JP3562796B2 - Method for manufacturing impact-resistant fire-resistant double-layer pipe and impact-resistant fire-resistant double-layer pipe - Google Patents

Method for manufacturing impact-resistant fire-resistant double-layer pipe and impact-resistant fire-resistant double-layer pipe Download PDF

Info

Publication number
JP3562796B2
JP3562796B2 JP2000263051A JP2000263051A JP3562796B2 JP 3562796 B2 JP3562796 B2 JP 3562796B2 JP 2000263051 A JP2000263051 A JP 2000263051A JP 2000263051 A JP2000263051 A JP 2000263051A JP 3562796 B2 JP3562796 B2 JP 3562796B2
Authority
JP
Japan
Prior art keywords
green sheet
resistant
impact
tube
fire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000263051A
Other languages
Japanese (ja)
Other versions
JP2002071054A (en
Inventor
弘征 山岸
悦己 工藤
泰造 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A&A Material Corp
Original Assignee
A&A Material Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A&A Material Corp filed Critical A&A Material Corp
Priority to JP2000263051A priority Critical patent/JP3562796B2/en
Publication of JP2002071054A publication Critical patent/JP2002071054A/en
Application granted granted Critical
Publication of JP3562796B2 publication Critical patent/JP3562796B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、不燃性の材料を積層してなる外管と合成樹脂の内管とからなる耐火二層管に関し、特に外管の層間密着性を向上させ耐衝撃性を強化し、且つ、美観を向上させた耐衝撃耐火二層管に関する。
【0002】
【従来の技術】
近年、合成樹脂製の内管と不燃性の材料からなる外管とを組み合わせた耐火二層管が、集合住宅等の排水管や換気管として広く普及してきている。この耐火二層管の内管には、塩ビ等の合成樹脂からなる管を用いており、耐薬品性、耐腐食性、内面平滑性、施工性等に優れた性質を有している。
その一方で、合成樹脂管の耐火性に劣る欠点を不燃性の材料からなる外管で被覆して補っている。このように、耐火性能を強化してあることにより、施工後、仮に集合住宅の1箇所で出火したとしても、排水管等を伝わって他の部屋に延焼することを防止できるようになっている。
【0003】
この耐火二層管の外管に被覆する不燃性の材料として、補強繊維としての効果が著しい石綿が長年使用されてきた。しかし近年では、資源の枯渇および人体に対する有害性の指摘により、石綿の使用に代わって、有機および無機の短繊維を用いて補強することが試みられてきている。
一般に短繊維による補強を行う際には、セメント等の水硬性無機質材料に混合加水混練されるため、外管内にランダムに配置されることになる。
一方、これら不燃性の外管の補強方法に長繊維および、ネット状の繊維の使用が提案の例として、特開昭57−165226号公報および実開平4−68277号公報に記載の技術を挙げることができる。
【0004】
【発明が解決しようとする課題】
ところで、このような耐火二層管は、工場での生産完了から施工現場に至るまでに種々の過程を経て施工される。
まず、生産過程では、水硬性無機質材料をグリーンシートと呼ばれるシート状に成形し、このグリーンシートを芯管の外周部分に複数回巻き付け、所定の厚みに成形して、不燃性の外管を製造する。そして、これを養生硬化した後、芯管を引き抜く。この引き抜き過程で該外管の端部が破損し易く、不良品の発生と製造効率の低下の大きな原因となっていた。そのため、外管端部を破損しにくくするための補強が望まれていた。
【0005】
また、製品完成後の荷扱いで、搬送による衝撃および荷積みの荷重、施工現場での取り扱い上の衝撃等の各種の外力により、外管に亀裂が発生することがあった。この外管の亀裂は商品価値を著しく低下させるだけでなく、最も重要な耐火性能をも劣化させてしまう。
さらに、製造工程において、セメント等の水硬性無機質材料に補強繊維を混合し、成型しているため、繊維同士が絡み合うと、外管表面上に凹凸が生じてしまい、シート表面の外観上好ましくなかった。
上記の課題である耐衝撃性向上のため、特開昭57−165226号公報および実開平4−68227公報記載の技術では、補強用長繊維での補強方法が提案されているが、全面に補強することがコストアップの原因となり、また、ネット状補強繊維を挿入した部分の層間密着不良による層間剥離が起こり易くなるといった問題もあった。
そこで、本発明の第1の目的は、製造過程での芯管の引き抜き時の端部破損を防止し、製品の製造完了から施工完了までの様々な過程において生じる外管亀裂を防止し、また、露出配管の外観向上された耐衝撃耐火二層管の製造方法を提供することである。
また、本発明の第2の目的は、外管に対して与えられる各種の外力による衝撃に対応し、破損や亀裂の発生しにくい耐衝撃耐火二層管を提供することである。
【0006】
【課題を解決するための手段】
請求項1記載の発明では、抄造機を用いて所定のスラリーを抄いてグリーンシートを形成する第1手順と、このグリーンシートの表面に補強用繊維を、前記グリーンシートの抄造方向に沿って間隔を置いて設けられた、前記グリーンシートの幅と同等の幅と、前記グリーンシートの長さ方向に延びる長さとを有する複数の方形領域に散布する第2手順と、この補強用繊維が散布されたグリーンシートを所定の芯管に複数回巻き取る第3手順とこのグリーンシートを養生硬化させる第4手順と、このグリーンシートから前記芯管を抜き取る第5手順と、このグリーンシートに所定の合成樹脂製内管を挿入する第6手順と、を備えることにより、前記第1の目的を達成する。
【0007】
請求項2記載の発明では、抄造機を用いて所定のスラリーを抄いて形成されたグリーンシートを、所定の芯管に複数回巻き取って形成された外管と、前記外管に挿入される所定の合成樹脂製の内管と、を備えた耐衝撃耐火二層管であって、前記グリーンシートは、その表面の、前記グリーンシートの抄造方向に沿って間隔を置いて設けられた、前記グリーンシートの幅と同等の幅と、前記グリーンシートの長さ方向に延びる長さとを有する複数の方形領域に、補強用短繊維が散布されていることにより、前記第2の目的を達成する。
【0008】
請求項3記載の発明では、請求項2記載の発明において、前記方形領域には、長さ3mm〜50mmの補強用繊維が10g/m 2 〜20g/m 2 の割合で散布されていることを特徴とする。
【0009】
【発明の実施の形態】
以下、本発明の好適な実施の形態を図1ないし図5を参照して、詳細に説明する。
図1は耐火二層管の構成を示した図である。この耐火二層管10は、合成樹脂製内管20をこの内管より若干短い不燃性の外管30で覆うことにより構成されている。この合成樹脂製内管20の外径は、不燃性の外管30の内径より若干小さめになっており、容易にこの合成樹脂製内管20を不燃性の外管30に挿入できるようになっている。
