JP3562941B2 - Composite surface treatment method for hot or warm working mold - Google Patents

Composite surface treatment method for hot or warm working mold Download PDF

Info

Publication number
JP3562941B2
JP3562941B2 JP25852997A JP25852997A JP3562941B2 JP 3562941 B2 JP3562941 B2 JP 3562941B2 JP 25852997 A JP25852997 A JP 25852997A JP 25852997 A JP25852997 A JP 25852997A JP 3562941 B2 JP3562941 B2 JP 3562941B2
Authority
JP
Japan
Prior art keywords
mold
hot
treatment method
cured film
surface treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25852997A
Other languages
Japanese (ja)
Other versions
JPH1192909A (en
Inventor
栄治 田村
雅彦 竹内
昌貴 太田
浩之 磯部
稔 篠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Yuken Industry Co Ltd
Original Assignee
Toyota Motor Corp
Yuken Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Yuken Industry Co Ltd filed Critical Toyota Motor Corp
Priority to JP25852997A priority Critical patent/JP3562941B2/en
Publication of JPH1192909A publication Critical patent/JPH1192909A/en
Application granted granted Critical
Publication of JP3562941B2 publication Critical patent/JP3562941B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、熱間又は温間鍛造等に用い得る熱間又は温間加工用金型の複合表面処理方法に関する。
【0002】
【従来の技術】
従来、特公平3−17891号公報に冷間加工用金型が開示されている。この冷間加工用金型は、冷間工具鋼からなる金型基材を用意し、この金型基材の表面に金型基材の焼きもどし温度よりも低い温度で窒化層を形成した後、窒化層の表面に物理蒸着法により窒化チタン(TiN)等からなる硬化層を形成することにより得られる。
【0003】
こうして得られた金型では、冷間加工において、優れた強度、圧縮変形抵抗、耐摩耗性、耐かじり性及び耐焼付性を発揮しつつ、後加工を削減できるという効果を奏することができる。
【0004】
【発明が解決しようとする課題】
しかし、上記金型は、被加工物の再結晶温度以下の温度で用いられる冷間加工用のものであり、それ以上の温度の熱間又は温間では用いることができない。仮にこの金型をそのまま熱間又は温間加工に用いるとすれば、金型基材が冷間加工用の例えばJIS−SKH9からなるため、金型基材が熱によって軟化して強度低下を生じるか又はヒートクラックにより割れてしまう。また、最表面の硬化層自身も熱によって酸化しやすいため、脆くなったり、やはり剥離したりしやすい。他方、金型基材を熱間又は温間加工用とすべく、仮に例えばJIS−SKD61からなる金型基材を採用し、他は上記公報記載の方法で金型を得るとすると、その金型でも、最表面の硬化層は依然として酸化しやすいものであるため、やはり脆くなったり、剥離したりしやすい。このため、これらの場合には、頻繁に金型を交換する必要を生じ、型費の増加と稼働率の低下とから製品コストの高騰化を生じるとともに、製品品質劣化等のおそれもある。
【0005】
本発明は、上記従来の実状に鑑みてなされたものであって、熱間又は温間で用いる場合において、金型の延命化を実現し、型費の低減と稼働率の向上とから製品コストの低廉化を図り得るとともに、製品品質を向上可能な金型を製造せんとすることを解決課題としている。
【0006】
【課題を解決するための手段】
本発明の熱間又は温間加工用金型の複合表面処理方法は、重量比でC:0.5〜0.6%、Cr:3.0〜5.0%、Mo:2.0〜4.0%、W:1.0〜3.0%、V:0.5〜2.0%、Co:0.5〜1.5%を含み残部がFeおよび不可避的不純物からなる金型基材の表面を面粗度調整し、一次素材を得る第一工程と、
該一次素材の表面に真空ガス法により窒化層を形成し、二次素材を得る第二工程と、
該二次素材の表面を洗浄し、三次素材を得る第三工程と、
該三次素材の表面に物理蒸着(PVD;Physcal Vapor Deposition)法により窒素を含有する硬化膜を形成し、熱間および温間鍛造用金型を得ることを特徴とする。
【0007】
本発明者らの試験結果によれば、上記各工程を行うことにより、窒化層が金型基材と強力に密着するとともに硬化層が窒化層と強力に密着する。このため、最表面の硬化層が剥離しにくい。かかる理由は、(1)金型基材が重量比でC:0.5〜0.6%、Cr:3.0〜5.0%、Mo:2.0〜4.0%、W:1.0〜3.0%、V:0.5〜2.0%、Co:0.5〜1.5%を含み残部がFeおよび不可避的不純物からなる工具鋼であることから、金型基材が熱によって軟化しにくくて強度低下を生じにくいこと、(2)金型基材の表面を適度な面粗度に調整することにより、硬化膜の密着性及び金型使用時の潤滑剤の保持力を確保すること、(3)一次素材の表面に形成された窒化層と、三次素材の表面に形成された硬化膜とが共に窒素を含有し、窒化層と硬化層とが一体になりやすいこと、(4)窒化層の表面を洗浄するため、表面が活性化されること、(5)PVD法により硬化膜を形成するため、緻密に硬化膜を形成できるとともに、硬化膜に圧縮応力を付与して金型を保護すること等にあると考えられる。
【0008】
したがって、得られた金型を熱間又は温間で用いれば、金型の延命化を実現し、型費の低減と稼働率の向上とから製品コストの低廉化を図り得ると共に、製品品質を向上させることができる。
金型基材を構成する熱間又は温間工具鋼としては、重量比でC:0.5〜0.6%、Cr:3.0〜5.0%、Mo:2.0〜4.0%、W:1.0〜3.0%、V:0.5〜2.0%、Co:0.5〜1.5%を含み残部がFeおよび不可避的不純物からなる工具鋼を用いる。
【0009】
窒化層を形成する方法には、プラズマ法、塩浴法、ガス法、真空ガス法などがあるが、真空ガス法を用いる。要求される物性としては、層の深さ、硬度等がある。そして、この方法で窒化層を形成すれば、窒素イオンが一次素材に拡散し、窒化層が一次素材との間で強力に密着する。
【0010】
硬化膜としては、窒化チタン(TiN)、炭窒化チタン(TiCN)、炭化チタン(TiC)、窒化チタンアルミ(TiAlN)、窒化クロム(CrN)を採用することができる。特に、金型基材がクロム(Cr)を含有し、硬化膜が窒化クロムからなることが好ましい。こうであれば、窒化層が一次素材との間に窒化クロムを形成し、さらに窒化層が硬化膜の窒化クロムと一体になりやすいと考えられる。つまり、この場合には、金型基材、窒化層及び硬化層で成分が傾斜することから、硬化層が窒化層を介して強力に金型基材と密着すると考えられる。また、窒化クロムからなる硬化層は熱によって酸化しにくいため、酸化による脆さ及び剥離しやすさを防止することができる。窒化アルミチタンからなる硬化膜も熱によって酸化しにくいため、酸化による脆さ及び剥離しやすさを防止することができる。その他の物性として、窒化クロムは、すべり性が良好であるとともに、内部応力が低く、優れた密着性が得られる。さらに、窒化クロムは、厚膜化が可能であり、断熱効果も期待できる。また、窒化クロムは、化学的安定性が高く、高温の無機物にさらされても、密着性が安定している。窒化チタンアルミは、耐熱性に優れ、膜硬度も高い。したがって、窒化クロム及び窒化チタンアルミが硬化膜として望ましい。
【0011】
金型基材はロックウェル硬さ(HRC)が50以上であり、面粗度調整は表面あらさがR(十点平均あらさ)=6.3以下まで行い、窒化層の厚みは20μm以上であることが好ましい。発明者らの試験結果によれば、かかる範囲において、本発明の効果が大きい。すなわち、金型基材がHRC=50以上であれば、金型基材が強度低下を生じにくいため、硬化層の密着力が大きく向上する。また、表面あらさがR=6.3以下まで面粗度調整を行えば、硬化層の密着力が大きく向上する。なお、窒化層の厚みが20μm以上であれば熱間加工時の硬度低下を抑制できる。
【0012】
洗浄を行う場合、塩酸、硫酸、硝酸、フッ酸等の活性化液を用いた電解法やイオンボンバード法は窒化層の表面を活性化し、密着性を上げるために不可欠である。
PVD法としては、真空蒸着法、イオンプレーティング法、スパッタリング法等を採用することができる。
【0013】
【発明の実施の形態】
以下、本発明を具体化した実施例を試験により説明する。
【0014】
【実施例1】
(第一工程)
まず、熱間工具鋼として、HRC=58であり、表1に重量%で成分を示すYXR33相当のインゴッドを用意する。
【0015】
【表1】

Figure 0003562941
このインゴッドを所定形状に切削加工して金型素材とする。
【0016】
次いで、金型基材の表面をダイヤモンドペースト(#3,000)にて面粗度調整し、表面あらさをR=6.3以下とした一次素材を得る。
(第二工程)
一次素材の表面に真空ガス法により厚み20μmの窒化層を形成し、二次素材を得る。真空ガス法の条件は以下の通りである。
【0017】
ガス圧;0.5Torr
使用ガス;N+NH+O+N(活性窒素)
温度、時間;530°C×5時間
(第三工程)
二次素材の表面を通常のアルカリ脱脂後、35%塩酸を300ml/lに調整した活性化液に室温で30秒間浸漬し、三次素材を得る。
(第四工程)
三次素材の表面にマルチアーク法によりCrN(原子比1:1)からなる硬化膜を5μm形成する。マルチアーク法の条件は以下の通りである。
【0018】
ガス圧;10〜40mTorr
アーク電流;100〜200A
基板電圧;20〜300V
こうして、図1に示すように、金型基材1と、この金型基材1の表面に形成された窒化層2と、窒化層2の表面に形成された硬化膜3とからなる熱間鍛造用金型を得る。
「試験1」
硬化膜として、実施例1のCrNの他、TiN(原子比1:1)、TiCN(原子比1:1:1)、TiC(原子比1:1)、TiAlN(原子比1:1:1)を用い、比較試験を行った。評価は、白金板にこれらを実施例1と同様に5μm形成し、酸化雰囲気の電気炉において1時間加熱した後の重量増加により行った。結果を図2に示す。
【0019】
図2より、CrN及びTiAlNは熱によって酸化しにくいため、酸化による脆さ及び剥離しやすさを防止できることがわかる。発明者らの試験結果によれば、CrNでは表面に緻密で安定なクロム酸化膜が形成され、それ以上内部に酸化が進行しにくいからであると考えられる。これは金型の耐熱性を高めることも意味する。
「試験2」
上記各硬化膜について硬度を比較した。評価は、白金板にこれらを実施例1と同様に10μm形成し、マイクロビッカース硬度計((株)明石製作所製)により硬度を測定した。結果を図3に示す。
【0020】
図3より、CrNは、Hv1500程度であって超硬合金程度の硬度を示してはいるが、比較的軟らかいため、衝撃に対して優れた靱性を発揮し、被加工物に対するダメージが小さいことがわかる。
「試験3」
上記各硬化膜のうち、CrNとTiNとについて、ヤング率を測定した。CrNのヤング率は25000kgf/mmであるのに対し、TiNのヤング率は43000kgf/mmであった。
【0021】
このため、CrNは形成時に発生する内部応力が小さいため、自己破壊的な力が作用せず、高い密着力を発揮できることがわかる。また、このため、CrNは高膜厚化が可能であり、これによって金型の断熱による保護を実現できる。
「試験4」
上記各硬化膜のうち、CrNとTiNとTiCNとについて、摩擦係数を測定した。CrNの摩擦係数は0.27であるのに対し、TiNの摩擦係数は0.45であり、TiCNの摩擦係数は0.37であった。
【0022】
このため、CrNは比較的滑り易い硬化膜となり、被加工物に対するダメージを小さくできる。
【0023】
【実施例2】
RC=50のYXR33相当からなる金型基材を採用し、他は上記実施例1と同様の方法で金型を得る。
【0024】
【実施例3】
RC=55のJIS−SKD61からなる金型基材を採用し、他は上記実施例1と同様の方法で金型を得る。
「試験5」
実施例1〜3の金型について、金型基材の硬度と硬化膜の密着力との関係を求めた。密着力は、先端径0.2mmのダイヤモンド圧子で各金型の表面を連続的に荷重を変化させながら引っ掻き、生じる溝に硬化膜の剥離がどの荷重で生じるかにより測定した。結果を図4に示す。
【0025】
図4より、金型基材がHRC=50以上であれば硬化膜は充分な密着力が得られることがわかる。
「試験6」
金型基材の表面あらさの程度を異ならせ、他の条件は実施例1と同様として、表面あらさと硬化膜の密着力との関係を求めた。密着力は試験5と同様に測定した。ここで、R=100はミーリング法、R=25はワイヤーカット放電法、R=6.3はグラインダー法、R=1.35は研磨材(#240)、R=0.8は研磨材(#400)、R=0.4は研磨材(#600)、R=0.2は研磨材(#1,200)、R=0.1は研磨材(#3,000)により、面粗度調整したものである。結果を図5に示す。図中、エッジにおける密着力はハッチングまでの高さで示し、溝における密着力は白い部分を加算した高さで示す。
【0026】
図5より、表面あらさがR=6.3以下まで面粗度調整を行えば、硬化層の密着力が大きく向上することがわかる。
「試験7」
窒化層の厚みを異ならせ、他の条件は実施例1と同様として、窒化層の厚みと硬化膜の密着力との関係を求めた。密着力は試験5と同様に測定した。結果を図6に示す。
【0027】
図6より、窒化層の厚みが20μm以上であれば硬化層の密着力にほとんど差異を生じないことがわかる。
以上より、本発明で得られた金型を熱間又は温間で用いれば、金型の延命化を実現し、型費の低減と稼働率の向上とから製品コストの低廉化を図り得るとともに、製品品質を向上させることができることがわかる。
【図面の簡単な説明】
【図1】実施例1の金型の断面図である。
【図2】試験1に係り、硬化膜と酸化増加量との関係を示すグラフである。
【図3】試験2に係り、硬化膜と硬度との関係を示すグラフである。
【図4】試験5に係り、実施例1〜3の金型における硬化膜の密着力を示すグラフである。
【図5】試験6に係り、表面あらさと金型における硬化膜の密着力との関係を示すグラフである。
【図6】試験7に係り、窒化層の厚みと金型における硬化膜の密着力との関係を示すグラフである。
【符号の説明】
1…金型基材
2…窒化層
3…硬化膜[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a composite surface treatment method for a hot or warm working mold that can be used for hot or warm forging or the like.
[0002]
[Prior art]
Conventionally, a mold for cold working has been disclosed in Japanese Patent Publication No. 3-17891. This mold for cold working prepares a mold base made of cold tool steel, and forms a nitrided layer on the surface of the mold base at a temperature lower than the tempering temperature of the mold base. And a hardened layer made of titanium nitride (TiN) or the like is formed on the surface of the nitrided layer by physical vapor deposition.
[0003]
The mold thus obtained has an effect of reducing post-processing while exhibiting excellent strength, compression deformation resistance, abrasion resistance, galling resistance, and seizure resistance in cold working.
[0004]
[Problems to be solved by the invention]
However, the above-mentioned mold is for cold working used at a temperature lower than the recrystallization temperature of the workpiece, and cannot be used at a higher temperature or at a higher temperature. If this mold is used for hot or warm working as it is, since the mold base is made of, for example, JIS-SKH9 for cold working, the mold base is softened by heat to cause a decrease in strength. Or cracked by heat cracks. Further, the hardened layer itself on the outermost surface is also easily oxidized by heat, so that the hardened layer is apt to be brittle or peel off. On the other hand, if a mold base made of, for example, JIS-SKD61 is used to make the mold base for hot or warm working, and the other mold is obtained by the method described in the above publication, the mold Even in the mold, the hardened layer on the outermost surface is still easily oxidized, so that it is also apt to be brittle or peeled off. For this reason, in these cases, it is necessary to frequently replace the mold, which leads to an increase in the cost of the product due to an increase in the cost of the mold and a decrease in the operation rate, and also there is a possibility that the quality of the product is deteriorated.
[0005]
The present invention has been made in view of the above-mentioned conventional situation, and when used in a hot or warm environment, realizes a prolonged life of a mold, and reduces the cost of a mold and improves the operation rate, thereby reducing product cost. It is an object of the present invention to provide a mold that can be manufactured at a low cost and that can improve product quality.
[0006]
[Means for Solving the Problems]
The composite surface treatment method of the mold for hot or warm working of the present invention is as follows: C: 0.5-0.6%, Cr: 3.0-5.0%, Mo: 2.0- by weight ratio. A mold containing 4.0%, W: 1.0 to 3.0%, V: 0.5 to 2.0%, Co: 0.5 to 1.5%, the balance being Fe and unavoidable impurities. The first step of adjusting the surface roughness of the base material to obtain a primary material,
A second step of forming a nitride layer on the surface of the primary material by a vacuum gas method to obtain a secondary material,
A third step of cleaning the surface of the secondary material and obtaining a tertiary material,
A cured film containing nitrogen is formed on the surface of the tertiary material by a physical vapor deposition (PVD) method to obtain a hot and warm forging die.
[0007]
According to the test results of the present inventors, by performing each of the above steps, the nitrided layer is strongly adhered to the mold base material, and the cured layer is strongly adhered to the nitrided layer. For this reason, the hardened layer on the outermost surface is difficult to peel off. The reasons for this are as follows: (1) The mold base is C: 0.5 to 0.6%, Cr: 3.0 to 5.0%, Mo: 2.0 to 4.0%, W: Since it is a tool steel containing 1.0 to 3.0%, V: 0.5 to 2.0%, and Co: 0.5 to 1.5%, the balance being Fe and unavoidable impurities , a mold is used. (2) By adjusting the surface of the mold base material to an appropriate surface roughness, the adhesion of the cured film and the lubricant at the time of use of the mold can be prevented. (3) Both the nitrided layer formed on the surface of the primary material and the cured film formed on the surface of the tertiary material contain nitrogen, and the nitrided layer and the cured layer are integrally formed. (4) the surface is activated to clean the surface of the nitride layer; and (5) the cured film is densely formed to form the cured film by the PVD method. Together can be deposited, it is considered to be such to protect the mold by applying a compressive stress in the cured film.
[0008]
Therefore, if the obtained mold is used hot or warm, the life of the mold can be prolonged, and the cost of the product can be reduced by reducing the mold cost and improving the operation rate. Can be improved.
As the hot or warm tool steel constituting the mold base material , C: 0.5 to 0.6%, Cr: 3.0 to 5.0%, Mo: 2.0 to 4.0 by weight ratio. A tool steel containing 0%, W: 1.0 to 3.0%, V: 0.5 to 2.0%, Co: 0.5 to 1.5% and the balance being Fe and unavoidable impurities is used. .
[0009]
As a method for forming the nitride layer, there are a plasma method, a salt bath method, a gas method, a vacuum gas method, and the like, and a vacuum gas method is used . The required physical properties include the depth and hardness of the layer. If a nitride layer is formed by this method, nitrogen ions diffuse into the primary material, and the nitride layer adheres strongly to the primary material.
[0010]
As the cured film, titanium nitride (TiN), titanium carbonitride (TiCN), titanium carbide (TiC), titanium aluminum nitride (TiAlN), and chromium nitride (CrN) can be used. In particular, it is preferable that the mold base contains chromium (Cr) and the cured film is made of chromium nitride. In such a case, it is considered that the nitride layer forms chromium nitride between the primary material and the nitride layer, and the nitride layer is likely to be integrated with the chromium nitride of the cured film. That is, in this case, since the components are inclined in the mold substrate, the nitrided layer, and the cured layer, it is considered that the cured layer strongly adheres to the mold substrate via the nitrided layer. Further, since the hardened layer made of chromium nitride is hardly oxidized by heat, it is possible to prevent brittleness due to oxidation and easiness of peeling. Since the cured film made of aluminum titanium nitride is not easily oxidized by heat, brittleness due to oxidation and easiness of peeling can be prevented. As other physical properties, chromium nitride has good slip properties, low internal stress, and excellent adhesion. Further, chromium nitride can be made thicker and can be expected to have a heat insulating effect. Chromium nitride has high chemical stability and stable adhesion even when exposed to a high-temperature inorganic substance. Titanium aluminum nitride has excellent heat resistance and high film hardness. Therefore, chromium nitride and titanium aluminum nitride are desirable as the cured film.
[0011]
The mold base is a Rockwell hardness (H RC) is 50 or more, the surface roughness adjustment surface roughness R Z (ten-point average roughness) = 6.3 continued until less, the thickness of the nitride layer is more than 20μm It is preferable that According to the test results of the inventors, the effect of the present invention is large within such a range. That is, if the mold base material is HRC = 50 or more, the strength of the mold base material hardly decreases, so that the adhesion of the cured layer is greatly improved. The surface roughness by performing a surface roughness adjusted to R Z = 6.3 or less, adhesion of the cured layer is significantly improved. If the thickness of the nitrided layer is 20 μm or more, a decrease in hardness during hot working can be suppressed.
[0012]
When cleaning is performed, an electrolytic method using an activating liquid such as hydrochloric acid, sulfuric acid, nitric acid, or hydrofluoric acid or an ion bombardment method is indispensable for activating the surface of the nitrided layer and increasing the adhesion.
As the PVD method, a vacuum evaporation method, an ion plating method, a sputtering method, or the like can be employed.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, examples embodying the present invention will be described by tests.
[0014]
Embodiment 1
(First step)
First, as a hot work tool steel, an ingot equivalent to YXR33 having H RC = 58 and having components shown in Table 1 by weight% is prepared.
[0015]
[Table 1]
Figure 0003562941
The ingot is cut into a predetermined shape to form a mold material.
[0016]
Next, the surface of the mold base material is adjusted with a diamond paste (# 3,000) to obtain a primary material having a surface roughness of R Z = 6.3 or less.
(Second step)
A nitride layer having a thickness of 20 μm is formed on the surface of the primary material by a vacuum gas method to obtain a secondary material. The conditions of the vacuum gas method are as follows.
[0017]
Gas pressure: 0.5 Torr
Gas used: N 2 + NH 3 + O 2 + N (active nitrogen)
Temperature, time; 530 ° C × 5 hours (third step)
After the surface of the secondary material is degreased with normal alkali, it is immersed in an activating solution adjusted to 300 ml / l of 35% hydrochloric acid at room temperature for 30 seconds to obtain a tertiary material.
(Fourth step)
A 5 μm hardened film made of CrN (atomic ratio 1: 1) is formed on the surface of the tertiary material by a multi-arc method. The conditions of the multi-arc method are as follows.
[0018]
Gas pressure: 10 to 40 mTorr
Arc current; 100 to 200A
Substrate voltage: 20-300V
Thus, as shown in FIG. 1, the hot working of the mold base 1, the nitrided layer 2 formed on the surface of the mold base 1, and the cured film 3 formed on the surface of the nitrided layer 2 Obtain a die for forging.
"Test 1"
As the cured film, in addition to CrN of Example 1, TiN (atomic ratio 1: 1), TiCN (atomic ratio 1: 1: 1), TiC (atomic ratio 1: 1), TiAlN (atomic ratio 1: 1: 1) ) Was used to conduct a comparative test. The evaluation was carried out by forming them on a platinum plate at 5 μm in the same manner as in Example 1 and increasing the weight after heating for 1 hour in an electric furnace in an oxidizing atmosphere. FIG. 2 shows the results.
[0019]
FIG. 2 shows that CrN and TiAlN are hard to be oxidized by heat, so that brittleness due to oxidation and easiness of peeling can be prevented. According to the test results of the inventors, it is considered that a dense and stable chromium oxide film is formed on the surface of CrN, and oxidation does not easily progress further inside. This also means increasing the heat resistance of the mold.
"Test 2"
The hardness of each cured film was compared. For the evaluation, these were formed on a platinum plate at 10 μm in the same manner as in Example 1, and the hardness was measured with a Micro Vickers hardness meter (manufactured by Akashi Seisakusho Co., Ltd.). The results are shown in FIG.
[0020]
According to FIG. 3, CrN has an Hv of about 1500 and shows a hardness of about a cemented carbide. Understand.
"Test 3"
Young's modulus of each of the cured films was measured for CrN and TiN. The Young's modulus of CrN was 25000 kgf / mm 2 , whereas the Young's modulus of TiN was 43000 kgf / mm 2 .
[0021]
For this reason, it can be seen that since CrN has a small internal stress generated at the time of formation, a self-destructive force does not act and a high adhesion can be exhibited. For this reason, CrN can be made to have a large film thickness, whereby protection by heat insulation of the mold can be realized.
"Test 4"
Among the above cured films, the friction coefficient was measured for CrN, TiN, and TiCN. The friction coefficient of CrN was 0.27, while the friction coefficient of TiN was 0.45 and the friction coefficient of TiCN was 0.37.
[0022]
For this reason, CrN becomes a relatively slippery hardened film, and damage to the workpiece can be reduced.
[0023]
Embodiment 2
A mold is obtained in the same manner as in Example 1 except that a mold substrate made of YXR33 equivalent with H RC = 50 is adopted.
[0024]
Embodiment 3
Employing a mold substrate made of JIS-SKD61 of H RC = 55, the other to obtain a die in the same manner as in Example 1.
"Test 5"
With respect to the molds of Examples 1 to 3, the relationship between the hardness of the mold base and the adhesion of the cured film was determined. The adhesion force was measured by scratching the surface of each mold with a diamond indenter having a tip diameter of 0.2 mm while continuously changing the load, and the load at which peeling of the cured film occurred in the resulting groove. FIG. 4 shows the results.
[0025]
From FIG. 4, it can be seen that when the mold base material is HRC = 50 or more, the cured film can obtain a sufficient adhesion.
"Test 6"
The relationship between the surface roughness and the adhesion of the cured film was determined by changing the degree of surface roughness of the mold substrate and setting other conditions as in Example 1. The adhesion was measured in the same manner as in Test 5. Here, R Z = 100 is milling method, R Z = 25 is a wire cut electric discharge method, R Z = 6.3 is grinders method, R Z = 1.35 abrasive (# 240), R Z = 0. 8 is an abrasive (# 400), R Z = 0.4 is an abrasive (# 600), R Z = 0.2 is an abrasive (# 1,200), and R Z = 0.1 is an abrasive (# 3,000) to adjust the surface roughness. FIG. 5 shows the results. In the drawing, the adhesive force at the edge is indicated by the height up to hatching, and the adhesive force at the groove is indicated by the height obtained by adding a white portion.
[0026]
From FIG. 5, it can be seen that when the surface roughness is adjusted so that the surface roughness is R Z = 6.3 or less, the adhesion of the cured layer is greatly improved.
"Test 7"
The relationship between the thickness of the nitrided layer and the adhesion of the cured film was determined by changing the thickness of the nitrided layer and setting the other conditions as in Example 1. The adhesion was measured in the same manner as in Test 5. FIG. 6 shows the results.
[0027]
FIG. 6 shows that if the thickness of the nitrided layer is 20 μm or more, there is almost no difference in the adhesion between the cured layers.
As described above, if the mold obtained by the present invention is used hot or warm, the life of the mold can be prolonged, and the cost of the product can be reduced due to the reduction of the mold cost and the improvement of the operation rate. It can be seen that the product quality can be improved.
[Brief description of the drawings]
FIG. 1 is a sectional view of a mold according to a first embodiment.
FIG. 2 is a graph showing a relationship between a cured film and an increase in oxidation according to Test 1.
FIG. 3 is a graph showing a relationship between a cured film and hardness according to Test 2.
FIG. 4 is a graph showing the adhesion of a cured film in the molds of Examples 1 to 3 according to Test 5.
FIG. 5 is a graph showing a relationship between surface roughness and adhesion of a cured film in a mold according to Test 6.
FIG. 6 is a graph showing the relationship between the thickness of a nitride layer and the adhesion of a cured film in a mold according to Test 7.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Die base material 2 ... Nitride layer 3 ... Cured film

Claims (4)

重量比でC:0.5〜0.6%、Cr:3.0〜5.0%、Mo:2.0〜4.0%、W:1.0〜3.0%、V:0.5〜2.0%、Co:0.5〜1.5%を含み残部がFeおよび不可避的不純物からなる金型基材の表面を面粗度調整し、一次素材を得る第一工程と、
該一次素材の表面に真空ガス法により窒化層を形成し、二次素材を得る第二工程と、
該二次素材の表面を洗浄し、三次素材を得る第三工程と、
該三次素材の表面に物理蒸着法により窒素を含有する硬化膜を形成し、熱間および温間鍛造用金型を得ることを特徴とする熱間又は温間加工用金型の複合表面処理方法。
C: 0.5-0.6%, Cr: 3.0-5.0%, Mo: 2.0-4.0%, W: 1.0-3.0%, V: 0 by weight ratio. A first step of adjusting the surface roughness of the surface of the mold base material containing 0.5 to 1.5%, Co: 0.5 to 1.5% and the balance being Fe and inevitable impurities to obtain a primary material; ,
A second step of forming a nitride layer on the surface of the primary material by a vacuum gas method to obtain a secondary material,
A third step of cleaning the surface of the secondary material and obtaining a tertiary material,
Forming a cured film containing nitrogen on the surface of the tertiary material by a physical vapor deposition method to obtain a hot and warm forging die; and a composite surface treatment method for a hot or warm working die. .
前記硬化膜は窒化クロム又は窒化チタンアルミからなることを特徴とする請求項1記載の熱間又は温間加工用金型の複合表面処理方法。The composite surface treatment method for a hot or warm working mold according to claim 1, wherein the cured film is made of chromium nitride or titanium aluminum nitride. 金型基材はロックウェル硬さが50以上であり、面粗度調整は表面あらさがRz=6.3以下まで行い、窒化層の厚みは20μm以上であることを特徴とする請求項1又は2記載の熱間又は温間加工用金型の複合表面処理方法。The mold base material has a Rockwell hardness of 50 or more, the surface roughness is adjusted to a surface roughness of Rz = 6.3 or less, and the thickness of the nitrided layer is 20 μm or more. 3. The composite surface treatment method for a mold for hot or warm working according to 2. 洗浄は電解法により行うことを特徴とする請求項1、2又は3記載の熱間又は温間加工用金型の複合表面処理方法。The composite surface treatment method for a hot or warm working mold according to claim 1, wherein the cleaning is performed by an electrolytic method.
JP25852997A 1997-09-24 1997-09-24 Composite surface treatment method for hot or warm working mold Expired - Lifetime JP3562941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25852997A JP3562941B2 (en) 1997-09-24 1997-09-24 Composite surface treatment method for hot or warm working mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25852997A JP3562941B2 (en) 1997-09-24 1997-09-24 Composite surface treatment method for hot or warm working mold

Publications (2)

Publication Number Publication Date
JPH1192909A JPH1192909A (en) 1999-04-06
JP3562941B2 true JP3562941B2 (en) 2004-09-08

Family

ID=17321489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25852997A Expired - Lifetime JP3562941B2 (en) 1997-09-24 1997-09-24 Composite surface treatment method for hot or warm working mold

Country Status (1)

Country Link
JP (1) JP3562941B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002307128A (en) * 2001-04-10 2002-10-22 Hitachi Metals Ltd Coating tool for warm and hot working having excellent seizure resistance and wear resistance
ATE509139T1 (en) 2001-03-30 2011-05-15 Hitachi Metals Ltd COATED CUTTING TOOL FOR WARM/HOT FORMING
CN100360272C (en) * 2004-08-16 2008-01-09 吉林大学 Mould having bionic non smooth surface
EP1918421B1 (en) 2006-09-27 2017-03-15 Hitachi Metals, Ltd. Hard-material-coated member excellent in durability
JP5345436B2 (en) * 2009-03-26 2013-11-20 Dowaサーモテック株式会社 Method for producing hard coating member
WO2014192730A1 (en) * 2013-05-30 2014-12-04 日立金属株式会社 Method for manufacturing mold for cold working use
CN115928000A (en) * 2022-12-09 2023-04-07 无锡福伊特电子科技有限公司 Corrosion-resistant and wear-resistant metal sheet metal workpiece material for lithium battery slurry vacuum mixer

Also Published As

Publication number Publication date
JPH1192909A (en) 1999-04-06

Similar Documents

Publication Publication Date Title
KR101256231B1 (en) CONDUCTIVE MATERIAL COMPRISING AN Me-DLC HARD MATERIAL COATING
JP4918656B2 (en) Amorphous hard carbon film
EP1947209B1 (en) Hard coating film for forming tool and forming tool
JP6477867B2 (en) Coated mold and manufacturing method thereof
JP5969473B2 (en) Cutting tool with multilayer coating
JP3995900B2 (en) Diamond-like carbon multilayer film
EP2316983B1 (en) Nitrogen-containing amorphous carbon and amorphous carbon layered film, and sliding member
EP1651796B1 (en) Substrate covered with an intermediate coating and a hard carbon coating
JP2009167512A (en) Diamond-like carbon film for sliding component and method for manufacturing the same
JP4805255B2 (en) DLC hard coating for copper bearing materials
JPS61167548A (en) Multilayer film
US7195817B2 (en) Diamond coated article and method of its production
CN102655977B (en) Coated rotary tool
JP4139102B2 (en) Diamond-like carbon hard multilayer film molded body and method for producing the same
JP2010106311A (en) Formed article with hard multilayer film and method for producing the same
JP2004169137A (en) Sliding member
JP3562941B2 (en) Composite surface treatment method for hot or warm working mold
JP2005138209A (en) Wear-resistant member
JP2823169B2 (en) Coil spring and its manufacturing method
JPH08132130A (en) Surface covered cermet drawing die having hard covering layer excellent in adhesivity
JP3638332B2 (en) Coated hard alloy
JPH10226874A (en) Hard carbon coating and coating member and coated member therewith
JPH07285001A (en) Coated cutting tool
JP4581861B2 (en) Hard carbon thin film and method for producing the thin film
JPH08325707A (en) Ceramic coated flat blade for steel plate shearing, improved in peeling resistance

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040601

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050302

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140611

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term