. Particularly, steel pipes having a small inner diameter of 1/4 to 1/2 inch are used. There is a problem that the gas is difficult to flow inside and easily stays. Also, when the supply port for the film forming gas is connected to the end of each steel pipe, the supply port is inside the furnace, so the oxidizing gas flows out to the outside of the steel pipe inside the furnace and is contaminated compared to the inside. There is also a problem that gas in contact with the outer surface of the steel pipe intrudes into the inner surface of the steel pipe or an impure oxide film is formed on the outer surface of the steel pipe.
[0009]
For this reason, in Japanese Patent Application Laid-Open No. Hei 3-111552, a hollow holder for introducing gas is provided at both ends of a stainless steel pipe, and gas is supplied from one side of the pipe and sucked from the other side. It discloses a device in which oxidizing gas does not flow into the outer surface of the tube inserted into the tube, but it is a batch-type device for fixing and processing a stainless steel tube in a processing furnace, purging or baking the atmosphere in the furnace, A cooling treatment after the oxidation treatment is necessary, and the oxidation treatment is performed by heating at a relatively low temperature of 500 to 600 ° C. for a long time. there were. The present invention provides a method for forming a passivation film on the inner surface of a long stainless steel pipe, in which the passivation film is formed at a high temperature and the process of forcibly cooling is continuously performed using simple means, thereby significantly improving work efficiency. And formation of a high-performance uniform film.
[0010]
[Means for Solving the Problems]
The present invention has solved the above-mentioned problem by adopting a continuous processing method.In a method of forming a passivation film on the inner surface of a stainless steel pipe, the steel pipe is inserted into a heating furnace in a longitudinal direction and advanced in the furnace. While heating and heating, soaking, cooling and cooling, to form a film in the soaking part, at this time, a film forming process gas is supplied to the inner surface of the steel pipe from a flexible gas pipe attached to the rear end of the steel pipe, When the end of the steel pipe has advanced to a certain position on the insertion side of the furnace, the gas pipe is removed, and the rear end of the steel pipe and the tip of the next steel pipe to be inserted into the furnace are closed with the inside of the steel pipe. Connected by a joint member so as not to occur, a film forming process gas is supplied again from the gas pipe attached to the next steel pipe to the inside of the next steel pipe, and this series of operations is repeated to continuously connect a plurality of steel pipes. Steel pipes connected while connected to the furnace The method is characterized in that a passivation film is formed on the inner surface of a steel pipe that is continuously inserted into the furnace by allowing a film forming processing gas to flow through the surface and discharging the processing gas from the end of the steel pipe that has reached the outlet of the furnace. A method for forming a coating on the inner surface of a stainless steel pipe. For cooling, it is desirable to provide a water cooling tank outside the muffle pipe and forcibly cool the stainless steel pipe moving inside the muffle pipe.
[0011]
When a ferritic stainless steel pipe is used as the stainless steel pipe, for example, the film formation processing gas is H2 gas or a H2 + Ar mixed gas whose dew point is controlled at -50C to -63C, and the soaking temperature is 700 to 1100. An excellent film mainly composed of Cr oxide can be formed at a temperature of ° C. The composition of the film formation processing gas is, for example, a mixed gas containing an inert gas such as H2 gas or H2 + Ar containing 1 to 300 ppm by volume of steam and 10 to 99.9999% by volume of hydrogen.
Further, a stainless steel pipe containing 1 to 6% of Al + Si is used as the stainless steel pipe, and the film forming processing gas is a H2 gas or a H2 + Ar mixed gas controlled at a dew point of -55 ° C to -70 ° C. An excellent coating mainly composed of Al oxide and / or Si oxide can be formed at a temperature of 600 to 1200 ° C.
A muffle furnace may be used as a heating furnace, and the outer surface of the stainless steel tube may be bright-annealed by flowing an inert gas such as H2 gas into the muffle tube.
[0012]
The gas supply apparatus for forming a coating film used in the method of the present invention includes a gas component adjuster, a flexible gas pipe for gas supply connected to the gas component adjuster, and a tip connected to the flexible gas pipe. A gas supply device comprising a gas supply port detachably attached to the rear end of a stainless steel pipe is preferable. In order to connect the ends of stainless steel pipes, a member that can fit the rear end and the tip of the steel pipes into a hollow cylindrical joint and caulk the joint is optimal, but does not block the inside of the steel pipe Such a joint member may have an appropriate structure.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a method for forming a passive film on the inner surface of a stainless steel pipe according to the present invention will be described in detail with reference to the drawings. FIG. 1 is an overall conceptual diagram of an apparatus for implementing the method of the present invention. FIG. 2A is a sectional view taken along line XX of FIG. FIG. 2B is a sectional view taken along line YY of FIG. FIG. 3 is a cross-sectional view showing the structure of a gas supply port detachably attached to an end of a stainless steel pipe. FIG. 4 is a cross-sectional view showing an example of a joint suitable for connecting a stainless steel pipe. FIG. 5 shows a temperature pattern of heating, soaking, and cooling of a stainless steel tube in one embodiment of the method of the present invention.
[0014]
As a heating furnace used in the passivation film forming method of the present invention, a furnace of a type known as a muffle furnace 1 provided with a water-cooling zone is suitable. As shown in FIG. 1, a stainless steel pipe 2 as a material to be treated is horizontally conveyed to the entrance of a muffle pipe 4 of a muffle furnace 1 by a known conveyance means such as a conveyor roll 3 and advances in the muffle pipe 4. On the endless conveyor belt 5 to be moved forward in the muffle tube 4. According to the size of the muffle pipe 4 and the diameter of the steel pipe 2, a plurality of steel pipes 2 are appropriately arranged in parallel on a belt 5, conveyed, and inserted into the muffle furnace 1 in parallel.
[0015]
As shown in the cross section of FIG. 2A, the muffle furnace 1 is provided with electric heaters 6 above and below the muffle tube 4 and appropriately inserts a thermometer 7 into the muffle tube 4. Measures and controls the internal temperature. A water cooling zone C for forced cooling of the steel pipe 2 is provided adjacent to the heating zone H of the muffle furnace 1. The water cooling zone C is, for example, as shown in a sectional view of FIG. 2B, in which the entire muffle pipe 4 is arranged in a water cooling tank 8 and the steel pipe 2 is conveyed by a conveyor belt 5 while being indirectly connected to the water cooling zone C. Cool down. When the stainless steel tube goes out of the furnace while heated, the outer surface is oxidized by the atmosphere.Therefore, a water-cooling zone is provided after the heating zone, and the stainless steel tube is forcibly cooled to a temperature at which no oxidation reaction occurs on the outer surface and then discharged out of the furnace. . An inert gas such as H2 gas is flown into the muffle tube 4 as an atmosphere gas from a supply hole 9 provided in the vicinity of the water cooling zone C. The entrance and exit of the muffle tube 4 are sealed with a frame curtain.
[0016]
In the vicinity of the muffle furnace 1 on the side where the steel pipe 2 is inserted, a gas conditioner 10 for supplying a film forming process gas is arranged. The gas regulator 10 is connected to a gas supply source (not shown) for supplying a predetermined gas. Further, the gas regulator 10 is provided with a flexible gas supply tube 13 for supplying the adjusted film forming gas into the steel pipe 2 via required meters such as a flow meter 11 and a dew point meter 12. Connecting. As shown in FIG. 3, the gas supply port 14 at the distal end of the gas supply tube 13 has a rubber ring 17 interposed between the distal end of the insertion port and the cylindrical member 16, and hermetically utilizes the elasticity thereof. Installing. Using an attachment / detachment mechanism combining an oblong rotary plate 19 and an oblong plate 20 rotatably supported by a gas supply port 14 with bolts 18, the rotary plate 19 is rotated to move the oblong plate 20 in the axial direction of the steel pipe 2. To make it detachable. The structure of the supply port 14 and the attachment / detachment mechanism are not limited thereto, and any appropriate structure and mechanism can be used as long as it is detachable and airtight.
[0017]
The steps of the method for forming a passivation film of the present invention will be described below. A plurality of steel pipes serving as dummy materials are connected and advanced until the tip reaches the outlet of the muffle furnace. The first stainless steel pipe 2 on which a coating is to be formed is conveyed by a conveyor roll 3. As shown in FIG. 4, a joint 15 is connected to the tip of the steel pipe 2 in advance and caulked. Further, a gas supply port 14 is previously mounted on the rear end of the steel pipe 2, and the valve V2 is closed. Next, the gas supply port 14 attached to the preceding dummy material is removed with the valve V1 open, and the valve V1 is closed. The valve V2 of the gas supply port 14 attached to the steel pipe 2 is opened, and a joint 15 caulked at the tip of the steel pipe 2 is inserted into the rear end of the moving dummy material, and the joint part on the dummy material side is caulked and connected. Finish the work. At the same time that the joint 15 is inserted into the dummy material, the film forming gas flows from the gas supply port 14 into the steel pipe 2.
[0018]
The steel pipe 2 connected to the dummy material is transferred to a conveyor belt 5 and inserted into the muffle furnace 1, and advances in the muffle pipe 4 while gas flows through the steel pipe 2. As the steel pipe 2 advances, the gas supply port 14 advances near the entrance of the muffle furnace 1 while being attached to the rear end of the steel pipe 2, so that the gas supply tube 13 is flexible and the gas supply port 14 is To move. When the rear end of the first stainless steel pipe 2 advanced to a certain position near the entrance of the muffle furnace 1, the valve V2 of the gas supply port 14 was opened in the same procedure as the connection with the rear end of the dummy material. Remove the steel pipe 2 as it is, and tighten the valve V2. Then, the next stainless steel pipe 2 to which the joint 15 is crimped at the front end and the gas supply port 14 is mounted at the rear end is connected to the end of the preceding steel pipe 2. Due to the connection between the steel pipes, the film forming process gas flows out again to the inner surface of the steel pipe.
[0019]
By repeating this operation, a plurality of stainless steel pipes 2, 2, 2,... Connected by a joint 15 are connected in the muffle furnace 1 to move forward, and attached to the rear end of the last stainless steel pipe 2. The gas for forming a film is supplied from the gas supply port 14 into the inside of the steel pipe 2. When the joint 15 between the first steel pipe 2 and the next steel pipe 2 reaches the outside of the outlet of the muffle furnace 1, the joint 15 is removed. The film forming gas is discharged from the tip of the foremost steel pipe of the plurality of connected stainless steel pipes 2, 2, 2,..., And is removed from the tip of the next steel pipe when the joint 15 is removed. The steel pipe 2 having the passivation film formed on the inner surface is conveyed to the next step by a discharge side conveyor (not shown). The joint 15 may be a hollow cylindrical body made of a metal such as steel, which can be caulked to such an extent that the film forming gas does not leak from the contact portion between the end faces of the steel pipes 2 and 2 to the outer surface of the steel pipe. . FIG. 4 shows an example in which the joint is inserted inside the steel pipe, but may be inserted outside the steel pipe.
[0020]
The method of heating the stainless steel pipe 2 to a high temperature in a processing gas atmosphere containing a trace amount of water and performing steam treatment to form a passive film mainly composed of Cr oxide is an excellent method for forming a corrosion-resistant film. . In order to carry out this method, the gas conditioner 10 is a water adding device. The water adder itself may be a known one. H2 gas is supplied to the water adding device from a supply source (not shown). The content of H2 and the inert gas is adjusted by a flow controller, and the dew point of steam is measured by a steam adder. The appropriate flow rate of the processing gas depends on the inner diameter of the stainless steel pipe, the length of the soaking section of the heating furnace, the time required for the steel pipe to pass through the soaking section, and the concentration of water vapor and / or oxygen in the oxidizing gas. A value suitable for forming is determined.
[0021]
The present invention is particularly suitable for a method in which an inner surface of a ferritic stainless steel pipe is treated at a dew point of −50 to −63 ° C. and a temperature of 850 to 1000 ° C. to form an oxide film mainly composed of Cr 2 O 3. In this case, the composition of the film-forming treatment gas flowing on the inner surface of the steel pipe is, for example, H2 gas containing 1 to 300 ppm by volume of steam and 10 to 99.9999% by volume of hydrogen or a mixed gas with an inert gas such as H2 + Ar. is there.
[0022]
Further, a stainless steel pipe containing 1 to 6% of Al + Si is used as the stainless steel pipe, and the film forming processing gas is a H2 gas or a H2 + Ar mixed gas controlled at a dew point of -55 ° C to -70 ° C. An excellent coating mainly composed of Al oxide and / or Si oxide can be formed at a temperature of 600 to 1200 ° C. In this case, as the composition of the film forming treatment gas flowing on the inner surface of the steel pipe, a weak oxidizing gas composed of oxygen gas and / or steam gas is suitable. Bright annealing can be performed by flowing H2 gas into the muffle tube 4 and setting the outer surface side of the steel tube 2 to an H2 gas atmosphere.
The composition of a stainless steel tube containing 1 to 6% of Al + Si is as follows: Cr: 12 to 30, Ni: 0 to 35, Al + Si: 1 to 6%, Mo: 0 to 3, C ≦ 0.03, Mn ≦ 0.2 , P ≦ 0.03, S ≦ 0.01, N ≦ 0.05, O ≦ 0.01, and the balance of Fe.
[0023]
As shown in FIG. 6, the stainless steel pipe moving in the furnace is heated in a heating zone and is heated at a predetermined soaking temperature for a certain time. While continuously connecting a plurality of steel pipes and inserting them into a heating furnace, the coating gas is passed through the inner surfaces of the connected plurality of steel pipes, and the forming gas is discharged from the end of the steel pipe that has reached the outlet of the furnace. However, the oxidation reaction occurs only in this soaking part. When the stainless steel pipe is located in a portion other than the soaking section, no film-forming reaction occurs.
[0024]
【Example】
Example 1
A ferritic stainless steel pipe having the following composition was used as the stainless steel pipe. C ≦ 0.01, Si ≦ 0.1, Mn ≦ 0.05, S ≦ 0.002, Ni ≦ 0.05, Cr26 / 27, Mo0.8 / 1.2, Al ≦ 0.01, O ≦ 0.005, Fe balance. The size of the steel pipe was 4000 mm in length, 6.35 mm in outer diameter, and 4.35 mm in inner diameter. As a clean gas pipe for a semiconductor manufacturing apparatus, a stainless steel pipe whose inner face is polished to a mirror surface of 0.7 μm or less by electrolytic polishing or the like is usually used. In this embodiment, the inner face of the seamless stainless steel pipe is also roughened. Finished and polished to Rmax ≦ 0.7 μm was used.
[0025]
Four stainless steel tubes of the above size were arranged in parallel on a conveyor roll and supplied to a muffle furnace. A furnace having a distance between the entrance and the exit of the muffle furnace of about 20 m was used, the heating zone was about 6 m, and the cooling zone was about 10 m. Therefore, five steel pipes are connected in a row in the muffle furnace. As the joint for connecting the steel pipes, the one having the structure shown in FIG. 4 was used. As the film forming gas, H2 gas was used, the dew point was adjusted to -53 [deg.] C. by a water adding device, and the gas was supplied into the steel pipe at a flow rate of 10 liter / min. Also. H2 was supplied into the muffle tube at a flow rate of 7 m3 / min. The temperature of the stainless steel tube was raised to about 900 ° C. in about 5 minutes in a heating zone, and the transport speed was controlled and the temperature of the electric heater was controlled so that the temperature was maintained at that temperature for 10 minutes or more. After about 5 minutes from the soaking, the temperature was lowered to room temperature. By this passivation film forming process, the processing time required to form a film of one steel pipe having a length of 4 m was 20 minutes. A uniform gold oxide film mainly composed of Cr2O3 having a coating thickness of about 300 angstroms was formed on the inner surface of the steel pipe, and the outer surface was a bright finished surface.
[0026]
【The invention's effect】
The present invention heats a long stainless steel pipe in a furnace at a high temperature for a short time without specially changing the structure of a conventionally known heating furnace such as a muffle furnace. Since the continuous processing is enabled only by using the mouth means and the joint member of the steel pipe, the efficiency is high and the productivity is large. In addition, since the oxidizing gas does not leak to the outer surface of the steel tube and only the inner surface of the steel tube is used as a coating treatment atmosphere, a passivation film is formed only on the inner surface, and the outer surface may be a glossy surface which is annealed brightly. it can.
[Brief description of the drawings]
FIG. 1 is an overall conceptual diagram of an apparatus of the present invention.
2A is a cross-sectional view taken along line XX of FIG. 1, and FIG. 2B is a cross-sectional view taken along line YY of FIG.
FIG. 3 is a cross-sectional view showing a structure of a gas supply port detachably attached to an end of a stainless steel pipe.
FIG. 4 is a sectional view showing an example of a joint suitable for connecting a stainless steel pipe.
FIG. 5 is a diagram showing temperature patterns of heating, soaking, and cooling in one embodiment of the method of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Muffle furnace 2 Stainless steel pipe 4 Muffle pipe 10 Gas regulator 14 Gas supply port 15 Joint

Claims (6)

ステンレス鋼管内面に不動態被膜を形成する方法において、鋼管を長手方向に加熱炉に挿入して該炉内を前進させながら昇温加熱、均熱、降温冷却し、均熱部において被膜形成を行うようにし、その際、鋼管の後端に装着した可撓性ガス管から鋼管内面に被膜形成処理ガスを供給し、鋼管の端部が該炉の挿入側の一定の位置まで前進したときに該ガス管を外して、鋼管の後端部と該炉内に挿入する次の鋼管の先端部とを鋼管内部を塞ぐことがないようにジョイント部材で接続し、該次の鋼管に装着したガス管から該次の鋼管内部に被膜形成処理ガスを再度供給し、この一連の操作を繰り返すことにより複数の鋼管を連続的に繋げて加熱炉に挿入しながら繋がった複数の鋼管内面に被膜形成処理ガスを流通させ、炉の排出口に達した鋼管の先端から該処理ガスを排出するようにして、炉内に連続挿入される鋼管内面に不動態被膜を形成することを特徴とするステンレス鋼管内面の被膜形成方法。In the method of forming a passive film on the inner surface of a stainless steel pipe, a steel pipe is inserted into a heating furnace in a longitudinal direction, and heated and heated, soaked, cooled while being advanced in the furnace, and a film is formed in a soaking section. At this time, a film forming process gas is supplied to the inner surface of the steel pipe from a flexible gas pipe attached to the rear end of the steel pipe, and the gas is formed when the end of the steel pipe advances to a certain position on the insertion side of the furnace. Remove the gas pipe, connect the rear end of the steel pipe and the front end of the next steel pipe to be inserted into the furnace by a joint member so as not to block the inside of the steel pipe, and attach the gas pipe to the next steel pipe The film forming process gas is again supplied to the inside of the next steel tube, and the series of operations are repeated to continuously connect the plurality of steel tubes and insert the film into the heating furnace to form the film forming process gas on the inner surfaces of the plurality of connected steel tubes. And the end of the steel pipe that reaches the furnace outlet So as to discharge the Luo the process gas, the film formation method of the stainless steel pipe inner surface and forming a passivation film on the steel pipe inner surface is continuously inserted into the furnace. ステンレス鋼管がフェライト系ステンレス鋼管であり、被膜形成処理ガスが露点−50℃〜−63℃に制御されたH2 ガスまたはH2 +Ar混合ガスであり、均熱温度を700〜1100℃としてCr酸化物を主体とする不動態膜を形成することを特徴とする請求項1記載のステンレス鋼管内面の被膜形成方法。The stainless steel pipe is a ferritic stainless steel pipe, and the film forming processing gas is H2 gas or H2 + Ar mixed gas controlled at a dew point of -50 ° C to -63 ° C. 2. The method for forming a coating on the inner surface of a stainless steel pipe according to claim 1, wherein a passivation film serving as a main component is formed. ステンレス鋼管がAl+Siを1〜6%含有するステンレス鋼管であり、被膜形成処理ガスが露点−55℃〜−70℃に制御されたH2 ガスまたはH2 +Ar混合ガスであり、均熱温度を600〜1200℃としてAl酸化物および/またはSi酸化物を主体とする不動態膜を形成することを特徴とする請求項1記載のステンレス鋼管内面の被膜形成方法。The stainless steel pipe is a stainless steel pipe containing 1 to 6% of Al + Si, and the film forming processing gas is H2 gas or H2 + Ar mixed gas whose dew point is controlled at -55C to -70C, and the soaking temperature is 600 to 1200. 2. The method for forming a coating on the inner surface of a stainless steel pipe according to claim 1, wherein a passive film mainly composed of an Al oxide and / or a Si oxide is formed at a temperature of ° C. 加熱炉がマッフル炉であり、マッフル管内に不活性ガスを流してステンレス鋼管外面を光輝焼鈍仕上げすることを特徴とする請求項1記載のステンレス鋼管内面の被膜形成方法。2. The method for forming a coating on the inner surface of a stainless steel pipe according to claim 1, wherein the heating furnace is a muffle furnace, and an inert gas is passed through the muffle pipe to finish the outer surface of the stainless steel pipe with bright annealing. マッフル管の外側に水冷槽を設け、マッフル管内を移動中のステンレス鋼管を強制冷却することを特徴とする請求項1記載のステンレス鋼管内面の被膜形成方法。2. The method for forming a coating on the inner surface of a stainless steel pipe according to claim 1, wherein a water cooling tank is provided outside the muffle pipe, and the stainless steel pipe moving in the muffle pipe is forcibly cooled. 請求項1〜5記載の方法に使用する被膜形成処理ガス供給装置であって、ガス成分調整器、該ガス成分調整器に接続したガス供給用の可撓性ガス管、該可撓性ガス管の先端に接続されてなりステンレス鋼管の後端に着脱自在に装着されるガス供給口からなることを特徴とする被膜形成処理ガス供給装置。A gas supply apparatus for forming a coating film used in the method according to any one of claims 1 to 5, comprising a gas component regulator, a flexible gas pipe connected to the gas component regulator for supplying gas, and the flexible gas pipe. A gas supply port connected to the front end of the stainless steel pipe and detachably attached to the rear end of the stainless steel pipe.
JP08042498A 1998-03-12 1998-03-12 Method of forming a coating on the inner surface of stainless steel pipe Expired - Lifetime JP3566069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08042498A JP3566069B2 (en) 1998-03-12 1998-03-12 Method of forming a coating on the inner surface of stainless steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08042498A JP3566069B2 (en) 1998-03-12 1998-03-12 Method of forming a coating on the inner surface of stainless steel pipe

Publications (2)

Publication Number Publication Date
JPH11256308A JPH11256308A (en) 1999-09-21
JP3566069B2 true JP3566069B2 (en) 2004-09-15

Family

ID=13717911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08042498A Expired - Lifetime JP3566069B2 (en) 1998-03-12 1998-03-12 Method of forming a coating on the inner surface of stainless steel pipe

Country Status (1)

Country Link
JP (1) JP3566069B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3864585B2 (en) * 1998-11-04 2007-01-10 住友金属工業株式会社 Method of oxidizing the inner surface of stainless steel pipe
WO2002048416A1 (en) * 2000-12-14 2002-06-20 Yoshiyuki Shimizu High silicon stainless
JP3960069B2 (en) 2002-02-13 2007-08-15 住友金属工業株式会社 Heat treatment method for Ni-base alloy tube
US8316927B2 (en) 2006-06-09 2012-11-27 Denso Corporation Loop heat pipe waste heat recovery device with pressure controlled mode valve
JP5260012B2 (en) * 2007-09-28 2013-08-14 岩谷産業株式会社 Method for forming surface oxide film on stainless steel
JP5486244B2 (en) * 2009-09-01 2014-05-07 日野自動車株式会社 Ferritic stainless steel and method for improving its corrosion resistance
CN103866202B (en) * 2012-12-14 2016-08-17 钟庆辉 Modified stainless steel material is used to make engine piston ring compressed ring method

Also Published As

Publication number Publication date
JPH11256308A (en) 1999-09-21

Similar Documents

Publication Publication Date Title
CN100372076C (en) Treatment method and apparatus of substrate
JP3566069B2 (en) Method of forming a coating on the inner surface of stainless steel pipe
JP5295768B2 (en) Substrate processing apparatus, substrate processing method, and semiconductor device manufacturing method
JPH0243353A (en) Device and method for metal oxidation treatment
JP3433452B2 (en) Internal oxidation treatment method for ferritic stainless steel pipe
JP4086146B2 (en) Semiconductor device manufacturing method and substrate processing apparatus
JP5209921B2 (en) Heat treatment method and heat treatment equipment
EP1914325B1 (en) Continuous heat treatment method for metal pipes
US5224998A (en) Apparatus for oxidation treatment of metal
JP4358892B1 (en) Fluorination treatment method, fluorination treatment apparatus, and method of using fluorination treatment apparatus
US20090253269A1 (en) Semiconductor manufacturing apparatus and semiconductor device manufacturing method
JP4238812B2 (en) Oxidizer for workpiece
WO1991005071A1 (en) Oxidation treatment apparatus for metal pipes
JP3864585B2 (en) Method of oxidizing the inner surface of stainless steel pipe
JP3871211B2 (en) Endless metal belt manufacturing method and apparatus
JP2002228361A (en) Method for gas treatment of inner surface of metal pipe made to be moved inside furnace
JP3920544B2 (en) Method of filling liquefied hydrogen chloride into a high-pressure gas container
JP3729578B2 (en) Semiconductor manufacturing method
JP4175285B2 (en) Film formation method
JP2009299122A (en) Nitriding-quenching method, heater for nitriding-quenching and nitriding-quenching apparatus
JPH10280123A (en) Stainless steel member for ozone-containing ultrapure water and its production
JPH09157830A (en) Method for nitriding metallic material with gas and device therefor
JPH10212564A (en) Stainless steel having oxidized passive coating and its formation
JPH09316626A (en) Treatment for inner circumferential face of metallic tube
KR20030031183A (en) Apparatus and method for reducing contamination on thermally processed semiconductor substrates

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040609

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term