この合成樹脂製内管20と不燃性の外管30との間に若干の隙間を設けることにより、熱湯等を排水した際に発生する合成樹脂製内管20の熱膨張を吸収し、不燃性の外管30に応力が及ぶのを防止している。
ここでまず、この耐火二層管10の一般的な製造方法を説明する。
内管である合成樹脂製の管は、汎用品を使用する。一方、不燃性の材料を積層してなる外管は、ハチェック式抄造機、フローオン式抄造機、長網式抄造機等で成形される。
【0010】
図2は、フローオン抄造機による抄造例を示した図である。
この抄造機では、原料液層50内の原料液を濾過して抄きあげて抄造し、抄き出された薄いグリーンシート80を芯管と呼ばれる鋼鉄管40に直巻きに巻き取り成形する。このグリーンシート80は、極めて薄いものであるため、複数回巻き取り積層して外管としての所望の厚さに成形している。
本実施の形態では、ここでグリーンシート80を芯管40に巻き取る前にグリーンシート80上に補強短繊維を散布することで補強短繊維を挿入している。
【0011】
この補強短繊維の種類としては、有機繊維、無機繊維を問わない。例えば、ガラス繊維、ビニロン、ポリプロピレン、ナイロン、炭素繊維、スチール繊維、ユリア樹脂、メラニン樹脂、フェノール樹脂、レゾルシノール樹脂、エポキシ樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリアミド樹脂、ポリイミド樹脂、酢酸ビニル樹脂、塩化ビニル樹脂、ポリビニル樹脂、ポリビニルアルコール、アセタール、アクリル樹脂、ポリオリフィン系樹脂等を挙げることができる。
また、接着剤として使用されるゴム系、クロロプレンゴム、ニトリルゴム、SBRゴム、天然ゴム、再生ゴム、ブチルゴム、ブロックゴム、シリコーン、ポリサルファイド、塩化ゴム、セルロース、等を短繊維状にして巻くこともできる。
なお、繊維の太さとしては、10μmφ〜1mmφのものが望ましい。
【0012】
実施例1の不燃性外管に用いる無機質材料の原料配合は次の通りである。
普通ポルトランドセメント 60%
混和材(炭酸カルシウム、スクラップ等) 30%
軽量材(パーライト等) 5%
加水用補強繊維(パルプ) 4%
散布用補強繊維(合成繊維) 1%
なお、散布用補強繊維は、43μmφ×6mm(図4参照)、43μmφ×15mm(図5参照)のものを使用した。
【0013】
散布用補強繊維を除いた上記原料を加水してスラリーとし、フローオン式抄造機でグリーンシート80を抄造した。このグリーンシート80は、厚さ0.6mm幅2、100mmのエンドレスで抄造される。その際、抄き上げられたグリーンシート80の上から散布機を通った散布用補強繊維90が抄造方向と直交する方向に補強繊維90が並ぶ向きで散布される。
なお、散布量は下記の条件とした。
5g/m、 10g/m 、20g/m 、30g/m
図3は、1本の外管を形成するグリーンシート80を展開したときの、このグリーンシート上の補強用繊維90の散布位置を示している。図4、図5の配置は、この図3に示した配置を示している。
【0014】
上記試験体を作成し、次の試験を実施して比較を行った。
(1)引き抜き性
芯管外径より1mm大きい内径の鉄管を固定し、外管を巻いた芯管をその鉄管に12m/minで通し、芯管を引き抜き、その引き抜き状態を観察する。
◎・・外管の端部が20mm以上欠けずに引き抜きできた。
○・・外管の端部が50mm以上欠けずに引き抜きできた。
×・・破断した。
【0015】
(2)耐衝撃性
砂箱内の砂の上に外管を砂面と平行に軽く押しつけて置き、外管の上から質量500gのなす型錘を高さ500mm(錘下端から試験体上面まで)から試験体のほぼ中央に落とし、次に前回の高さより50mm下がった高さ450mmより落下させて、管体の破壊状況を次の基準に従い判定する。試験体は外管の中央と端部の2水準とする。
◎・・凹んでいるが、周囲に割れ欠け等、影響が見られない。
○・・周囲に割れ、欠け等影響が見られない。
×・・破壊された。
【0016】
(3)層管密着性
外管の中央部と端部を幅100mmに輪切りにし、それをクランプで挟み込み、直径−20mmまで潰し、その断面の密着状態を次の基準に従い判断する。
◎・・完全に1枚になっており、層が不明である。
○・・毛髪程度の線が目視できる。
×・・明らかに層間に空隙を認めるものである。
【0017】
(4)表面性
散布用繊維も含め、全ての原料を加水しスラリーにし、製品を成形した外管を基準品とし、表面状態を次の基準に従い判断する。
◎・・基準品よりかなり良い。
○・・基準品よりやや良い。
×・・基準品と同等品である。
【0018】
図4および図5に示す表には、上記の試験結果を示してある。
図4には、43μmφ×6mmの補強用短繊維を用いた場合、図5には、43μmφ×15mmの補強用短繊維を用いた場合の試験結果を示してある。 この結果からいずれの場合も補強用短繊維の配置位置を図3の(2)または(3)の位置とし、散布量を10g/m 2 から20g/m 2 とした場合が最も優れた製品特性を示すことが明らかである。また、散布量が多すぎると、特に層間密着性、表面性に難点が生じやすくなる。さらに、散布位置は、(1)では、効果が乏しい。
なお、補強用繊維の配置位置は、図3の位置に限定されるのもでなく、例えば破損や亀裂の発生しやすい箇所に重点的に散布する事も可能である。
【0019】
【発明の効果】
請求項1記載の発明では、グリーンシートの段階で補強用繊維を散布してあることで、耐衝撃性の優れた耐衝撃耐火二層管を製造することができる。
【0020】
請求項2記載の発明では、外管の内部に補強用繊維を散布してあるので、製造時、施工時に受ける各種の衝撃に対して破損しにくい、耐衝撃耐火二層管を得ることができる。
請求項3記載の発明では、所定の量の補強用繊維を散布してあるので、より耐衝撃性のすぐれた耐衝撃耐火二層管を得ることができる。
【図面の簡単な説明】
【図1】本実施の形態に係る耐火二層管の構成を示した図である。
【図2】フローオン抄造機による抄造をしてグリーンシートを形成して、それを芯管に巻き付ける行程を説明する図である。
【図3】補強用繊維をグリーンシートに散布する位置を説明する図である。
【図4】43μmφ×6mmの補強用繊維を用いた場合の試験結果を示した表である。
【図5】43μmφ×15mmの補強用繊維を用いた場合の試験結果を示した表である。
【符号の説明】
10 耐火二層管
20 合成樹脂製内管
30 不燃性外管
40 芯管
80 グリーンシート
90 補強用繊維
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a fire-resistant double-layered pipe comprising an outer pipe formed by laminating non-combustible materials and an inner pipe made of a synthetic resin, and in particular, improves the interlayer adhesion of the outer pipe, enhances impact resistance, and has a beautiful appearance. The present invention relates to an impact-resistant fire-resistant double-layer pipe having improved resistance.
[0002]
[Prior art]
2. Description of the Related Art In recent years, fire-resistant double-layer pipes in which an inner pipe made of a synthetic resin and an outer pipe made of a non-combustible material are widely used as drain pipes and ventilation pipes for apartment houses and the like. As the inner tube of this fire-resistant double-layer tube, a tube made of a synthetic resin such as PVC is used, and has excellent properties such as chemical resistance, corrosion resistance, inner surface smoothness, and workability.
On the other hand, the inferiority of the synthetic resin tube inferior in fire resistance is compensated for by covering it with an outer tube made of a nonflammable material. In this way, by enhancing the fire resistance performance, even if a fire breaks out at one place in an apartment house after construction, it is possible to prevent the fire from spreading to another room through a drain pipe or the like. .
[0003]
Asbestos, which has a remarkable effect as a reinforcing fiber, has been used as a non-combustible material for covering the outer tube of this fire-resistant double-layer tube for many years. However, in recent years, due to depletion of resources and indication of harm to the human body, attempts have been made to reinforce using organic and inorganic short fibers instead of using asbestos.
In general, when reinforcing with short fibers, it is mixed and kneaded with a hydraulic inorganic material such as cement, so that it is randomly arranged in the outer tube.
On the other hand, as a method of reinforcing these non-combustible outer pipes, use of long fibers and net-like fibers is proposed as an example of the techniques described in JP-A-57-165226 and JP-A-4-68277. be able to.
[0004]
[Problems to be solved by the invention]
By the way, such a refractory two-layer pipe is constructed through various processes from completion of production in a factory to a construction site.
First, in the production process, a hydraulic inorganic material is formed into a sheet called a green sheet, and this green sheet is wound around the outer periphery of the core tube a plurality of times to form a predetermined thickness to produce a nonflammable outer tube. I do. After curing and curing, the core tube is pulled out. During the drawing process, the end of the outer tube is easily broken, which is a major cause of the occurrence of defective products and a decrease in manufacturing efficiency. For this reason, there has been a demand for reinforcement for preventing the outer tube end from being damaged.
[0005]
In addition, in the handling of the product after completion of the product, cracks may be generated in the outer tube due to various external forces such as impact due to conveyance, loading load, and impact during handling at the construction site. This crack in the outer tube not only significantly reduces the commercial value, but also degrades the most important fire resistance.
Further, in the manufacturing process, reinforcing fibers are mixed with a hydraulic inorganic material such as cement, and molded, so that when the fibers are entangled, irregularities are generated on the outer tube surface, which is not preferable in appearance of the sheet surface. Was.
In order to improve the impact resistance, which is the problem described above, in the techniques described in JP-A-57-165226 and JP-A-4-68227, a reinforcing method using reinforcing long fibers has been proposed. This leads to an increase in cost, and there is also a problem that delamination is likely to occur due to poor adhesion between layers where the net-like reinforcing fiber is inserted.
Therefore, a first object of the present invention is to prevent end damage at the time of pulling out a core pipe in a manufacturing process, to prevent outer pipe cracks occurring in various processes from the completion of product production to the completion of construction, and It is another object of the present invention to provide a method for manufacturing a shock-resistant fire-resistant double-layer pipe with an improved appearance of an exposed pipe.
Further, a second object of the present invention is to provide an impact-resistant fire-resistant double-layered pipe that is resistant to various external forces applied to the outer pipe and is less likely to be damaged or cracked.
[0006]
[Means for Solving the Problems]
According to the first aspect of the present invention, a first step of forming a green sheet by forming a predetermined slurry using a papermaking machine, and reinforcing short fibers on the surface of the green sheet along the papermaking direction of the green sheet. A second procedure of spraying a plurality of rectangular areas having a width equivalent to the width of the green sheet and a length extending in the length direction of the green sheet, provided at intervals, and the reinforcing short fibers a third procedure that preparative multiple turns the sparged green sheet to a predetermined core tube, and a fourth procedure for curing curing the green sheet, and a fifth procedure that the draw-off of the core tube from the green sheet, the The sixth object is achieved by inserting a predetermined synthetic resin inner tube into the green sheet, thereby achieving the first object.
[0007]
According to the second aspect of the invention, an outer tube formed by winding a green sheet formed by making a predetermined slurry using a papermaking machine around a predetermined core tube a plurality of times , and inserted into the outer tube. An inner tube made of a predetermined synthetic resin, and an impact-resistant fire-resistant double-layer tube comprising: the green sheet, on the surface thereof, provided at intervals along the papermaking direction of the green sheet, The second object is achieved by dispersing short reinforcing fibers in a plurality of rectangular regions having a width equal to the width of the green sheet and a length extending in the length direction of the green sheet .
[0008]
In the invention of claim 3, wherein, in the invention described in claim 2, in the rectangular region, the reinforcing short fibers length 3mm~50mm is sprayed at a rate of 10g / m 2 ~20g / m 2 It is characterized by.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to FIGS.
FIG. 1 is a diagram showing a configuration of a fire-resistant double-layer pipe. The fire-resistant double-layer tube 10 is configured by covering a synthetic resin inner tube 20 with a nonflammable outer tube 30 slightly shorter than the inner tube. The outer diameter of the synthetic resin inner tube 20 is slightly smaller than the inner diameter of the non-combustible outer tube 30, so that the synthetic resin inner tube 20 can be easily inserted into the non-combustible outer tube 30. ing.
By providing a slight gap between the synthetic resin inner tube 20 and the non-combustible outer tube 30, the thermal expansion of the synthetic resin inner tube 20 generated when hot water or the like is drained is absorbed, and the non-combustible Of the outer tube 30 is prevented from being stressed.
Here, first, a general manufacturing method of the fire-resistant double-layer pipe 10 will be described.
A general-purpose product is used for the synthetic resin tube as the inner tube. On the other hand, an outer tube formed by laminating non-combustible materials is formed by a Hatschek machine, a flow-on machine, a fourdrinier machine, or the like.
[0010]
FIG. 2 is a diagram showing an example of papermaking by a flow-on papermaking machine.
In this papermaking machine, the raw material liquid in the raw material liquid layer 50 is filtered and made into a paper, and the thin green sheet 80 thus formed is formed into a steel tube 40 called a core tube by directly winding. Since the green sheet 80 is extremely thin, it is wound and laminated a plurality of times to form a desired thickness as an outer tube.
In the present embodiment, the reinforcing short fibers are inserted by spraying the reinforcing short fibers on the green sheet 80 before winding the green sheet 80 around the core tube 40.
[0011]
The type of the reinforcing short fiber may be an organic fiber or an inorganic fiber. For example, glass fiber, vinylon, polypropylene, nylon, carbon fiber, steel fiber, urea resin, melanin resin, phenol resin, resorcinol resin, epoxy resin, polyester resin, polyurethane resin, polyamide resin, polyimide resin, vinyl acetate resin, vinyl chloride Resin, polyvinyl resin, polyvinyl alcohol, acetal, acrylic resin, polyolefin resin, and the like can be given.
In addition, it is also possible to form a short fiber from rubber, chloroprene rubber, nitrile rubber, SBR rubber, natural rubber, recycled rubber, butyl rubber, block rubber, silicone, polysulfide, chlorinated rubber, cellulose, etc. used as an adhesive. it can.
In addition, the thickness of the fiber is desirably 10 μmφ to 1 mmφ.
[0012]
The raw material composition of the inorganic material used for the noncombustible outer tube of Example 1 is as follows.
Normal Portland cement 60%
Admixture (calcium carbonate, scrap, etc.) 30%
Lightweight material (perlite, etc.) 5%
Reinforcing fiber (pulp) 4%
Reinforcing fiber (synthetic fiber) 1%
The reinforcing fibers for spraying used were 43 μmφ × 6 mm (see FIG. 4) and 43 μmφ × 15 mm (see FIG. 5).
[0013]
The above-mentioned raw materials except for the reinforcing fibers for spraying were added to form a slurry, and a green sheet 80 was formed using a flow-on type paper machine. The green sheet 80 is formed endlessly with a thickness of 0.6 mm and a width of 2 and 100 mm. At this time, the reinforcing fibers 90 for spraying, which have passed through the spreader, are scattered from the top of the green sheet 80 in the direction in which the reinforcing fibers 90 are arranged in a direction perpendicular to the papermaking direction.
In addition, the spraying amount was set on the following conditions.
5 g / m 2 , 10 g / m 2 , 20 g / m 2 , 30 g / m 2
FIG. 3 shows the distribution position of the reinforcing fibers 90 on the green sheet 80 when the green sheet 80 forming one outer tube is developed. The arrangements in FIGS. 4 and 5 show the arrangement shown in FIG.
[0014]
The above test specimen was prepared, and the following test was performed for comparison.
(1) Pullability: An iron tube having an inner diameter 1 mm larger than the outer diameter of the core tube is fixed, the core tube wound with the outer tube is passed through the iron tube at 12 m / min, the core tube is pulled out, and the drawn state is observed.
A: The end of the outer tube could be pulled out without chipping of 20 mm or more.
・: The end of the outer tube could be pulled out without chipping of 50 mm or more.
X: broken.
[0015]
(2) Place the outer tube on the sand in the impact-resistant sand box by lightly pressing it parallel to the sand surface, and place a 500-gram mass from the outer tube at a height of 500 mm (from the lower end of the weight to the upper surface of the specimen). )), Drop the sample approximately at the center, and then drop it from a height of 450 mm, which is 50 mm lower than the previous height, and determine the state of breakage of the tube according to the following criteria. Specimens shall be at two levels: the center and the end of the outer tube.
◎ ・ ・ Even though it is concave, there is no effect such as cracking around.
○ ・ ・ No effect such as cracking or chipping is observed around.
× ・ ・ Destroyed.
[0016]
(3) Adhesion of layer tube The center and end portions of the outer tube are cut into a 100 mm-wide slice, clamped by a clamp, crushed to a diameter of -20 mm, and the adhesion of the cross section is determined according to the following criteria.
◎: Completely one sheet, the layer is unknown.
○ ・ ・ Lines of hair level are visible.
X: Clearly gaps are recognized between the layers.
[0017]
(4) All the raw materials including the surface spray fiber are added to form a slurry, and the outer tube obtained by molding the product is used as a reference product, and the surface condition is determined according to the following criteria.
◎ ・ ・ It is much better than the standard product.
○ ... Slightly better than standard products.
×: It is equivalent to the standard product.
[0018]
The tables shown in FIGS. 4 and 5 show the above test results.
FIG. 4 shows the test results in the case of using 43 μmφ × 6 mm reinforcing short fibers, and FIG. 5 shows the test results in the case of using 43 μmφ × 15 mm reinforcing short fibers. From these results, in any case, the case where the arrangement position of the reinforcing short fibers was set to the position of (2) or (3) in FIG. 3 and the amount of application was 10 g / m 2 to 20 g / m 2 was most excellent. It is clear that it shows product properties. On the other hand, if the amount of application is too large, difficulties are likely to occur particularly in interlayer adhesion and surface properties. Further, the effect of the spraying position is poor in (1).
In addition, the arrangement position of the reinforcing fiber is not limited to the position shown in FIG. 3, and for example, it is possible to intensively spray the fiber at a location where breakage or cracks are likely to occur.
[0019]
【The invention's effect】
According to the first aspect of the invention, since the reinforcing short fibers are scattered at the stage of the green sheet, an impact-resistant fire-resistant double-layer pipe excellent in impact resistance can be manufactured.
[0020]
According to the second aspect of the present invention, since short reinforcing fibers are scattered inside the outer pipe, it is possible to obtain an impact- resistant fire-resistant double-layer pipe which is hardly damaged by various impacts received during manufacturing and construction. it can.
According to the third aspect of the present invention, since a predetermined amount of the reinforcing short fibers is sprayed, it is possible to obtain an impact- resistant fire-resistant double-layer pipe having more excellent impact resistance.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a fire-resistant double-layer pipe according to the present embodiment.
FIG. 2 is a diagram illustrating a process of forming a green sheet by performing papermaking using a flow-on papermaking machine and winding the green sheet around a core tube.
FIG. 3 is a diagram illustrating a position where a reinforcing fiber is sprayed on a green sheet.
FIG. 4 is a table showing test results when a reinforcing fiber of 43 μmφ × 6 mm was used.
FIG. 5 is a table showing test results when a reinforcing fiber of 43 μmφ × 15 mm was used.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Refractory double-layer pipe 20 Synthetic resin inner pipe 30 Nonflammable outer pipe 40 Core pipe 80 Green sheet 90 Reinforcing fiber

Claims (3)

抄造機を用いて所定のスラリーを抄いてグリーンシートを形成する第1手順と
このグリーンシートの表面に補強用繊維を、前記グリーンシートの抄造方向に沿って間隔を置いて設けられた、前記グリーンシートの幅と同等の幅と、前記グリーンシートの長さ方向に延びる長さとを有する複数の方形領域に散布する第2手順と
この補強用繊維が散布されたグリーンシートを所定の芯管に複数回巻き取る第3手順と
このグリーンシートを養生硬化させる第4手順と、
このグリーンシートから前記芯管を抜き取る第5手順と、
このグリーンシートに所定の合成樹脂製内管を挿入する第6手順と、
を備えたことを特徴とする耐衝撃耐火二層管の製造方法。
A first step of forming a green sheet by forming a predetermined slurry using a papermaking machine;
On the surface of this green sheet, reinforcing short fibers were provided at intervals along the papermaking direction of the green sheet, a width equivalent to the width of the green sheet, and a length extending in the length direction of the green sheet. A second procedure of spraying a plurality of square areas having
A third procedure that preparative multiple turns in the predetermined core pipe green sheets short fibers are sprayed reinforcement,
A fourth procedure for curing and curing the green sheet ;
A fifth procedure that the draw-off of the core tube from the green sheet,
A sixth step of inserting a predetermined synthetic resin inner tube into the green sheet ;
A method for producing an impact-resistant fire-resistant double-layer pipe, comprising:
抄造機を用いて所定のスラリーを抄いて形成されたグリーンシートを、所定の芯管に複数回巻き取って形成された外管と、
前記外管に挿入される所定の合成樹脂製の内管と、
を備えた耐衝撃耐火二層管であって、
前記グリーンシートは、その表面の、前記グリーンシートの抄造方向に沿って間隔を置いて設けられた、前記グリーンシートの幅と同等の幅と、前記グリーンシートの長さ方向に延びる長さとを有する複数の方形領域に、補強用短繊維が散布されていることを特徴とする耐衝撃耐火二層管。
A green sheet formed by making a predetermined slurry using a papermaking machine, and an outer tube formed by winding a plurality of times around a predetermined core tube ,
A predetermined synthetic resin inner tube inserted into the outer tube,
An impact-resistant fire-resistant double-layer pipe with
The green sheet has, on its surface, a width equivalent to the width of the green sheet and a length extending in the length direction of the green sheet, provided at intervals along the papermaking direction of the green sheet. An impact-resistant fire-resistant double-layered pipe characterized in that short reinforcing fibers are dispersed in a plurality of rectangular regions .
前記方形領域には、長さ3mm〜50mmの補強用繊維が10g/m 2 〜20g/m 2 の割合で散布されていることを特徴とする請求項2記載の耐衝撃耐火二層管。 Wherein the rectangular region, the impact refractory bilayer tube according to claim 2, wherein the reinforcing short fibers characterized in that it is applied at a rate of 10g / m 2 ~20g / m 2 of length 3 mm to 50 mm.
JP2000263051A 2000-08-31 2000-08-31 Method for manufacturing impact-resistant fire-resistant double-layer pipe and impact-resistant fire-resistant double-layer pipe Expired - Fee Related JP3562796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000263051A JP3562796B2 (en) 2000-08-31 2000-08-31 Method for manufacturing impact-resistant fire-resistant double-layer pipe and impact-resistant fire-resistant double-layer pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000263051A JP3562796B2 (en) 2000-08-31 2000-08-31 Method for manufacturing impact-resistant fire-resistant double-layer pipe and impact-resistant fire-resistant double-layer pipe

Publications (2)

Publication Number Publication Date
JP2002071054A JP2002071054A (en) 2002-03-08
JP3562796B2 true JP3562796B2 (en) 2004-09-08

Family

ID=18750643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000263051A Expired - Fee Related JP3562796B2 (en) 2000-08-31 2000-08-31 Method for manufacturing impact-resistant fire-resistant double-layer pipe and impact-resistant fire-resistant double-layer pipe

Country Status (1)

Country Link
JP (1) JP3562796B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012131235A (en) * 2012-04-09 2012-07-12 Showa Denko Kenzai Kk Method for producing hydraulic molded article, hydraulic molded article, fire-resistant two-layer pipe, and joint therefor

Also Published As

Publication number Publication date
JP2002071054A (en) 2002-03-08

Similar Documents

Publication Publication Date Title
US7045474B2 (en) Reinforced cementitious boards and methods of making same
US9017495B2 (en) Methods of making smooth reinforced cementitious boards
US7842629B2 (en) Non-woven glass fiber mat faced gypsum board and process of manufacture
US5319900A (en) Finishing and roof deck systems containing fibrous mat-faced gypsum boards
US7829488B2 (en) Non-woven glass fiber mat faced gypsum board and process of manufacture
US4135029A (en) Fiberglass mat
CA1308344C (en) Gypsum backer board
US20100147449A1 (en) Inorganic matrix-fabric system and method
TWI357457B (en)
MXPA06006970A (en) An exterior finishing system and building wall containing a corrosion-resistant enhanced thickness fabric and method of constructing same.
EP0698483B1 (en) Process for the production of reinforced slabs of stone material
US4250221A (en) Fiberglass mat
JP3562796B2 (en) Method for manufacturing impact-resistant fire-resistant double-layer pipe and impact-resistant fire-resistant double-layer pipe
KR20040091885A (en) fire retardant complex adiabatic waterproof-sheet and construction method thereof
CN104909707A (en) Light internal and external partition board slab
SK1892000A3 (en) Mineral fibre insulation
CN210827931U (en) Fireproof wall and transformer substation
JP3240127B2 (en) Manufacturing method of refractory double-layer pipe
CN219671844U (en) Prefabricated wall component of assembled reverse-beating integrated high-efficiency flame-retardant heat-insulating material
KR102228209B1 (en) Sound Insulation and Insulation Panel Using Environmentally Friendly husk and Sound insulation and insulation flooring with Sound Insulation and Insulation Panel Using Environmentally Friendly husk
US3729373A (en) Weather-stabilized asbestos roofing felt
JP2997433B2 (en) Joint treatment material for refractory double-layer pipe and method for producing the same
KR100368539B1 (en) Panel core for construction
CN110905098A (en) Construction method of culture stone wall structure
RO133842A2 (en) Composite thermal insulation panels with sheep-wool core, methods for producing and laying the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040531

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140611

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees