JP3558209B2 - Thorium-containing tungsten hot cathode DC discharge electrode and method for modifying the electrode - Google Patents

Thorium-containing tungsten hot cathode DC discharge electrode and method for modifying the electrode Download PDF

Info

Publication number
JP3558209B2
JP3558209B2 JP22265999A JP22265999A JP3558209B2 JP 3558209 B2 JP3558209 B2 JP 3558209B2 JP 22265999 A JP22265999 A JP 22265999A JP 22265999 A JP22265999 A JP 22265999A JP 3558209 B2 JP3558209 B2 JP 3558209B2
Authority
JP
Japan
Prior art keywords
thorium
containing tungsten
hot cathode
current
discharge electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22265999A
Other languages
Japanese (ja)
Other versions
JP2001052892A (en
Inventor
正士 神藤
昭弘 江藤
達也 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP22265999A priority Critical patent/JP3558209B2/en
Publication of JP2001052892A publication Critical patent/JP2001052892A/en
Application granted granted Critical
Publication of JP3558209B2 publication Critical patent/JP3558209B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、直流プラズマ生成装置に使用されるトリウム含有タングステン熱陰極直流放電電極並びにその改質方法に関する。
【0002】
【従来の技術】
従来より、プラズマ生成装置を用いて材料表面に薄膜を成膜したり、エッチング等の加工を施すことが行われている。このプラズマ生成装置では、チャンバ内に陽極と陰極とを対向配置し、電極間に高電圧を印加して放電させることによりプラズマを発生させている。また、放電方式も種々あり、直流放電や交流放電の他、高周波やマイクロ波を磁界の存在下で作用させるマグネトロン放電等が一般的である。
一方でプラズマ生成装置の省電力化等を目的として電極材料の開発、改良も行われており、現在では2重量%程度のトリウムを含有したタングステン陰極が一般的に使用されている。また、プラズマの生成効率をより高めるために、このトリウム含有タングステン陰極を加熱して電極表面を活性化させることも行われるようになってきている。
【0003】
【発明が解決しようとする課題】
上記したようなプラズマ生成装置の省電力化に対する要求は、今後益々高まることが十分に予測される。しかしながら、加熱による活性化では十分な熱電子の引き出しが出来ず、更なる改善が求められている。
本発明はこのような状況に鑑みてなされたものであり、より低電流でのプラズマ生成が可能なトリウム含有タングステン熱陰極直流放電電極を提供すること、並びにより低電流でのプラズマを生成できるように前記電極を改質する方法を提供することを目的とする。
【0004】
【課題を解決するための手段】
上記の目的を達成するために、本発明に係る第1の発明は、直流プラズマ生成装置に使用されるトリウム含有タングステン熱陰極直流放電電極において、トリウム含有タングステン材をヘキサメチルジシランと水素との混合雰囲気中で放電処理した後、真空下で加熱してなることを特徴とする。
また、第2の発明は、直流プラズマ生成装置に使用されるトリウム含有タングステン熱陰極直流放電電極において、トリウム含有タングステン材を真空下で加熱した後、ヘキサメチルジシランと水素との混合雰囲気中で放電処理してなることを特徴とする。
また、第3の発明は、トリウム含有タングステン熱陰極直流放電電極と陽極とを対向設置した反応容器を備える直流プラズマ生成装置を用いて被処理材料を加工する際、加工に先立ち、前記反応容器内にヘキサメチルジシランと水素とを導入して放電を行った後、真空下で前記トリウム含有タングステン熱陰極直流放電電極を加熱することを特徴とする。
また、第4の発明は、トリウム含有タングステン熱陰極直流放電電極と陽極とを対向設置した反応容器を備える直流プラズマ生成装置を用いて被処理材料を加工する際、加工に先立ち、真空下で前記トリウム含有タングステン熱陰極直流放電電極を加熱した後、前記反応容器内にヘキサメチルジシランと水素とを導入して放電させることを特徴とする。
【0005】
【発明の実施の形態】
以下、本発明に関して詳細に説明する。
本発明のトリウム含有タングステン熱陰極直流放電電極(以下、単にトリウム含有タングステン陰極と呼ぶ)は、従来の加熱による活性化に加えて、ヘキサメチルジシランと水素との混合雰囲気中での放電処理を施して得られる。この放電処理は、加熱による活性化の前に行ってもよいし、加熱による活性化の後に行ってもよい。
トリウム含有タングステン陰極では、トリウムが電極の表面に析出し、タングステン単独の場合に比べてその仕事関数を低下させ、その結果プラズマの生成に要する放電電流が低下するものと考えられている。本発明のヘキサメチルジシランと水素との混合雰囲気中での放電処理により、このトリウムの析出が従来の加熱による活性化に比べて大幅に増加するものと推察される。
【0006】
ヘキサメチルジシランと水素との混合雰囲気中での放電処理は、以下の手順で行う。
先ず、処理容器内にトリウム含有タングステン陰極と適当な陽極(例えばステンレス鋼製)とを対向させて設置し、従来の方法に従って加熱による活性化を行う。次いで、処理容器内を真空排気した後、水素を導入して処理容器内を一定圧力に維持する。この水素による処理容器内の圧力は、30mTorr程度が適当である。そして、トリウム含有タングステン陰極に十数Aの加熱電流を流すとともに、陽極に数十Vの電圧を印加して放電を開始させる。これと同時に、処理容器内にヘキサメチルジシランを導入する。ここで、ヘキサメチルジシランは、水素圧が30mTorrの場合0.9mTorr程度の分圧となるように導入するのが適当である。放電時間、即ちヘキサメチルジシランによる処理時間は15分間程度が適当である。そして、放電並びにヘキサメチルジシランの導入を止めた後、再び水素を導入して電極を冷却して処理が完了する。
あるいは、ヘキサメチルジシランによる放電処理の後に、加熱による活性化を行ってもよい。この場合の処理条件は、上記と同様である。
【0007】
上記の処理を施したトリウム含有タングステン陰極を用いることにより、従来の加熱による活性化を施したトリウム含有タングステン陰極に比べて格段に低い陰極電流で熱電子の放出が可能になる。具体的には、以下の実施例に示す通りである。
【0008】
また、上記の加熱による活性化、並びにヘキサメチルジシランによる放電処理は、トリウム含有タングステン陰極を装備した直流プラズマ生成装置の反応容器内で、被処理材料の加工の前に行うことができる。
即ち、加工に先立ち、直流プラズマ生成装置の反応容器内に、上記に従ってヘキサメチルジシランと水素とを導入して放電を行った後、真空下でトリウム含有タングステン陰極を加熱する。あるいは、真空下でトリウム含有タングステン材を加熱した後、反応容器内にヘキサメチルジシランと水素とを導入して放電させるてもよい。
【0009】
【実施例】
以下、実施例を挙げて本発明を更に説明する。
図1は、本実施例において陽極電流電圧特性を測定するために用いた装置を示す概略構成図である。
トリウムを2重量%含むタングステンの線材(直径0.45mm)を長さ322.95mmに切断し、図示されるように連続S字状に湾曲したものを陰極1とし、これにステンレス製の編目状の陽極2とを平行に設置して電極部を構成し、これを水素ガス及びヘキサメチルジシラン導入系管路、並びに排気系管路を備える処理容器(何れも図示せず)内に設置した。また、トリウム含有タングステン陰極1には交流電源3が接続しており、ダイオード4で半波整流された電流がトリウム含有タングステン陰極1に供給される。この時の通電量はスライドトランス5で調整される。一方、陽極2には直流電源6が接続しており、オシロスコープ7により波形観察を行う。
【0010】
上記の装置を用い、処理容器内を1.1×10−5Torrまで排気した後で陽極電流の測定を行った。測定は、陰極電流10Aから13Aまでの0.5A間隔について行った。
測定の結果得られた陽極電圧電流特性を図2に示すが、陰極電流が11.5A以下では陽極電圧を上げても殆ど陽極には電流が流れず、陰極電流が12Aになってはじめて陽極に電流が流れるようになる。
【0011】
そこで、加熱による活性化を施すために以下の処理を行った。
処理容器内を6×10−5Torrとした後、陰極に半波整流した加熱電流を流し、処理容器内の圧力が10−5Torr台になったら次の加熱電流値に変える。この操作を加熱電流5A(31分間)、7A(61分間)、9A(59分間)、11A(60分間)、13.5A(41分間)について行った後、陽極電流の測定を行った。尚、括弧内は処理容器内の圧力が10−5Torr台になるまでに要した時間である。
測定の結果得られた陽極電圧電流特性を図3に示すが、図2のプロファイルと比較すると、陰極電流が11Aの曲線が若干上昇し、また11Aよりも高い陰極電流では全体的に陽極電流が上昇しており、この加熱による活性化の影響が現れていることが判る。
【0012】
しかしながら加熱による活性化では未だ不十分であり、以下に示すヘキサメチルジシランによる放電処理を行った。
上記の活性化処理に引き続き、処理容器内を3×10−5Torrまで排気した後、44.5ccMの水素を処理容器内に導入して処理容器内を30mTorrに維持し、次いでトリウム含有タングステン陰極に13Aの加熱電流を流すともに、陽極に60Vの電圧を印加して放電を開始させた。これと同時に、処理容器内にヘキサメチルジシランを0.9mTorrの分圧となるように導入してこの状態を15分間維持した。そして、電圧の印加並びにヘキサメチルジシランの導入を止めた後、再び反応容器内に水素を7、8分間続けて導入して電極を冷却した。冷却後に水素の導入を停止し、処理容器内を3×10−5Torrまで排気した後、陽極電流の測定を行った。
測定の結果得られた陽極電圧電流特性を図4に示すが、図3のプロファイルと比較すると、陰極電流10Aでもかなり高い陽極電流値を示しており、ヘキサメチルジシランによる放電処理の効果が認められた。
【0013】
上記の結果から、更に低い陰極電流での陽極電流を測定した。
測定の結果得られた陽極電圧電流特性を図5に示すが、陰極電流が7Aでも従来の加熱による活性化の陰極電流12Aでの陽極電流値を大幅に上回ることが判った。
また、陽極電圧と陽極電流密度との関係を図6に示す。
【0014】
更に、ヘキサメチルジシランによる放電処理の時期についての検証を行った。即ち、トリウム含有タングステン陰極を上記と同一のヘキサメチルジシランによる放電処理を施した後、上記と同一の加熱による活性化を行った。そして、同様に陽極電圧電流特性を求めたところ、図7に示す結果が得られた。
加熱による活性化を先に行った場合(図4参照)と比較すると、全体的に陽極電流値が若干低下しているものの、ほぼ同様のプロファイルを示しており、ヘキサメチルジシランによる放電処理の時期の違いによる効果の差は小さいと言える。
【0015】
以上述べたように、本発明に従って加熱による活性化に加えてヘキサメチルジシランによる放電処理を施すことにより、加熱による活性化のみの場合に比べて陰極電流を大幅に低減できる。この理由について、仕事関数の観点から考察を行った。
仕事関数φは、陽極の電流密度Jsとの間に(1)式に示す関係があることが知られている。
=ATexp(−φ/κT) ・・・(1)
ここで、Aは定数、κはボルツマン定数、Tは陰極の表面温度である。本実施例においては、トリウム含有タングステン陰極の表面積は4.5633cm、Aは60(A/cm(K))、κは5038である。従って、陽極電流の測定値から電流密度Jsを求め、陰極の表面温度Tを測定すれば、(1)式より仕事関数が算出される。
【0016】
そこで、未処理、加熱による活性化、加熱による活性化後にヘキサメチルジシランによる放電処理を施した場合について、それぞれのトリウム含有タングステン陰極の仕事関数を(1)式を基に算出する。尚、電流密度Jsは、何れも陽極電圧400Vでの陽極電流値を基にした。
未処理の場合、陰極電流12.5A(T=2100K)での仕事関数は4.48、また12A(T=2035K)での仕事関数は4.50と算出された。一方、加熱による活性化の場合、陰極電流11.5A(T=2003K)での仕事関数は4.41、また12A(T=2035K)での仕事関数は4.19と算出された。
これに対して、加熱による活性化後にヘキサメチルジシランによる放電処理を施した場合には、陰極電流6A(T=1484.6K)での仕事関数は3.14、また7A(T=1543K)での仕事関数は3.01と算出された。
このことから、加熱による活性化後にヘキサメチルジシランによる放電処理を施すことにより、未処理並びに加熱による活性化の場合に比べてトリウム含有タングステン陰極の仕事関数が大きく低下し、それにより熱電子の発生がより良好になることが判明した。
【0017】
【発明の効果】
以上説明したように、本発明によれば、従来に比べて格段に低い電流でプラズマの生成が可能なトリウム含有タングステン陰極が得られ、これを使用することにより直流プラズマ生成装置の大幅な省電力化を図ることができるようになる。また、改質方法も簡単であり、直流プラズマ生成装置内で加工の前に行うこともできる。
【図面の簡単な説明】
【図1】実施例において陽極電圧電流特性を求めるために使用した装置を示す回路図である。
【図2】未処理のトリウム含有タングステン電極の陽極電圧電流特性を示す図である。
【図3】従来の加熱により活性化したトリウム含有タングステン電極の陽極電圧電流特性を示す図である。
【図4】加熱による活性化に加えて、ヘキサメチルジシランと水素との混合雰囲気中で放電処理したトリウム含有タングステン電極の陽極電圧電流特性を示す図である。
【図5】加熱による活性化に加えて、ヘキサメチルジシランと水素との混合雰囲気中で放電処理したトリウム含有タングステン電極の陽極電圧電流特性(低陰極電流)を示す図である。
【図6】加熱による活性化に加えて、ヘキサメチルジシランと水素との混合雰囲気中で放電処理したトリウム含有タングステン電極の陽極電圧電流密度特性を示す図である。
【図7】ヘキサメチルジシランと水素との混合雰囲気中で放電処理した後、加熱による活性化を施したトリウム含有タングステン電極の陽極電圧電流特性を示す図である。
【符号の説明】
1 陰極
2 陽極
3 交流電源
4 ダイオード
5 スライドトランス
6 直流電源
7 オシロスコープ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a thorium-containing tungsten hot cathode direct current discharge electrode used in a direct current plasma generating apparatus, and a reforming method thereof.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a thin film is formed on a material surface using a plasma generation device, and processing such as etching is performed. In this plasma generation apparatus, an anode and a cathode are arranged opposite to each other in a chamber, and a plasma is generated by applying a high voltage between the electrodes and causing discharge. There are various types of discharge, such as magnetron discharge in which a high frequency or microwave acts in the presence of a magnetic field, in addition to DC discharge and AC discharge.
On the other hand, electrode materials have been developed and improved for the purpose of, for example, power saving of a plasma generating apparatus. At present, a tungsten cathode containing about 2% by weight of thorium is generally used. Further, in order to further increase the plasma generation efficiency, the thorium-containing tungsten cathode is heated to activate the electrode surface.
[0003]
[Problems to be solved by the invention]
It is fully anticipated that the demand for power saving of the plasma generating apparatus as described above will further increase in the future. However, activation by heating does not allow sufficient extraction of thermoelectrons, and further improvement is required.
The present invention has been made in view of such circumstances, and to provide a thorium-containing tungsten hot cathode DC discharge electrode capable of generating plasma at a lower current, and to generate plasma at a lower current. It is another object of the present invention to provide a method for modifying the electrode.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, a first invention according to the present invention relates to a thorium-containing tungsten hot cathode DC discharge electrode used in a DC plasma generator, wherein a thorium-containing tungsten material is mixed with hexamethyldisilane and hydrogen. After discharge treatment in an atmosphere, heating is performed under vacuum.
In a second aspect of the present invention, a thorium-containing tungsten hot cathode DC discharge electrode used in a direct current plasma generating apparatus heats a thorium-containing tungsten material under vacuum and then discharges the thorium-containing tungsten material in a mixed atmosphere of hexamethyldisilane and hydrogen. It is characterized by being processed.
Further, the third invention is characterized in that, when processing a material to be processed using a direct current plasma generating apparatus having a reaction vessel in which a thorium-containing tungsten hot cathode DC discharge electrode and an anode are opposed to each other, prior to the processing, And then discharging by introducing hexamethyldisilane and hydrogen into the tungsten, and then heating the thorium-containing tungsten hot cathode DC discharge electrode under vacuum.
Further, the fourth invention, when processing the material to be processed using a direct current plasma generating apparatus having a reaction vessel having a thorium-containing tungsten hot cathode direct current discharge electrode and an anode opposed to each other, prior to processing, the above-mentioned under vacuum After heating a direct current discharge electrode of a thorium-containing tungsten hot cathode, hexamethyldisilane and hydrogen are introduced into the reaction vessel to discharge.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
The thorium-containing tungsten hot cathode DC discharge electrode of the present invention (hereinafter simply referred to as thorium-containing tungsten cathode) is subjected to a discharge treatment in a mixed atmosphere of hexamethyldisilane and hydrogen in addition to the conventional activation by heating. Obtained. This discharge treatment may be performed before activation by heating, or may be performed after activation by heating.
It is believed that in a thorium-containing tungsten cathode, thorium precipitates on the surface of the electrode, lowering its work function as compared to the case of tungsten alone, and as a result, the discharge current required for plasma generation is reduced. It is presumed that the deposition of thorium is greatly increased by the discharge treatment in the mixed atmosphere of hexamethyldisilane and hydrogen of the present invention as compared with the conventional activation by heating.
[0006]
The discharge treatment in a mixed atmosphere of hexamethyldisilane and hydrogen is performed in the following procedure.
First, a thorium-containing tungsten cathode and an appropriate anode (for example, made of stainless steel) are placed in a processing vessel so as to face each other, and activation by heating is performed according to a conventional method. Next, after evacuating the inside of the processing container, hydrogen is introduced to maintain the inside of the processing container at a constant pressure. The pressure in the processing vessel by this hydrogen is suitably about 30 mTorr. Then, a heating current of about several tens A is applied to the thorium-containing tungsten cathode, and a voltage of several tens V is applied to the anode to start discharging. At the same time, hexamethyldisilane is introduced into the processing vessel. Here, it is appropriate to introduce hexamethyldisilane so that the partial pressure is about 0.9 mTorr when the hydrogen pressure is 30 mTorr. The discharge time, that is, the treatment time with hexamethyldisilane is suitably about 15 minutes. Then, after stopping the discharge and the introduction of hexamethyldisilane, hydrogen is introduced again to cool the electrode, and the process is completed.
Alternatively, activation by heating may be performed after the discharge treatment with hexamethyldisilane. The processing conditions in this case are the same as described above.
[0007]
By using the thorium-containing tungsten cathode that has been subjected to the above-described treatment, it becomes possible to emit thermoelectrons with a significantly lower cathode current than a conventional thorium-containing tungsten cathode that has been activated by heating. Specifically, it is as shown in the following examples.
[0008]
Further, the activation by heating and the discharge treatment with hexamethyldisilane can be performed in a reaction vessel of a direct current plasma generator equipped with a thorium-containing tungsten cathode before the processing of the material to be treated.
That is, prior to processing, hexamethyldisilane and hydrogen are introduced into the reaction vessel of the DC plasma generating apparatus in accordance with the above to perform discharge, and then the thorium-containing tungsten cathode is heated under vacuum. Alternatively, the thorium-containing tungsten material may be heated in a vacuum and then discharged by introducing hexamethyldisilane and hydrogen into the reaction vessel.
[0009]
【Example】
Hereinafter, the present invention will be further described with reference to examples.
FIG. 1 is a schematic configuration diagram showing an apparatus used for measuring anode current-voltage characteristics in the present embodiment.
A tungsten wire rod (diameter: 0.45 mm) containing 2% by weight of thorium was cut into a length of 322.95 mm, and a continuous S-shaped one as shown in FIG. And an anode 2 were arranged in parallel to form an electrode portion, and this was installed in a processing vessel (neither shown) having a hydrogen gas and hexamethyldisilane introduction system pipeline and an exhaust system pipeline. Further, an AC power supply 3 is connected to the thorium-containing tungsten cathode 1, and a current half-wave rectified by the diode 4 is supplied to the thorium-containing tungsten cathode 1. The amount of current at this time is adjusted by the slide transformer 5. On the other hand, a DC power supply 6 is connected to the anode 2, and an oscilloscope 7 performs waveform observation.
[0010]
Using the above-described apparatus, the inside of the processing container was evacuated to 1.1 × 10 −5 Torr, and then the anode current was measured. The measurement was performed at intervals of 0.5 A from a cathode current of 10 A to 13 A.
The anode voltage-current characteristics obtained as a result of the measurement are shown in FIG. 2. When the cathode current is 11.5 A or less, almost no current flows to the anode even when the anode voltage is increased, and the anode current becomes 12 A only when the cathode current becomes 12 A. The current starts to flow.
[0011]
Therefore, the following treatment was performed to perform activation by heating.
After the inside of the processing container is set to 6 × 10 −5 Torr, a heating current subjected to half-wave rectification is applied to the cathode, and when the pressure in the processing container reaches the order of 10 −5 Torr, the heating current is changed to the next value. This operation was performed for a heating current of 5 A (31 minutes), 7 A (61 minutes), 9 A (59 minutes), 11 A (60 minutes), and 13.5 A (41 minutes), and then the anode current was measured. The time in parentheses is the time required for the pressure in the processing container to reach the order of 10 −5 Torr.
The anode voltage / current characteristics obtained as a result of the measurement are shown in FIG. 3. As compared with the profile of FIG. 2, the curve of the cathode current of 11 A slightly increases, and the anode current is higher at the cathode current higher than 11 A as a whole. It can be seen that the influence of activation due to this heating has appeared.
[0012]
However, activation by heating is still insufficient, and the following discharge treatment with hexamethyldisilane was performed.
Subsequent to the above activation treatment, the inside of the processing vessel was evacuated to 3 × 10 −5 Torr, and then 44.5 cc of hydrogen was introduced into the processing vessel to maintain the inside of the processing vessel at 30 mTorr, and then the thorium-containing tungsten cathode And a discharge current was started by applying a voltage of 60 V to the anode. At the same time, hexamethyldisilane was introduced into the processing vessel at a partial pressure of 0.9 mTorr, and this state was maintained for 15 minutes. After stopping the application of the voltage and the introduction of hexamethyldisilane, hydrogen was continuously introduced again into the reaction vessel for 7 to 8 minutes to cool the electrode. After cooling, the introduction of hydrogen was stopped, and the inside of the processing vessel was evacuated to 3 × 10 −5 Torr, and then the anode current was measured.
The anode voltage / current characteristics obtained as a result of the measurement are shown in FIG. 4, and when compared with the profile of FIG. 3, the anode current value is considerably high even at a cathode current of 10 A, and the effect of the discharge treatment with hexamethyldisilane is recognized. Was.
[0013]
From the above results, the anode current at a lower cathode current was measured.
The anode voltage-current characteristics obtained as a result of the measurement are shown in FIG. 5, and it was found that even when the cathode current was 7 A, the anode current value when the cathode current was 12 A, which was activated by conventional heating, was significantly higher.
FIG. 6 shows the relationship between the anode voltage and the anode current density.
[0014]
Further, the timing of the discharge treatment with hexamethyldisilane was verified. That is, the thorium-containing tungsten cathode was subjected to the same discharge treatment with hexamethyldisilane as described above, and then activated by the same heating as described above. When the anode voltage-current characteristics were similarly obtained, the results shown in FIG. 7 were obtained.
Compared to the case where the activation by heating was performed first (see FIG. 4), although the anode current value was slightly lowered as a whole, it showed almost the same profile, and the timing of the discharge treatment with hexamethyldisilane It can be said that the difference in effect due to the difference is small.
[0015]
As described above, by performing discharge treatment with hexamethyldisilane in addition to activation by heating according to the present invention, the cathode current can be significantly reduced as compared with the case of activation only by heating. The reason was discussed from the viewpoint of work function.
It is known that the work function φ has a relationship shown in Expression (1) between the work function φ and the current density Js of the anode.
J s = AT 2 exp (-φ / κ B T) ··· (1)
Here, A is a constant, kappa B is the Boltzmann constant, T is the surface temperature of the cathode. In the present embodiment, the surface area of the thorium-containing tungsten cathode 4.5633cm 2, A is 60 (A / cm 2 (K ) 2), κ B is 5038. Therefore, if the current density Js is obtained from the measured value of the anode current and the surface temperature T of the cathode is measured, the work function is calculated from the equation (1).
[0016]
Therefore, the work function of each of the thorium-containing tungsten cathodes is calculated based on the formula (1) in the case where the discharge treatment with hexamethyldisilane is performed after the non-treatment, activation by heating, and activation by heating. The current density Js was based on the anode current value at an anode voltage of 400 V.
In the case of no treatment, the work function at a cathode current of 12.5 A (T = 2100 K) was calculated as 4.48, and the work function at 12 A (T = 2035 K) was calculated as 4.50. On the other hand, in the case of activation by heating, the work function at a cathode current of 11.5 A (T = 2003 K) was calculated as 4.41, and the work function at 12 A (T = 2035 K) was calculated as 4.19.
On the other hand, when the discharge treatment with hexamethyldisilane is performed after activation by heating, the work function at a cathode current of 6 A (T = 1484.6 K) is 3.14 and the work function at 7 A (T = 1543 K). Was calculated to be 3.01.
Therefore, by performing the discharge treatment with hexamethyldisilane after activation by heating, the work function of the thorium-containing tungsten cathode is greatly reduced as compared with the case of the untreated and activation by heating, thereby generating thermionic electrons. Was found to be better.
[0017]
【The invention's effect】
As described above, according to the present invention, it is possible to obtain a thorium-containing tungsten cathode capable of generating plasma with a significantly lower current than conventional ones, and by using this, a large power saving of a DC plasma generating apparatus is achieved. Can be achieved. The reforming method is also simple, and can be performed before processing in a DC plasma generator.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing an apparatus used for obtaining an anode voltage-current characteristic in an example.
FIG. 2 is a diagram showing the anode voltage-current characteristics of an untreated thorium-containing tungsten electrode.
FIG. 3 is a diagram showing the anodic voltage-current characteristics of a conventional thorium-containing tungsten electrode activated by heating.
FIG. 4 is a diagram showing anodic voltage-current characteristics of a thorium-containing tungsten electrode subjected to discharge treatment in a mixed atmosphere of hexamethyldisilane and hydrogen in addition to activation by heating.
FIG. 5 is a diagram showing anodic voltage-current characteristics (low cathode current) of a thorium-containing tungsten electrode that has been subjected to discharge treatment in a mixed atmosphere of hexamethyldisilane and hydrogen in addition to activation by heating.
FIG. 6 is a diagram showing anodic voltage / current density characteristics of a thorium-containing tungsten electrode that has been subjected to discharge treatment in a mixed atmosphere of hexamethyldisilane and hydrogen in addition to activation by heating.
FIG. 7 is a diagram showing anodic voltage-current characteristics of a thorium-containing tungsten electrode that has been subjected to discharge treatment in a mixed atmosphere of hexamethyldisilane and hydrogen and then activated by heating.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Cathode 2 Anode 3 AC power supply 4 Diode 5 Slide transformer 6 DC power supply 7 Oscilloscope

Claims (4)

直流プラズマ生成装置に使用されるトリウム含有タングステン熱陰極直流放電電極において、トリウム含有タングステン材をヘキサメチルジシランと水素との混合雰囲気中で放電処理した後、真空下で加熱してなることを特徴とするトリウム含有タングステン熱陰極直流放電電極。In a thorium-containing tungsten hot cathode DC discharge electrode used in a DC plasma generator, a thorium-containing tungsten material is subjected to discharge treatment in a mixed atmosphere of hexamethyldisilane and hydrogen, and then heated under vacuum. Thorium-containing tungsten hot cathode direct current discharge electrode. 直流プラズマ生成装置に使用されるトリウム含有タングステン熱陰極直流放電電極において、トリウム含有タングステン材を真空下で加熱した後、ヘキサメチルジシランと水素との混合雰囲気中で放電処理してなることを特徴とするトリウム含有タングステン熱陰極直流放電電極。In a thorium-containing tungsten hot cathode DC discharge electrode used in a DC plasma generator, a thorium-containing tungsten material is heated in a vacuum and then discharged in a mixed atmosphere of hexamethyldisilane and hydrogen. Thorium-containing tungsten hot cathode direct current discharge electrode. トリウム含有タングステン熱陰極直流放電電極と陽極とを対向設置した反応容器を備える直流プラズマ生成装置を用いて被処理材料を加工する際、加工に先立ち、前記反応容器内にヘキサメチルジシランと水素とを導入して放電を行った後、真空下で前記トリウム含有タングステン熱陰極直流放電電極を加熱することを特徴とするトリウム含有タングステン熱陰極直流放電電極の改質方法。When processing a material to be processed using a direct current plasma generating apparatus including a reaction vessel having a thorium-containing tungsten hot cathode DC discharge electrode and an anode facing each other, prior to processing, hexamethyldisilane and hydrogen are introduced into the reaction vessel. A method for reforming a thorium-containing tungsten hot cathode DC discharge electrode, comprising: introducing and discharging and then heating the thorium-containing tungsten hot cathode DC discharge electrode under vacuum. トリウム含有タングステン熱陰極直流放電電極と陽極とを対向設置した反応容器を備える直流プラズマ生成装置を用いて被処理材料を加工する際、加工に先立ち、真空下で前記トリウム含有タングステン熱陰極直流放電電極を加熱した後、前記反応容器内にヘキサメチルジシランと水素とを導入して放電させることを特徴とするトリウム含有タングステン熱陰極直流放電電極の改質方法。When processing a material to be processed using a direct current plasma generating apparatus provided with a reaction vessel having a thorium-containing tungsten hot cathode DC discharge electrode and an anode opposed to each other, prior to processing, the thorium-containing tungsten hot cathode DC discharge electrode under vacuum A method of reforming a direct current discharge electrode of a thorium-containing tungsten hot cathode, wherein hexamethyldisilane and hydrogen are introduced into the reaction vessel and then discharged.
JP22265999A 1999-08-05 1999-08-05 Thorium-containing tungsten hot cathode DC discharge electrode and method for modifying the electrode Expired - Fee Related JP3558209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22265999A JP3558209B2 (en) 1999-08-05 1999-08-05 Thorium-containing tungsten hot cathode DC discharge electrode and method for modifying the electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22265999A JP3558209B2 (en) 1999-08-05 1999-08-05 Thorium-containing tungsten hot cathode DC discharge electrode and method for modifying the electrode

Publications (2)

Publication Number Publication Date
JP2001052892A JP2001052892A (en) 2001-02-23
JP3558209B2 true JP3558209B2 (en) 2004-08-25

Family

ID=16785925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22265999A Expired - Fee Related JP3558209B2 (en) 1999-08-05 1999-08-05 Thorium-containing tungsten hot cathode DC discharge electrode and method for modifying the electrode

Country Status (1)

Country Link
JP (1) JP3558209B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5173516B2 (en) * 2008-03-26 2013-04-03 学校法人早稲田大学 Electron source and electron source manufacturing method

Also Published As

Publication number Publication date
JP2001052892A (en) 2001-02-23

Similar Documents

Publication Publication Date Title
JP2657850B2 (en) Plasma generator and etching method using the same
JP3411539B2 (en) Plasma processing apparatus and plasma processing method
US5221427A (en) Plasma generating device and method of plasma processing
JP4013271B2 (en) Article surface treatment method and apparatus
KR890013966A (en) Plasma processing method and apparatus
CN110049614B (en) Microwave plasma device and plasma excitation method
JP2898635B2 (en) Method and apparatus for reducing sputtering of a second electrode
CN110537242A (en) Plasma reactor with electrode thread
KR20090091293A (en) Method and apparatus for manufacturing cleaned substrates or clean substrates which are further processed
JP3345079B2 (en) Atmospheric pressure discharge device
Korzec et al. Characterization of a slot antenna microwave plasma source for hydrogen plasma cleaning
JPH02281734A (en) Treating method of surface by plasma
JP3558209B2 (en) Thorium-containing tungsten hot cathode DC discharge electrode and method for modifying the electrode
JP2000054125A (en) Surface treating method and device therefor
KR910010753A (en) Plasma treatment method and apparatus using electron cyclotron resonance
JPH088235B2 (en) Plasma reactor
Agarwal et al. On the scaling of rf and dc self-bias voltages with pressure in electronegative capacitively coupled plasmas
JP3175891B2 (en) Plasma generator and etching method using the same
Dhayal et al. Using an afterglow plasma to modify polystyrene surfaces in pulsed radio frequency (RF) argon discharges
JP2000164582A (en) Plasma processing system
JPH05275190A (en) Method and device of etching
JP2022018484A (en) Plasma processing apparatus and plasma processing method
JP2000150487A (en) Plasma treatment method
JP4484421B2 (en) Plasma surface treatment method and apparatus
JPH08222553A (en) Processor and processing

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040513

R150 Certificate of patent or registration of utility model

Ref document number: 3558209

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080528

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees