JP3558576B2 - Semiconductor device manufacturing method and semiconductor device - Google Patents

Semiconductor device manufacturing method and semiconductor device Download PDF

Info

Publication number
JP3558576B2
JP3558576B2 JP2000040961A JP2000040961A JP3558576B2 JP 3558576 B2 JP3558576 B2 JP 3558576B2 JP 2000040961 A JP2000040961 A JP 2000040961A JP 2000040961 A JP2000040961 A JP 2000040961A JP 3558576 B2 JP3558576 B2 JP 3558576B2
Authority
JP
Japan
Prior art keywords
resin composition
semiconductor chip
wiring board
solder
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000040961A
Other languages
Japanese (ja)
Other versions
JP2000311923A (en
Inventor
和弘 多田
康道 畑中
弘文 藤岡
誠次 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000040961A priority Critical patent/JP3558576B2/en
Publication of JP2000311923A publication Critical patent/JP2000311923A/en
Application granted granted Critical
Publication of JP3558576B2 publication Critical patent/JP3558576B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/731Location prior to the connecting process
    • H01L2224/73101Location prior to the connecting process on the same surface
    • H01L2224/73103Bump and layer connectors
    • H01L2224/73104Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81191Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81192Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81193Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83191Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Description

【0001】
【発明の属する技術分野】
本発明は半導体装置の製造方法およびそれを用いた半導体装置に係り、とくにフリップチップ実装したBGA(ボールグリッドアレー)の半導体装置ならびにその製造方法に関するものである。
【0002】
【従来の技術】
従来の樹脂封止型の半導体装置を製造するためには、配線形成面の電極パッド上に突起バンプ電極が形成された半導体チップのバンプ電極を実装基板上に圧着接合した後、チップ配線面と実装基板との間隙部にアンダーフィル樹脂を注入することにより、半導体チップをその配線形成面および突起バンプ電極が樹脂封止された状態で実装基板上に実装する方法が開発されている。しかし、このような製造方法では実装基板上に実装する際の樹脂封止工程に時間を要するばかりでなく、樹脂の流動性、充填剤量等が制約されるため、充分な信頼性の確保が困難になっている。
【0003】
また、特開平2−96343にはアンダーフィル方式とは異なり、半導体チップと該半導体チップが搭載される被搭載部材との間に固体でかつ板状の熱硬化性樹脂を介して接合する方法が示されている。この方法は、半田を介して半導体チップと被搭載部材との間を電気的に接続するものであるが、半田を溶融接合させる際、間に存在する熱硬化性樹脂を溶融させることはしない。その場合、半導体チップと被搭載部材との距離を一定に保ちながら半田接合を行なうには、半導体チップに大きな荷重をかける必要が生じる。半導体チップに大きな荷重を付加することは、半導体チップの破損といった問題を引き起こすことがある。
【0004】
【発明が解決しようとする課題】
前記のようなアンダーフィル樹脂を用いる従来の半導体装置は、半導体チップと配線基板の間隙に封止樹脂を注入する必要があるために工程が複雑であるのと同時に、封止樹脂に関してはボイド無く注入するために必要となる樹脂の流動性、充填剤量の制御が困難である。また、半導体チップと配線基板との間に樹脂組成物層を介する前記従来の方法では、チップに対して大きな荷重をかける必要が生じ、半導体チップの破損といった問題を引き起こす。
【0005】
本発明は前記の問題点に鑑みてなされたものであり、フリップ接合時に半導体チップに加える荷重を低減でき、半導体装置の製造効率および信頼性の向上を図り得る半導体装置の製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
配線基板上で半導体チップの回路面を下側にして、半導体チップと配線基板との間を配線基板の配線部より高い突起状の半田バンプ電極で接続搭載し、さらに半導体チップと配線基板との間が樹脂組成物にて接着されている半導体装置の製造方法における前記の課題は下記の手段を講じることにより解決することができる。
【0007】
本発明は、配線基板上で半導体チップの回路面を下側にして、前記半導体チップと前記配線基板との間を前記配線基板の配線部より高い突起状の半田バンプ電極で接続搭載し、さらに前記半導体チップと前記配線基板との間が室温で固体である熱硬化性の樹脂組成物にて接着されている半導体装置の製造方法において、前記樹脂組成物がフィルム形状で前記半導体チップまたは前記配線基板に貼り付けることにより、前記樹脂組成物層をあらかじめ前記半導体チップまたは前記配線基板に形成し、半田の融点以下の温度で溶融させ、前記半導体チップと前記配線基板との半田溶融接合時には前記樹脂組成物は溶融状態を保ち、前記半導体チップと前記配線基板とを電気的に接続後、半田の融点温度以下で前記樹脂組成物硬化をさせることを特徴とする半導体装置の製造方法に関する。
また、本発明は、配線基板上で半導体チップの回路面を下側にして、前記半導体チップと前記配線基板との間を前記配線基板の配線部より高い突起状の半田バンプ電極で接続搭載し、さらに前記半導体チップと前記配線基板との間が室温で固体である熱硬化性の樹脂組成物にて接着されている半導体装置の製造方法において、前記樹脂組成物が溶剤を含有し、前記半導体チップまたは前記配線基板に塗布後、乾燥させることにより、前記樹脂組成物層をあらかじめ前記半導体チップまたは前記配線基板に形成し、半田の融点以下の温度で溶融させ、前記半導体チップと前記配線基板との半田溶融接合時には前記樹脂組成物は溶融状態を保ち、前記半導体チップと前記配線基板とを電気的に接続後、半田の融点温度以下で前記樹脂組成物を硬化させることを特徴とする半導体装置の製造方法に関する。
【0008】
また、本発明は、配線基板上で半導体チップの回路面を下側にして、前記半導体チップと前記配線基板との間を前記配線基板の配線部より高い突起状の半田バンプ電極で接続搭載し、さらに前記半導体チップと前記配線基板との間が室温で固体である熱硬化性の樹脂組成物にて接着されている半導体装置の製造方法において、前記樹脂組成物層をあらかじめ前記半導体チップまたは前記配線基板に形成し、半田バンプの融点以下の温度で溶融させ、溶融状態で、前記半導体チップと前記配線基板とを前記半田バンプ電極を介して接触させ、前記半田バンプ電極を介して接触状態にある前記半導体チップと前記配線基板との間隔を一定に保持しながら、前記半田バンプの融点以上の温度で半田バンプを溶融させて、前記半導体チップと前記配線基板とを電気的に接続後、半田の融点温度以下で前記樹脂組成物を硬化させることを特徴とする半導体装置の製造方法に関する。
この場合、前記樹脂組成物がフィルム形状で前記半導体チップまたは前記配線基板に貼り付けることが好ましい。
この場合、前記樹脂組成物が溶剤を含有し、前記半導体チップまたは前記配線基板に塗布後、乾燥させることが好ましい。
【0009】
この場合、前記樹脂組成物層をあらかじめ前記半導体チップに形成する際に、半導体ウエハ上に前記樹脂組成物層を形成し、前記半導体ウエハと前記樹脂組成物層を切断して前記半導体チップに分離することが好ましい。
【0010】
この場合、前記半田バンプ電極をあらかじめ前記半導体チップ側に形成し、半田を溶融させ前記配線基板と電気的に接続することができる。
【0011】
この場合、前記半田バンプ電極をあらかじめ前記配線基板側に形成し、半田を溶融させ前記半導体チップと電気的に接続することができる。
【0012】
この場合、前記半田バンプ電極をあらかじめ前記半導体チップ、前記配線基板双方に形成し、半田を溶融させ前記半導体チップと前記配線基板とを電気的に接続させることができる。
【0015】
この場合、前記樹脂組成物が(a)エポキシ樹脂を含むことが好ましい。
【0016】
この場合、前記樹脂組成物が(b)充填剤を含むことが好ましい。
【0022】
また、本発明は前記半導体装置の製造方法によって作製した半導体装置に関する。
【0023】
【発明の実施の形態】
本発明にかかわる半導体装置の製造方法は、従来の方法とは異なり樹脂組成物層をあらかじめ半導体チップまたは配線基板に形成する。たとえば図1を用いて説明する。図中、1は半導体ウエハ、2は半導体チップ、3は半田バンプ電極、4は樹脂塑性物層、5は配線基板、6は外部バンプ電極である。
【0024】
樹脂組成物層を形成した半導体チップまたは配線基板を半田の融点以下の温度で溶融させ(工程(v))、半導体チップと配線基板との半田溶融接合時には前記樹脂組成物は溶融状態を保ち、半導体チップと配線基板とを電気的に接続後(工程(vi))、半田の融点温度以下で樹脂組成物硬化をさせる(工程(vii))ことを特徴とする半導体装置の製造方法である。この半導体チップと配線基板を半田溶融接合する際に(工程(vi))、樹脂組成物層が溶融状態を保っていることで、半田溶融接合に悪影響を与えない。さらに、樹脂組成物を硬化後に、配線基板に外部バンプ電極を形成することもできる(工程(viii))。
【0025】
工程(v)および工程(vi)においては、接合後に良好なバンプ形状を得ることができる点で、半導体チップと配線基板との間隔を一定に保持することが好ましい。
【0026】
本発明に用いる樹脂組成物は、熱硬化性樹脂である。ただし、熱硬化性樹脂に他の樹脂例えば熱可塑性樹脂等を混合したものであってもよい。
【0027】
本発明に用いることのできる半田バンプ電極の材料としては、錫−鉛系のはんだ、錫−銀系、錫−ビスマス系、錫−亜鉛系等の鉛フリーはんだなどのいずれの導電性材料も適用可能である。中でも、錫−鉛系(錫63重量%)の共晶半田(融点183℃)が信頼性の点から望ましい。また、ほかの導電性材料と前記半田材料とを組み合わせた半田バンプ電極であってもよい。たとえば、金と半田を組み合わせたものがあげられる。
【0028】
樹脂組成物層をあらかじめ前記半導体チップに形成する際に、分離する前の半導体ウエハ上に樹脂組成物層を形成し、半導体ウエハと樹脂組成物層を切断して前記半導体チップに分離することができる(工程(iv))。樹脂組成物層が形成された半導体ウエハを分離する方法は、通常の半導体ウエハを分離するのと同様ダンシングソーなどを用いることができる。
【0029】
半田バンプ電極は、あらかじめ半導体チップ側に形成し、半田を溶融させ配線基板と電気的に接続することも、あらかじめ配線基板側に形成し、半田を溶融させ半導体チップと電気的に接続することもできる(工程(ii))。また、半田バンプ電極はあらかじめ半導体チップ、配線基板双方に形成し半田を溶融させ、半導体チップと配線基板とを電気的に接続させることも可能である(工程(ii))。
【0030】
本発明にかかわる半導体装置の製造方法で用いる樹脂組成物は、フィルム形状で前記半導体チップまたは前記配線基板に貼り付けることができるものが好ましい。このフィルムを半導体チップまたは配線基板に貼り付ける際に、加熱や加圧を行なって貼り付けることもできる。
【0031】
また、前記樹脂組成物は、樹脂組成物が溶剤を含有し、半導体チップまたは前記配線基板に塗布後、乾燥させることで溶剤を揮発させることができるものが好ましい。前記溶剤としては、従来からのもので樹脂組成物中の無機系材料以外を溶解させるものであればよく、たとえばジメチルスルホキシド、ジメチルホルムアミド、塩化メチレン、クロロホルム、メチルエチルケトン、アセトン、テトラヒドロフラン、酢酸エチルなどの溶剤単独またはその混合溶剤があげられる。中でも、80〜100℃で乾燥でき、樹脂組成物を溶解させることができる点で、メチルエチルケトンまたはその混合溶剤が好ましい。
【0032】
前記樹脂組成物は、半導体分野での使用実績があり、樹脂組成物に接着性を付与することから、(a)エポキシ樹脂を含むことが好ましい。
【0033】
本発明の樹脂組成物において用いるエポキシ樹脂(a)としては、1分子中に2個以上のエポキシ基をもつエポキシ樹脂で、従来公知のものであればとくに制限はないが、たとえばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ジアリルビスフェノールA型エポキシ樹脂、ジアリルビスフェノールF型エポキシ樹脂、ジアリルビスフェノールAD型エポキシ樹脂、テトラメチルビフェノール型エポキシ樹脂、ビフェノール型エポキシ樹脂、シクロペンタジエン型エポキシ樹脂、テルペンフェノール型エポキシ樹脂、テトラブロムビスフェノールA型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、環式脂肪族エポキシ樹脂、グリシジルエステルエポキシ樹脂および複素環式エポキシ樹脂などがあり、単独またはその混合物があげられる。
【0034】
前記樹脂組成物は、樹脂組成物の熱膨張係数を小さくし、低吸水性を付与するために(b)充填剤を含むことが好ましい。
【0035】
本発明において用いることのできる充填剤(b)としては、従来からのもので、本発明の硬化を損なわないものであればよく、たとえば、溶融シリカ、結晶シリカなどのシリカ、アルミナ、チッ化ケイ素、炭酸カルシウム、酸化亜鉛などがあげられる。中でも、得られる樹脂組成物の熱膨張係数を低下させ、機械的強度を向上させるという点から、溶融シリカを用いるのが好ましい。さらに、流動性を付与する点から、球状の溶融シリカを用いるのが望ましい。
【0036】
本発明の半導体装置の製造方法では、あらかじめ半導体チップまたは配線基板に樹脂組成物層を形成した後、180℃に加熱するまでに樹脂組成物が溶融することが好ましい。そのために、樹脂組成物は室温で固体であり、180℃以下で溶融すればよい。中でも、樹脂溶融時に樹脂粘度が低くなることから約80℃で溶融する樹脂組成物が望ましい。
【0037】
また、あらかじめ前記半導体チップまたは前記配線基板に前記樹脂組成物層を形成した後、好ましくは230℃で10秒以内に前記樹脂組成物がゲル化しないことが好ましい。ここで、樹脂のゲル化とは樹脂が反応により流動性を示さないことをいう。半導体チップと配線基板とを半田バンプ電極を用いて電気的に接続する方法としては、フリップチップボンダーなどの装置を用いることができる。フリップチップボンダーにて半導体チップと配線基板とが接合する前に、樹脂が硬化すると、半田バンプ電極の導通がとれない場合や半田バンプ電極の形状が悪いため信頼性が劣るといった問題が発生する。そのため、フリップチップボンダーにて半導体チップと配線基板とを接合する条件230℃で10秒以内に樹脂がゲル化しないことが必要となる。
【0038】
また、半導体チップと前記配線基板を接合した後の前記樹脂組成物層が、半田の融点以下の100〜180℃でかつ12時間以内に硬化することが好ましい。ゲル化を遅くすると硬化時間が長くなるが、製造上の効率から1〜3時間であることが好ましい。
【0039】
本発明の半導体装置の製造方法では、樹脂組成物が硬化後に、100〜200℃のガラス転移温度を有することが好ましい。ここで、ガラス転移温度とは、熱機械分析(TMA)により温度−熱膨張曲線の硬化物のガラス領域とゴム領域の直線の延長線の交点からガラス転移温度を求めた。ガラス転移温度が100℃未満であると半導体装置としての耐湿性や耐熱性等の信頼性に問題が生じる。さらに、高信頼性を要求される場合には、ガラス転移温度が130〜200℃であることが好ましい。
【0040】
本発明の半導体装置の製造方法では、樹脂組成物が硬化後に、ガラス転移温度以下の熱膨張係数が10〜30ppm/℃であることが好ましい。ここで、熱膨張係数は熱機械分析(TMA)により求めた。半導体装置を使用する際の環境の温度変化により、半導体チップと配線基板との熱膨張係数の差による熱応力が発生し、半田バンプ電極や樹脂組成物層に加わることとなる。この熱応力は半導体チップと配線基板間の電気的接続信頼性を悪化させるため、熱応力を避ける必要が生じる。このためには、樹脂組成物層として、熱膨張係数の小さなもの(半田の熱膨張係数から配線基板の熱膨張に近いもの)が望まれる。充填剤として、溶融シリカを使用した場合、樹脂組成物中に約60重量%以上含有している樹脂組成物を使用することが望まれる。さらに好ましくは、熱膨張係数が10〜20ppm/℃であることが好ましい。
【0041】
以下に、最も好ましい実施の態様についてさらに詳しく説明する。
【0042】
実施の形態1
本発明の実施の形態1による半導体装置の製造方法を、図8を用いて説明する。図中、7は加熱ステージ、8は加熱ヘッドである。
【0043】
まず、半導体ウエハ1に半田バンプ電極3を形成する(工程(ii))。つぎに、樹脂組成物層4を半田バンプ電極3の形成された半導体ウエハ1上に形成する(工程(iii))。つぎに、樹脂組成物層4が形成された半導体ウエハ1をダインシングソーを用いて半導体チップ2に切断分離する(工程(iv))。
【0044】
別途配線基板5上にバンプ電極3を形成し、バンプ電極3が形成された配線基板5を所定温度、すなわちバンプ電極3の融点未満に設定した加熱ステージ7に位置決めして固定する。また、切断分離した半導体チップ2を加熱ヘッド8に位置決めして固定する(工程(v))。
【0045】
加熱ヘッドをバンプ電極3の融点未満でしかも樹脂組成物層4の樹脂組成物の融点以上の温度に加熱しながら、加熱ヘッド8を動かし、加熱ヘッド8に固定した半導体チップ2の半田バンプ電極3と加熱ステージ7に固定した配線基板5のバンプ電極3とを接触させる。半導体チップ2と配線基板5との間隔を両バンプ電極3が接触状態を保つように一定に保持したまま、所定のプロファイルで加熱ヘッド8を昇温してバンプ電極3および樹脂組成物層4を樹脂組成物がゲル化しない範囲で加熱し、樹脂組成物およびバンプ電極3をともに溶融状態として配線基板5と半導体チップ2とを電気的に接続する(工程(vi))。
【0046】
なお、樹脂のゲル化とは、樹脂が反応により流動性を示さないことをいう。
【0047】
配線基板5と半導体チップ2との間隔を一定にしたまま、所定のプロファイルで加熱ヘッドを降温して配線基板5、半導体チップ2、バンプ電極3、および樹脂組成物層4の樹脂組成物の融点未満の温度に冷却する。樹脂組成物およびバンプ電極3は共に固化する。
【0048】
接合された半導体装置をバンプ電極3の融点未満でしかも樹脂組成物層4の樹脂組成物が硬化可能な所定温度に設定したオーブンに樹脂組成物が硬化するまで所定時間置いて、樹脂組成物を硬化させる(工程(vii))。さらに、樹脂組成物の硬化後に、配線基板5に外部バンプ電極6を形成することもできる(工程(viii))。
【0049】
前記のような接続方法によれば、従来の狭間隙間に樹脂を流し込むアンダーフィル方式を用いるのに比較して、時間の短縮、工程の削減ができ、アンダーフィル方式では困難とされる超狭間隙に対しても、あらかじめ樹脂組成物層4を形成することにより可能となる。
【0050】
また、配線基板5と半導体チップ2とを電気的に接続する際に、樹脂組成物層4の樹脂組成物が溶融しないプロセスであると、配線基板5と半導体チップ2との間隔を一定に保つには、高荷重を半導体チップ2に負荷する必要がある。一方、本発明にかかわるプロセスでは、配線基板5と半導体チップ2とを電気的に接続する際、樹脂組成物層4の樹脂組成物が溶融状態であるため、半導体チップ2に対して低荷重で、電気的接続後のバンプ電極形状が良好な形態を得ることができるよう配線基板5と半導体チップ2との間隔を一定に保つことができる。
【0051】
実施の形態2
本発明の実施の形態2による半導体装置の製造方法を図9を用いて説明する。
【0052】
まず、配線基板5に半田バンプ電極3を形成する(工程(ii))。つぎに、樹脂組成物層4を半田バンプ電極3の形成された配線基板5上に形成する(工程(iii))。
【0053】
樹脂組成物4が形成された配線基板5を所定温度すなわち半田バンプ電極3の融点未満に設定した加熱ステージ7に位置決めして固定する。また、半導体チップ2を加熱ヘッド8に位置決めして固定する(工程(v))。
【0054】
加熱ヘッドを半田バンプ電極3の融点未満でしかも樹脂組成物層4の樹脂組成物の融点以上の温度に加熱しながら、加熱ヘッド8を動かし、加熱ヘッド8に固定した半導体チップ2のパッド部分と加熱ステージ7に固定した配線基板5の半田バンプ電極3とを接触させる。半導体チップ2と配線基板5との間隔を半田バンプ電極3と半導体チップ2のパッド部分とが接触状態を保つように一定に保持したまま、所定のプロファイルで加熱ヘッド8を昇温して半田バンプ電極3および樹脂組成物層4を樹脂組成物層4の樹脂組成物がゲル化しない範囲で加熱し、樹脂組成物および半田バンプ電極3を共に溶融状態として配線基板5と半導体チップ2とを電気的に接続する(工程(vi))。
【0055】
以下、実施の形態1と同様に樹脂硬化を行ない、外部バンプ形成も行なうことができる。
【0056】
実施の形態3
本発明の実施の形態3による半導体装置の製造方法を図10を用いて説明する。
【0057】
まず、配線基板5に半田バンプ電極3を形成する(工程(ii))。つぎに、樹脂組成物層4を半田バンプ電極3の形成された配線基板5上に形成する(工程(iii))。
【0058】
樹脂組成物層4が形成された配線基板5を所定温度すなわち半田バンプ電極3の融点未満に設定した加熱ステージ7に位置決めして固定する。また、別途半田バンプ電極3を形成した半導体チップ2を加熱ヘッド8に位置決めして固定する(工程(v))。
【0059】
加熱ヘッドをバンプ電極3の融点未満でしかも樹脂組成物層4の樹脂組成物の融点以上の温度に加熱しながら、加熱ヘッド8を動かし、加熱ヘッド8に固定した半導体チップ2の半田バンプ電極3と加熱ステージ7に固定した配線基板5の半田バンプ電極3とを接触させる。半導体チップ2と配線基板5との間隔を両バンプ電極3が接触状態を保つように一定に保持したまま、所定のプロファイルで加熱ヘッド8を昇温してバンプ電極3および樹脂組成物層4を樹脂組成物がゲル化しない範囲で加熱し、樹脂組成物およびバンプ電極3を共に溶融状態として配線基板5と半導体チップ2とを電気的に接続する(工程(vi))。
【0060】
以下、実施の形態1と同様に樹脂硬化を行ない、外部バンプ形成も行なうことができる。
【0061】
【実施例】
以下、添付図面に基づいて本発明にかかわる半導体装置の製造方法を詳細に説明する。
【0062】
本発明に用いる樹脂組成物として、表1に示す(A)エポキシ樹脂系フィルム、(B)溶剤入りエポキシ樹脂系ペースト、(C)溶剤入りエポキシ樹脂系ペースト、(D)溶剤入りエポキシ樹脂系ペーストの4種類を用いた。なお、ゲル化時間は熱板上にて測定した。ガラス転移温度および熱膨張係数は熱機械分析装置(TMA)を用いて測定した。
【0063】
【表1】

Figure 0003558576
【0064】
実施例1
図1は本発明の実施例1の製造工程を示したものである。まず、半導体ウエハ1上に集積回路を形成した複数の半導体チップ2上に配設した多数の錫−鉛系(錫63重量%)の共晶半田バンプ電極3形成した(工程(ii))。つぎに半導体ウエハ上にフィルム状の樹脂組成物(A)を加熱加圧(80℃、10秒、0.1kgf/mm)して樹脂組成物層4を形成した(工程(iii))。なお、この加熱加圧によって、樹脂組成物(A)は溶融し、加熱加圧ののち、室温に戻すとフィルムは固化していた。
【0065】
ダイシングソー等を用い、半導体ウエハ1と樹脂組成物層4とともに個々の半導体チップ2に分離した(工程(iv))。分離された半導体チップ2は回路面を下面にして、配線基板5とフリップチップボンダー等を用いて電気的に接続した(230℃、10秒)(工程(v)、(vi))。この際、樹脂組成物層は半田の溶融時には溶融しており、半田接合に悪影響を与えなかった。その後、半田の融点以下の温度にて、樹脂組成物層の硬化(170℃、2時間)を行なった(工程(vii))。最後に配線基板5に対して外部バンプ電極6の形成を行ない半導体装置を得た(工程(viii))。
【0066】
実施例2
図2は本発明の実施例2の製造工程を示したものである。実施例1と同様に半導体ウエハ1上に集積回路を形成した複数の半導体チップ2上に配設した多数の錫−鉛系(錫63重量%)の共晶半田バンプ電極3形成した(工程(ii))。つぎに半導体ウエハ1上に溶剤の含有した樹脂組成物(B)層4を印刷機等を用いて形成した(工程(ii)−1)。その後、樹脂組成物層を乾燥させた(80℃、10分)(工程(ii)−2)。
【0067】
乾燥後の樹脂組成物層を形成した半導体ウエハは実施例1と同様の工程にて、分離、接合、硬化、外部バンプ電極形成を行ない半導体装置を得た(工程(iv)〜(viii))。
【0068】
実施例3
図3は本発明の実施例3の製造工程を示したものである。まず、半導体ウエハ1上に集積回路を形成した複数の半導体チップ2上に配設した多数の錫−鉛系(錫63重量%)の共晶半田バンプ電極3形成した(工程(ii))。ダイシングソー等を用い、半導体ウエハ1を個々の半導体チップ2に分離した(工程(iv))。別に、配線基板5にフィルム状の樹脂組成物(A)を加熱加圧(80℃、10秒、0.1kgf/mm)して樹脂組成物層4を形成した(工程(iii))。なお、この加熱加圧によって、樹脂組成物(A)は溶融し、加熱加圧ののち、室温に戻すとフィルムは固化していた。
【0069】
分離された半導体チップ2は回路面を下面にして、配線基板5とフリップチップボンダー等を用いて電気的に接続した(230℃、10秒)(工程(v)、(vi))。以後、実施例1と同様の工程にて、硬化、外部バンプ電極形成を行ない半導体装置を得た(工程(vii)、(viii))。
【0070】
実施例4
図4は本発明の実施例4の製造工程を示したものである。配線基板5上に錫−鉛系(錫63重量%)の共晶半田バンプ電極3形成した(工程(ii))。つぎにフィルム状の樹脂組成物(A)を加熱加圧(80℃、10秒、0.1kgf/mm)して樹脂組成物層4を形成した(工程(iv))。なお、この加熱加圧によって、樹脂組成物(A)は溶融し、加熱加圧ののち、室温に戻すとフィルムは固化していた。
【0071】
分離された半導体チップ2は回路面を下面にして、配線基板5とフリップチップボンダー等を用いて電気的に接続した(230℃、10秒)(工程(v)、(vi))。以後、実施例1と同様の工程にて、硬化、外部バンプ電極形成を行ない半導体装置を得た(工程(vii)、(viii))。
【0072】
実施例5
図5は本発明の実施例5の製造工程を示したものである。まず、半導体ウエハ1上に集積回路を形成した複数の半導体チップ2上に配設した多数の錫−鉛系(錫63重量%)の共晶半田バンプ電極3形成した(工程(ii))。ダイシングソー等を用い、半導体ウエハ1を個々の半導体チップ2に分離した(工程(iv))。別に、配線基板5上にも錫−鉛系(錫63重量%)の共晶半田バンプ電極3形成する(工程(ii))。つぎにフィルム状の樹脂組成物(A)を加熱加圧(80℃、10秒、0.1kgf/mm)して樹脂組成物層4を形成した(工程(iv))。なお、この加熱加圧によって、樹脂組成物(A)は溶融し、加熱加圧ののち、室温に戻すとフィルムは固化していた。
【0073】
分離された半導体チップ2は回路面を下面にして、配線基板5とフリップチップボンダー等を用いて電気的に接続した(230℃、10秒)(工程(v)、(vi))。以後、実施例1と同様の工程にて、硬化、外部バンプ電極形成を行ない半導体装置を得た(工程(vii)、(viii))。
【0074】
実施例6
図6は本発明の実施例6の製造工程を示したものである。まず、配線基板5上に錫−鉛系(錫63重量%)の共晶半田バンプ電極3形成した(工程(ii))。つぎに配線基板5上に溶剤の含有した樹脂組成物(B)層4を印刷機等を用いて形成した(工程(iii)−1)。その後、樹脂組成物層を乾燥させた(80℃、10分)(工程(iii)−2)。分離された半導体チップ2は回路面を下面にして、乾燥後の樹脂組成物層を形成した配線基板5とフリップチップボンダー等を用いて電気的に接続した(230℃、10秒)(工程(v)、(vi))。
【0075】
以後、実施例1と同様の工程にて、硬化、外部バンプ電極形成を行ない半導体装置を得た(工程(vii)、(viii))。
【0076】
実施例7
樹脂組成物として(C)溶剤入りエポキシ樹脂系ペーストを用い、実施例6と同様の方法で半導体装置を得た。
【0077】
実施例8
樹脂組成物として(D)溶剤入りエポキシ樹脂系ペーストを用い、実施例6と同様の方法で半導体装置を得た。
【0078】
比較例1
樹脂組成物として表1中に示した(E)エポキシ樹脂系フィルム用い、実施例4と同様の方法で半導体装置を得た。
【0079】
比較例2
図7は比較例2の製造工程を以下に示したものである。配線基板5上に錫−鉛系(錫63重量%)の共晶半田バンプ電極3を形成した(工程(ii))。つぎにフィルム状の樹脂組成物(E)を加熱加圧(80℃、10秒、0.1kgf/mm)して樹脂組成物層4を形成した(工程(iv))。
【0080】
分離された半導体チップ2は回路面を下面にして、配線基板5とフリップチップボンダー等を用いて圧接した(150℃、50秒、0.5kgf/mm)(工程(v)、(vi))。つぎに、半田バンプ電極を溶融させるため、リフロー工程を行なった(260℃、10s)(工程(vii))。
【0081】
実施例1〜8ならびに比較例1〜2で作製した半導体装置の半導体チップと配線基板間との電気的な接続抵抗を評価した結果、実施例1〜8に基づいて作製した半導体装置は半導体チップと配線基板間の電気的な接合は問題なく確保されているのに対し、比較例1〜2により作製した半導体装置は初期から電気的な接合は確保されていなかった。さらに、実施例1〜8に基づいて作製した半導体装置は−40℃〜125℃の温度サイクル試験1000サイクルの半導体装置においても接続抵抗の変化は認められなかった。また、PCT試験(121℃、2気圧)168時間においても変化は認められなかった。
【0082】
実施例9
図8の工程にしたがって半導体装置を製造した。まず、半導体ウエハ1上に集積回路を形成した複数の半導体チップ2上に配設した多数の錫−鉛系(錫63重量%)の高さ100ミクロンの共晶半田バンプ電極3形成した(工程(ii))。
【0083】
この半導体ウエハ1上に厚み120ミクロンのフィルム状の樹脂組成物(A)を加熱加圧(80℃、10秒、0.1kgf/mm)して樹脂組成物層4を形成した(工程(iii))。
【0084】
ダイシングソーを用い、半導体ウエハ1と樹脂組成物層4とともに個々の半導体チップ2に分離する分離工程を行なった(工程(iv))。
【0085】
配線基板5上に高さ100ミクロンの共晶半田バンプ電極3を形成し、この配線基板5をフリップチップボンダ上で、所定温度(150℃)に設定した加熱ステージ7に位置決めして固定した。また、分離した半導体チップ2を加熱ヘッド8に位置決めして固定した(工程(v))。
【0086】
加熱ヘッド8を動かし、加熱ヘッド8に固定した半導体チップ2の半田バンプ電極3と加熱ステージ7に固定した配線基板5上の半田バンプ電極3とを接触させた。つぎに半導体チップ2と配線基板5との間隔を両バンプ電極3を接触させた状態で一定(90ミクロン)に保持したまま、加熱ヘッド8を5秒で230℃まで昇温した後、230℃で10秒間保持し、バンプ電極3および樹脂組成物層4を加熱した。バンプ電極3および樹脂組成物層4は共に溶融状態となり半導体チップ2と配線基板5がバンプ電極3を介して電気的接続された(工程(vi))。
【0087】
半導体チップ2と配線基板5との間隔を保持したまま、所定のプロファイルで加熱ヘッドを降温して半導体チップ2、配線基板5、バンプ電極3および樹脂組成物を60℃まで冷却した。するとバンプ電極3は固化し、フリップチップボンダ上から取り出して室温で放置することで樹脂組成物層4も固化した。
【0088】
接合された半導体チップ2と配線基板5を、バンプ電極3の溶融温度(183℃)より低い170℃に設定したオーブン中で2時間放置して、樹脂組成物層4の硬化を行なった(工程(vii))。
【0089】
最後に、配線基板5に外部バンプ電極6を形成して半導体装置を得た(工程(viii))。
【0090】
実施例10
図9の工程にしたがって半導体装置を製造した。
【0091】
配線基板5上に高さ110ミクロンの半田バンプ電極3を形成し(工程(ii))、厚み100ミクロンのフィルム状の樹脂組成物(A)を加熱加圧(80℃、10秒、0.1kgf/mm)して樹脂組成物層4を形成した(工程(iii))。
【0092】
一方、半導体ウエハ1を半導体チップ2に切断分離する(工程(iii))。
【0093】
配線基板5をフリップチップボンダ上で、所定温度(150℃)に設定した加熱ステージ7に位置決めして固定した。また、分離した半導体チップ2を加熱ヘッド8に位置決めして固定した(工程(v))。
【0094】
加熱ヘッド8を動かし、加熱ヘッド8に固定した半導体チップ2のパット部分と加熱ステージ7に固定した配線基板5上の半田バンプ電極3とを接触させた。半導体チップ2と配線基板5との間隔を、半田バンプ電極3を接触させた状態で一定(70ミクロン)に保持したまま、加熱ヘッド8を5秒で230℃まで昇温した後、230℃で10秒間保持し、半田バンプ電極3および樹脂組成物層4を加熱した。半田バンプ電極3および樹脂組成物層4の樹脂組成物は共に溶融状態となり、半導体チップ2と配線基板5が半田バンプ電極3を介して電気的接続された(工程(vi))。
【0095】
以下、実施例9と同様に樹脂硬化、外部バンプ形成を行ない、半導体装置を得た。
【0096】
実施例11
実施例9と同様の工程にて、樹脂組成物層4としてペースト状樹脂組成物(B)を用いた。なお、半田バンプ電極3を形成した半導体ウエハ1上への樹脂組成物層4の形成方法は、以下の通りである。
【0097】
半田バンプ電極3を形成した半導体ウエハ1上に印刷法にて約150ミクロンの厚みで樹脂組成物層4を形成した。その後、この半導体ウエハを100℃のオーブン中にて、溶剤を揮発させた。以下の工程は、実施例9と同様である。
【0098】
実施例12
図10の工程にしたがって半導体装置を製造した。まず、配線基板5上に錫−鉛系(錫63重量%)の高さ100ミクロンの共晶半田バンプ電極3を形成した(工程(ii))。
【0099】
この配線基板5上に厚み120ミクロンのフィルム状の樹脂組成物(A)を加熱加圧(80℃、10秒、0.1kgf/mm)して樹脂組成物層4を形成した(工程(iii))。
【0100】
一方、半導体ウエハ1上に高さ100ミクロンの共晶半田バンプ電極3を形成し(工程(ii))、ダンシングソーにて半導体チップ2に切断分離を行なった(工程(iv))。
【0101】
半田バンプ電極3および樹脂組成物層4を形成した配線基板5をフリップチップボンダ上で、所定温度(150℃)に設定した加熱ステージ7に位置決めして固定した。また、分離した半導体チップ2を加熱ヘッド8に位置決めして固定した(工程(v))。
【0102】
以下、実施例9と同様に接合、樹脂硬化、外部バンプ形成を行ない、半導体装置を得た。
【0103】
実施例13
実施例12と同様の工程にて、樹脂組成物層4の樹脂組成物としてペースト状樹脂組成物(B)を用いた。なお、半田バンプ電極3を形成した配線基板5上への樹脂組成物層の形成方法は、以下の通りである。
【0104】
半田バンプ電極3を形成した配線基板5上に印刷法にて約150ミクロンの厚みで樹脂組成物層4を形成した。その後、この配線基板5を100℃のオーブン中にて、溶剤を揮発させた。以下の工程は、実施例12と同様とした。
【0105】
実施例9〜13で作製した半導体装置の樹脂組成物層4に存在するボイドを確認するため、超音波顕微鏡および表面研磨による観察を行なった。その結果、実施例9〜13に基づいて作製した半導体装置の樹脂組成物層4には、ボイドは観察されなかった。
【0106】
つぎに、実施例9〜13に基づいて作製した半導体装置について、1サイクルが−40℃/30分〜125℃/30分である温度サイクル試験を1000サイクル行なった。その結果、実施例9〜13に基づいて作製した半導体装置において接続抵抗の変化は認められなかった。
【0107】
【発明の効果】
請求項1〜3、6〜9および12にかかわる半導体装置ならびに半導体装置の製造方法によれば、狭間隙間に樹脂を流し込むアンダーフィル樹脂を用いるのに比較して、時間の短縮、工程の削減ができ、アンダーフィル方式では樹脂を流し込むことは困難とされる超狭間隙に対しても、あらかじめフィルムの貼り付けや樹脂の塗布により可能となる。
【0108】
また、アンダーフィル樹脂では粘度上昇のため、充填剤の添加量が制限されていたが、本発明の方法では、アンダーフィル樹脂より充填剤量の添加量を多くすることができ、温度サイクルによる応力発生に対しても、大きく改善することができる。
【0109】
請求項およびにかかわる半導体装置の製造方法によれば、前記樹脂組成物がフィルム形状であるため、または溶剤を含有するため、アンダーフィル方式では樹脂を流し込むことは困難とされる超狭間隙に対しても、あらかじめフィルム半導体ウエハ上に前記樹脂組成物層を形成することができる。
【0110】
請求項10にかかわる半導体装置の製造方法によれば、樹脂組成物がエポキシ樹脂を含むため、樹脂組成物に接着性を付与することができる。
【0111】
請求項11にかかわる半導体装置の製造方法によれば、樹脂組成物が充填剤を含有するため、樹脂組成物の熱膨張係数を小さくし、半導体装置内に発生する応力を低減でき、さらに低吸水性を付与することができる。
【図面の簡単な説明】
【図1】実施例1にかかわる半導体装置の製造方法の説明図である。
【図2】実施例2にかかわる半導体装置の製造方法の説明図である。
【図3】実施例3にかかわる半導体装置の製造方法の説明図である。
【図4】実施例4および比較例1にかかわる半導体装置の製造方法の説明図である。
【図5】実施例5にかかわる半導体装置の製造方法の説明図である。
【図6】実施例6、7および8にかかわる半導体装置の製造方法の説明図である。
【図7】比較例2にかかわる半導体装置の製造方法の説明図である。
【図8】実施例9にかかわる半導体装置の製造方法の説明図である。
【図9】実施例10、11および12にかかわる半導体装置の製造方法の説明図である。
【図10】実施例13にかかわる半導体装置の製造方法の説明図である。
【符号の説明】
1 半導体ウエハ、2 半導体チップ、3 半田バンプ電極、4 樹脂組成物層、5 配線基板、6 外部バンプ電極、7 加熱ステージ、8 加熱ヘッド。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semiconductor device manufacturing method and a semiconductor device using the same, and more particularly, to a flip-chip mounted BGA (ball grid array) semiconductor device and a method of manufacturing the same.
[0002]
[Prior art]
In order to manufacture a conventional resin-encapsulated semiconductor device, a bump electrode of a semiconductor chip in which a bump electrode is formed on an electrode pad on a wiring formation surface is pressure-bonded to a mounting substrate, and then a chip wiring surface is formed. A method has been developed in which an underfill resin is injected into a gap between the semiconductor chip and the mounting substrate, and the semiconductor chip is mounted on the mounting substrate in a state where the wiring forming surface and the bump electrodes are resin-sealed. However, in such a manufacturing method, not only time is required for a resin sealing step when mounting on a mounting board, but also fluidity of a resin, an amount of a filler, and the like are restricted, so that sufficient reliability is ensured. It has become difficult.
[0003]
Japanese Patent Application Laid-Open No. 2-96343 discloses a method of bonding between a semiconductor chip and a mounting member on which the semiconductor chip is mounted via a solid and plate-like thermosetting resin, unlike the underfill method. It is shown. In this method, the semiconductor chip and the mounted member are electrically connected via solder. However, when the solder is melted and joined, the thermosetting resin existing therebetween is not melted. In this case, in order to perform solder joining while keeping the distance between the semiconductor chip and the mounted member constant, it is necessary to apply a large load to the semiconductor chip. Applying a large load to the semiconductor chip may cause a problem such as breakage of the semiconductor chip.
[0004]
[Problems to be solved by the invention]
In the conventional semiconductor device using the underfill resin as described above, the process is complicated because it is necessary to inject the sealing resin into the gap between the semiconductor chip and the wiring board, and at the same time, there is no void in the sealing resin. It is difficult to control the fluidity of the resin and the amount of the filler required for injection. Further, in the above-described conventional method in which a resin composition layer is interposed between a semiconductor chip and a wiring substrate, a large load needs to be applied to the chip, which causes a problem such as breakage of the semiconductor chip.
[0005]
The present invention has been made in view of the above-described problems, and provides a method of manufacturing a semiconductor device capable of reducing a load applied to a semiconductor chip at the time of flip bonding and improving the manufacturing efficiency and reliability of the semiconductor device. With the goal.
[0006]
[Means for Solving the Problems]
With the circuit surface of the semiconductor chip facing down on the wiring board, the semiconductor chip and the wiring board are connected and mounted with protruding solder bump electrodes higher than the wiring portion of the wiring board. The above-mentioned problem in the method of manufacturing a semiconductor device in which the space is bonded with a resin composition can be solved by taking the following measures.
[0007]
The present invention is such that the circuit surface of the semiconductor chip is on the lower side of the wiring board, and the semiconductor chip and the wiring board are connected and mounted with a protruding solder bump electrode higher than the wiring portion of the wiring board, Between the semiconductor chip and the wiring boardSolid at room temperatureIn a method for manufacturing a semiconductor device bonded with a thermosetting resin composition,By attaching the resin composition to the semiconductor chip or the wiring board in a film shape,The resin composition layer is formed in advance on the semiconductor chip or the wiring board, and is melted at a temperature equal to or lower than the melting point of solder. When the semiconductor chip and the wiring board are melted and joined by solder, the resin composition maintains a molten state. And a method of manufacturing a semiconductor device, comprising: after electrically connecting the semiconductor chip and the wiring substrate, curing the resin composition at a temperature equal to or lower than a melting point of solder.
Further, the present invention provides a method for connecting and mounting the semiconductor chip and the wiring board with a protruding solder bump electrode higher than a wiring portion of the wiring board, with the circuit surface of the semiconductor chip facing down on the wiring board. A method for manufacturing a semiconductor device in which the semiconductor chip and the wiring substrate are bonded with a thermosetting resin composition that is solid at room temperature, wherein the resin composition contains a solvent, After applying to the chip or the wiring substrate, by drying, the resin composition layer is formed in advance on the semiconductor chip or the wiring substrate, and melted at a temperature equal to or lower than the melting point of solder, and the semiconductor chip and the wiring substrate The resin composition is kept in a molten state at the time of solder fusion bonding, and after electrically connecting the semiconductor chip and the wiring board, the resin composition is cured at a temperature equal to or lower than the melting point of solder. To a method of manufacturing a semiconductor device, characterized in that.
[0008]
Further, the present invention provides a method for connecting and mounting the semiconductor chip and the wiring board with a protruding solder bump electrode higher than a wiring portion of the wiring board, with the circuit surface of the semiconductor chip facing down on the wiring board. Between the semiconductor chip and the wiring board.Solid at room temperatureIn the method for manufacturing a semiconductor device bonded with a thermosetting resin composition, the resin composition layer is formed in advance on the semiconductor chip or the wiring board, and melted at a temperature equal to or lower than the melting point of the solder bump. In the state,The semiconductor chip and the wiring board are brought into contact with each other via the solder bump electrode, and are in contact with each other via the solder bump electrode.While maintaining a constant distance between the semiconductor chip and the wiring board, melting the solder bumps at a temperature equal to or higher than the melting point of the solder bumps, and after electrically connecting the semiconductor chip and the wiring board, The present invention relates to a method for manufacturing a semiconductor device, wherein the resin composition is cured at a melting point or lower.
In this case, it is preferable that the resin composition is attached to the semiconductor chip or the wiring substrate in a film shape.
In this case, the resin composition preferably contains a solvent, and is preferably dried after being applied to the semiconductor chip or the wiring substrate.
[0009]
In this case, when the resin composition layer is formed on the semiconductor chip in advance, the resin composition layer is formed on a semiconductor wafer, and the semiconductor wafer and the resin composition layer are cut and separated into the semiconductor chips. Is preferred.
[0010]
In this case, the solder bump electrodes can be formed on the semiconductor chip side in advance, and the solder can be melted to be electrically connected to the wiring board.
[0011]
In this case, the solder bump electrodes can be formed on the wiring substrate side in advance, and the solder can be melted to be electrically connected to the semiconductor chip.
[0012]
In this case, the solder bump electrodes can be formed on both the semiconductor chip and the wiring board in advance, and the solder can be melted to electrically connect the semiconductor chip and the wiring board.
[0015]
In this case, it is preferable that the resin composition contains (a) an epoxy resin.
[0016]
In this case, the resin composition preferably contains (b) a filler.
[0022]
The present invention also relates to a semiconductor device manufactured by the method for manufacturing a semiconductor device.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
In the method of manufacturing a semiconductor device according to the present invention, unlike the conventional method, a resin composition layer is formed on a semiconductor chip or a wiring substrate in advance. An example will be described with reference to FIG. In the figure, 1 is a semiconductor wafer, 2 is a semiconductor chip, 3 is a solder bump electrode, 4 is a resin plastic layer, 5 is a wiring board, and 6 is an external bump electrode.
[0024]
Melting the semiconductor chip or the wiring substrate on which the resin composition layer is formed at a temperature equal to or lower than the melting point of the solder (step (v)); A method of manufacturing a semiconductor device, comprising: after electrically connecting a semiconductor chip and a wiring board (step (vi)), curing the resin composition at a temperature equal to or lower than the melting point of solder (step (vii)). When the semiconductor chip and the wiring board are melted and joined by soldering (step (vi)), the molten state of the resin composition layer does not adversely affect the solder melting and joining. Further, after the resin composition is cured, an external bump electrode can be formed on the wiring substrate (step (viii)).
[0025]
In the step (v) and the step (vi), it is preferable to keep the distance between the semiconductor chip and the wiring substrate constant, since a good bump shape can be obtained after bonding.
[0026]
The resin composition used in the present invention is a thermosetting resin. However, a mixture of a thermosetting resin and another resin such as a thermoplastic resin may be used.
[0027]
As a material for the solder bump electrode that can be used in the present invention, any conductive material such as a tin-lead solder, a tin-silver-based, a tin-bismuth-based, and a tin-zinc-based lead-free solder is applied. It is possible. Above all, a eutectic solder of tin-lead type (63% by weight of tin) (melting point: 183 ° C.) is desirable from the viewpoint of reliability. Further, a solder bump electrode in which another conductive material and the solder material are combined may be used. For example, a combination of gold and solder can be given.
[0028]
When a resin composition layer is previously formed on the semiconductor chip, a resin composition layer may be formed on the semiconductor wafer before separation, and the semiconductor wafer and the resin composition layer may be cut and separated into the semiconductor chip. (Step (iv)). As a method for separating the semiconductor wafer on which the resin composition layer is formed, a dancing saw or the like can be used as in the case of separating a normal semiconductor wafer.
[0029]
The solder bump electrode may be formed on the semiconductor chip side in advance and melted solder to be electrically connected to the wiring board, or may be formed in advance on the wiring board side and melted solder to be electrically connected to the semiconductor chip. (Step (ii)). Further, it is also possible to form the solder bump electrodes on both the semiconductor chip and the wiring board in advance, melt the solder, and electrically connect the semiconductor chip and the wiring board (step (ii)).
[0030]
The resin composition used in the method of manufacturing a semiconductor device according to the present invention is preferably a resin composition that can be attached to the semiconductor chip or the wiring substrate in a film shape. When this film is attached to a semiconductor chip or a wiring board, it can be attached by applying heat or pressure.
[0031]
The resin composition preferably contains a solvent, and is capable of volatilizing the solvent by drying after coating on a semiconductor chip or the wiring substrate. The solvent may be any conventional solvent that dissolves other than the inorganic material in the resin composition, such as dimethyl sulfoxide, dimethylformamide, methylene chloride, chloroform, methyl ethyl ketone, acetone, tetrahydrofuran, and ethyl acetate. Solvents alone or mixed solvents thereof can be mentioned. Among them, methyl ethyl ketone or a mixed solvent thereof is preferable because it can be dried at 80 to 100 ° C. and can dissolve the resin composition.
[0032]
It is preferable that the resin composition contains (a) an epoxy resin because it has been used in the semiconductor field and imparts adhesiveness to the resin composition.
[0033]
The epoxy resin (a) used in the resin composition of the present invention is an epoxy resin having two or more epoxy groups in one molecule, and is not particularly limited as long as it is a conventionally known epoxy resin. Resin, bisphenol F epoxy resin, bisphenol S epoxy resin, bisphenol AD epoxy resin, diallyl bisphenol A epoxy resin, diallyl bisphenol F epoxy resin, diallyl bisphenol AD epoxy resin, tetramethyl biphenol epoxy resin, biphenol epoxy resin Epoxy resin, cyclopentadiene type epoxy resin, terpene phenol type epoxy resin, tetrabromobisphenol A type epoxy resin, phenol novolak type epoxy resin, cresol novolak type epoxy resin, Li triphenylmethane type epoxy resin, cycloaliphatic epoxy resins, include glycidyl ester epoxy resins, and heterocyclic epoxy resins, alone or mixtures thereof.
[0034]
The resin composition preferably contains (b) a filler in order to reduce the coefficient of thermal expansion of the resin composition and to impart low water absorption.
[0035]
The filler (b) that can be used in the present invention may be any conventional filler that does not impair the curing of the present invention. Examples thereof include fused silica, silica such as crystalline silica, alumina, and silicon nitride. , Calcium carbonate, zinc oxide and the like. Above all, it is preferable to use fused silica from the viewpoint of reducing the coefficient of thermal expansion of the obtained resin composition and improving the mechanical strength. Further, from the viewpoint of imparting fluidity, it is desirable to use spherical fused silica.
[0036]
In the method of manufacturing a semiconductor device according to the present invention, it is preferable that after the resin composition layer is formed on the semiconductor chip or the wiring substrate in advance, the resin composition is melted before heating to 180 ° C. For that purpose, the resin composition is solid at room temperature and may be melted at 180 ° C. or lower. Above all, resin viscosity is low when resin meltsKunaTherefore, a resin composition that melts at about 80 ° C. is desirable.
[0037]
Further, after the resin composition layer is formed on the semiconductor chip or the wiring substrate in advance, it is preferable that the resin composition does not gel at preferably 230 ° C. within 10 seconds. Here, gelling of the resin means that the resin does not show fluidity due to the reaction. As a method for electrically connecting the semiconductor chip and the wiring board using the solder bump electrodes, a device such as a flip chip bonder can be used. If the resin is cured before the semiconductor chip and the wiring board are joined by the flip chip bonder, there arises a problem that the conductivity of the solder bump electrode cannot be obtained and the shape of the solder bump electrode is poor, resulting in poor reliability. Therefore, it is necessary that the resin does not gel within 10 seconds at 230 ° C. under the condition that the semiconductor chip and the wiring board are joined by the flip chip bonder.
[0038]
Further, it is preferable that the resin composition layer after bonding the semiconductor chip and the wiring substrate is cured at 100 to 180 ° C. which is lower than the melting point of solder and within 12 hours. If the gelation is slowed down, the curing time will be prolonged, but it is preferably 1 to 3 hours from the viewpoint of production efficiency.
[0039]
In the method for manufacturing a semiconductor device of the present invention, it is preferable that the resin composition has a glass transition temperature of 100 to 200 ° C. after curing. Here, the glass transition temperature was determined by thermomechanical analysis (TMA) from the intersection of a straight extension of the glass region and the rubber region of the cured product of the temperature-thermal expansion curve. If the glass transition temperature is less than 100 ° C., there is a problem in reliability such as moisture resistance and heat resistance of the semiconductor device. Further, when high reliability is required, the glass transition temperature is preferably from 130 to 200 ° C.
[0040]
In the method of manufacturing a semiconductor device according to the present invention, it is preferable that the resin composition has a thermal expansion coefficient equal to or lower than the glass transition temperature of 10 to 30 ppm / ° C. after curing. Here, the coefficient of thermal expansion was determined by thermomechanical analysis (TMA). Due to a temperature change in the environment when the semiconductor device is used, thermal stress is generated due to a difference in thermal expansion coefficient between the semiconductor chip and the wiring board, and is applied to the solder bump electrode and the resin composition layer. Since this thermal stress deteriorates the reliability of electrical connection between the semiconductor chip and the wiring board, it is necessary to avoid the thermal stress. For this purpose, it is desired that the resin composition layer has a small coefficient of thermal expansion (one having a coefficient of thermal expansion close to that of the wiring board from the coefficient of thermal expansion of solder). When using fused silica as a filler, it is desirable to use a resin composition containing about 60% by weight or more in the resin composition. More preferably, the coefficient of thermal expansion is preferably 10 to 20 ppm / ° C.
[0041]
Hereinafter, the most preferable embodiment will be described in more detail.
[0042]
Embodiment 1
A method for manufacturing a semiconductor device according to the first embodiment of the present invention will be described with reference to FIG. In the figure, 7 is a heating stage, and 8 is a heating head.
[0043]
First, the solder bump electrodes 3 are formed on the semiconductor wafer 1 (step (ii)). Next, the resin composition layer 4 is formed on the semiconductor wafer 1 on which the solder bump electrodes 3 are formed (step (iii)). Next, the semiconductor wafer 1 on which the resin composition layer 4 is formed is cut and separated into semiconductor chips 2 using a dicing saw (step (iv)).
[0044]
Separately, the bump electrodes 3 are formed on the wiring substrate 5, and the wiring substrate 5 on which the bump electrodes 3 are formed is positioned and fixed on the heating stage 7 set at a predetermined temperature, that is, lower than the melting point of the bump electrodes 3. Further, the cut and separated semiconductor chip 2 is positioned and fixed to the heating head 8 (step (v)).
[0045]
While heating the heating head to a temperature lower than the melting point of the bump electrode 3 and higher than the melting point of the resin composition of the resin composition layer 4, the heating head 8 is moved and the solder bump electrode 3 of the semiconductor chip 2 fixed to the heating head 8 is moved. And the bump electrode 3 of the wiring board 5 fixed to the heating stage 7 are brought into contact with each other. While maintaining the distance between the semiconductor chip 2 and the wiring board 5 constant so that the two bump electrodes 3 maintain the contact state, the heating head 8 is heated with a predetermined profile to remove the bump electrodes 3 and the resin composition layer 4. Heating is performed so that the resin composition does not gel, and the resin composition and the bump electrodes 3 are both brought into a molten state to electrically connect the wiring substrate 5 and the semiconductor chip 2 (step (vi)).
[0046]
The gelation of the resin means that the resin does not show fluidity due to the reaction.
[0047]
With the distance between the wiring board 5 and the semiconductor chip 2 kept constant, the temperature of the heating head is lowered with a predetermined profile, and the melting points of the resin compositions of the wiring board 5, the semiconductor chip 2, the bump electrodes 3, and the resin composition layer 4. Cool to below temperature. Both the resin composition and the bump electrode 3 solidify.
[0048]
The bonded semiconductor device is placed in an oven at a temperature lower than the melting point of the bump electrode 3 and at a predetermined temperature at which the resin composition of the resin composition layer 4 can be cured, for a predetermined time until the resin composition is cured. Cure (step (vii)). Further, after the resin composition is cured, the external bump electrodes 6 can be formed on the wiring substrate 5 (step (viii)).
[0049]
According to the connection method as described above, it is possible to shorten the time and reduce the number of processes as compared with the conventional underfill method in which the resin is poured into the narrow gap. This can be achieved by forming the resin composition layer 4 in advance.
[0050]
When the wiring board 5 and the semiconductor chip 2 are electrically connected to each other, if the resin composition of the resin composition layer 4 is not melted, the distance between the wiring board 5 and the semiconductor chip 2 is kept constant. Requires that a high load be applied to the semiconductor chip 2. On the other hand, in the process according to the present invention, when the wiring board 5 and the semiconductor chip 2 are electrically connected to each other, the resin composition of the resin composition layer 4 is in a molten state. In addition, the distance between the wiring board 5 and the semiconductor chip 2 can be kept constant so that a good shape of the bump electrode after electrical connection can be obtained.
[0051]
Embodiment 2
A method for manufacturing a semiconductor device according to the second embodiment of the present invention will be described with reference to FIG.
[0052]
First, the solder bump electrodes 3 are formed on the wiring board 5 (step (ii)). Next, the resin composition layer 4 is formed on the wiring board 5 on which the solder bump electrodes 3 are formed (step (iii)).
[0053]
The wiring board 5 on which the resin composition 4 is formed is positioned and fixed on a heating stage 7 set at a predetermined temperature, that is, below the melting point of the solder bump electrode 3. Further, the semiconductor chip 2 is positioned and fixed to the heating head 8 (step (v)).
[0054]
While heating the heating head to a temperature lower than the melting point of the solder bump electrode 3 and higher than the melting point of the resin composition of the resin composition layer 4, the heating head 8 is moved and the pad portion of the semiconductor chip 2 fixed to the heating head 8 is moved. The solder bump electrodes 3 of the wiring board 5 fixed to the heating stage 7 are brought into contact. While maintaining the distance between the semiconductor chip 2 and the wiring board 5 constant so that the solder bump electrode 3 and the pad portion of the semiconductor chip 2 maintain the contact state, the heating head 8 is heated with a predetermined profile to increase the solder bumps. The electrode 3 and the resin composition layer 4 are heated to such an extent that the resin composition of the resin composition layer 4 does not gel, so that the resin composition and the solder bump electrodes 3 are both in a molten state and the wiring board 5 and the semiconductor chip 2 are electrically connected. (Step (vi)).
[0055]
Thereafter, resin curing is performed in the same manner as in the first embodiment, and external bumps can be formed.
[0056]
Embodiment 3
A method of manufacturing a semiconductor device according to a third embodiment of the present invention will be described with reference to FIG.
[0057]
First, the solder bump electrodes 3 are formed on the wiring board 5 (step (ii)). Next, the resin composition layer 4 is formed on the wiring board 5 on which the solder bump electrodes 3 are formed (step (iii)).
[0058]
The wiring board 5 on which the resin composition layer 4 is formed is positioned and fixed on a heating stage 7 set at a predetermined temperature, that is, below the melting point of the solder bump electrode 3. Further, the semiconductor chip 2 on which the solder bump electrodes 3 are separately formed is positioned and fixed to the heating head 8 (step (v)).
[0059]
While heating the heating head to a temperature lower than the melting point of the bump electrode 3 and higher than the melting point of the resin composition of the resin composition layer 4, the heating head 8 is moved and the solder bump electrode 3 of the semiconductor chip 2 fixed to the heating head 8 is moved. And the solder bump electrodes 3 of the wiring board 5 fixed to the heating stage 7 are brought into contact with each other. While maintaining the distance between the semiconductor chip 2 and the wiring board 5 constant so that the two bump electrodes 3 maintain the contact state, the heating head 8 is heated with a predetermined profile to remove the bump electrodes 3 and the resin composition layer 4. Heating is performed so that the resin composition does not gel, and the resin composition and the bump electrodes 3 are both in a molten state to electrically connect the wiring substrate 5 and the semiconductor chip 2 (step (vi)).
[0060]
Thereafter, resin curing is performed in the same manner as in the first embodiment, and external bumps can be formed.
[0061]
【Example】
Hereinafter, a method for manufacturing a semiconductor device according to the present invention will be described in detail with reference to the accompanying drawings.
[0062]
As the resin composition used in the present invention, (A) an epoxy resin-based film, (B) an epoxy resin-based paste containing a solvent, (C) an epoxy resin-based paste containing a solvent, and (D) an epoxy resin-based paste containing a solvent shown in Table 1 Were used. The gelation time was measured on a hot plate. Glass transition temperature and coefficient of thermal expansion were measured using a thermomechanical analyzer (TMA).
[0063]
[Table 1]
Figure 0003558576
[0064]
Example 1
FIG. 1 shows a manufacturing process according to a first embodiment of the present invention. First, a number of tin-lead (63% by weight tin) eutectic solder bump electrodes 3 were formed on a plurality of semiconductor chips 2 having integrated circuits formed on a semiconductor wafer 1 (step (ii)). Next, the film-shaped resin composition (A) is heated and pressed (80 ° C., 10 seconds, 0.1 kgf / mm) on the semiconductor wafer.2) To form a resin composition layer 4 (step (iii)). In addition, the resin composition (A) was melted by this heating and pressing, and after returning to room temperature after the heating and pressing, the film was solidified.
[0065]
Using a dicing saw or the like, the semiconductor wafer 1 and the resin composition layer 4 were separated into individual semiconductor chips 2 (step (iv)). The separated semiconductor chip 2 was electrically connected to the wiring board 5 using a flip chip bonder or the like (230 ° C., 10 seconds) with the circuit surface facing down (steps (v) and (vi)). At this time, the resin composition layer was molten when the solder was melted, and did not adversely affect the solder bonding. Thereafter, the resin composition layer was cured (170 ° C., 2 hours) at a temperature equal to or lower than the melting point of the solder (step (vii)). Finally, external bump electrodes 6 were formed on the wiring substrate 5 to obtain a semiconductor device (step (viii)).
[0066]
Example 2
FIG. 2 shows a manufacturing process according to a second embodiment of the present invention. In the same manner as in Example 1, a large number of tin-lead (63% by weight of tin) eutectic solder bump electrodes 3 were formed on a plurality of semiconductor chips 2 having integrated circuits formed on a semiconductor wafer 1 (step ( ii)). Next, a solvent-containing resin composition (B) layer 4 was formed on the semiconductor wafer 1 using a printing machine or the like (step (ii) -1). Thereafter, the resin composition layer was dried (80 ° C., 10 minutes) (step (ii) -2).
[0067]
The semiconductor wafer on which the dried resin composition layer was formed was subjected to separation, bonding, curing, and formation of external bump electrodes in the same steps as in Example 1 to obtain a semiconductor device (steps (iv) to (viii)). .
[0068]
Example 3
FIG. 3 shows a manufacturing process according to a third embodiment of the present invention. First, a number of tin-lead (63% by weight tin) eutectic solder bump electrodes 3 were formed on a plurality of semiconductor chips 2 having integrated circuits formed on a semiconductor wafer 1 (step (ii)). The semiconductor wafer 1 was separated into individual semiconductor chips 2 using a dicing saw or the like (step (iv)). Separately, the film-shaped resin composition (A) is heated and pressed (80 ° C., 10 seconds, 0.1 kgf / mm) on the wiring board 5.2) To form a resin composition layer 4 (step (iii)). In addition, the resin composition (A) was melted by this heating and pressing, and after returning to room temperature after the heating and pressing, the film was solidified.
[0069]
The separated semiconductor chip 2 was electrically connected to the wiring board 5 using a flip chip bonder or the like (230 ° C., 10 seconds) with the circuit surface facing down (steps (v) and (vi)). Thereafter, in the same steps as in Example 1, curing and external bump electrode formation were performed to obtain a semiconductor device (steps (vii) and (viii)).
[0070]
Example 4
FIG. 4 shows a manufacturing process according to the fourth embodiment of the present invention. A eutectic solder bump electrode 3 of tin-lead (63% by weight of tin) was formed on the wiring board 5 (step (ii)). Next, the film-shaped resin composition (A) is heated and pressed (80 ° C., 10 seconds, 0.1 kgf / mm2) To form a resin composition layer 4 (step (iv)). In addition, the resin composition (A) was melted by this heating and pressing, and after returning to room temperature after the heating and pressing, the film was solidified.
[0071]
The separated semiconductor chip 2 was electrically connected to the wiring board 5 using a flip chip bonder or the like (230 ° C., 10 seconds) with the circuit surface facing down (steps (v) and (vi)). Thereafter, in the same steps as in Example 1, curing and external bump electrode formation were performed to obtain a semiconductor device (steps (vii) and (viii)).
[0072]
Example 5
FIG. 5 shows a manufacturing process according to the fifth embodiment of the present invention. First, a number of tin-lead (63% by weight tin) eutectic solder bump electrodes 3 were formed on a plurality of semiconductor chips 2 having integrated circuits formed on a semiconductor wafer 1 (step (ii)). The semiconductor wafer 1 was separated into individual semiconductor chips 2 using a dicing saw or the like (step (iv)). Separately, a eutectic solder bump electrode 3 of tin-lead (63% by weight of tin) is formed on the wiring board 5 (step (ii)). Next, the film-shaped resin composition (A) is heated and pressed (80 ° C., 10 seconds, 0.1 kgf / mm2) To form a resin composition layer 4 (step (iv)). In addition, the resin composition (A) was melted by this heating and pressing, and after returning to room temperature after the heating and pressing, the film was solidified.
[0073]
The separated semiconductor chip 2 was electrically connected to the wiring board 5 using a flip chip bonder or the like (230 ° C., 10 seconds) with the circuit surface facing down (steps (v) and (vi)). Thereafter, in the same steps as in Example 1, curing and external bump electrode formation were performed to obtain a semiconductor device (steps (vii) and (viii)).
[0074]
Example 6
FIG. 6 shows a manufacturing process according to the sixth embodiment of the present invention. First, a eutectic solder bump electrode 3 of tin-lead type (63% by weight of tin) was formed on the wiring board 5 (step (ii)). Next, a resin composition (B) layer 4 containing a solvent was formed on the wiring board 5 using a printing machine or the like (step (iii) -1). Thereafter, the resin composition layer was dried (80 ° C., 10 minutes) (step (iii) -2). The separated semiconductor chip 2 was electrically connected to the wiring substrate 5 on which the dried resin composition layer was formed using a flip chip bonder or the like with the circuit surface facing down (230 ° C., 10 seconds) (step ( v), (vi)).
[0075]
Thereafter, in the same steps as in Example 1, curing and external bump electrode formation were performed to obtain a semiconductor device (steps (vii) and (viii)).
[0076]
Example 7
A semiconductor device was obtained in the same manner as in Example 6, using the epoxy resin paste containing the solvent (C) as the resin composition.
[0077]
Example 8
A semiconductor device was obtained in the same manner as in Example 6, using (D) a solvent-containing epoxy resin-based paste as the resin composition.
[0078]
Comparative Example 1
Using the epoxy resin film (E) shown in Table 1 as the resin composition, a semiconductor device was obtained in the same manner as in Example 4.
[0079]
Comparative Example 2
FIG. 7 shows the manufacturing process of Comparative Example 2 below. The eutectic solder bump electrode 3 of tin-lead (63% by weight of tin) was formed on the wiring board 5 (step (ii)). Next, the resin composition (E) in the form of a film is heated and pressed (80 ° C., 10 seconds, 0.1 kgf / mm2) To form a resin composition layer 4 (step (iv)).
[0080]
The separated semiconductor chip 2 was pressed against the wiring board 5 using a flip chip bonder or the like with the circuit surface facing down (150 ° C., 50 seconds, 0.5 kgf / mm).2) (Steps (v) and (vi)). Next, in order to melt the solder bump electrodes, a reflow step was performed (260 ° C., 10 s) (step (vii)).
[0081]
As a result of evaluating the electrical connection resistance between the semiconductor chip and the wiring board of the semiconductor devices manufactured in Examples 1 to 8 and Comparative Examples 1 and 2, the semiconductor devices manufactured based on Examples 1 to 8 The electrical connection between the semiconductor device and the wiring board was secured without any problem, whereas the semiconductor devices manufactured in Comparative Examples 1 and 2 were not secured from the beginning. Further, in the semiconductor device manufactured based on Examples 1 to 8, no change in the connection resistance was observed even in a semiconductor device subjected to a temperature cycle test at −40 ° C. to 125 ° C. for 1000 cycles. No change was observed in the PCT test (121 ° C., 2 atm) for 168 hours.
[0082]
Example 9
A semiconductor device was manufactured according to the process shown in FIG. First, a number of tin-lead (63% by weight of tin) eutectic solder bump electrodes 3 having a height of 100 μm and formed on a plurality of semiconductor chips 2 having integrated circuits formed on a semiconductor wafer 1 were formed (step). (Ii)).
[0083]
A 120-μm-thick film-shaped resin composition (A) is heated and pressed (80 ° C., 10 seconds, 0.1 kgf / mm) on the semiconductor wafer 1.2) To form a resin composition layer 4 (step (iii)).
[0084]
Using a dicing saw, a separation step of separating the semiconductor wafer 1 and the resin composition layer 4 into individual semiconductor chips 2 was performed (step (iv)).
[0085]
The eutectic solder bump electrode 3 having a height of 100 μm was formed on the wiring board 5, and the wiring board 5 was positioned and fixed on a heating stage 7 set at a predetermined temperature (150 ° C.) on a flip chip bonder. Further, the separated semiconductor chip 2 was positioned and fixed to the heating head 8 (step (v)).
[0086]
The heating head 8 was moved to bring the solder bump electrodes 3 of the semiconductor chip 2 fixed to the heating head 8 into contact with the solder bump electrodes 3 on the wiring board 5 fixed to the heating stage 7. Next, while keeping the distance between the semiconductor chip 2 and the wiring board 5 constant (90 microns) in a state where the two bump electrodes 3 are in contact with each other, the temperature of the heating head 8 is raised to 230 ° C. in 5 seconds. For 10 seconds, and the bump electrode 3 and the resin composition layer 4 were heated. The bump electrode 3 and the resin composition layer 4 were both in a molten state, and the semiconductor chip 2 and the wiring substrate 5 were electrically connected via the bump electrode 3 (step (vi)).
[0087]
While maintaining the distance between the semiconductor chip 2 and the wiring substrate 5, the temperature of the heating head was lowered with a predetermined profile to cool the semiconductor chip 2, the wiring substrate 5, the bump electrodes 3, and the resin composition to 60 ° C. Then, the bump electrode 3 was solidified, taken out from the flip chip bonder, and left at room temperature to solidify the resin composition layer 4.
[0088]
The bonded semiconductor chip 2 and the wiring substrate 5 were left in an oven set at 170 ° C. lower than the melting temperature (183 ° C.) of the bump electrodes 3 for 2 hours to cure the resin composition layer 4 (step). (Vii)).
[0089]
Finally, an external bump electrode 6 was formed on the wiring board 5 to obtain a semiconductor device (step (viii)).
[0090]
Example 10
A semiconductor device was manufactured according to the process shown in FIG.
[0091]
The solder bump electrode 3 having a height of 110 μm is formed on the wiring substrate 5 (step (ii)), and the resin composition (A) having a thickness of 100 μm is heated and pressed (80 ° C., 10 seconds, 0.1 μm). 1kgf / mm2) To form a resin composition layer 4 (step (iii)).
[0092]
On the other hand, the semiconductor wafer 1 is cut and separated into semiconductor chips 2 (step (iii)).
[0093]
The wiring substrate 5 was positioned and fixed on a heating stage 7 set at a predetermined temperature (150 ° C.) on a flip chip bonder. Further, the separated semiconductor chip 2 was positioned and fixed to the heating head 8 (step (v)).
[0094]
The heating head 8 was moved to bring the pad portion of the semiconductor chip 2 fixed to the heating head 8 into contact with the solder bump electrode 3 on the wiring board 5 fixed to the heating stage 7. With the distance between the semiconductor chip 2 and the wiring board 5 kept constant (70 microns) with the solder bump electrode 3 kept in contact, the heating head 8 was heated to 230 ° C. in 5 seconds, and then heated to 230 ° C. Holding for 10 seconds, the solder bump electrode 3 and the resin composition layer 4 were heated. The solder bump electrode 3 and the resin composition of the resin composition layer 4 were both in a molten state, and the semiconductor chip 2 and the wiring board 5 were electrically connected via the solder bump electrode 3 (step (vi)).
[0095]
Thereafter, resin curing and external bump formation were performed in the same manner as in Example 9 to obtain a semiconductor device.
[0096]
Example 11
In the same process as in Example 9, a paste-like resin composition (B) was used as the resin composition layer 4. The method for forming the resin composition layer 4 on the semiconductor wafer 1 on which the solder bump electrodes 3 have been formed is as follows.
[0097]
A resin composition layer 4 having a thickness of about 150 microns was formed on the semiconductor wafer 1 on which the solder bump electrodes 3 were formed by a printing method. Thereafter, the solvent was evaporated from the semiconductor wafer in an oven at 100 ° C. The following steps are the same as in Example 9.
[0098]
Example 12
A semiconductor device was manufactured according to the process shown in FIG. First, a 100 μm-high eutectic solder bump electrode 3 of tin-lead (63% by weight of tin) was formed on a wiring board 5 (step (ii)).
[0099]
A film-shaped resin composition (A) having a thickness of 120 μm is heated and pressed (80 ° C., 10 seconds, 0.1 kgf / mm) on the wiring board 5.2) To form a resin composition layer 4 (step (iii)).
[0100]
On the other hand, a eutectic solder bump electrode 3 having a height of 100 microns was formed on the semiconductor wafer 1 (step (ii)), and the semiconductor chips 2 were cut and separated by a dancing saw (step (iv)).
[0101]
The wiring board 5 on which the solder bump electrodes 3 and the resin composition layer 4 were formed was positioned and fixed on a heating stage 7 set at a predetermined temperature (150 ° C.) on a flip chip bonder. Further, the separated semiconductor chip 2 was positioned and fixed to the heating head 8 (step (v)).
[0102]
Thereafter, bonding, resin curing, and external bump formation were performed in the same manner as in Example 9 to obtain a semiconductor device.
[0103]
Example 13
In the same process as in Example 12, the paste-like resin composition (B) was used as the resin composition of the resin composition layer 4. The method for forming the resin composition layer on the wiring board 5 on which the solder bump electrodes 3 have been formed is as follows.
[0104]
A resin composition layer 4 having a thickness of about 150 μm was formed on the wiring board 5 on which the solder bump electrodes 3 were formed by a printing method. Thereafter, the solvent was volatilized in an oven at 100 ° C. for the wiring substrate 5. The following steps were the same as in Example 12.
[0105]
In order to confirm the voids existing in the resin composition layer 4 of the semiconductor devices manufactured in Examples 9 to 13, observation was performed by an ultrasonic microscope and surface polishing. As a result, no void was observed in the resin composition layer 4 of the semiconductor device manufactured based on Examples 9 to 13.
[0106]
Next, 1000 cycles of a temperature cycle test in which one cycle was −40 ° C./30 minutes to 125 ° C./30 minutes were performed on the semiconductor devices manufactured based on Examples 9 to 13. As a result, no change in the connection resistance was observed in the semiconductor devices manufactured based on Examples 9 to 13.
[0107]
【The invention's effect】
Claim 13, 6-9and12According to the alternative semiconductor device and the method of manufacturing the semiconductor device, the time can be reduced and the number of steps can be reduced as compared with using the underfill resin in which the resin is poured into the narrow gap. It is possible to apply to the ultra-narrow gap by applying a film or applying a resin in advance.
[0108]
In addition, in the underfill resin, the amount of the filler added was limited due to an increase in viscosity. However, in the method of the present invention, the amount of the filler added can be increased compared to the underfill resin, and the stress due to temperature cycling can be increased. The occurrence can be greatly improved.
[0109]
Claim4and5According to the method for manufacturing a semiconductor device according to, because the resin composition is in the form of a film, or because it contains a solvent, it is difficult to pour the resin in the underfill method, even for ultra-narrow gaps, The resin composition layer can be formed on a film semiconductor wafer in advance.
[0110]
Claim10According to the method for manufacturing a semiconductor device according to the above, since the resin composition contains an epoxy resin, it is possible to impart adhesiveness to the resin composition.
[0111]
Claim11According to the method for manufacturing a semiconductor device according to the present invention, since the resin composition contains a filler, the coefficient of thermal expansion of the resin composition can be reduced, the stress generated in the semiconductor device can be reduced, and further low water absorption is imparted. can do.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a method for manufacturing a semiconductor device according to a first embodiment.
FIG. 2 is an explanatory diagram of a method for manufacturing a semiconductor device according to a second embodiment.
FIG. 3 is an explanatory diagram of a method for manufacturing a semiconductor device according to a third embodiment;
FIG. 4 is an explanatory diagram of a method for manufacturing a semiconductor device according to Example 4 and Comparative Example 1.
FIG. 5 is an explanatory diagram of the method for manufacturing the semiconductor device according to the fifth embodiment;
FIG. 6 is an explanatory diagram of a method of manufacturing a semiconductor device according to Examples 6, 7, and 8;
FIG. 7 is an explanatory diagram of a method for manufacturing a semiconductor device according to Comparative Example 2.
FIG. 8 is an explanatory diagram of the method for manufacturing the semiconductor device according to the ninth embodiment.
FIG. 9 is an explanatory diagram of a method for manufacturing a semiconductor device according to Examples 10, 11 and 12.
FIG. 10 is an explanatory diagram of the method for manufacturing the semiconductor device according to the thirteenth embodiment.
[Explanation of symbols]
Reference Signs List 1 semiconductor wafer, 2 semiconductor chip, 3 solder bump electrode, 4 resin composition layer, 5 wiring board, 6 external bump electrode, 7 heating stage, 8 heating head.

Claims (12)

配線基板上で半導体チップの回路面を下側にして、前記半導体チップと前記配線基板との間を前記配線基板の配線部より高い突起状の半田バンプ電極で接続搭載し、さらに前記半導体チップと前記配線基板との間が室温で固体である熱硬化性の樹脂組成物にて接着されている半導体装置の製造方法において、
前記樹脂組成物がフィルム形状で前記半導体チップまたは前記配線基板に貼り付けることにより、前記樹脂組成物層をあらかじめ前記半導体チップまたは前記配線基板に形成し、半田の融点以下の温度で溶融させ、前記半導体チップと前記配線基板との半田溶融接合時には前記樹脂組成物は溶融状態を保ち、前記半導体チップと前記配線基板とを電気的に接続後、半田の融点温度以下で前記樹脂組成物を硬化させることを特徴とする半導体装置の製造方法。
With the circuit surface of the semiconductor chip on the lower side of the wiring board, the semiconductor chip and the wiring board are connected and mounted with a protruding solder bump electrode higher than the wiring portion of the wiring board, and further the semiconductor chip and In the method of manufacturing a semiconductor device is bonded to the wiring board with a thermosetting resin composition that is solid at room temperature ,
The resin composition is pasted on the semiconductor chip or the wiring board in a film shape, thereby forming the resin composition layer on the semiconductor chip or the wiring board in advance, and melting the solder composition at a temperature equal to or lower than the melting point of solder. At the time of solder fusion bonding between the semiconductor chip and the wiring board, the resin composition is kept in a molten state, and after electrically connecting the semiconductor chip and the wiring board, the resin composition is cured at a temperature equal to or lower than the melting point of solder. A method for manufacturing a semiconductor device, comprising:
配線基板上で半導体チップの回路面を下側にして、前記半導体チップと前記配線基板との間を前記配線基板の配線部より高い突起状の半田バンプ電極で接続搭載し、さらに前記半導体チップと前記配線基板との間が室温で固体である熱硬化性の樹脂組成物にて接着されている半導体装置の製造方法において、With the circuit surface of the semiconductor chip on the lower side of the wiring board, the semiconductor chip and the wiring board are connected and mounted with a protruding solder bump electrode higher than the wiring portion of the wiring board, and further the semiconductor chip and In the method of manufacturing a semiconductor device is bonded to the wiring board with a thermosetting resin composition that is solid at room temperature,
前記樹脂組成物が溶剤を含有し、前記半導体チップまたは前記配線基板に塗布後、乾燥させることにより、前記樹脂組成物層をあらかじめ前記半導体チップまたは前記配線基板に形成し、半田の融点以下の温度で溶融させ、前記半導体チップと前記配線基板との半田溶融接合時には前記樹脂組成物は溶融状態を保ち、前記半導体チップと前記配線基板とを電気的に接続後、半田の融点温度以下で前記樹脂組成物を硬化させることを特徴とする半導体装置の製造方法。The resin composition contains a solvent, is applied to the semiconductor chip or the wiring board, and then dried to form the resin composition layer on the semiconductor chip or the wiring board in advance. When the semiconductor chip and the wiring board are melted and joined by solder, the resin composition maintains a molten state, and after the semiconductor chip and the wiring board are electrically connected, the resin is melted at a temperature equal to or lower than the melting point of solder. A method for manufacturing a semiconductor device, comprising curing a composition.
配線基板上で半導体チップの回路面を下側にして、前記半導体チップと前記配線基板との間を前記配線基板の配線部より高い突起状の半田バンプ電極で接続搭載し、さらに前記半導体チップと前記配線基板との間が室温で固体である熱硬化性の樹脂組成物にて接着されている半導体装置の製造方法において、
前記樹脂組成物層をあらかじめ前記半導体チップまたは前記配線基板に形成し、半田バンプの融点以下の温度で溶融させ、溶融状態で、前記半導体チップと前記配線基板とを前記半田バンプ電極を介して接触させ、前記半田バンプ電極を介して接触状態にある前記半導体チップと前記配線基板との間隔を一定に保持しながら、前記半田バンプの融点以上の温度で半田バンプを溶融させて、前記半導体チップと前記配線基板とを電気的に接続後、半田の融点温度以下で前記樹脂組成物を硬化させることを特徴とする半導体装置の製造方法。
With the circuit surface of the semiconductor chip on the lower side of the wiring board, the semiconductor chip and the wiring board are connected and mounted with a protruding solder bump electrode higher than the wiring portion of the wiring board, and further the semiconductor chip and In the method of manufacturing a semiconductor device is bonded to the wiring board with a thermosetting resin composition that is solid at room temperature ,
The resin composition layer is formed in advance on the semiconductor chip or the wiring substrate, and is melted at a temperature equal to or lower than the melting point of the solder bump. In the molten state, the semiconductor chip and the wiring substrate are contacted via the solder bump electrode. Melting the solder bumps at a temperature equal to or higher than the melting point of the solder bumps while maintaining a constant distance between the semiconductor chip and the wiring board in contact with each other via the solder bump electrodes. A method for manufacturing a semiconductor device, comprising: after electrically connecting to the wiring substrate, curing the resin composition at a temperature equal to or lower than a melting point of solder.
前記樹脂組成物がフィルム形状で前記半導体チップまたは前記配線基板に貼り付けることを特徴とする請求項3記載の半導体装置の製造方法。4. The method according to claim 3, wherein the resin composition is attached to the semiconductor chip or the wiring substrate in a film shape. 前記樹脂組成物が溶剤を含有し、前記半導体チップまたは前記配線基板に塗布後、乾燥させることを特徴とする請求項3記載の半導体装置の製造方法。4. The method according to claim 3, wherein the resin composition contains a solvent, and is applied to the semiconductor chip or the wiring substrate and then dried. 前記樹脂組成物層をあらかじめ前記半導体チップに形成する際に、半導体ウエハ上に前記樹脂組成物層を形成し、前記半導体ウエハと前記樹脂組成物層を切断して前記半導体チップに分離することを特徴とする請求項1、2、3、4または5記載の半導体装置の製造方法。When forming the resin composition layer on the semiconductor chip in advance, forming the resin composition layer on a semiconductor wafer, cutting the semiconductor wafer and the resin composition layer to separate the semiconductor chip. The method of manufacturing a semiconductor device according to claim 1 , 2, 3, 4, or 5 , wherein 前記半田バンプ電極をあらかじめ前記半導体チップ側に形成し、半田を溶融させ前記配線基板と電気的に接続することを特徴とする請求項1、2、3、4、5または6記載の半導体装置の製造方法。7. The semiconductor device according to claim 1 , wherein the solder bump electrodes are formed in advance on the semiconductor chip side, and the solder is melted to be electrically connected to the wiring board. Production method. 前記半田バンプ電極をあらかじめ前記配線基板側に形成し、半田を溶融させ前記半導体チップと電気的に接続することを特徴とする請求項1、2、3、4、5または6記載の半導体装置の製造方法。7. The semiconductor device according to claim 1 , wherein the solder bump electrode is formed on the wiring substrate in advance, and the solder is melted to be electrically connected to the semiconductor chip. Production method. 前記半田バンプ電極をあらかじめ前記半導体チップ、前記配線基板双方に形成し、半田を溶融させ前記半導体チップと前記配線基板とを電気的に接続させることを特徴とする請求項1、2、3、4、5または6記載の半導体装置の製造方法。 5. The semiconductor device according to claim 1 , wherein the solder bump electrodes are formed on both the semiconductor chip and the wiring board in advance, and the solder is melted to electrically connect the semiconductor chip and the wiring board. 7. The method for manufacturing a semiconductor device according to item 5 or 6 . 前記樹脂組成物が(a)エポキシ樹脂を含むことを特徴とする請求項1、2、3、4、5、6、7、8または9記載の半導体装置の製造方法。The method of manufacturing a semiconductor device according to claim 1 , wherein the resin composition contains (a) an epoxy resin. 前記樹脂組成物が(b)充填剤を含むことを特徴とする請求項1、2、3、4、5、6、7、8、9または10記載の半導体装置の製造方法。 The method according to claim 1 , wherein the resin composition contains (b) a filler. 請求項1、2、3、4、5、6、7、8、9、10または11記載の半導体装置の製造方法にて作製した半導体装置。A semiconductor device manufactured by the method for manufacturing a semiconductor device according to claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or 11 .
JP2000040961A 1999-02-22 2000-02-18 Semiconductor device manufacturing method and semiconductor device Expired - Fee Related JP3558576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000040961A JP3558576B2 (en) 1999-02-22 2000-02-18 Semiconductor device manufacturing method and semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4327699 1999-02-22
JP11-43276 1999-02-22
JP2000040961A JP3558576B2 (en) 1999-02-22 2000-02-18 Semiconductor device manufacturing method and semiconductor device

Publications (2)

Publication Number Publication Date
JP2000311923A JP2000311923A (en) 2000-11-07
JP3558576B2 true JP3558576B2 (en) 2004-08-25

Family

ID=26383034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000040961A Expired - Fee Related JP3558576B2 (en) 1999-02-22 2000-02-18 Semiconductor device manufacturing method and semiconductor device

Country Status (1)

Country Link
JP (1) JP3558576B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4626839B2 (en) * 2001-05-21 2011-02-09 日本電気株式会社 Mounting method of semiconductor device
JP2003060339A (en) * 2001-08-10 2003-02-28 Matsushita Electric Ind Co Ltd Method for mounting electronic component
JP2005264109A (en) * 2004-03-22 2005-09-29 Hitachi Chem Co Ltd Film-shaped adhesive and manufacturing method of semiconductor device using the same
JP2006128567A (en) * 2004-11-01 2006-05-18 Three M Innovative Properties Co Method of connecting semiconductor package to printed wiring board
TWI416673B (en) * 2007-03-30 2013-11-21 Sumitomo Bakelite Co Connection structure for flip-chip semiconductor package, build-up layer material, sealing resin composition, and circuit substrate
KR20110105854A (en) * 2009-01-09 2011-09-27 나가세케무텍쿠스가부시키가이샤 Method for manufacturing semiconductor package, method for encapsulating semiconductor, and solvent-borne semiconductor encapsulating epoxy resin composition
JP5925460B2 (en) * 2011-09-28 2016-05-25 日立化成株式会社 Film adhesive and method for manufacturing semiconductor device using the same
JP5712884B2 (en) * 2011-09-28 2015-05-07 日立化成株式会社 Film adhesive and method for manufacturing semiconductor device using the same
JP2014237843A (en) * 2014-08-08 2014-12-18 日立化成株式会社 Film-like adhesive and method of producing semiconductor device using the same

Also Published As

Publication number Publication date
JP2000311923A (en) 2000-11-07

Similar Documents

Publication Publication Date Title
JP4705748B2 (en) Manufacturing method of semiconductor device
US6689635B1 (en) Apparatus and method for face-to-face connection of a die to a substrate with polymer electrodes
KR20090052300A (en) Electronic components mounting adhesive and electronic components mounting structure
WO1998028788A1 (en) Manufacture of semiconductor device
JP2002151551A (en) Flip-chip mounting structure, semiconductor device therewith and mounting method
CN102256452A (en) Circuit board with built-in semiconductor chip and method of manufacturing the same
US7969028B2 (en) Semiconductor device mounting structure, manufacturing method, and removal method of semiconductor device
JP2002026070A (en) Semiconductor device and its manufacturing method
JP4206631B2 (en) Thermosetting liquid sealing resin composition, method for assembling semiconductor element, and semiconductor device
JPH11274241A (en) Producing method for semiconductor device
JP3558576B2 (en) Semiconductor device manufacturing method and semiconductor device
KR20040030659A (en) Chip lead frames
JP2003258034A (en) Method for manufacturing multilayer wiring base and multilayer wiring base
JP2002241617A (en) Thermosetting resin composition and semiconductor device
JP3732148B2 (en) Semiconductor device manufacturing method and semiconductor device
WO1996042106A1 (en) Semiconductor unit package, semiconductor unit packaging method, and encapsulant for use in semiconductor unit packaging
KR100674501B1 (en) Method for attaching semiconductor chip using flip chip bonding technic
JP2002232123A (en) Manufacturing method of composite circuit substrate
JP3779091B2 (en) Resin composition for sealing
JP2003100810A (en) Semiconductor device and manufacturing method thereof
JP3957244B2 (en) Manufacturing method of semiconductor devices
JP2000260817A (en) Semiconductor device and manufacture thereof
JP2000357714A (en) Semiconductor device and manufacture thereof
JP2000156386A (en) Connection structure and connection method of semiconductor device and semiconductor device package using the same
JPH0551179B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040518

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080528

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees