JP3560996B2 - Wiring board for mounting and mounting method using the same - Google Patents

Wiring board for mounting and mounting method using the same Download PDF

Info

Publication number
JP3560996B2
JP3560996B2 JP32437193A JP32437193A JP3560996B2 JP 3560996 B2 JP3560996 B2 JP 3560996B2 JP 32437193 A JP32437193 A JP 32437193A JP 32437193 A JP32437193 A JP 32437193A JP 3560996 B2 JP3560996 B2 JP 3560996B2
Authority
JP
Japan
Prior art keywords
mounting
resin
wiring board
conductive
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32437193A
Other languages
Japanese (ja)
Other versions
JPH07183646A (en
Inventor
洋 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP32437193A priority Critical patent/JP3560996B2/en
Publication of JPH07183646A publication Critical patent/JPH07183646A/en
Application granted granted Critical
Publication of JP3560996B2 publication Critical patent/JP3560996B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/303Surface mounted components, e.g. affixing before soldering, aligning means, spacing means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives

Landscapes

  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

【0001】
【産業上の利用分野】
本発明は電子部品の面実装に適する実装用配線板およびこの実装用配線板を用いた実装方法に関する。
【0002】
【従来の技術】
電子機器類の軽小化ないしコンパクト化を目的として、回路機構の小形化なども図られている。すなわち、面実装用のパッドを有する配線板面に、所要の電子部品を実装して成る実装回路装置(実装回路ユニット)が、各種の電子機器類で広く実用に供されつつある。そして、前記電子部品の実装には、ハンダ付けによる実装方法が多用されている。具体的には、実装用配線板の導体ターンの所定位置、すなわち搭載する電子部品の電極に対応して設けられている各接続パッド面に、クリーム状にしたハンダペーストを印刷した後、電子部品の電極群を対応する接続パッド面に位置を合わせて搭載・配置し、リロフー炉を通過させてハンダーペーストを溶かし、冷却固化し、電子部品を配線板上に固定する方法が一般的に採用されている。なお、この工程においては、前記配線板面の各接続パッド、もしくは電子部品の電極面に金属バンプを設けておく場合もある。
【0003】
【発明が解決しようとする課題】
前記したように、配線板面への電子部品の実装は、ハンダ付け(ハンダ接続)法が一般的であるが、ハンダ付け法にはいろいろの問題点がある。具体的には、(a)ハンダを溶融するために 200℃〜 300℃の温度が必要であり、したがって、実装用の配線板については、前記温度に耐える耐熱性が要求され、また、搭載する電子部品も、前記温度に耐え得るように耐熱保護を予め施しておくことを要する。こうした要求に対しては、比較的高価な材料を使う必要があり、また使用環境に対して、必要以上の耐熱保護が必要になるという問題がある。
【0004】
(b)また、前記 200℃〜 300℃のハンダ溶融温度にて、ストレスフリーでハンダ付けされた電子部品は冷却過程で、電子部品と配線板の熱膨張率の差によって、常温時に大きなストレスを内蔵することになる。このため、各種環境での長期使用により、接続固定部、特に応力の集中するハンダ付け部が金属疲労を起こして、断線するといった不具合が生じる場合がある。
【0005】
(c)さらに、ハンダ付けにはフラックスが必要であり、クリームハンダの場合は、予めハンダペーストの中に配合してある。そして、このフラックスは、ハンダ溶融時に分解して酸性あるいはアルカリ性を呈して、配線板の導体パターン面(たとえば銅箔面),あるいは電子部品の電極の酸化物を除去して、ハンダ付けを助長する作用がある。しかし、一方では、フラックスの分解物が電気回路の絶縁性を低下させるという有害作用があるので、ハンダ付け後、洗浄処理などにより除去する必要がある。この除去には、一般的にフロンもしくは他の有機溶剤の使用を要し、その廃液の地球環境に対する悪影響から、代替策が求められている。 (d)高密度実装回路化に伴って、配線板の配線ピッチが微細になると、溶融ハンダが隣接する配線パターン同士がブリッジするという不具合も増大してきている。
【0006】
本発明は前記ハンダ付け実装における問題を解消(回避)し、低コストでありながら、信頼性の高い実装回路装置の構成に適する実装用配線板および実装方法の提供を目的とする。
【0007】
【課題を解決するための手段】
本発明に係る実装用配線は、搭載する電子部品の電極群に対応する接続パッド群を少なくとも一主面に有する実装用配線板であって、前記実装用配線板面の接続パッド群がそれぞれ底面側から先端部に向って細くなる先端部の尖った断面形状を有し、実装する電子部品の電極の汚染層に押し当て応力を作用させたときに該汚染層を排除できる程度の硬度を有する、導電性粉末を樹脂と混合して調製した導電性組成物から形成された導電性バンプを備え、かつ前記導電性バンプ群を備えた面が、搭載される電子部品の固着とともに回路部及び接続部を保護する未硬化状の絶縁樹脂層で被覆されていることを特徴とし、また、本発明に係る実装方法は、少なくとも一主面に底面側から先端部に向って細くなる先端部の尖った断面形状を有し、実装する電子部品の電極の汚染層に押し当て応力を作用させたときに該汚染層を排除できる程度の硬度を有する、導電性粉末を樹脂と混合して調製した導電性組成物から形成された導電性バンプを備えた接続パッド群が形成され、かつ前記導電性バンプ群を備えた面が、搭載される電子部品の固着とともに回路部及び接続部を保護する未硬化状の絶縁樹脂層で被覆されて成る配線板面上に、前記導電性バンプ群に対応する電極群を有する電子部品を位置合わせして搭載・配置する工程と、前記位置合わせした配線板の導電性バンプ群および電子部品の電極群の間にそれぞれ応力が作用するように電子部品を実装する工程と、前記配線基板面の絶縁樹脂層を硬化する工程とを具備して成ることを特徴とする。
【0008】
そして、本発明は次のよう知見に基づいて成されたものである。つまり、通常の金属は、表面が酸化物ないし有機物で汚れており、導電性の液体、たとえば導電ペーストなどを接触もしくは塗布固着させても、その界面にかなり大きな界面抵抗が存在する。しかも、その界面抵抗は、温度,湿度などの環境で容易に大きく変動し易く、電子回路には適用し得なかったが、適度の硬度を有した導電性バンプに、電子部品の電極を成す金属を押し当て、さらに応力を作用させると、金属表面の汚れが機械的に排除されて新生面を露出し、金属の新生面および導電バンプの新生面が、界面抵抗零の接合を容易に形成することを見出して、この現象を利用して本発明を完成するに至ったものである。
【0009】
本発明において、実装用配線板は、たとえばソルダーレジストを印刷し、仕上げ処理する前の、外層回路パターン上の所定位置に、導電性バンプ群を形成する一方、それら導電性バンプ群をほぼ埋める程度の厚さに、未硬化の絶縁性樹脂を一体的に設けることにより構成される。なお、未硬化の絶縁性樹脂層は、前記導電性バンプ群を形成した面全体に設ける必要はなく、たとえば各導電性バンプの周辺部など、島状に形成した形態を採ってもよい。
【0010】
ここで、印刷配線板の外層回路を形成する銅パターンなどは、各種の工程履歴において、表面が汚染されているので、機械研磨ないし化学研磨を行い清浄面にしてから、導電性バンプ群を形成することが望ましく、清浄面化しておくことにより、銅パターンと導電性バンプ群との界面抵抗の発生防止を助長し得る。また、前記導電性バンプは、たとえば銀,金,銅,ハンダ粉などの導電性粉末、これらの合金粉末もしくは複合の金属粉末と、たとえばポリカーボネート樹脂,ポリスルホン樹脂,ポリエステル樹脂,フェノキシ樹脂,エポキシ樹脂、フェノール樹脂,ポリイミド樹脂などのバインダー成分とを混合して調製された導電性組成物、あるいは導電性金属、導電性有機半導体などで構成される。そして、導電性組成物で形成する場合は、たとえば比較的厚いメタルマスクを用いた印刷法により、アスペクト比の高い導電性バンプを形成でき、その導電性バンプの高さは、一般的に10〜 400μm 程度の広範囲で形成できる。
【0011】
一方、導電性金属でバンプを形成する手段としては、 (a)銅箔を外層回路パターンとした場合は、メッキレジストを印刷・パターニングして、銅,錫,金,銀,ハンダなどをメッキして、選択的に微小な金属柱(バンプ)群の形成するか、
(b)外層回路パターン面にハンダレジストの塗布・パターニングを行ってから、ハンダ浴に浸漬して選択的に微小な金属柱(バンプ)の形成などが挙げられる。ここで、導電性バンプに相当する微小金属魂ないし微小な金属柱は、異種金属を組合わせて成る多層構造、多層シェル構造でもよい。
【0012】
なお、本発明において、導電性バンプを導電性組成物で形成する場合は、メッキ法などの手段で行う場合に較べて、さらに工程など簡略化し得るので、低コスト化の点で有効である。また、適度の硬度を有する導電性バンプとは、搭載・実装する電子部品の電極を成す金属面の酸化物や有機物などの汚染物層を、押圧力などによって対接面から機械的に排除し、金属の新生面を露出できる程度以上の応力を作用させた場合、電子部品の電極を変形ないし破壊しない程度の硬度を要し、一般的にはジュロメータ硬度で70〜 120が好適である。
【0013】
また、前記導電性バンプの大きさは、搭載・実装する電子部品の電極の大きさに対応させるが、上記導電性バンプの形成手段によって、径10〜 400μm 程度で任意に形成できる。またバンプの形状は底面が大きく先端部向かって細くなる形状が好適であり、山形ないし半球状などでもよい。
【0014】
前記導電性バンプを埋める程度の厚さに配線板面上に、一体的に配置形成されている未硬化状の絶縁樹脂層は、前記配線板の全面に配置形成してもよいし、必要部分にのみ、選択的に配置形成してもよいし、また、電子部品を搭載する直前に未硬化状の絶縁樹脂層を塗布形成する形態を採ってもよい。この絶縁樹脂層は、搭載された電子部品を固着する役割と、配線板の回路部を保護する役割と、接続部を保護する役割とを兼ね備える。そして、この絶縁樹脂層は、熱硬化型樹脂や紫外線硬化型樹脂、嫌気性硬化樹脂、もしくはそれらの混合タイプなどで形成しておき、電子部品搭載後紫外線ないし加熱で硬化させるのが好ましく、たとえばソルダーレジストとして市販されている樹脂が好適である。
【0015】
さらに、本発明の実装方法において、電子部品の電極と配線板の導電性バンプとを、応力の作用によって界面抵抗がほぼ零の接続を形成して実装する際、前記応力の付与は、通常、 0.5〜20 N/バンプ当たり程度の力、導電性バンプの形状や材質によっては、未硬化状樹脂の硬化収縮性などでもよい。つまり、搭載・実装する電子部品は、通常、異なるメーカー製品の寄せ集めであるため、その保存期間も一定でなく、電極材料の種類も違うので、表面の汚れをなす酸化物層や有機物の種類、また、その厚さなども多様であるが、一般的に通常の電子部品では、汚染層の厚みがサブミクロンオーダーである。そして、この程度の厚みの汚染層は、前記適度の硬度を有した先端部の尖った導電性バンプを押し当てると、導電性バンプの突き当たり面で汚染層を排除できる。この具体的な手段としては、個々の電子部品の搭載時にもしくは全電子部品を搭載後に治具板など用いて一括して、電極部の上から力を作用させることにより行われる。
【0016】
なお、本発明において、実装する電子部品としては、セラミック材料から構成されるチップ型抵抗体、コンデンサー、或いはフラットリード、ガルリング型リード、Jリードなど各種の形状のリードあるICパッケージ、コネクターなどの電子部品、また高密度実装のために、希に使用されるベアICチップなどもが挙げられる。また、これら電子部品の電極は、貴金属製であってよいし、一般的な材料である錫鉛系ハンダ材料、錫メッキ仕上げ、ニッケルメッキ仕上げ、銅、アルミニューム薄膜などの材質で形成されていてもよい。
【0017】
【作用】
上記本発明に係る実装用配線板においては、搭載・実装する電子部品の電極に対応した導電性バンプが未硬化な絶縁樹脂層に埋め込まれた形に設置されており、また、前記導電性バンプは応力の作用によって薄い酸化物層などを破壊して新しい金属面を露出させる機能を呈する。したがって、位置合わせ後、応力を作用させることにより、前記導電性バンプに対して、搭載・実装する電子部品の電極を界面抵抗零の状態で電気的な接続を達成する。しかも、前記未硬化な絶縁樹脂層が各接続部を互いに絶縁離隔する一方、硬化するとその接続部などを外界から保護するとともに、実装電子部品と配線板との一体・固定化を助長するので、信頼性の高い実装回路装置を提供し得ることになる。
【0018】
【実施例】
以下図1 (a), (b), (c)、図2 (a), (b), (c)、および図3 (a), (b),(c)を参照して本発明の実施例を説明する。
【0019】
実施例1
図1 (a)は、本発明に係る実装用配線板例を断面的に、また図1 (b)は図1 (a)に図示した実装用配線板に電子部品を実装する態様を模式的に示す断面図、図1 (c)は図1 (b)に図示した実装する態様で応力を作用させて電子部品を実装した後の状態を模式的に示す断面図である。
【0020】
先ず、図1 (a)において、1は両面型実装用配線板本体、2aは前記両面型実装用配線板本体1の接続パッドを成す銅パターン、2bは回路パターン、3は前記接続パッド2形成面に一体的に積層配置された未硬化状の絶縁性樹脂層、4は前記接続パッド2面に形成配置された導電性バンプである。さらに具体的には、両面型実装用配線板本体1は、ガラスクロス入りエポキシ樹脂を基材とし、接続パッド2a,回路パターン2bの厚さが35μm 、接続パッド2aの形状が 0.9× 1.2mm、導電性バンプ4が高さ60μm の山形、未硬化状の絶縁性樹脂層3が厚さ40μm の室温硬化型シリコーン樹脂層で、1608タイプの抵抗素子を搭載・実装可能な、全体の厚さが 1.0mmの実装用配線板5である。
【0021】
そして、前記構成の実装用配線板5は、次のようにして製造し得る。すなわち、一般的な手段で製造した両面型実装用配線板本体1を先ず用意し、接続パッド2a形成面を回転式ブラシで研磨してから、水洗後空冷乾燥した。次いで、手早く、板厚 300μm のアルミ板の所定箇所に 0.3mm径の穴を明けたメタルマスクを用いて、前記両面型実装用配線板本体1の接続パッド2a面上に、前記メタルマスクの穴を位置決め配置して、ポリマータイプの銀系の導電性ペーストを印刷し、高さ約60μm の山形の導電性パンブ4を形成(形設)した。その後、 120℃で30分間加熱硬化し、粘着絶縁樹脂層(未硬化状の絶縁樹脂層)3として室温硬化型シリコーン樹脂(信越化学KK製,商品名, RTVゴム,KF3498)を40μm 厚さで塗布することにより製造した。
【0022】
前記構成の実装用配線板5に対する電子部品6の実装、たとえばチップ形の抵抗素子の実装は、次のように行われる。すなわち、前記実装用配線板5の導電性パンブ4に、チップマウンターを用いて、図1 (b)に示すごとく、前記チップ形の抵抗素子6の電極6a,6bを対応させて位置決め配置する。この位置決め配置に当たって、チップマウンターに瞬間的に 5.0 Nの加重を加えたところ、図1 (c)に示したように、前記導電性バンプ4の先端部が潰れた形になり、導電性バンプ4の高さは30μm に減じた。次いで、これを24時間室温下に放置して、シリコーン樹脂3を硬化させた。
【0023】
上記実装した実装回路において、チップ形の抵抗素子6は抵抗素子として、電気的に十分な機能を有し、熱衝撃試験(−65℃〜 125℃,1000h)、加熱試験( 125℃,1000h)、耐湿試験(80℃,85%総耐湿度,1000h)など加速信頼性試験にも問題はなかった。
【0024】
実施例2
図2 (a)は、本発明に係る他の実装用配線板例を断面的に、また図2 (b)は図2 (a)に図示した実装用配線板に電子部品を実装する態様を模式的に示す断面図、図2 (c)は図2 (b)に図示した実装する態様で応力を作用させて電子部品を実装した後の状態を模式的に示す断面図である。
【0025】
実施例1の場合に準じて、図2 (a)に断面的に示すような、28ピンのリードを有するガルリングタイプのFPパッケージタイプのICメモリ6を実装し得る導電性パンブ4を備えた構成の実装用配線板5を用意した。なお、前記実装用配線板5の接続パッド2aの形状は、 0.8× 1.6mm角で、最小1.25mmピッチであり、また導電性バンプ4は高さ約50μm の山形を成していた。そして、前記実装用配線板5面に、ICメモリ6のリード6aを対応する導電性パンブ4と位置合わせ・配置し、図2 (b)に断面的に示すごとく、リード6a,6bの平坦面に20 Nの力を作用させ、導電性パンブ4の高さが約35μm 程度になるよう押圧して実装を行った。
【0026】
こうして構成した図2 (c)に断面的に示すような、ICメモリー実装回路装置は、電気的に十分な機能を呈し、熱衝撃試験(−65℃〜 125℃,1000h)、加熱試験( 125℃,1000h)、耐湿試験(80℃,85%総耐湿度,1000h)など加速信頼性試験にも問題はなかった。
【0027】
実施例3
先ず、基材がガラスクロス入りエポキシ樹脂からなる常法により製造した厚みは1.0mmで銅パターンの厚みは18μm で、 100μm 角,最小ピッチ 150μm ,表面を薄いニッケル、金メッキで被覆した接続パッド2a群を備えた、図3 (a)に断面的に示すような配線板を素材とし、実施例1の場合に準じてメタルマスクを介して高さ約30μm の山形状の導電性バンプ4を設け、かつその導電性バンプ4形設置面に、未硬化状の絶縁性樹脂層3を設けて成る実装用配線板5を用意した。一方、 100μm 角で,約 1μm 厚,最小ピッチ 150μm のアルミニューム薄膜製I/O端子を有するICメモリーチップ(チップ寸法,15×10mm角)を電子部品として用意した。ここで、実装用配線板5の導電性バンプ4は、平均粒径 0.5μmの鱗片状銀粉とビスフェノールタイプのエポキシ樹脂とから成る導電性ペーストを印刷し、 120℃で30分間加熱硬化処理して形成し、また未硬化状の絶縁性樹脂層3は、ソルダーレジスト(商品名.UVR−150R,太陽インキKK)を約30μm の厚さに塗布して形成した。
【0028】
前記実装用配線板5面にICメモリーチップ6を、図3 (b)に断面的に示すごとく、相互の導電性バンプ4および I/O端子6a,6bを位置合わせして搭載・配置した後、ICメモリーチップ6の上から均一に加重がかかるように、20 Nの加重をかけたところ、前記導電性バンプ4の高さが15μm に減じ、これを紫外線照射炉に収容し、未硬化状の絶縁性樹脂層3を硬化させ、さらに 120℃で30分間加熱して完全硬化させて、図3 (c)に断面的に示すような、実装回路装置を構成した。 上記、構成した実装回路装置は、電気的に十分な機能を有し、熱衝撃試験(−65℃〜 125℃,1000h)、加熱試験( 125℃,1000h)、耐湿試験(80℃,85%総耐湿度,1000h)など加速信頼性試験にも問題はなかった。
【0029】
【発明の効果】
本発明に係る実装用配線板によれば、従来電子部品の実装において提起しているハンダ接続による問題を容易に回避し得る。具体的には、 (1)常温ないし 100℃程度のプロセス温度で電子部品の実装・接続が可能となり、高級な耐熱材料を配線板や電子部品にも使わなくてもよくなる。 (2)前記のように低温での接続が可能であるため、配線板と電子部品との熱膨張率の差によるストレスも小さく押さえられ、接続部の剥離などの発生が抑制されて長期使用に耐えるようになる。(3)ハンダ接続に使用するフラックスなど電気的に有害物を使用しないですむので、環境上の問題も発生しない。 (4)配線のピッチが微細になっても、導電性バンプを微細に形成することにより、電子部品との確実な電気的な接合が図られ、かつ隣接する接続部同士のパターンがブリッジするという不具合も生じない。かくして、本発明に係る実装用配線板、およびこの実装用配線板を用いる実装方法は、実用上多くの利点をもたらすものといえる。
【図面の簡単な説明】
【図1】本発明に係る実装用配線板および実装方法を例示するもので、 (a)は実装用配線板の断面図、 (b)はチップ形電子部品の搭載した状態を模式的に示すの断面図、(C) 電子部品を実装して形成した実装回路装置の断面図。
【図2】本発明に係る実装用配線板および実装方法の他の例を示するもので、 (a)は実装用配線板の断面図、 (b)はリード付きICの搭載した状態を模式的に示すの断面図、(C) 電子部品を実装して形成した実装回路装置の断面図。
【図3】本発明に係る実装用配線板および実装方法のさらに他の例を示するもので、 (a)は実装用配線板の断面図、 (b)はベアのチップICの搭載した状態を模式的に示すの断面図、(C) 電子部品を実装して形成した実装回路装置の断面図。
【符号の説明】
1…両面型実装用配線板本体 2a…接続パッド 2b…回路パターン 3…未硬化の絶縁性樹脂層 4…導電性バンプ 5…実装用配線板 6…搭載・実装電子部品 6a,6b…電極(端子) 7…潰れた導電性バンプ
[0001]
[Industrial applications]
The present invention relates to a mounting wiring board suitable for surface mounting of electronic components and a mounting method using the mounting wiring board.
[0002]
[Prior art]
In order to reduce the size and size of electronic devices, the size of circuit mechanisms has been reduced. That is, a mounted circuit device (mounted circuit unit) in which required electronic components are mounted on the surface of a wiring board having pads for surface mounting is being widely used in various electronic devices. For mounting the electronic components, a mounting method by soldering is often used. Specifically, after printing a creamy solder paste on a predetermined position of the conductor turn of the mounting wiring board, that is, on each connection pad surface provided corresponding to the electrode of the electronic component to be mounted, the electronic component is printed. The electrode group is mounted and arranged in alignment with the corresponding connection pad surface, passed through a relo-fu furnace to melt the solder paste, solidify by cooling, and fix the electronic components on the wiring board. ing. In this step, metal bumps may be provided on each connection pad on the wiring board surface or on the electrode surface of the electronic component.
[0003]
[Problems to be solved by the invention]
As described above, soldering (solder connection) is generally used for mounting electronic components on the surface of a wiring board, but the soldering method has various problems. Specifically, (a) a temperature of 200 ° C. to 300 ° C. is required to melt the solder. Therefore, a wiring board for mounting is required to have heat resistance to withstand the above-mentioned temperature, and is mounted. The electronic components also need to be provided with heat-resistant protection in advance so as to withstand the temperature. In order to meet such demands, it is necessary to use relatively expensive materials, and there is a problem that more heat protection than necessary for the use environment is required.
[0004]
(B) Also, at the solder melting temperature of 200 ° C. to 300 ° C., a stress-free soldered electronic component undergoes a large stress at room temperature due to a difference in thermal expansion coefficient between the electronic component and the wiring board in a cooling process. Will be built-in. For this reason, long-term use in various environments may cause a problem such as disconnection due to metal fatigue of the connection fixing portion, particularly the soldered portion where stress is concentrated.
[0005]
(C) Further, flux is required for soldering, and in the case of cream solder, it is previously blended in solder paste. The flux is decomposed during melting of the solder to exhibit an acidic or alkaline property, and removes oxide on the conductor pattern surface (for example, a copper foil surface) of the wiring board or the electrode of the electronic component to promote soldering. There is action. However, on the other hand, the decomposed product of the flux has a detrimental effect of lowering the insulation of the electric circuit, so that it is necessary to remove the flux by a washing treatment or the like after soldering. This removal generally requires the use of chlorofluorocarbons or other organic solvents, and alternatives are being sought due to the adverse effects of the effluent on the global environment. (D) As the wiring pitch of the wiring board becomes finer with the development of high-density mounting circuits, the problem that molten solder bridges adjacent wiring patterns has also increased.
[0006]
It is an object of the present invention to provide a mounting wiring board and a mounting method which can solve (avoid) the problem in the solder mounting and which is suitable for a configuration of a low-cost and highly reliable mounting circuit device.
[0007]
[Means for Solving the Problems]
Mounting wire according to the present invention is a mounting wiring board having a connection pad groups corresponding to the electrode group of electronic components mounted on at least one major surface, connection pads of the mounting wiring board surface, respectively It has a sharp cross-sectional shape of the tip portion that becomes thinner from the bottom side toward the tip portion, and has a hardness enough to eliminate the contaminated layer when applying a pressing force to the contaminated layer of the electrode of the electronic component to be mounted. Having a conductive bump formed from a conductive composition prepared by mixing a conductive powder with a resin, and a surface provided with the conductive bump group, together with fixing of electronic components to be mounted, a circuit portion and It is characterized in that it is covered with an uncured insulating resin layer that protects the connection portion, and the mounting method according to the present invention is characterized in that at least one main surface of the tip portion tapered from the bottom side toward the tip portion. It has a pointed cross-sectional shape, the actual The having a degree of hardness that the contamination layer can be eliminated, conductive powder conductive formed of a conductive composition prepared by mixing with resin when reacted with contaminated layer to the pushing stress of the electrode of the electronic component to be A connection pad group provided with conductive bumps is formed, and a surface provided with the conductive bump group is covered with an uncured insulating resin layer that protects a circuit portion and a connection portion together with fixing of a mounted electronic component. Aligning and mounting and arranging an electronic component having an electrode group corresponding to the conductive bump group on the surface of the wiring board, comprising: a step of positioning the conductive bump group of the aligned wiring board and an electrode of the electronic component; The method comprises the steps of mounting an electronic component so that stress acts between the groups, and curing the insulating resin layer on the wiring board surface.
[0008]
The present invention has been made based on the following findings. That is, the surface of a normal metal is contaminated with an oxide or an organic substance, and even if a conductive liquid, for example, a conductive paste is contacted or applied and fixed, a considerably large interface resistance exists at the interface. In addition, the interface resistance easily and largely fluctuates in an environment such as temperature and humidity, and cannot be applied to an electronic circuit. Pressing and applying further stress, the dirt on the metal surface is mechanically removed to expose the new surface, and it has been found that the new surface of the metal and the new surface of the conductive bump can easily form a junction with zero interface resistance. Thus, the present invention has been completed utilizing this phenomenon.
[0009]
In the present invention, the mounting wiring board forms a conductive bump group at a predetermined position on the outer layer circuit pattern before printing a solder resist, for example, and finishes the conductive bump group. Is formed by integrally providing an uncured insulating resin to a thickness of. The uncured insulating resin layer does not need to be provided on the entire surface on which the conductive bump group is formed, and may be formed in an island shape, for example, at the periphery of each conductive bump.
[0010]
Here, since the surface of the copper pattern forming the outer layer circuit of the printed wiring board is contaminated in various process histories, it is subjected to mechanical polishing or chemical polishing to obtain a clean surface, and then the conductive bumps are formed. It is desirable to clean the surface, which can help prevent the occurrence of interface resistance between the copper pattern and the conductive bump group. The conductive bumps may be made of, for example, conductive powders such as silver, gold, copper, and solder powder, alloy powders or composite metal powders thereof, for example, polycarbonate resin, polysulfone resin, polyester resin, phenoxy resin, epoxy resin, It is composed of a conductive composition prepared by mixing a binder component such as a phenol resin and a polyimide resin, or a conductive metal, a conductive organic semiconductor, or the like. When the conductive bump is formed of a conductive composition, for example, a conductive bump having a high aspect ratio can be formed by a printing method using a relatively thick metal mask, and the conductive bump generally has a height of 10 to 10. It can be formed over a wide range of about 400 μm.
[0011]
On the other hand, means for forming bumps with a conductive metal include: (a) When a copper foil is used as an outer circuit pattern, a plating resist is printed and patterned, and copper, tin, gold, silver, solder, or the like is plated. To selectively form small metal pillars (bumps)
(B) Applying and patterning a solder resist on the outer circuit pattern surface, and then immersing in a solder bath to selectively form minute metal columns (bumps). Here, the minute metal soul or minute metal pillar corresponding to the conductive bump may have a multilayer structure or a multilayer shell structure formed by combining different kinds of metals.
[0012]
In the present invention, when the conductive bumps are formed of the conductive composition, the steps and the like can be further simplified as compared with the case where the conductive bumps are formed by means such as a plating method, which is effective in terms of cost reduction. In addition, conductive bumps with appropriate hardness are used to mechanically remove contaminant layers, such as oxides and organic substances, on metal surfaces that form the electrodes of electronic components to be mounted and mounted from contact surfaces by pressing force, etc. When a stress greater than that capable of exposing the new surface of the metal is applied, the hardness of the electrode of the electronic component must be high enough not to deform or break the electrode. Generally, a durometer hardness of 70 to 120 is preferable.
[0013]
The size of the conductive bump corresponds to the size of the electrode of the electronic component to be mounted and mounted. The conductive bump can be arbitrarily formed with a diameter of about 10 to 400 μm by the conductive bump forming means. Also, the shape of the bump is preferably such that the bottom surface is large and becomes narrow toward the tip, and may be a mountain shape or a hemispherical shape.
[0014]
The uncured insulating resin layer integrally formed and formed on the wiring board surface to a thickness sufficient to fill the conductive bumps may be formed and formed on the entire surface of the wiring board, May be selectively disposed and formed, or an uncured insulating resin layer may be applied and formed immediately before mounting the electronic component. The insulating resin layer has a role of fixing the mounted electronic components, a role of protecting the circuit portion of the wiring board, and a role of protecting the connection portion. The insulating resin layer is preferably formed of a thermosetting resin, an ultraviolet curable resin, an anaerobic curable resin, or a mixture thereof, and is preferably cured by ultraviolet light or heating after mounting the electronic component. A resin commercially available as a solder resist is suitable.
[0015]
Furthermore, in the mounting method of the present invention, when the electrodes of the electronic component and the conductive bumps of the wiring board are mounted by forming a connection having substantially zero interface resistance by the action of stress, the application of the stress is usually performed. Depending on the force of about 0.5 to 20 N / bump and the shape and material of the conductive bump, the curing shrinkage of the uncured resin may be used. In other words, since the electronic components to be mounted and mounted are usually a collection of products from different manufacturers, their storage periods are not constant, and the types of electrode materials are different, so the types of oxide layers and organic substances that make the surface dirty are different. The thickness of the contaminant layer is generally on the order of submicrons in ordinary electronic components, although the thickness of the contaminant layer also varies. The contaminant layer having such a thickness can be removed from the abutting surface of the conductive bump by pressing the conductive bump having the appropriate hardness and having a sharp tip. As a specific means, it is performed by applying a force from above the electrode portion at the time of mounting individual electronic components or collectively using a jig plate after mounting all the electronic components.
[0016]
In the present invention, the electronic components to be mounted include electronic components such as chip-type resistors and capacitors made of ceramic materials, IC packages having various shapes of leads such as flat leads, gull-ring leads, and J-leads, and connectors. Components include bare IC chips rarely used for high-density mounting. The electrodes of these electronic components may be made of a noble metal, or may be made of a general material such as a tin-lead solder material, tin-plated finish, nickel-plated finish, copper, or an aluminum thin film. Is also good.
[0017]
[Action]
In the mounting wiring board according to the present invention, the conductive bumps corresponding to the electrodes of the electronic component to be mounted and mounted are installed in a form embedded in the uncured insulating resin layer, and the conductive bumps Has a function of exposing a new metal surface by breaking a thin oxide layer or the like by the action of stress. Therefore, by applying a stress after the alignment, the electrodes of the electronic component to be mounted and mounted are electrically connected to the conductive bumps in a state where the interface resistance is zero. Moreover, while the uncured insulating resin layer insulates and separates each connection portion from each other, when cured, it protects the connection portion and the like from the outside and promotes integration and fixing of the mounted electronic component and the wiring board. A highly reliable mounting circuit device can be provided.
[0018]
【Example】
Hereinafter, the present invention will be described with reference to FIGS. 1 (a), (b), (c), FIGS. 2 (a), (b), (c), and FIGS. 3 (a), (b), (c). An embodiment will be described.
[0019]
Example 1
FIG. 1A is a cross-sectional view of an example of a mounting wiring board according to the present invention, and FIG. 1B is a schematic view of an embodiment in which electronic components are mounted on the mounting wiring board shown in FIG. 1C is a cross-sectional view schematically showing a state after mounting an electronic component by applying a stress in the mounting mode shown in FIG. 1B.
[0020]
First, in FIG. 1 (a), reference numeral 1 denotes a double-sided mounting wiring board main body, 2a denotes a copper pattern constituting a connection pad of the double-sided mounting wiring board main body 1, 2b denotes a circuit pattern, and 3 denotes a connection pad 2 formation. The uncured insulating resin layer 4 integrally laminated on the surface is a conductive bump formed and arranged on the surface of the connection pad 2. More specifically, the wiring board main body 1 for double-sided mounting is made of a glass cloth-containing epoxy resin as a base material, the thickness of the connection pad 2a and the circuit pattern 2b is 35 μm, and the shape of the connection pad 2a is 0.9 × 1. .2 mm, the conductive bumps 4 are mountain-shaped with a height of 60 μm, the uncured insulating resin layer 3 is a room-temperature-curable silicone resin layer with a thickness of 40 μm, and a 1608 type resistance element can be mounted and mounted. The mounting wiring board 5 has a thickness of 1.0 mm.
[0021]
And the mounting wiring board 5 of the said structure can be manufactured as follows. That is, a double-sided mounting wiring board main body 1 manufactured by a general means was first prepared, the surface on which the connection pads 2a were formed was polished with a rotary brush, then washed with water and air-cooled and dried. Then, quickly using a metal mask having a hole of 0.3 mm diameter drilled at a predetermined position on an aluminum plate having a thickness of 300 μm, the metal mask was placed on the connection pad 2a surface of the wiring board body 1 for double-sided mounting. The holes were positioned and arranged, and a polymer type silver-based conductive paste was printed to form (form) a chevron-shaped conductive pump 4 having a height of about 60 μm. Then, it is heated and cured at 120 ° C. for 30 minutes, and a room-temperature-curable silicone resin (trade name, RTV rubber, KF3498, manufactured by Shin-Etsu Chemical Co., Ltd.) having a thickness of 40 μm is formed as an adhesive insulating resin layer (uncured insulating resin layer) 3. It was manufactured by coating.
[0022]
The mounting of the electronic component 6 on the mounting wiring board 5 having the above-described configuration, for example, the mounting of a chip-type resistance element is performed as follows. That is, as shown in FIG. 1B, the electrodes 6a and 6b of the chip-type resistance element 6 are positioned and arranged on the conductive pump 4 of the mounting wiring board 5 using a chip mounter, as shown in FIG. In this positioning arrangement, when a 5.0 N load was momentarily applied to the chip mounter, the tip of the conductive bump 4 became crushed as shown in FIG. The height of the bump 4 has been reduced to 30 μm. Next, this was left at room temperature for 24 hours to cure the silicone resin 3.
[0023]
In the mounted circuit, the chip-type resistance element 6 has an electrically sufficient function as a resistance element, and has a thermal shock test (−65 ° C. to 125 ° C., 1000 hours) and a heating test (125 ° C., 1000 hours). There was no problem in the accelerated reliability test such as a humidity resistance test (80 ° C., 85% total humidity resistance, 1000 h).
[0024]
Example 2
FIG. 2A is a cross-sectional view of another example of a mounting wiring board according to the present invention, and FIG. 2B is a view illustrating an embodiment in which electronic components are mounted on the mounting wiring board illustrated in FIG. FIG. 2C is a cross-sectional view schematically showing a state after the electronic component is mounted by applying a stress in the mounting mode shown in FIG. 2B.
[0025]
As in the case of the first embodiment, a conductive pump 4 capable of mounting a gull-ring type FP package type IC memory 6 having 28-pin leads as shown in a cross section in FIG. A mounting wiring board 5 having the above configuration was prepared. The shape of the connection pad 2a of the mounting wiring board 5 is 0.8.times.1.6 mm square with a minimum pitch of 1.25 mm, and the conductive bumps 4 have a mountain shape with a height of about 50 .mu.m. Was. Then, the leads 6a of the IC memory 6 are positioned and arranged on the surface of the mounting wiring board 5 with the corresponding conductive bumps 4, and as shown in a sectional view in FIG. 2B, the flat surfaces of the leads 6a and 6b are formed. Then, a force of 20 N was applied to the substrate and the mounting was performed by pressing the conductive tube 4 so that the height was about 35 μm.
[0026]
The thus configured IC memory mounted circuit device as shown in cross section in FIG. 2 (c) exhibits a sufficient function electrically, and has a thermal shock test (−65 ° C. to 125 ° C., 1000 hours) and a heating test (125 ° C.). C., 1000 h) and a humidity resistance test (80.degree. C., 85% total humidity resistance, 1000 h).
[0027]
Example 3
First, a connection pad 2a having a thickness of 1.0 mm, a copper pattern having a thickness of 18 μm, a 100 μm square, a minimum pitch of 150 μm, and a thin nickel or gold plated surface is manufactured by a conventional method in which the substrate is made of an epoxy resin containing glass cloth. Using a wiring board having a group as shown in the cross section in FIG. 3A as a material, a mountain-shaped conductive bump 4 having a height of about 30 μm is provided via a metal mask according to the first embodiment. In addition, a mounting wiring board 5 having an uncured insulating resin layer 3 provided on the conductive bump 4 type installation surface was prepared. On the other hand, an IC memory chip (chip size, 15 × 10 mm square) having an I / O terminal made of an aluminum thin film and having a thickness of about 1 μm and a minimum pitch of 150 μm was prepared as an electronic component. Here, the conductive bumps 4 of the mounting wiring board 5 are printed with a conductive paste composed of flaky silver powder having an average particle size of 0.5 μm and a bisphenol-type epoxy resin, and heat-cured at 120 ° C. for 30 minutes. The uncured insulating resin layer 3 was formed by applying a solder resist (trade name: UVR-150R, solar ink KK) to a thickness of about 30 μm.
[0028]
After mounting and disposing the IC memory chip 6 on the surface of the mounting wiring board 5 with the mutual conductive bumps 4 and the I / O terminals 6a and 6b aligned as shown in cross section in FIG. When a load of 20 N was applied so that the load was uniformly applied from above the IC memory chip 6, the height of the conductive bumps 4 was reduced to 15 μm. The insulating resin layer 3 was cured, and further heated at 120 ° C. for 30 minutes to be completely cured, thereby forming a mounted circuit device as shown in cross section in FIG. The above-configured mounted circuit device has an electrically sufficient function, and has a thermal shock test (−65 ° C. to 125 ° C., 1000 h), a heating test (125 ° C., 1000 h), and a moisture resistance test (80 ° C., 85%). There was no problem in the accelerated reliability test such as total humidity resistance, 1000 h).
[0029]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the wiring board for mounting which concerns on this invention, the problem by the solder connection conventionally proposed in mounting of an electronic component can be avoided easily. Specifically, (1) electronic components can be mounted and connected at a process temperature of room temperature to about 100 ° C., and high-grade heat-resistant materials do not need to be used for wiring boards and electronic components. (2) Since connection at a low temperature is possible as described above, stress due to the difference in the coefficient of thermal expansion between the wiring board and the electronic component is suppressed to a small value, and the occurrence of peeling of the connection portion is suppressed, and long-term use is possible. Be patient. (3) Since there is no need to use electrically harmful substances such as flux used for solder connection, there is no environmental problem. (4) Even if the wiring pitch becomes fine, by forming the conductive bumps finely, reliable electrical bonding with the electronic component can be achieved, and the pattern of the adjacent connecting portions bridges. No problems occur. Thus, it can be said that the mounting wiring board according to the present invention and the mounting method using the mounting wiring board have many advantages in practical use.
[Brief description of the drawings]
FIGS. 1A and 1B illustrate a mounting wiring board and a mounting method according to the present invention, wherein FIG. 1A is a cross-sectional view of the mounting wiring board, and FIG. (C) is a cross-sectional view of a mounted circuit device formed by mounting electronic components.
2A and 2B show another example of a mounting wiring board and a mounting method according to the present invention, wherein FIG. 2A is a cross-sectional view of the mounting wiring board, and FIG. (C) is a cross-sectional view of a mounted circuit device formed by mounting electronic components.
3A and 3B show still another example of a mounting wiring board and a mounting method according to the present invention, wherein FIG. 3A is a cross-sectional view of the mounting wiring board, and FIG. 3B is a state in which a bare chip IC is mounted. (C) is a cross-sectional view of a mounted circuit device formed by mounting electronic components.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Double-sided mounting wiring board main body 2a ... Connection pad 2b ... Circuit pattern 3 ... Uncured insulating resin layer 4 ... Conductive bump 5 ... Mounting wiring board 6 ... Mounting / mounting electronic components 6a, 6b ... Electrode ( Terminal) 7 ... crushed conductive bump

Claims (4)

搭載する電子部品の電極群に対応する接続パッド群を少なくとも一主面に有する実装用配線板であって、
前記実装用配線板面の接続パッド群が
それぞれ底面側から先端部に向って細くなる先端部の尖った断面形状を有し、実装する電子部品の電極の汚染層に押し当て応力を作用させたときに該汚染層を排除できる程度の硬度を有する、導電性粉末を樹脂と混合して調製した導電性組成物から形成された導電性バンプを備え、かつ前記導電性バンプ群を備えた面が、搭載される電子部品の固着とともに回路部及び接続部を保護する未硬化状の絶縁樹脂層で被覆されている
ことを特徴とする実装用配線板。
A mounting wiring board having a connection pad group corresponding to an electrode group of an electronic component to be mounted on at least one main surface,
The connection pad group on the surface of the mounting wiring board ,
Each has a pointed cross-sectional shape that is tapered from the bottom side toward the tip, and has a hardness enough to remove the contaminated layer when a stress is applied to the contaminated layer of the electrode of the electronic component to be mounted and a stress is applied. Having a conductive bump formed from a conductive composition prepared by mixing a conductive powder with a resin, and a surface provided with the conductive bump group, together with the fixation of an electronic component to be mounted, and a circuit portion. And a wiring board for mounting, which is covered with an uncured insulating resin layer for protecting the connection part .
請求項1記載の実装用配線板であって、前記導電性粉末が、銀、金、銅、ハンダ粉、これらの合金粉末もしくは複合の金属粉末であり、前記樹脂が、ポリカーボネ−ト樹脂、ポリスルホン樹脂、ポリエステル樹脂、フェノキシ樹脂、エポキシ樹脂、フェノール樹脂、又はポリイミド樹脂であることを特徴とする実装用配線板。2. The mounting wiring board according to claim 1, wherein the conductive powder is silver, gold, copper, solder powder, an alloy powder thereof or a composite metal powder, and the resin is a polycarbonate resin, a polysulfone. A wiring board for mounting, which is a resin, polyester resin, phenoxy resin, epoxy resin, phenol resin, or polyimide resin. 少なくとも一主面に底面側から先端部に向って細くなる先端部の尖った断面形状を有し、実装する電子部品の電極の汚染層に押し当て応力を作用させたときに該汚染層を排除できる程度の硬度を有する、導電性粉末を樹脂と混合して調製した導電性組成物から形成された導電性バンプを備えた接続パッド群が形成され、かつ前記導電性バンプ群を備えた面が、搭載される電子部品の固着とともに回路部及び接続部を保護する未硬化状の絶縁樹脂層で被覆されて成る配線板面上に、前記導電性バンプ群に対応する電極群を有する電子部品を位置合わせして搭載・配置する工程と、
前記位置合わせした配線板の導電性バンプ群および電子部品の電極群の間にそれぞれ応力が作用するように電子部品を実装する工程と、
前記配線基板面の絶縁樹脂層を硬化する工程とを具備して成ることを特徴とする実装方法。
At least one main surface has a pointed cross-sectional shape that is tapered from the bottom side toward the front end, and removes the contaminated layer when a stress is applied to the contaminated layer of the electrode of the electronic component to be mounted. A connection pad group having a conductive bump formed from a conductive composition prepared by mixing a conductive powder with a resin having a hardness as high as possible, and a surface having the conductive bump group is provided. An electronic component having an electrode group corresponding to the conductive bump group on a wiring board surface covered with an uncured insulating resin layer that protects a circuit portion and a connection portion together with fixing of the mounted electronic component. The process of positioning and mounting / arranging,
A step of mounting the electronic component such that stress acts between the conductive bump group of the aligned wiring board and the electrode group of the electronic component, respectively,
Curing the insulating resin layer on the surface of the wiring board.
請求項3記載の実装方法であって、前記導電性粉末が、銀、金、銅、ハンダ粉、これらの合金粉末もしくは複合の金属粉末であり、前記樹脂が、ポリカーボネ−ト樹脂、ポリスルホン樹脂、ポリエステル樹脂、フェノキシ樹脂、エポキシ樹脂、フェノール樹脂、又はポリイミド樹脂であることを特徴とする実装方法。4. The mounting method according to claim 3, wherein the conductive powder is silver, gold, copper, solder powder, an alloy powder thereof or a composite metal powder, and the resin is a polycarbonate resin, a polysulfone resin, A mounting method characterized by being a polyester resin, a phenoxy resin, an epoxy resin, a phenol resin, or a polyimide resin.
JP32437193A 1993-12-22 1993-12-22 Wiring board for mounting and mounting method using the same Expired - Fee Related JP3560996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32437193A JP3560996B2 (en) 1993-12-22 1993-12-22 Wiring board for mounting and mounting method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32437193A JP3560996B2 (en) 1993-12-22 1993-12-22 Wiring board for mounting and mounting method using the same

Publications (2)

Publication Number Publication Date
JPH07183646A JPH07183646A (en) 1995-07-21
JP3560996B2 true JP3560996B2 (en) 2004-09-02

Family

ID=18165046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32437193A Expired - Fee Related JP3560996B2 (en) 1993-12-22 1993-12-22 Wiring board for mounting and mounting method using the same

Country Status (1)

Country Link
JP (1) JP3560996B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5323341B2 (en) 1995-11-17 2013-10-23 大日本印刷株式会社 Electronic components
JP2000106482A (en) 1998-07-29 2000-04-11 Sony Chem Corp Manufacture of flexible board
US6930390B2 (en) 1999-01-20 2005-08-16 Sony Chemicals Corp. Flexible printed wiring boards
JP3701807B2 (en) * 1999-01-20 2005-10-05 ソニーケミカル株式会社 Substrate manufacturing method and substrate
JP4789190B2 (en) * 2006-03-29 2011-10-12 新日鐵化学株式会社 Manufacturing method of semiconductor device provided with bump
KR100811034B1 (en) * 2007-04-30 2008-03-06 삼성전기주식회사 Method for manufacturing printed circuit board having embedded electronic components
CN104619126B (en) * 2015-01-14 2018-02-27 吴盛龙 The board positioning means and its attaching method of a kind of LED chip mounter

Also Published As

Publication number Publication date
JPH07183646A (en) 1995-07-21

Similar Documents

Publication Publication Date Title
JP2751912B2 (en) Semiconductor device and manufacturing method thereof
US6229209B1 (en) Chip carrier
KR0141580B1 (en) Surface mountable semiconductor device
EP0530840B1 (en) Electric circuit board module and method for producing electric circuit board module
TW480636B (en) Electronic component and semiconductor device, method for manufacturing and mounting thereof, and circuit board and electronic equipment
JP4135565B2 (en) Electronic circuit device and manufacturing method thereof
US5760469A (en) Semiconductor device and semiconductor device mounting board
KR20000075876A (en) Semiconductor device and method for manufacturing the same
US7656677B2 (en) Multilayer electronic component and structure for mounting multilayer electronic component
US5841198A (en) Ball grid array package employing solid core solder balls
US6946601B1 (en) Electronic package with passive components
JP3560996B2 (en) Wiring board for mounting and mounting method using the same
JPH031828B2 (en)
JPH05218137A (en) Manufacture of semiconductor device
JPS61263113A (en) Direct attaching metal covered film capacitor
WO1997030461A1 (en) Resistor network in ball grid array package
JPH10321750A (en) Semiconductor device and manufacture of wiring board having semiconductor chip mounted thereon
JPS6153852B2 (en)
JP2676107B2 (en) Substrate for mounting electronic components
JP2007300038A (en) Electronic component package, and its manufacturing method
JP2000200953A (en) Mounting structure and mounting method of electronic components
KR100246848B1 (en) Land grid array and a semiconductor package having a same
JPH05259633A (en) Electronic circuit device
WO1998048602A1 (en) Ball grid array package assembly including stand-offs
JP2820115B2 (en) Method for highly reliable connection and mounting of electronic components on printed circuit board and electronic components

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040527

LAPS Cancellation because of no payment of annual fees