JP3557954B2 - Granule extraction device - Google Patents

Granule extraction device Download PDF

Info

Publication number
JP3557954B2
JP3557954B2 JP21012199A JP21012199A JP3557954B2 JP 3557954 B2 JP3557954 B2 JP 3557954B2 JP 21012199 A JP21012199 A JP 21012199A JP 21012199 A JP21012199 A JP 21012199A JP 3557954 B2 JP3557954 B2 JP 3557954B2
Authority
JP
Japan
Prior art keywords
pressure
powder
blowing
granular material
cut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21012199A
Other languages
Japanese (ja)
Other versions
JP2001031246A (en
Inventor
進市 磯崎
忍 熊谷
豊 小浜
峰生 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP21012199A priority Critical patent/JP3557954B2/en
Priority to KR1020017016392A priority patent/KR100565177B1/en
Priority to EP00944287A priority patent/EP1211202A4/en
Priority to PCT/JP2000/004494 priority patent/WO2001004030A1/en
Priority to TW89113499A priority patent/TW458935B/en
Publication of JP2001031246A publication Critical patent/JP2001031246A/en
Priority to US10/040,139 priority patent/US20020114672A1/en
Application granted granted Critical
Publication of JP3557954B2 publication Critical patent/JP3557954B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、貯蔵ホッパー等に貯蔵された微粉炭、廃プラスチック等の粉粒体を、気流搬送する搬送配管に定量切り出しする粉粒体切出装置に関する。
【0002】
【従来の技術】
粉粒体切出し装置の例としては、高炉への微粉炭吹込みに適用したものである特公平07−033530号公報に開示されたものがある。
図7は、同公報に示された方法を実現するための装置であり、粉体貯蔵ホッパー61の下方に並列配置した2基の粉体吹込ホッパー62、62’を切替えて、高炉への微粉炭の吹込みを連続的かつ安定的に行うものである。
【0003】
微粉炭Cの貯蔵ホッパー61の下方に並列に配設した2基の粉体吹込ホッパー62、62’は、それぞれ充填弁63A、63A’、充填弁63B、63B’を備えた充填管63、63’によって粉体貯蔵ホッパー61の下部に連結されている。粉体吹込ホッパー62、62’の下部に、攪拌翼を備えた回転式粉体供給装置64、64’が設けられている。この粉体供給装置64、64’の下部には切出ロがあり、この切出ロは切出弁65A、65A’、切出弁65B、65B’を備えた切出管65、65’によって高炉への粉体搬送管66に連結されている。
【0004】
また、粉体吹込ホッパー62、62’には、吹込ホッパー62、62’内の圧力を調整するための加圧ガス吹込管67、67’が取付けられており、圧力計P、P’による吹込ホッパー62、62’内の圧力値に応じて加圧ガス吹込調整弁68、68’を制御して加圧ガス吹込管67、67’からの加圧ガス吹込流量を制御し、粉体吹込ホッパー62、62’内の圧力を所定値に維持する。
【0005】
そして、粉体供給装置64、64’内の攪拌翼上部には、粉体供給装置64、64’内の微粉炭を流動化するための複数のガス吹出ロを有する流動化ガス吹込管69、69’が取付けられており、これから粉体供給装置64、64’内に加圧ガスを吹込んで、ここで微粉炭を流動状態に維持する。70、70’は流動化ガス吹込調整弁である。
【0006】
また、この粉体供給装置64、64’の切出口近傍に、搬送補助ガス吹込管71、71’が取付けられており、切出口から微粉炭を切り出す際に、加圧ガスを吹き込んで微粉炭の切出し・搬送を補助する。72、72’は搬送補助ガス開閉弁である。
【0007】
各粉体吹込ホッパー62、62’の上部は排圧弁73、73’を備えた排圧管74、74’によって粉体貯蔵ホッパー61上部と連結し、粉体吹込ホッパー62、62’内の圧力と粉体貯蔵ホッパー61の圧力を調整できるようになっている。
【0008】
粉体吹込ホッパー62、62’内の微粉炭の重量を測定するためのロードセル75、75’での重量測定値は、供給制御装置76、76’に送信され、供給制御装置76、76’により駆動装置M、M’の駆動を制御し、攪拌翼の回転を制御すると共に、粉体吹込ホッパー62、62’内の刻々変化する重量を測定し、切替制御装置77に入力し演算処理してこの測定値が所定値になったら供給制御装置77を介して各種弁の開閉を制御して粉体吹込ホッパー62、62’間の切替えが行われる。
【0009】
以上のように構成された従来技術においては、並列に配置した複数の粉体吹込ホッパー62、62’を交互に切替えて、搬送管66への微粉炭の切出量変動を抑制して安定的にして、高炉への微粉炭の吹込を長時間に亘って安定的に行うことにより、高炉操業の安定化を図るというものである。
【0010】
【発明が解決しようとする課題】
しかしながら、上記のように構成された従来例においては、吹込ホッパー62、62’内の圧力の調整、及び粉体供給装置64、64’へ供給する搬送補助ガスの圧力(以下、「切り出し側圧力」という。)を粉体搬送管66内の圧力変化を考慮することなく、粉体搬送管66内の圧力とは無関係に設定している。一方、粉体搬送管66内の圧力は、粉体の流れ状況、粉体流量、ガス流量及び粉体供給先圧力等の種々の要因によって常時変動する。このため、切り出し側圧力を粉体搬送管66内の圧力と無関係に設定していると、両圧力間の関係によっては、吹込みホッパー62、62’から粉体を切り出すときに以下のような問題が生じる。
【0011】
すなわち、切り出し側圧力が粉体搬送管圧力よりも低い場合には、圧力が低い方から高い方へ粉体を切り出すことになり、切り出しが不可能となる。
一方、切り出し側圧力が粉体搬送管圧力よりもかなり高い場合には、粉体が粉体搬送管66へ押し出され、定量切り出しができない。
【0012】
また、他の問題点として、粉粒体を吹込タンクから切出装置で切出す場合、切出直下の切出し管形状が閉塞原因の大き要因になるが、粉体搬送管66に直角に接続された切出し管65、65’から粉粒体を落とし込む形式では、粉粒体が搬送方向の速度を十分得ることができず、接続部で滞留してしまい閉塞を生じさせてしまうという問題がある。
【0013】
この点を解決するものとして、例えば図8に示す実願昭63−74509号のマイクロフィルムに記載された空気輸送装置の発明がある。
同号のマイクロフィルムに記載されたものは、輸送管87から分枝して導入管82が立設されると共に混入機81が接続され、導入管82の一方の側壁には、図8のA部を拡大して示した図9に拡大して示すように、ロート状の噴射ノズル84の開口部にフィルタ90および金網91を備えた吹出板5が設けられ、その対壁には導入板86が設けられている。
【0014】
そして、粉粒体混入機81より導入管82に供給された粉粒体は、導入板86を介して空気吹出板5へ供給される。このとき噴射ノズル84より空気が噴射され、粉粒体は浮遊して輸送管87へ供給されるので、輸送管内で粉粒体が詰まることなく安定した空気輸送を得ることができるとしている。
【0015】
しかしながら、上記のように導入管82に沿って設けられた吹出板85から空気を噴射して粉粒体を浮遊させるだけでは、粉粒体が輸送管87へ供給されるときに十分な速度を有することがでないので、輸送管87の気流にスムーズに乗ることができず、閉塞を生ずる危険性がある。また、閉塞を避けるためには多量の輸送用空気を必要とするという問題がある。
【0016】
本発明はかかる問題点を解決するためになされたものであり、粉粒体搬送管の圧力変動にかかわらず、粉粒体の定量切り出しが確実に行える粉粒体切出し装置を得ることを目的としている。
また、搬送配管への切り出し時に切出し管及び搬送管に閉塞が生ずることなく、スムーズな切り出しができる粉粒体切出し装置を得ることを目的としている。
【0017】
【課題を解決するための手段】
【0019】
粉粒体を気流搬送する搬送管に、貯蔵容器内の粉粒体を切出し管を介して定量切り出しする粉粒体切出し装置において、前記切出し管は、鉛直方向に延びる鉛直部と、該鉛直部に連続して設けられると共に該鉛直部に対して搬送方向に傾斜する傾斜部とを有し、該傾斜部に傾斜方向に沿って加速ガスを噴射する加速ガスノズルを備え、
該加速ガスノズルから噴射する加速ガスによって前記粉粒体を加速して、該粉粒体の前記搬送方向の分速度が搬送管内の気流速度以上になるようにしたものである。
【0020】
また、前記加速ガスノズルから噴射する加速ガスによって前記粉粒体を加速して、該粉粒体の前記搬送方向の分速度が搬送管内の気流速度以上になるようにしたものである。
【0021】
また、前記傾斜部の傾斜角を40〜60度に設定したものである。
【0022】
また、前記切出し管の断面積が一定になるようにしたものである。
【0023】
また、前記貯蔵容器内の圧力を検出する容器内圧力検知手段と、前記搬送管内の圧力を検出する搬送管圧力検知手段と、容器内圧力検知手段と搬送管圧力検知手段の検知結果に基づいて前記貯蔵容器内の圧力を前記搬送管内の圧力よりも高くなるように調整する圧力調整手段とを設けたものである。
【0024】
【発明の実施の形態】
参考例
図1は本発明が参考にした参考例の説明図であり、1は粉粒体を貯蔵する貯蔵ホッパー、3a,3bは貯蔵ホッパー1の下方に導入管5a,5bを介して並列設置された粉粒体吹込みホッパ、7a,7bは導入管5a,5bの途中に設けられた導入弁である。
9a,9bは粉粒体吹込みホッパ3a,3bの排出口と搬送管10とを連結する切出し管、11a,11bは切出し管9a,9bに設置されて粉粒体を定量切出しする供給装置、13a,13bは切出し管9a,9bに設置した切出弁である。
【0025】
15a,15bは粉粒体吹込みホッパー3a,3bに加圧空気などの加圧ガスを導入する加圧ガス配管、17a,17bは加圧空気配管15a,15bに設けられた加圧ガス調整弁、19a,19bは粉粒体吹込みホッパー3a,3b内の圧力ガスを排出する排出管、21a,21bは排出管19a,19bに設けられた排出弁である。
【0026】
23a,23bは粉粒体吹込みホッパー3a,3b内の圧力を検知するホッパー圧力検知装置、25a,25bは搬送管10の圧力を検知する搬送管圧力検知装置、27a,27bはホッパー圧力検知装置23a,23b及び搬送管圧力検知装置25a,25bの検知信号を入力して、該検知信号に基づいて加圧ガス調整弁17a,17bの開閉及び開度を調整することによって粉粒体吹込みホッパー3a,3b内の圧力を制御する圧力制御装置。
なお、粉粒体吹込みホッパー3a,3b内の圧力は、搬送管10内の圧力よりも若干だけ(0.1〜0.5kg/cm程度)高くなるように制御する。
【0027】
次に、上記のように構成された参考例の動作を説明する。本実施の形態においては、貯蔵ホッパー1内に投入した粉粒体を吹込みホッパー3a,3bに導入して、それぞれの吹込みホッパー3a,3bを切り替えて使用することによって、粉粒体を搬送管10に連続的に切り出すものである。
【0028】
まず、貯蔵ホッパー1に粉粒体を投入し、これを吹込みホッパー3aに導入するには、全ての弁を閉にした状態から、排出弁21aを開にし、次いで導入弁7aを開にする。これによって、貯蔵ホッパー1内の粉粒体が吹込みホッパー3aに導入される。吹込みホッパー3aの重量を図示しないロードセルで計量して、重量が上限値に達すると、導入弁7aを閉にし、さらに排出弁21aを閉にする。
【0029】
次に、加圧ガス調整弁17aを開にして、加圧ガスを吹込みホッパー3a内に供給する。このとき、圧力制御装置27aは、搬送管圧力検知装置25a及びホッパー圧力検知装置23aの圧力信号を入力して、前述の通り、粉粒体吹込みホッパー3a,3b内の圧力が搬送管10内の圧力よりも若干だけ(0.1〜0.5kg/cm程度)高くなるように、加圧ガス調整弁17aの開閉及び開度を調整する。
【0030】
上記のようにして、吹込みホッパー3a内の圧力が所定値になったら、供給装置11aを稼働させると共に切出し弁13aを開放して切出し管9aから搬送管10に粉粒体を定量切出しする。
なお、粉粒体の切出し中においては、圧力制御装置27aは前述の方法により、常に搬送管10内及び吹込みホッパー3a内の圧力を監視して、両者の圧力の関係を前述した通り、粉粒体吹込みホッパー3a内の圧力が搬送管10内の圧力よりも若干だけ(0.1〜0.5kg/cm程度)高くなるように調整する。
【0031】
このような圧力制御をすることによって、粉粒体は吹込みホッパー3aから搬送管10への定量切出しを確実に行うことができる。
【0032】
吹込みホッパー3aからの切出しが開始されると、排出弁21bを開にし、次いで導入弁7bを開にして貯蔵ホッパー1内の粉粒体を吹込みホッパー3bに導入し、導入が完了したら導入弁7b及び排出弁21bを閉にして待機させる。なお、吹込みホッパー3bへの粉粒体の導入は、吹込みホッパー3aへの導入が完了した直後でもよいし、あるいは吹込みホッパー3aからの切出しが開始して所定時間経過後でもよいが、吹込みホッパー3a内の粉粒体の切出しが終了するまでに、吹込みホッパー3bへの粉粒体の導入が完了するようにする。
【0033】
吹込みホッパー3aからの切出しにより、吹込みホッパー3aの重量が下限値になると、供給装置11aの稼働を停止すると共に、切出し弁13a及び加圧ガス調整弁17aを閉にし、さらに排出弁21aを開にして吹込みホッパー3a内の加圧ガスを排出する。
吹込みホッパー3aからの切出し停止動作と共に、吹込みホッパー3bからの切出し動作を開始する。吹込みホッパー3bからの切出し動作は、前述した吹込みホッパー3aからの切出し動作と同様である。
以上のようにして、2台の吹込みホッパー3a,3bを順次切り替えて、連続的な切出しを行う。
【0034】
なお、吹込みホッパー3aから吹込みホッパー3bへ切り替える際に、停止する側である吹込みホッパー3a内の粉粒体の残量が少なくなった時点で供給装置11aの切出し量を除々に少なくすると共に、切出し開始側である吹込みホッパー3bの供給装置11bの切出し量を除々に増やすようにすれば、両者の切換を円滑に行うことができる。
【0035】
以上のように、参考例においては、搬送管10内の圧力と吹込みホッパー3a,3b内の圧力を調整して、常に粉粒体吹込みホッパー3a,3b内の圧力が搬送管10内の圧力よりも若干だけ高くなるようにしたので、吹込みホッパー3a,3bから搬送管10への切出しが円滑かつ定量的に行うことができる。
【0036】
実施の形態.
本実施の形態は、粉粒体を搬送管へ切り出す際に切出し管及び切出し管と搬送管の連結部に閉塞現象が生ずることなく、スムーズな切り出しができる粉粒体切出し装置に関するものである。
【0037】
図2は原燃料となる廃プラスチック等の粉粒体を高炉に吹込む装置に適用したものの全体構成の説明図、図3は図2の要部の説明図、図4は該要部を前方側から見た図である。図において、3は吹込みホッパー、11は吹込みホッパー3から粉粒体を定量切出しする機械式供給装置、31は機械式供給装置11から切り出される粉粒体を搬送管10に導入する切出し管、33は切出し管31に設置されて粉粒体の速度を加速する空気などの加速ガスを噴射する加速ガスノズル、53は搬送管10の先端に設けられて高炉51に吹込みをするランスである。
【0038】
切出し管31は上端側が機械式供給装置11側に接続されて略鉛直に延びる鉛直部31aと、該鉛直部31aに連続して設けられて鉛直部31aに対して約45度の角度で前方(搬送方向)に屈曲して搬送管10に接続される傾斜部31bとから構成されている。
切出し管31の形状は、上端側から下端に亘って徐々に変形しているが、断面積はほぼ一定になっている。断面積が小さくなると、そこで粉粒体が詰まりやすくなるし、一方、断面積が大きくなるとそこで粉粒体の流速が低下してしまうという弊害が生ずるので、これらを避けるために断面積を一定にしたのである。
なお、切出し管31の側面形状は片側のみに勾配を設けるようにして、両側に勾配を設けた場合に生ずるいわゆる楔効果による棚つり現象を避ける構造にしている。
【0039】
また、切出し管31の鉛直部31aは、粉粒体の落下速度が最大となるように可能な限り長く取るようにする。さらに、傾斜部31bは後述の加速に必要な長さを確保したうえで最短長さに設定する。
【0040】
再び、図3に基づいて構成の説明をする。加速ガスノズル33は傾斜部31bの後部側に傾斜方向に沿って設けられ、図示しない加圧ガス源に配管を介して接続され、傾斜部31bに沿った斜め下方に加圧ガスを噴射できるように構成されている。
【0041】
次に、上記のように構成された本実施の形態の作用について説明する。図5は作用を説明するための図であり、図3と同一部分には同一符号が付してある。また、図中の円は粉粒体の粒子を示している。また、hは機械式供給装置11の下面から切出し管31の屈曲部までの垂直距離、hは切出し管31の屈曲部から切出し管31と搬送管10の接合面までの垂直距離を示している。
【0042】
機械式供給装置11からhの距離を自然落下した粉粒体は屈曲部でV(垂直下方)の速度を有し、さらに加速ガスノズル33からの加速ガスによって傾斜部31bに沿う方向に方向転換すると共に増速して速度Vになる。そして、搬送管10との連結部で搬送管10内の吹込みエアによって吹込み方向に方向が転換されてVになる。
このとき、吹込みエアの速度をVとすると、加速ガスによって方向転換と増速したエアの速度Vの搬送方向(水平方向)の分速度が吹込みエアの速度Vと等しくなるようにする。このようにすることによって、粉粒体は前記連結地点で吹込みエアの流れに円滑に乗ることができ、吹込みエア量を最小限に抑えることができる。
【0043】
以上のように、本実施の形態においては、切出し管31の途中から傾斜部31bを設け、該傾斜部31bにおいて加速ガスを噴射して粉粒体の方向転換と増速を行い、水平方向の分速度を吹込みエアの速度Vと同じになるようにしたので、粉粒体の合流が円滑に行われ、閉塞現象の発生を防止できる。
【0044】
なお、上記の例では傾斜角度を垂直下方に対して45度に設定した例を示したが本発明はこれに限られるものではなく、例えば図6に示したように傾斜角度を鉛直に対して60度に設定してもよい。ただ、この場合には、45度の場合に比べると方向転換の量が多いので、加速ガスの量あるいは流速を大きくする必要があるが、一方吹込みエアとの合流時においては円滑な合流が可能となる。
また、傾斜角が45度より極端に小さい場合は、合流部での円滑な合流が妨げられるため、最小傾斜角は40度が望ましい。
以上から傾斜角としては40〜60度が望ましい。
【0045】
【発明の効果】
本発明は以上説明したように構成されているので、つぎのような効果を奏する。
【0048】
切出し管は、鉛直方向に延びる鉛直部と、該鉛直部に連続して設けられると共に該鉛直部に対して搬送方向に傾斜する傾斜部とを有し、該傾斜部に傾斜方向に沿って加速ガスを噴射する加速ガスノズルを備える構成とし、加速ガスノズルから噴射する加速ガスによって加速される粉粒体の搬送方向の分速度が気流搬送管内の気流速度以上になるようにしたことにより、
粉粒体は加速ガスノズルから噴射させる加速ガスによって傾斜方向の速度を増し、気流搬送管との合流を円滑に行うことができ、切り出し時に切出し管及び搬送管に閉塞が生ずることなく、スムーズな切り出しができとともに、合流をより円滑に行うことが可能になり、気流搬送管に吹き込む吹込みガス量を最小限に抑えることができる。
【0050】
また、切出し管の断面積が一定になるようにしたので、切出し管内での詰まりや速度変化を抑制でき円滑な切出しが可能となる。
【図面の簡単な説明】
【図1】本発明が参考にした参考例の説明図である。
【図2】本発明の実施の形態の装置の全体構成の説明図である。
【図3】本発明の実施の形態の要部の説明図である。
【図4】図3に示した要部を前方から見た図である。
【図5】本発明の実施の形態の作用の説明図である。
【図6】本発明の実施の形態の他の態様の説明図である。
【図7】従来例の説明図である。
【図8】他の従来例の説明図である。
【図9】図8の円で囲んだA部の拡大図である。
【符号の説明】
1 貯蔵ホッパー
3a,3b 吹込みホッパー
9a,9b 切出し管
10 搬送管
11a,11b 供給装置
17a,17b 加圧ガス調整弁
23a,23b ホッパー圧力検知装置
25a,25b 搬送管圧力検知装置
27a,27b 圧力制御装置
31 切出し管
31a 鉛直部
31b 傾斜部
33 加速ガスノズル
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a granular material cutting device for quantitatively cutting fine particles such as pulverized coal and waste plastic stored in a storage hopper or the like into a transport pipe for airflow transport.
[0002]
[Prior art]
As an example of the granular material cutting device, there is one disclosed in Japanese Patent Publication No. 07-033530, which is applied to pulverized coal injection into a blast furnace.
FIG. 7 shows an apparatus for realizing the method disclosed in the same publication, in which two powder blowing hoppers 62 and 62 ′ arranged in parallel below a powder storage hopper 61 are switched to supply fine powder to a blast furnace. The coal is continuously and stably blown.
[0003]
Two powder blowing hoppers 62, 62 'arranged in parallel below the pulverized coal C storage hopper 61 are filled pipes 63, 63 provided with filling valves 63A, 63A' and filling valves 63B, 63B ', respectively. 'Is connected to the lower part of the powder storage hopper 61 by a'. Below the powder blowing hoppers 62, 62 ', rotary powder supply devices 64, 64' having stirring blades are provided. At the lower part of the powder supply devices 64 and 64 ', there is a cutting roller, which is cut by cutting pipes 65 and 65' equipped with cutting valves 65A and 65A 'and cutting valves 65B and 65B'. It is connected to a powder conveying pipe 66 to the blast furnace.
[0004]
Pressurized gas blowing pipes 67, 67 'for adjusting the pressure in the blowing hoppers 62, 62' are attached to the powder blowing hoppers 62, 62 '. By controlling the pressurized gas blowing adjusting valves 68, 68 'according to the pressure values in the hoppers 62, 62' to control the flow rate of the pressurized gas blown from the pressurized gas blowing pipes 67, 67 ', the powder blowing hopper The pressure within 62, 62 'is maintained at a predetermined value.
[0005]
A fluidizing gas injection pipe 69 having a plurality of gas blowers for fluidizing the pulverized coal in the powder supply devices 64 and 64 ′ is provided above the stirring blades in the powder supply devices 64 and 64 ′. 69 'is mounted, from which pressurized gas is blown into the powder feeders 64, 64' to maintain the pulverized coal in a fluidized state. Reference numerals 70 and 70 'denote fluidizing gas injection regulating valves.
[0006]
In addition, conveying auxiliary gas blowing pipes 71, 71 'are attached near the cutouts of the powder supply devices 64, 64', and when pulverized coal is cut out from the cutouts, pressurized gas is blown to pulverized coal. To assist in cutting and transporting Reference numerals 72, 72 'denote transfer auxiliary gas on-off valves.
[0007]
The upper part of each powder blowing hopper 62, 62 'is connected to the upper part of the powder storing hopper 61 by exhaust pipes 74, 74' provided with exhaust pressure valves 73, 73 ', and the pressure in the powder blowing hoppers 62, 62' is controlled. The pressure of the powder storage hopper 61 can be adjusted.
[0008]
The weight measurement values at the load cells 75, 75 'for measuring the weight of the pulverized coal in the powder blowing hoppers 62, 62' are transmitted to the supply control devices 76, 76 ', and are supplied by the supply control devices 76, 76'. The driving of the driving devices M and M 'is controlled to control the rotation of the stirring blade, and the ever-changing weight in the powder blowing hoppers 62 and 62' is measured and input to the switching control device 77 for arithmetic processing. When the measured value reaches a predetermined value, the opening and closing of various valves is controlled via the supply control device 77 to switch between the powder blowing hoppers 62 and 62 '.
[0009]
In the prior art configured as described above, the plurality of powder blowing hoppers 62 and 62 ′ arranged in parallel are alternately switched to suppress the variation in the amount of pulverized coal cut out to the transport pipe 66, thereby achieving stable operation. By stably injecting pulverized coal into the blast furnace over a long period of time, the operation of the blast furnace is stabilized.
[0010]
[Problems to be solved by the invention]
However, in the conventional example configured as described above, the pressure in the blowing hoppers 62 and 62 ′ is adjusted, and the pressure of the transport auxiliary gas supplied to the powder supply devices 64 and 64 ′ (hereinafter, “cut-out side pressure”). Is set irrespective of the pressure in the powder transfer pipe 66 without considering the pressure change in the powder transfer pipe 66. On the other hand, the pressure in the powder transfer pipe 66 constantly fluctuates due to various factors such as the flow state of the powder, the powder flow rate, the gas flow rate, and the powder supply destination pressure. For this reason, if the cut-out side pressure is set independently of the pressure in the powder conveying pipe 66, depending on the relationship between the two pressures, when cutting out the powder from the blowing hoppers 62, 62 ', the following will occur. Problems arise.
[0011]
That is, when the cut-out side pressure is lower than the powder transfer pipe pressure, the powder is cut out from the lower pressure to the higher pressure, and the cut-out becomes impossible.
On the other hand, when the cut-out side pressure is considerably higher than the powder transfer tube pressure, the powder is pushed out to the powder transfer tube 66, and the fixed amount cut-out cannot be performed.
[0012]
Further, as another problem, when the granular material is cut out from the blowing tank by the cutting device, the shape of the cut pipe immediately below the cut is a major factor of the blockage, but the cut pipe is connected to the powder conveying pipe 66 at a right angle. In the method of dropping the granular material from the cut-out pipes 65 and 65 ', there is a problem that the granular material cannot obtain a sufficient speed in the transport direction, and stays at the connecting portion to cause blockage.
[0013]
In order to solve this problem, for example, there is an invention of a pneumatic transport device described in Japanese Patent Application No. 63-74509 shown in FIG.
The microfilm described in the same issue is branched from the transport pipe 87, an inlet pipe 82 is erected, a mixing machine 81 is connected, and one side wall of the inlet pipe 82 is provided with A in FIG. As shown in an enlarged view of FIG. 9, a blowout plate 5 provided with a filter 90 and a wire mesh 91 is provided at the opening of the funnel-shaped injection nozzle 84, and an introduction plate 86 is provided on the opposite wall thereof. Is provided.
[0014]
The granular material supplied to the introduction pipe 82 from the granular material mixing machine 81 is supplied to the air blowing plate 5 via the introduction plate 86. At this time, since air is injected from the injection nozzle 84 and the particles are suspended and supplied to the transport pipe 87, stable air transport can be obtained without the particles being clogged in the transport pipe.
[0015]
However, by merely injecting air from the blowing plate 85 provided along the introduction pipe 82 to float the granules as described above, a sufficient speed is required when the granules are supplied to the transport pipe 87. Since it does not have, there is a danger that it will not be able to get on the airflow of the transport pipe 87 smoothly and blockage will occur. Further, there is a problem that a large amount of transportation air is required to avoid blockage.
[0016]
The present invention has been made in order to solve such a problem, and it is an object of the present invention to obtain a granular material cutting device capable of reliably performing quantitative cutting of a granular material regardless of pressure fluctuation of a granular material conveying pipe. I have.
It is another object of the present invention to provide a powdery and granular material cutting device capable of performing smooth cutting without clogging of a cutting tube and a conveying tube when cutting into a conveying pipe.
[0017]
[Means for Solving the Problems]
[0019]
In a powder and granular material cutting device that cuts out a fixed amount of powder and granules in a storage container through a cut-out tube to a transfer pipe that conveys the powder and granules, the cut-out tube has a vertical portion extending in a vertical direction, and the vertical portion. Having an inclined portion inclined in the conveying direction with respect to the vertical portion and provided with an accelerating gas nozzle for injecting the accelerating gas along the inclined direction ,
The granular material is accelerated by an accelerating gas injected from the accelerating gas nozzle, so that a partial velocity of the granular material in the transport direction is equal to or higher than an airflow velocity in a transport pipe.
[0020]
Further, the granular material is accelerated by an accelerating gas injected from the accelerating gas nozzle, so that a partial velocity of the granular material in the transport direction is equal to or higher than an airflow velocity in a transport pipe.
[0021]
Further, the inclination angle of the inclined portion is set at 40 to 60 degrees.
[0022]
Further, the sectional area of the cut-out tube is made constant.
[0023]
Further, a container pressure detecting means for detecting a pressure in the storage container, a transfer pipe pressure detecting means for detecting a pressure in the transfer pipe, and a detection result of the container pressure detecting means and the transfer pipe pressure detecting means. Pressure adjusting means for adjusting the pressure in the storage container so as to be higher than the pressure in the transport pipe.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
Reference example .
FIG. 1 is an explanatory view of a reference example referred to by the present invention. Reference numeral 1 denotes a storage hopper for storing powders, and 3a and 3b are installed in parallel below storage hopper 1 via introduction pipes 5a and 5b. The powder-particle blowing hoppers 7a and 7b are introduction valves provided in the middle of the introduction pipes 5a and 5b.
Reference numerals 9a and 9b denote cutting pipes connecting the discharge ports of the powder-particle blowing hoppers 3a and 3b and the conveying pipe 10, reference numerals 11a and 11b denote feeders installed on the cutting pipes 9a and 9b to quantitatively cut the powder and granules, 13a and 13b are cutting valves installed in the cutting pipes 9a and 9b.
[0025]
15a and 15b are pressurized gas pipes for introducing pressurized gas such as pressurized air into the powder / particle blowing hoppers 3a and 3b, and 17a and 17b are pressurized gas regulating valves provided in the pressurized air pipes 15a and 15b. , 19a and 19b are discharge pipes for discharging the pressurized gas in the powder-particle blowing hoppers 3a and 3b, and 21a and 21b are discharge valves provided in the discharge pipes 19a and 19b.
[0026]
Reference numerals 23a and 23b denote hopper pressure detectors for detecting the pressure in the powder and granular material blowing hoppers 3a and 3b, 25a and 25b denote transport pipe pressure detectors for detecting the pressure of the transport pipe 10, and 27a and 27b denote hopper pressure detectors. 23a, 23b and detection signals from the conveying pipe pressure detection devices 25a, 25b are input, and the opening / closing and opening degree of the pressurized gas regulating valves 17a, 17b are adjusted based on the detection signals, whereby the powder-particle blowing hopper is provided. A pressure control device for controlling the pressure in 3a and 3b.
In addition, the pressure in the powder-particle blowing hoppers 3a and 3b is controlled to be slightly higher (about 0.1 to 0.5 kg / cm 2 ) than the pressure in the transport pipe 10.
[0027]
Next, the operation of the reference example configured as described above will be described. In the present embodiment, the granular material fed into the storage hopper 1 is introduced into the blowing hoppers 3a and 3b, and the granular material is transported by switching and using the blowing hoppers 3a and 3b. It is cut out continuously into a tube 10.
[0028]
First, in order to charge the granular material into the storage hopper 1 and introduce it into the blowing hopper 3a, the discharge valve 21a is opened from the state in which all the valves are closed, and then the introduction valve 7a is opened. . Thereby, the granular material in the storage hopper 1 is introduced into the blowing hopper 3a. The weight of the blowing hopper 3a is measured by a load cell (not shown), and when the weight reaches the upper limit, the introduction valve 7a is closed and the discharge valve 21a is further closed.
[0029]
Next, the pressurized gas regulating valve 17a is opened, and pressurized gas is supplied into the blowing hopper 3a. At this time, the pressure control device 27a inputs the pressure signals of the transport pipe pressure detecting device 25a and the hopper pressure detecting device 23a, and as described above, the pressure in the powder and particle blowing hoppers 3a and 3b is The opening and closing and the opening degree of the pressurized gas adjusting valve 17a are adjusted so as to be slightly higher (about 0.1 to 0.5 kg / cm 2 ) than the pressure.
[0030]
As described above, when the pressure in the blowing hopper 3a reaches a predetermined value, the supply device 11a is operated, and the cutout valve 13a is opened to quantitatively cut out the granular material from the cutout pipe 9a to the transport pipe 10.
During the cutting of the granular material, the pressure control device 27a constantly monitors the pressure in the conveying pipe 10 and the pressure in the blowing hopper 3a by the above-described method, and determines the relationship between the two pressures as described above. The pressure in the granule blowing hopper 3a is adjusted to be slightly higher (about 0.1 to 0.5 kg / cm 2 ) than the pressure in the transport pipe 10.
[0031]
By performing such pressure control, it is possible to reliably perform the quantitative cutout of the powder and the granular material from the blowing hopper 3a to the transport pipe 10.
[0032]
When the cutting from the blowing hopper 3a is started, the discharge valve 21b is opened, and then the introduction valve 7b is opened to introduce the powdery material in the storage hopper 1 into the blowing hopper 3b. The valve 7b and the discharge valve 21b are closed to wait. The introduction of the granular material into the blowing hopper 3b may be performed immediately after the introduction into the blowing hopper 3a is completed, or may be performed after a lapse of a predetermined time from the start of cutting out from the blowing hopper 3a. By the end of the cutting of the granular material in the blowing hopper 3a, the introduction of the granular material into the blowing hopper 3b is completed.
[0033]
When the weight of the blowing hopper 3a is reduced to the lower limit value by the cutting from the blowing hopper 3a, the operation of the supply device 11a is stopped, the cutting valve 13a and the pressurized gas regulating valve 17a are closed, and the discharge valve 21a is further closed. Open to discharge the pressurized gas in the blowing hopper 3a.
The cutting operation from the blowing hopper 3b is started together with the cutting stop operation from the blowing hopper 3a. The cutting operation from the blowing hopper 3b is the same as the above-described cutting operation from the blowing hopper 3a.
As described above, the two blowing hoppers 3a and 3b are sequentially switched to perform continuous cutting.
[0034]
In addition, when switching from the blowing hopper 3a to the blowing hopper 3b, the cutout amount of the supply device 11a is gradually reduced when the remaining amount of the granular material in the blowing hopper 3a, which is the stop side, becomes small. At the same time, if the cut-out amount of the supply device 11b of the blowing hopper 3b, which is the cut-out start side, is gradually increased, the two can be switched smoothly.
[0035]
As described above, in the reference example , the pressure in the conveying pipe 10 and the pressure in the blowing hoppers 3a, 3b are adjusted so that the pressure in the powder / particle blowing hoppers 3a, 3b is constantly adjusted in the conveying pipe 10. Since the pressure is set to be slightly higher than the pressure, the cutting from the blowing hoppers 3a and 3b to the transport pipe 10 can be performed smoothly and quantitatively.
[0036]
Embodiment.
The present embodiment relates to a granular material cutting device capable of performing smooth cutting without causing a clogging phenomenon in a cutting tube and a connecting portion between the cutting tube and the conveying tube when cutting a granular material into a conveying tube.
[0037]
FIG. 2 is an explanatory view of an overall configuration of a device in which a powdery material such as waste plastic as a raw fuel is blown into a blast furnace, FIG. 3 is an explanatory view of a main part of FIG. 2, and FIG. It is the figure seen from the side. In the figure, 3 is a blowing hopper, 11 is a mechanical supply device for quantitatively cutting out powder and granules from the blowing hopper 3, and 31 is a cut-out tube for introducing the powder and granules cut out from the mechanical supply device 11 to a transport pipe 10. Numeral 33 denotes an accelerating gas nozzle which is installed in the cut-out tube 31 and injects an accelerating gas such as air for accelerating the speed of the granular material. Numeral 53 denotes a lance which is provided at the tip of the conveying pipe 10 and blows into the blast furnace 51. .
[0038]
The cut-out tube 31 is connected to the mechanical supply device 11 at the upper end and extends substantially vertically. The cut-out tube 31 is provided continuously with the vertical portion 31a, and is formed at an angle of about 45 degrees with respect to the vertical portion 31a. (A transport direction) and an inclined portion 31b connected to the transport pipe 10.
The shape of the cut-out tube 31 is gradually deformed from the upper end side to the lower end, but the cross-sectional area is almost constant. When the cross-sectional area is small, the granular material tends to be clogged there.On the other hand, when the cross-sectional area is large, there is a disadvantage that the flow velocity of the granular material is reduced. It was done.
In addition, the side surface shape of the cut-out tube 31 is configured such that a gradient is provided only on one side, and a shelf hanging phenomenon due to a so-called wedge effect that occurs when a gradient is provided on both sides is avoided.
[0039]
In addition, the vertical portion 31a of the cut-out tube 31 is formed as long as possible so that the falling speed of the granular material is maximized. Further, the inclined portion 31b is set to the shortest length after securing a length necessary for acceleration described later.
[0040]
The configuration will be described again with reference to FIG. The accelerating gas nozzle 33 is provided along the inclined direction on the rear side of the inclined portion 31b, is connected to a pressurized gas source (not shown) via a pipe, and can inject the pressurized gas obliquely downward along the inclined portion 31b. It is configured.
[0041]
Next, the operation of the present embodiment configured as described above will be described. FIG. 5 is a diagram for explaining the operation, and the same parts as those in FIG. 3 are denoted by the same reference numerals. The circles in the figure indicate particles of the granular material. Moreover, h 1 is the vertical distance from the lower surface of the mechanical supply device 11 to the bending portion of the cut tube 31, h 2 indicates the perpendicular distance from the bent portion of the cut tube 31 to the joining surfaces of the cut tubes 31 and the transport tube 10 ing.
[0042]
The granular material naturally dropped from the mechanical supply device 11 at a distance of h 1 has a velocity of V 1 (vertically downward) at the bent portion, and further has a direction along the inclined portion 31 b by the accelerating gas from the accelerating gas nozzle 33. speed increased along with the conversion will speed V 2 in. Then, the direction in blowing direction is converted by blowing air transport tube 10 becomes V 3 at the connecting portion between the conveying pipe 10.
At this time, when the velocity of the blow air to V 0, so that a rate of the conveying direction of the air velocity V 2 that is diverted and accelerated by the acceleration gas (horizontal direction) is equal to the speed V 0 which blow air To By doing so, the granular material can smoothly flow in the flow of the blowing air at the connection point, and the blowing air amount can be minimized.
[0043]
As described above, in the present embodiment, the inclined portion 31b is provided from the middle of the cut-out tube 31, and the accelerating gas is injected in the inclined portion 31b to change the direction and increase the speed of the powder and granules, and since the minute rate was set to be the same as the velocity V 0 which blow air, merging the granular material is performed smoothly, thereby preventing the occurrence of the blockage.
[0044]
In the above example, an example is shown in which the inclination angle is set to 45 degrees with respect to the vertical downward direction. However, the present invention is not limited to this. For example, as shown in FIG. It may be set to 60 degrees. However, in this case, it is necessary to increase the amount or flow velocity of the accelerating gas because the amount of direction change is larger than in the case of 45 degrees, but a smooth merger occurs when merging with the blowing air. It becomes possible.
If the inclination angle is extremely smaller than 45 degrees, smooth merging at the junction is prevented, so that the minimum inclination angle is desirably 40 degrees.
From the above, the inclination angle is desirably 40 to 60 degrees.
[0045]
【The invention's effect】
The present invention is configured as described above, and has the following effects.
[0048]
The cut-out tube has a vertical portion extending in the vertical direction, and an inclined portion provided continuously with the vertical portion and inclined in the transport direction with respect to the vertical portion, and the inclined portion accelerates along the inclined direction. By having an acceleration gas nozzle for injecting gas, the partial velocity in the transport direction of the granular material accelerated by the acceleration gas injected from the acceleration gas nozzle is set to be equal to or higher than the airflow velocity in the airflow transport pipe,
The granular material increases the speed in the inclined direction by the accelerating gas injected from the accelerating gas nozzle, and can smoothly merge with the air flow conveying pipe, and smoothly cut out without clogging of the cutting pipe and the conveying pipe at the time of cutting. As a result , the merging can be performed more smoothly, and the amount of gas blown into the airflow conveying pipe can be minimized.
[0050]
Further, since the cross-sectional area of the cut-out tube is made constant, clogging and a change in speed in the cut-out tube can be suppressed, and smooth cut-out can be performed.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a reference example referred to by the present invention.
FIG. 2 is an explanatory diagram of the overall configuration of the device according to the embodiment of the present invention.
FIG. 3 is an explanatory diagram of a main part of the embodiment of the present invention.
FIG. 4 is a front view of a main part shown in FIG. 3;
FIG. 5 is an explanatory diagram of the operation of the embodiment of the present invention.
FIG. 6 is an explanatory diagram of another mode of the embodiment of the present invention.
FIG. 7 is an explanatory diagram of a conventional example.
FIG. 8 is an explanatory diagram of another conventional example.
FIG. 9 is an enlarged view of a portion A surrounded by a circle in FIG. 8;
[Explanation of symbols]
1 Storage hoppers 3a, 3b Blow-in hoppers 9a, 9b Cut-out pipes 10 Transport pipes 11a, 11b Supply devices 17a, 17b Pressurized gas regulating valves 23a, 23b Hopper pressure detectors 25a, 25b Transport pipe pressure detectors 27a, 27b Pressure control Device 31 Cutting tube 31a Vertical portion 31b Inclined portion 33 Accelerated gas nozzle

Claims (4)

粉粒体を気流搬送する搬送管に、貯蔵容器内の粉粒体を切出し管を介して定量切り出しする粉粒体切出し装置において、
前記切出し管は、鉛直方向に延びる鉛直部と、該鉛直部に連続して設けられると共に該鉛直部に対して搬送方向に傾斜する傾斜部とを有し、該傾斜部に傾斜方向に沿って加速ガスを噴射する加速ガスノズルを備え、
該加速ガスノズルから噴射する加速ガスによって前記粉粒体を加速して、該粉粒体の前記搬送方向の分速度が搬送管内の気流速度以上になるようにしたことを特徴とする粉粒体切出し装置。
In a powder and granule cutting device for quantitatively cutting out the powder and granules in the storage container through a cut-out tube, to a transfer pipe that conveys the powder and granules,
The cut-out tube has a vertical portion extending in the vertical direction, and an inclined portion provided continuously with the vertical portion and inclined in the transport direction with respect to the vertical portion, and the inclined portion extends along the inclined direction. Equipped with an accelerating gas nozzle that injects accelerating gas ,
Wherein the granular material is accelerated by an accelerating gas injected from the accelerating gas nozzle so that a partial velocity of the granular material in the transport direction is equal to or higher than an airflow velocity in a transport pipe. apparatus.
前記傾斜部の傾斜角を40〜60度に設定したことを特徴とする請求項1記載の粉粒体切出し装置。2. The apparatus according to claim 1, wherein the inclination angle of the inclined portion is set to 40 to 60 degrees. 前記切出し管の断面積が一定になるようにしたことを特徴とする請求項1または2記載の粉粒体切出し装置。 3. The powder material cutting device according to claim 1, wherein a cross-sectional area of the cutting tube is made constant. 前記貯蔵容器内の圧力を検出する容器内圧力検知手段と、前記搬送管内の圧力を検出する搬送管圧力検知手段と、容器内圧力検知手段と搬送管圧力検知手段の検知結果に基づいて前記貯蔵容器内の圧力を前記搬送管内の圧力よりも高くなるように調整する圧力調整手段とを設けたことを特徴とする請求項1〜3のいずれかに記載の粉粒体切出し装置。Container pressure detecting means for detecting the pressure in the storage container, transport pipe pressure detecting means for detecting the pressure in the transport pipe, and the storage based on the detection results of the container pressure detecting means and the transport pipe pressure detecting means. The granular material cutting device according to any one of claims 1 to 3 , further comprising pressure adjusting means for adjusting the pressure in the container to be higher than the pressure in the transport pipe.
JP21012199A 1999-07-08 1999-07-26 Granule extraction device Expired - Fee Related JP3557954B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP21012199A JP3557954B2 (en) 1999-07-26 1999-07-26 Granule extraction device
KR1020017016392A KR100565177B1 (en) 1999-07-08 2000-07-06 Method and device for cutting out and transporting powder and granular material
EP00944287A EP1211202A4 (en) 1999-07-08 2000-07-06 Method and device for cutting out and transporting powder and granular material
PCT/JP2000/004494 WO2001004030A1 (en) 1999-07-08 2000-07-06 Method and device for cutting out and transporting powder and granular material
TW89113499A TW458935B (en) 1999-07-08 2000-07-07 Method and device for cutting out and transporting powder and granular material
US10/040,139 US20020114672A1 (en) 1999-07-08 2002-01-02 Method for feeding out and transporting powdery and granular material and apparatus therefore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21012199A JP3557954B2 (en) 1999-07-26 1999-07-26 Granule extraction device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003289578A Division JP2004010357A (en) 2003-08-08 2003-08-08 Granular and powdery material intermittent discharge apparatus

Publications (2)

Publication Number Publication Date
JP2001031246A JP2001031246A (en) 2001-02-06
JP3557954B2 true JP3557954B2 (en) 2004-08-25

Family

ID=16584155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21012199A Expired - Fee Related JP3557954B2 (en) 1999-07-08 1999-07-26 Granule extraction device

Country Status (1)

Country Link
JP (1) JP3557954B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006096530A (en) * 2004-09-30 2006-04-13 Hitachi Plant Eng & Constr Co Ltd Powder and grain transport device
CN102234027B (en) * 2010-04-22 2013-04-17 中集车辆(集团)有限公司 Intelligent unloading system, multi-silo tank container and multi-silo tank car
JP5640802B2 (en) * 2011-02-22 2014-12-17 株式会社Ihi Pyrite discharge device
DE102012108196A1 (en) * 2012-09-04 2014-03-06 Windmöller & Hölscher Kg Device for extracting waste products of a production machine
DE102012108198B4 (en) 2012-09-04 2016-05-25 Windmöller & Hölscher Kg Device for extracting waste products of a production machine with a suction element
CN109250524A (en) * 2017-07-13 2019-01-22 大唐环境产业集团股份有限公司 A kind of anti-blocking device for discharging

Also Published As

Publication number Publication date
JP2001031246A (en) 2001-02-06

Similar Documents

Publication Publication Date Title
JP5370951B2 (en) Pneumatic transport method and apparatus for bulk material with poor flow
JPS62100321A (en) Transport system of granular material
JP3557954B2 (en) Granule extraction device
CN101421028B (en) For the method and apparatus of pneumatic treatment of powder materials
KR100565177B1 (en) Method and device for cutting out and transporting powder and granular material
JP2012188282A (en) Powder volumetric feeding method
JP3463188B2 (en) Pneumatic device for powder
JPH08501980A (en) Method and apparatus for discharging particulate material from a pressure vessel
JP5124378B2 (en) Powder material supply apparatus, powder material supply system including the same, and powder material supply method using the supply apparatus
JP4605751B2 (en) High concentration suction pneumatic transport method and apparatus
JPH11139562A (en) Powdery and granular material feeding device in sealed system
JPH0733530B2 (en) Powder injection method
JP2004035913A (en) Method and device for controlling blowing of granular powder
JP2004010357A (en) Granular and powdery material intermittent discharge apparatus
CN201148291Y (en) Large-sized warehouse top discharge device
CN112744595A (en) Limestone conveying device and method for desulfurization of incinerator
US20070251385A1 (en) Dust Reduction in Delivery of Particulate Commodities
CN212150792U (en) Pneumatic conveying chute
KR102096755B1 (en) Powder Feeding Apparatus transferred by Gas including Breaking Nozzle in order to improve the feeding efficiency
JPH0517030A (en) Powder solid transport device and method
JP3513735B2 (en) Char transfer device
CN220334174U (en) Material conveying device and desulfurizing device
JPH04365725A (en) Powder feeder
JPH0331116A (en) Subsidiary air feed method for pneumatic granule transport pipe
CA2543108C (en) Dust reduction in delivery of particulate commodities

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040510

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees