JP3555230B2 - 投影露光装置 - Google Patents

投影露光装置 Download PDF

Info

Publication number
JP3555230B2
JP3555230B2 JP07287495A JP7287495A JP3555230B2 JP 3555230 B2 JP3555230 B2 JP 3555230B2 JP 07287495 A JP07287495 A JP 07287495A JP 7287495 A JP7287495 A JP 7287495A JP 3555230 B2 JP3555230 B2 JP 3555230B2
Authority
JP
Japan
Prior art keywords
optical system
projection optical
substrate
measurement points
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07287495A
Other languages
English (en)
Other versions
JPH0837149A (ja
Inventor
裕二 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP07287495A priority Critical patent/JP3555230B2/ja
Priority to KR1019950012767A priority patent/KR100378475B1/ko
Publication of JPH0837149A publication Critical patent/JPH0837149A/ja
Priority to US09/323,042 priority patent/US6195154B1/en
Priority to US09/722,311 priority patent/US6327025B1/en
Application granted granted Critical
Publication of JP3555230B2 publication Critical patent/JP3555230B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7023Aligning or positioning in direction perpendicular to substrate surface
    • G03F9/7026Focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7023Aligning or positioning in direction perpendicular to substrate surface
    • G03F9/7034Leveling

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、感光基板上に回路パターン等のマスクパターンを転写する投影露光装置に関し、特に感光基板の焦点合わせのための焦点検出装置を備えた投影露光装置に関する。
【0002】
【従来の技術】
従来より投影露光装置では、レチクル(又はフォトマスク等)のパターンを高解像力の投影光学系を介して感光基板(フォトレジスト層が塗布されたウエハやガラスプレート等)上に投影露光する際、レチクルのパターンの結像面に正確に感光基板の露光面を合致させる作業、即ち焦点合わせが必須のこととなっている。近年、投影光学系の焦点深度は狭くなる一方で、露光用照明光として波長365nmのi線を用いたものでも、±0.7μm程度の深度しか得られないのが現状である。更に投影光学系の投影視野は年々増大する傾向にあり、広い露光視野(例えば22mm角)の全面に亘って極力大きな焦点深度を確保することが望まれている。
【0003】
このように広い露光視野全面で良好に焦点合わせを行うためには、何れにしろその露光視野内に入る感光基板上の部分領域(ショット領域)の平坦性と、結像面の平坦性(即ち、像面湾曲、及び像面傾斜が小さいこと)とが共に良好であることが要求される。このうち像面湾曲と像面傾斜とに関しては投影光学系自体の光学性能に依存するところが大きいが、その他にレチクルの平面度、平行度が要因になることもある。一方、感光基板上の部分領域、即ち1回の投影露光領域(ショット領域)毎の平坦度は、感光基板によってその程度に差異があるが、感光基板を保持するホルダーを微小量だけ傾けることによって感光基板上のショット領域の表面と結像面とを平行に設定することが可能である。
【0004】
このように感光基板上の1つのショット領域の表面の傾きも考慮して焦点合わせを行う手法として、特開昭58−113706号公報、特開昭55−1348号公報等に開示された技術が知られている。特に特開昭55−1348号公報では投影光学系を介して感光基板上の4点に光ビームのスポットを投射し、その反射光によるスポット像を光電検出して感光基板の焦点合わせ、及び傾き補正(レベリング)を行う技術が開示されている。
【0005】
ところが、最近の半導体素子等は基板上に多くの複雑な構造のパターンを積み重ねて製造されるため、感光基板上の露光面の平坦性は悪くなる傾向にある。そのため、感光基板上のショット領域内の凹凸の状態を計測し、この計測結果を考慮してそのショット領域の平均的な面を投影光学系による結像面に合わせ込む技術の開発が行われている。例えば、特開平2−198130号公報においては、感光基板の投影光学系の光軸方向の位置を固定してその感光基板を移動させて、感光基板上のショット領域内の複数の計測点で投影光学系の光軸方向の位置(フォーカス位置)を計測し、この計測結果の平均値を求めることにより、そのショット領域内でのパターンの構造や配置の相違に起因するフォーカス位置のオフセット値を求める面位置検出方法が開示されている。この方法では、そのオフセット値を各ショット領域の例えば中央の計測点でのフォーカス位置の計測結果に加えることにより、ショット領域内の凹凸を考慮した平均的なフォーカス位置が計測される。
【0006】
【発明が解決しようとする課題】
上述のように従来の投影露光装置では、所定のショット領域内の複数の特定の計測点で計測されたフォーカス位置を平均化することにより、フォーカス位置のオフセット値を求めていた。しかしながら、実際には感光基板の各ショット領域の露光面の凹凸の状態は、プロセス構造(パターンの配置や段差等)によって様々であり、特定の複数の計測点でのフォーカス位置を平均化するだけでは、各ショット領域の平均的な面の形状を正確に求めることはできない。そのため、露光プロセスによって、感光基板上の各ショット領域内のパターンの配置や段差等が変化すると、各ショット領域の平均的な面を投影光学系の結像面に対して焦点深度の範囲内に収めることができない場合が生ずるという不都合がある。
【0007】
また、各ショット領域の平均的な面を結像面に合わせ込むのではなく、例えば各ショット領域内で最も線幅が狭いパターンが露光される領域を重点的に合焦させたいような場合でも、従来の方法ではその重点的に合焦させたい領域を結像面に合わせ込むことは困難であった。
本発明は斯かる点に鑑み、感光基板の各ショット領域の凹凸の状態に依らず、各ショット領域を最適な状態で投影光学系による結像面に合わせ込んで露光を行うことができる投影露光装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明による投影露光装置は、マスクパターン(R)を感光性の基板(W)上に投影する投影光学系(PL)と、その基板を保持して投影光学系(PL)の光軸(AX)に垂直な平面内でその基板の位置決めを行う基板ステージ(21)と、その基板の傾斜角及びその基板の投影光学系(PL)の光軸方向の高さを調整するフォーカス・レベリングステージ(20)と、その感光性の基板に対して非感光性の光を用いて、投影光学系(PL)の光軸(AX)に対して斜めに投影光学系(PL)による露光領域(SA)内の複数の計測点(P1〜P5)に焦点検出用のパターンの像(ST)を投影する投射光学系(1〜6)と、それら複数の計測点からの反射光を集光してそれら複数の計測点上の焦点検出用のパターンの像を再結像する受光光学系(7〜10)と、この受光光学系により再結像された複数の像のそれぞれの横ずれ量に対応する検出信号を生成する複数の光電検出手段(15,13,17)と、これら複数の光電検出手段からの検出信号(FSa〜FSe)に基づいてフォーカス・レベリングステージ(20)の動作を制御する制御手段(30,18)と、を有する投影露光装置において、それら複数の計測点に対応するその光電検出手段のそれぞれの検出信号、その投影光学系の最良結像面の湾曲又は傾斜、及び基板(W)の露光面のプロセス構造(パターンの配置、段差等)に基づいて、それら複数の計測点毎に独立に基板(W)上の合焦の基準面(40B)を投影光学系(PL)による結像面(42)に合わせ込むためのオフセット値を求める演算手段(30B)を設けたものである。
【0009】
この場合、その投射光学系から投影光学系(PL)による露光領域(SA)内にその焦点検出用のパターンの像(ST)を投影した状態で、基板ステージ(21)を駆動して基板(W)を走らせることにより、露光領域(SA)内の全面に分布する複数の計測点でそれぞれ対応する光電検出手段の検出信号を求め、演算手段(30B)は、その全面に分布する複数の計測点でのその光電検出手段の検出信号、及びその基板の露光面のプロセス構造に基づいて、それら複数の計測点毎に独立にその基板上の合焦の基準面(40B)を投影光学系(PL)による結像面(42)に合わせ込むためのオフセット値を求めることが望ましい。
【0010】
また、その投射光学系から投影光学系(PL)による露光領域(SA)内に焦点検出用のパターンの像(ST)を投影する際に使用される光束(IL)を、100nm以上の帯域幅を有する光束とすることが望ましい。
また、その投射光学系内からそれら複数の光電検出手段までの光路上に、その投射光学系から投影光学系(PL)による露光領域内に焦点検出用のパターンの像(ST)を投影する際に使用される光束の波長感度特性を一様化するための光学的フィルタ(60)を配置することが望ましい。
【0011】
更に、演算手段(30B)は、それら複数の計測点毎に独立に求められたオフセット値を用いて、投影光学系(PL)による結像面(42)の高さに応じた目標値を補正することが望ましい。
【0012】
【作用】
斯かる本発明によれば、例えば図8(a)に示すように、基板(W)上の投影光学系による露光領域内の複数の計測点(P1〜P5)上に焦点検出用のパターンの像が投影され、これらの像が受光光学系により再結像され、再結像された像の横ずれ量に対応する検出信号(FSa〜FSe)が光電検出手段(例えば図7のアレイセンサー15中の画素)から出力される。斜入射方式では、それら再結像される像の横ずれ量と、対応する計測点の投影光学系(PL)の光軸方向の位置(フォーカス位置)とはほぼ比例するため、それら検出信号から対応する計測点のフォーカス位置(これらをZ〜Zとする)が求められる。
【0013】
しかし、実際には、図8(a)に示すように、基板(W)の露光面にはそれまでの露光工程等により凹凸のあるパターンが形成されていることがある。また、そのような凹凸が有る場合、最も線幅の狭いパターンが露光される面(例えば周辺部より窪んだ面であることが分かっている)を面(40B)とすると、この面(40B)を結像面(42)に合わせることが望ましい。この際に、例えば計測点(P3)で計測された検出信号の値(フォーカス位置)が最も小さいことから、その計測点(P3)が面(40B)上にあることが分かる。そこで、その面(40B)を基板(W)上の合焦の基準面として、プロセス構造のデータに基づいてその基準面(40B)と他の露光面(40A,40C)との高さの差分(Z−Z)に対応する検出信号を他の計測点(P1,P2,P4,P5)でのオフセット値とする。また、計測点(P3)でのオフセット値は0である。
【0014】
その後、例えば実際に検出された検出信号からそのオフセット値を差し引いた値に基づいて合焦及びレベリングを行うと、図8(b)に示すように、基準面(40B)が結像面(42)に合焦される。
また、基板(W)上の複数の計測点(P1〜P5)が例えば図5に示すように、露光領域(SA)のほぼ対角線上に配列されているような場合には、それら計測点(P1〜P5)上の焦点検出用のパターンの投影像に対して基板(W)を所定方向(X方向)に走査することにより、その露光領域(SA)のほぼ全面に分布する計測点での検出信号が得られる。従って、その露光領域(SA)の全面に複雑な凹凸分布があるような場合でも、その凹凸分布の表面の所定の部分(例えば最も線幅の狭いパターンが露光される領域)を基準面として、この基準面と他の部分との高さの差分に対応する検出信号を各計測点でのオフセット値とする。これにより、その基準面を合焦させることができる。
【0015】
次に、その合焦及びレベリングを行うための手順の他の例は、例えば図8(a)において、先ず光電検出手段による検出信号、及びプロセス構造に基づいて、基準面(40B)から他の面(40A,40C)への高さの差分(Z−Z)に応じたオフセット値を求め、このオフセット値を結像面(42)の高さに応じた検出信号のレベルに加算することである。この加算結果に対応する面は破線で示すような面(42A)となる。そこで、例えば最小自乗法により、各計測点(P1〜P5)の検出信号とその面(42A)の検出信号との差分が最小になるように基板(W)の高さを制御することにより、図8(b)に示すように、基準面(40B)が実際の結像面(42)に合焦される。
【0016】
また、その投射光学系から投影光学系(PL)による露光領域(SA)内に焦点検出用のパターンの像(ST)を投影する際に使用される光束(IL)を、100nm以上の帯域幅を有する光束とした場合、感光性の基板(W)上の感光材料(フォトレジスト等)での薄膜干渉の悪影響等が軽減される。
また、投射光学系内からそれら複数の光電検出手段までの光路上に、その投射光学系から投影光学系(PL)による露光領域内に高さ検出用のパターンの像(ST)を投影する際に使用される光束の波長感度特性を一様化するための光学的フィルタ(60)を配置した場合には、焦点検出用の照明光の波長毎の光強度分布が例えば図15(a)のように不均一であっても、その光強度分布とほぼ逆の特性となるように、その光学的フィルタ(60)の透過率分布を例えば図15(b)のように設定することにより、光電検出手段から得られる検出信号の波長特性は図15(d)に示すように平坦になる。従って、特定の波長の信号に大きく影響されることなく、正確に高さ検出を行うことができる。
【0017】
【実施例】
以下、本発明による投影露光装置の一実施例につき図面を参照して説明する。
図1は本実施例の投影露光装置のうち、投影光学系のベストフォーカス面(結像面)を検出するTTL(スルー・ザ・レンズ)方式の焦点検出系を示す図である。図1において、実デバイス製造用の回路のパターン領域PAが下面に形成されたレチクルRは、不図示のレチクルホルダーに保持されている。絞り面(瞳面)EPを挟んで前群、後群に分けて模式的に表した投影光学系PLの光軸AXは、レチクルRの中心、すなわちパターン領域PAの中心を、レチクルパターン面に対して垂直に通っている。その光軸AXに平行にZ軸を取り、Z軸に垂直な平面内で図1の紙面に平行にX軸を、図1の紙面に垂直にY軸を取る。
【0018】
投影光学系PLの下方には、フォトレジストが塗布されたウエハWを保持するZ・レベリングステージ20が、XYステージ21上に設けられている。Z・レベリングステージ20は、ウエハWを光軸AX方向に微少量(例えば±100μm以内)だけ移動させてフォーカシングを行うと共に、ウエハWの傾斜角を制御してレベリングを行う。また、XYステージ21はウエハWを光軸AXと垂直なXY平面内で2次元移動させるものであり、XYステージ21のX方向及びY方向の座標は不図示のレーザ干渉計により常時計測されている。
【0019】
更に、Z・レベリングステージ20の上面には、ウエハWの表面とほぼ等しい高さ位置で基準マーク板FMが固定されている。この基準マーク板FMには、図2(a)に示すようにそれぞれX方向に伸びた複数本の透過型スリットをY方向に一定ピッチで配置した構造のスリットマークISyと、Y方向に伸びた複数本の透過型スリットをX方向に一定ピッチで配置した構造のスリットマークISxと、X方向及びY方向の夫々に対して45゜となる方向に斜めに伸びたスリットマークISaとが形成されている。これらのスリットマークISx、ISy、ISaは、石英製の基準マーク板FMの表面全面にクロム層(遮光層)を蒸着し、そこに透明部として刻設したものである。
【0020】
図1に戻り、基準マーク板FMの下方(Z・レベリングステージ20の内部)には、ミラーM1、照明用対物レンズ50、及び光ファイバー51の射出端が設けられ、光ファイバー51の射出端からの照明光が対物レンズ50によって集光されて、基準マーク板FM上のスリットマークISx、ISy、ISaを共に裏側から照射する。光ファイバー51の入射端側にはビームスプリッタ52が設けられ、レンズ系53を介して露光用照明光IEが光ファイバー51に導入される。その照明光IEはレチクルRの照明用の光源(水銀ランプ、エキシマレーザ光源等)から得るのが望ましいが、別に専用の光源を用意してもよい。但し、別光源にするときは、露光用照明光と同一波長、又はそれに極めて近い波長の照明光にする必要がある。
【0021】
また、対物レンズ50による基準マーク板FMの照明条件は、パターン投影時の投影光学系PLでの照明条件と極力合わせられる。即ち、投影光学系PLの像側の照明光の開口数(N.A.)と対物レンズ50から基準マーク板FMへの照明光の開口数(N.A.)とをほぼ一致させるのである。さて、このような構成で、照明光IEを光ファイバー51に導入すると、基準マーク板FM上のスリットマークISx、ISy、ISaからは投影光学系PLへ入射する像光束が発生する。図1において、Z・レベリングステージ20の光軸AX方向の位置は、投影光学系PLの最良結像面(レチクルとの共役面)Foから僅かに下方に基準マーク板FMの表面が位置するように設定されているものとする。このとき基準マーク板FM上の一点から発生した像光束L1は投影光学系PLの瞳面EPの中心を通り、レチクルRのパターン面から僅かに下方へずれた面Fr内で集光した後に発散し、レチクルRのパターン面で反射してから元の光路を戻る。ここで面Frは、投影光学系PLに関して基準マーク板FMと光学的に共役な位置にある。投影光学系PLが両側テレセントリック系であると、基準マーク板FMのスリットマークISx、ISy、ISaからの像光束は、レチクルRの下面(パターン面)で正反射して再びスリットマークISx、ISy、ISaと重畳するように戻ってくる。
【0022】
但し、図1のように基準マーク板FMが結像面Foからずれていると、基準マーク板FM上には各スリットマークISx、ISy、ISaのぼけた反射像が形成され、基準マーク板FMが結像面Foと一致しているときは、面FrもレチクルRのパターン面と一致することになり、基準マーク板FM上には各スリットマークISx、ISy、ISaのシャープな反射像がそれぞれのマークに重畳して形成されることになる。図2(b)は基準マーク板FMがデフォーカスしているときのスリットマークISxとその反射像IMxとの関係を模式的に表したものである。両側テレセントリックな投影光学系PLでは、このように反射像IMxは自身の源であるスリットマークISx上に投射される。そして基準マーク板FMがデフォーカスしていると、反射像IMxは、スリットマークISxの形状寸法よりも大きくなり、且つ単位面積当りの照度も低下する。
【0023】
そこで基準マーク板FM上にできる反射像のうち、元のスリットマークISx、ISy、ISaで遮光されなかった像部分の光束をミラーM1、対物レンズ50を介して光ファイバー51に導き、光ファイバー51から射出された光束をビームスプリッタ52、レンズ系54を介して光電センサ55で受光する。光電センサ55の受光面は投影光学系PLの瞳面(フーリエ変換面)EPとほぼ共役な位置に配置されている。図1の構成においては、Z・レベリングステージ20を上下方向(Z方向)に移動させるだけで投影光学系PLの結像面を決定するためのコントラスト信号を得ることができる。
【0024】
図3(a)及び(b)はそれぞれ光電センサ55の出力信号KSの信号レベル特性を表し、横軸はZ・レベリングステージ20のZ方向の位置、即ち基準マーク板FMの光軸AX方向の高さ位置を表す。また、図3(a)はスリットマークISx、ISy、ISaがレチクルRのパターン面内のクロム部分に逆投影されたときの信号レベルを示し、図3(b)はそれらスリットマークがパターン面内のガラス部分(透明部分)に逆投影されたときの信号レベルを示す。通常、レチクルのクロム部分は0.3〜0.5μm程度の厚みでガラス(石英)板に蒸着されており、クロム部分の反射率は当然のことながらガラス部分の反射率よりは格段に大きい。しかしながら、ガラス部分での反射率は完全に零ということはないので、図3(b)のように信号レベルとしてはかなり小さくなるが、ガラス部分でも検出は可能である。また、一般に実デバイス製造用のレチクルは、パターン密度が高いために、スリットマークISx、ISy、ISaの全ての逆投影像がレチクルパターン中のガラス部分(透明部分)に同時にかかる確率は極めて少ないと考えられる。
【0025】
何れの場合にしろ、基準マーク板FMの表面が最良結像面Foを横切るように光軸AXの方向に移動されると、Z方向の位置Zで出力信号KSのレベルが極大値となる。従って、Z・レベリングステージ20のZ方向の位置と出力信号KSとを同時に計測し、出力信号KSのレベルが極大となったときのZ方向の位置を検出することで、最良結像面Foの位置が求まり、しかもこの検出方式ではレチクルR内の任意の位置で最良結像面Foの検出が可能となる。従って、レチクルRが投影光学系PLの物体側にセットされてさえいれば、いつでも投影視野内の任意の位置で絶対フォーカス位置(最良結像面Fo)が計測できる。また、先に述べたようにレチクルRのクロム層は0.3〜0.5μm厚であり、この厚みによって生じる最良結像面Foの検出誤差は、投影光学系PLの投影倍率を1/5(縮小)とすると、(0.3〜0.5)×(1/5)、即ち0.012〜0.02μmとなり、これはほとんど無視できる値である。
【0026】
次に図4を参照して本実施例の斜入射光式のAF系(焦点位置検出系)について説明するが、ここでは多点AF系を採用するものとする。多点AF系とは投影光学系PLの投影視野内の複数箇所に、ウエハWの光軸方向の位置ずれ(所謂焦点ずれ)を計測する測定点を設けたものである。図4において、ウエハW上のフォトレジストに対して非感光性の照明光ILはスリット板1を照明する。そしてスリット板1のスリットを通った光は、レンズ系2、ミラー3、絞り4、投光用対物レンズ5、及びミラー6を介してウエハWを斜めに照射する。このとき、ウエハWの表面が投影光学系PLの最良結像面Foにあると、スリット板1のスリットの像がレンズ系2、及び対物レンズ5によってウエハWの表面に結像される。また、対物レンズ5の光軸とウエハ表面との角度は5〜12°位いに設定され、スリット板1のスリット像の中心は、投影光学系PLの光軸AXがウエハWと交差する点に位置する。
【0027】
さて、ウエハWで反射されたスリット像の光束は、ミラー7、受光用対物レンズ8、レンズ系9、振動ミラー10、及び平行平面板(プレーンパラレル)12を介して受光用スリット板14上にスリット像を再結像する。振動ミラー10は受光用スリット板14上にできるスリット像を、その長手方向と直交する方向に微小振動させるものであり、プレーンパラレル12はスリット板14上のスリットと、ウエハWからの反射光によるスリット像の振動中心との相対関係を、スリットの長手方向と直交する方向にシフトさせるものである。そして振動ミラー10は発振器(OSC)16からの駆動信号でドライブされるミラー駆動部(M−DRV)11により振動される。
【0028】
こうして、スリット像が受光用スリット板14上で振動すると、スリット板14を透過した光束は、アレイセンサー15で受光される。このアレイセンサー15は、スリット板14のスリットの長手方向を複数の微小領域に分割し、各微小領域毎に個別の受光画素を配列したものであり、光電変換素子としてはシリコン・フォトダイオード又はフォトトランジスタ等が使用される。アレイセンサー15の各受光画素からの信号は、セレクター回路13を介して選択、又はグループ化されて、同期検波回路(PSD)17に供給される。この同期検波回路17には、発振器16からの駆動信号と同じ位相の交流信号が供給され、この交流信号の位相を基準として同期整流が行われる。
【0029】
このとき、同期検波回路17はアレイセンサー15の中から選ばれた複数の受光画素の各出力信号を個別に同期検波するために、複数の検波回路を備え、その各検波出力信号FSは主制御ユニット(MCU)30に供給される。各検波出力信号FSは、所謂Sカーブ信号と呼ばれ、受光用スリット板14のスリット中心とウエハWからの反射スリット像の振動中心とが一致したときに零レベルとなり、ウエハWがその状態から上方に変位しているときは正のレベル、ウエハWが下方に変位しているときは負のレベルになる。従って、検波出力信号FSが零レベルになるときのウエハWの露光面(例えば表面)の高さ位置が合焦点として検出される。但し、このような斜入射方式では、合焦点(検波出力信号FSが零レベル)となったウエハWの高さ位置が、いつでも最良結像面Foと必ず一致しているという保証はない。即ち、斜入射方式ではその系自体で決まる仮想的な基準面を有し、その仮想的な基準面にウエハWの露光面が一致したときに同期検波回路17からの検波出力信号FSが零レベルになるのであって、仮想的な基準面と最良結像面Foとは装置製造時等に極力一致するように設定されてはいるが、長期間に亘って一致しているという保証はない。そこで、図4中のプレーンパラレル12を主制御ユニット30による制御のもとで傾けて、仮想的な基準面を光軸AX方向に変位させることで、その仮想的な基準面と最良結像面Foとの一致(又は位置関係の規定)を図ることができる。
【0030】
また、主制御ユニット30は、図1の光電センサー55からの出力信号KSを入力して、斜入射方式の多点AF系をキャリブレーションする機能、プレーンパラレル12の傾きを設定する機能、多点AF系の各検波出力信号FSに基づいてZ・レベリングステージ20の駆動用モータ19を駆動する駆動部(Z−DRV)18へ指令信号DSを出力する機能、及びXYステージ21を駆動するための駆動部(モータとその制御回路とを含む)22を制御する機能等を備えている。
【0031】
図5は、投影光学系PLの投影視野Ifと、多点AF系からのスリット像STとの位置関係をウエハWの表面上で見た図である。投影視野Ifは一般に円形であり、レチクルRのパターン領域PAのパターン像が投影されるショット領域SAは、その円形内に含まれる矩形となっている。スリット像STは、XYステージ21の移動座標軸でもあるX軸及びY軸のそれぞれに対して45°程度傾けてウエハW上に投影される。従って、投光用対物レンズ5及び受光用対物レンズ8の両光軸AFxのウエハWへの射影は、スリット像STと直交した方向に伸びている。更に、スリット像STの中心は、光軸AXとほぼ一致するように定められている。このような構成で、スリット像STは、ショット領域SA内で出来るだけ長く伸びるように設定される。
【0032】
一般にショット領域SAには、それまでの露光工程等により凹凸を有する回路パターンが形成されている。この場合、デバイス製造のプロセスを経る度に、その凹凸の状態の変化量が増大し、スリット像STの長手方向においても、その凹凸の状態が大きく変化することがある。特に1つのショット領域内に複数のチップパターンを配置する場合、各チップパターンを分離するためのスクライブラインがショット領域内にX方向又はY方向に伸びて形成されることとなり、スクライブライン上の点とチップパターン上の点との間には、極端な場合で2μm以上の段差が生じることもある。スリット像ST内のどの部分にスクライブラインが位置するかは、設計上のショット配列やショット内のチップサイズ等によって予め分かるので、スリット像STの長手方向の任意の部分からの反射光が回路パターン、又はスクライブラインの何れからの反射光であるのかは認識できる。
【0033】
図6は、受光用スリット板14とアレイセンサー15とを分離した状態を示し、この図6において、スリット板14はガラス基板上にクロム層(遮光膜)を全面に蒸着し、その一部にエッチングにより透明なスリットを形成したものである。このスリット板14を、保持フレーム14A上に固定し、この保持フレーム14Aを、アレイセンサー15を保持するセラミックス等のプリント基板15A上に例えば不図示のねじを用いて固定する。これによって、スリット板14のスリットはアレイセンサー15の一次元の受光画素の配列と平行になって密着される。このようにスリット板14とアレイセンサー15とは極力密着又は近接させた方が良いが、スリット板14とアレイセンサー15との間に結像レンズ系を設け、スリット板14とアレイセンサー15とを光学的に共役にしてもよい。なお、先の図6で示したスリット像STのウエハW上での長さは、投影視野Ifの直径によっても異なるが、投影光学系PLの倍率が1/5(縮小)で、投影視野Ifの直径が32mm前後である場合、その投影視野Ifの直径の1倍〜1/3倍程度にするのが望ましい。
【0034】
さて、図7は、アレイセンサー15、セレクター回路13、同期検波回路17、及び主制御ユニット30の具体的な回路構成の一例を示し、この図7において、セレクター回路13は5個のセレクター回路13A〜13Eより構成され、同期検波回路17も5個の同期検波回路17A〜17Eより構成されている。そして、アレイセンサー15の受光画素を5つのグループGa〜Geに分け、各グループ内からセレクター回路13によりそれぞれ1つの受光画素を選択する。この場合、グループGa〜Geは、それぞれ図5のスリット像STに沿った5つの計測点P1〜P5の前後のスリット像を検出する。また、一例として、ここではセレクター回路13A〜13Eにおいて、計測点P1〜P5上のスリット像を受光する受光画素の検出信号を選択するものとする。
【0035】
具体的に、図7において、アレイセンサー15の受光画素のグループGa内には複数個の受光画素が含まれ、セレクター回路13Aによってそれら受光画素内で計測点P1上の像を検出する受光画素を選択し、この受光画素の出力信号を同期検波回路17Aに供給する。なお、セレクター回路13Aは、グループGa内の受光画素の内任意の1つを選択してその出力信号を同期検波回路17Aに送る機能の他に、グループGa内の隣接する2つ、又は3つの受光画素を任意に選び、それらの出力信号を加算した信号を同期検波回路17Aへ送る機能をも備えている。同様に、グループGb〜Ge中の各受光画素からの出力信号もそれぞれセレクター回路13B〜13E内で選択され、選択された出力信号がそれぞれ同期検波回路17B〜17Eへ供給される。
【0036】
同期検波回路17A〜17Eは、それぞれ発振器16からの基本波交流信号を受け取って検波出力信号FSa〜FSeを出力する。これらの検波出力信号FSa〜FSeは、主制御ユニット30内のアナログ/デジタル変換器(ADC)30Aでそれぞれデジタルデータに変換されて補正演算部30B、及び偏差検出部30Cに供給される。補正演算部30Bには、露光プロセスデータ記憶部30Fより当該ウエハのプロセス構造に関するデータ(露光面の凹凸分布、及び凹凸の段差のデータを含む)も供給されると共に、記憶部30Dより信号較正用のオフセット値も供給されている。そして、補正演算部30Bは、一例として5つの検波出力信号の値、即ちウエハ上の5点でのフォーカスずれ量、及びプロセス構造に関するデータ等に基づいて、ウエハ上の各計測点のZ方向での目標位置に対応する検波出力値を算出し、その値を偏差検出部30Cに供給する。この偏差検出部30Cは、補正演算部30Bからの出力値とADC30Aからの検波出力値との偏差を検出し、この偏差を少なくするような指令信号DSを図4の駆動部18に供給する。
【0037】
より具体的に、偏差検出部30Cでは、例えば補正演算部30Bからの目標とする検波出力信号とADC30Aからの検波出力信号FSa〜FSeとの偏差の自乗和が最小になるように、即ち最小自乗法により、駆動部18を制御する。これにより、Z・レベリングステージ20のZ方向の位置、及び傾斜角が制御されて、図5の計測点P1〜P5の平均的な面が投影光学系PLの結像面に合致するように合焦が行われる。
【0038】
なお、図5では計測点P1〜P5が1直線上に配列されているため、制御される傾斜角はウエハWの表面でスリット像STに垂直な直線を軸とする傾斜角のみである。ウエハW上の表面の直交する2軸の回りの傾斜角を制御するには、それら計測点P1〜P5を2次元的に配列する(例えば複数のパターン像を平行に並べるか、あるいは互いに交差させるように形成する)か、又は後述のようにウエハW上のショット領域SAをスリット像STに対して所定の方向に走査して、そのショット領域SAの全面での高さ分布を計測すればよい。
【0039】
また、図7において、記憶部30Dに予め記憶されているオフセット値は、較正値決定部30Eによって計測、算出されるものであり、較正値決定部30Eは5つの検波出力信号FSa〜FSe、及び光電センサ55の出力信号KSより、多点AF系の仮想的な基準面とベストフォーカス面Foとの偏差を、検波出力上の零レベルからの偏差電圧として求める。較正値決定部30E内には、5つの検波出力のそれぞれのレベルと信号KS(図3参照)とを同時にデジタルサンプリングするためのアナログ/デジタル変換器、及び波形メモリ等も含まれている。
【0040】
ここで図9を参照して、較正値決定部30Eの具体的な構成例を説明する。先ずTTL(スルー・ザ・レンズ)方式の絶対フォーカス検出系の光電センサー55からの出力信号KSは、アナログ/デジタル変換器(ADC)300に入力され、その信号レベルに対応したデジタル値に変換されてメモリとしてのRAM301に記憶される。このRAM301のアドレス指定は、カウンタ304によって行われるが、カウンタ304の計数、及びADC300の変換タイミングは何れもクロックジェネレータ(CLK)303からのクロックパルスに同期している。同様に、5つの検波出力信号FSa〜FSeの1つが、選択スイッチ308を介してADC305に供給され、ここで変換されたデジタル値はカウンタ307によってアドレス指定されるRAM306に記憶される。従って、RAM301,306には、それぞれ出力信号KS、及び選択された1つの検波出力信号の時間的に変化する波形が取り込まれる。これらRAM301,306内の波形は、演算処理部310でスムージング、及び極大値検出等を行う際の処理データとして使用される。
【0041】
なお、演算処理部310は、RAM301,306に信号波形を取り込むために、Z・レベリングステージ20のZ方向への等速移動を制御するための信号を駆動部18へ出力すると共に、多点AF系の各計測点の位置に図2(a)のスリットマークISx,ISy,ISaの中心を移動させるための駆動信号を図4のXYステージ用の駆動部22へ出力する。
【0042】
図10(a)は、1つの検波出力信号FSの変化特性を示し、Z・レベリングステージ20をZ方向にベストフォーカス面を含む一定範囲内で等速移動させたときにRAM306に格納される波形データに対応する。また、図10(b)はそのときにRAM301内に格納される信号KSの波形を表す。同期検波信号は零点を中心にほぼ点対称な波形になるため、零点よりも小さな負レベルのデータについては、負レベルも考慮してアナログ/デジタル変換される。
【0043】
図9のRAM301内には、図10(b)に示す極大値を取る信号KSの波形が時間tに対応するアドレスに格納されるので、演算処理部310は、その波形を解析して極大点が得られた時点Tを求める。次に、演算処理部310は、RAM306内の時点Tに対応するアドレスポイントを求め、このアドレスポイントに記憶されている検波出力信号FSのレベルΔFSを求める。このレベルΔFSは、検波出力信号FS上の零点からのオフセット電圧であり、この図10(a)のような検波出力を発生する多点AF系の測定点では、検波出力が+ΔFSになるようにその測定点でのウエハ表面をZ方向に移動させると、そのウエハ表面とベストフォーカス面Foとが合致することになる。
【0044】
ところで、図9の回路を使うときには、図4のXYステージ21を移動させて、基準マーク板FM上のスリットマークの中心が多点AF系の各測定点の何れか1つの位置に来るように位置決めされる。その位置決めはそれ程厳密である必要はなく、多点AF系の測定点とスリットマーク群の中心とが、X方向及びY方向に100μm前後ずれていてもよい。従って、多点AF系の測定点、即ち図5に示したスリット像ST内の測定点P1〜P5が決まったら、それらの測定点を中心に±100μm程度の範囲でスリットマーク群の位置をX方向及びY方向にずらすと共に、Z方向に振って、信号KSのピークがある程度大きくなる座標位置を求めてもよい。また、これは確率的には極めて小さいが、スリットマーク群の全てがレチクルRの透過部に一致してしまう不都合(信号KSのSN比の低下)をなるべく避けるためである。但し、較正動作を高速に行うときは、信号のピークが大きくなる座標位置をサーチしなくとも、ほぼ同等の精度でオフセット値ΔFSを求めることが可能である。また、そのオフセット値は各測定点P1〜P5毎に求められる。
【0045】
このようにして、図5の各計測点P1〜P5がそれぞれZ方向で投影光学系PLによる最良結像面の位置に合致するときの検波出力信号FSa〜FSeの値、即ちその最良結像面でのオフセット値BFa〜BFeが求められる。図5において、ショット領域SAを例えばX方向にスリット像STに対して走査してショット領域SAの全面に分布する計測点で検波出力信号を求める際にも、各計測点でのオフセット値はそのようにして求めたオフセット値BFa〜BFe内の何れかの値である。
【0046】
次に、本実施例における合焦及び露光動作の一例につき図5、図8、図11、及び図12を参照して説明する。この場合、前提として、図5の各計測点P1〜P5をそれぞれ投影光学系PLの結像面に合焦させた場合の検波出力信号FSa〜FSeの値、即ち多点AF系の仮想的な基準面に対する結像面のオフセット値BFa〜BFeは予め計測されているものとする。なお、図4のプレーンパラレル12の回転角を調整すれば、それらオフセット値BFa〜BFeはほぼ0にすることができるので、ここでもそれらオフセット値BFa〜BFeは0に近い値である。また、XYステージ21を駆動した際のZ・レベリングステージ20の走り面と投影光学系PLの最良結像面とは実質的に平行であるとみなす。
【0047】
先ず、図11のステップ101において、XYステージを駆動して図5に示すように、計測対象(露光対象)のショット領域SAの中央部を斜入射多点AF系からのスリット像STの投影領域上に移動する。その後、ステップ102において、スリット像STの中心の計測点P3でオートフォーカスを行う。即ち、計測点P3に対応する検波出力信号FScが最良結像面のオフセット値BFcになるようにZ・レベリングステージ20のZ方向の高さを調整し、この状態でZ・レベリングステージ20をロックする。従って、これ以後は計測が終了するまでZ・レベリングステージ20の高さ、及び傾斜角は一定である。このように一度オートフォーカスを行うのは、ショット領域SA内の凹凸の分布が多点AF系の検出範囲から外れるのを防止するためである。
【0048】
但し、本実施例ではステップ102においてスリット像STの中心の計測点P3でオートフォーカスを行う代わりに、ショット領域SA内部又は近傍に基準面となる平面がある場合は、この平面にてオートフォーカスを行ってもよい。このときの計測点はP3である必要はなく、この平面に最も近い計測点を選択してもよい。また、露光プロセスデータを用いてオートフォーカスを行うべき計測点を決定するようにしてもよい。要は計測点P3である必要はなく、多点AF系のスリット像STでウエハを走査するときに、その走査範囲内のどこの点であっても多点AF系によって検出されるフォーカス位置のずれ量がその検出範囲(Sカーブによって決まる)から外れなければよい。
【0049】
次に、ステップ103において、XYステージ21を駆動して、図5に示すようにショット領域SAをスリット像STの−X方向に手前側の計測開始位置SBに移動させた後、ステップ104において、XYステージ21を駆動して、スリット像STに対してX方向にショット領域SAを走査し、補正演算部30B内のメモリに各検波出力信号FSa〜FSeを格納する。この際、XYステージ21の座標はレーザ干渉計により計測されているため、そのメモリ内でレーザ干渉計で計測される座標に対応するアドレスに順次検波出力信号FSa〜FSeを格納していけばよい。その後、ステップ105において、得られた検波出力信号FSa〜FSe(それぞれ時系列の信号となっている)に基づいてショット領域SA内のプロセス段差の分類を行う。
【0050】
具体的に、図8(a)はウエハW上のそのショット領域SA内の或る断面を示し、この断面上に計測点P1〜P5が設定されている。なお、実際にはウエハW上にはフォトレジストが塗布されているが、フォトレジストは省略してある。図8(a)において、多点AF系の仮想的な基準面41上に各計測点P1〜P5が来ると、対応する検波出力信号FSa〜FSeがそれぞれ0となる。また、投影光学系PLの最良結像面42はその仮想的な基準面41からは或る程度外れているものとしている。この場合、ウエハW上には既に複数層の回路パターンが形成され、それに応じてその表面は凹凸となっている。そのため、各計測点P1〜P5で得られる検波出力信号をFSa〜FSeとすると、これら検波出力信号の値もその凹凸に応じた値となっている。
【0051】
例えばウエハW上の凸部のパターン領域40A上に計測点P1,P2が位置し、凹部のパターン領域40B上に計測点P3が位置し、凸部のパターン領域40C上に計測点P4,P5が位置しているものとすると、計測点P3での検波出力信号FScの値が最も小さくなる。これを利用して、本実施例の図7の補正演算部30Bは、隣接する計測点に対応する検波出力信号の差分を求めることにより、当該ショット領域の凹凸分布を求める。また、補正演算部30Bには、露光プロセスデータ記憶部30Fからプロセス構造に関するデータも供給されているため、補正演算部30Bは、上述のように求めた凹凸分布と、そのプロセス構造との比較より計測点P1〜P5が位置するパターン領域40A〜40Cを識別できる。
【0052】
これにより、例えば各パターン領域40A〜40Cが、メモリセル部、周辺回路部(ロジック部)、又はスクライブライン等の何れに属するのかが判別される。また、補正演算部30Bは、供給されたデータより、各パターン領域40A,40Cの段差Z、及びパターン領域40Bの段差Zを認識できる。これらの段差はウエハWの回路パターンの無い部分からの高さであるが、後述のようにこれらの段差の差分だけが問題となる。
【0053】
また、前記隣接する計測点間での差分データにより得た段差情報より、各々の段差領域内での検波出力信号について分散等(ばらつき)を求めることにより、各段差領域内のパターン密度の違い等による段差を知ることができる。これにより計測点P1〜P5の前後で安定した計測点を求めることもできる。
次に、ステップ106において、ショット領域SA上で合焦させたい部分の面を合焦基準面として決定する。例えば図8(a)において、計測点P3が位置するパターン領域40B上に最も線幅の狭いパターンが露光されるものとして、パターン領域40Bを合焦基準面とする。但し、ショット領域SA内で最も広い(面積が大きい)パターン領域(例えばパターン領域40A)を合焦基準面とする場合も有り得る。合焦基準面は、ショット領域内のパターン領域毎の合焦の優先度(パターン線幅、ピッチ等に応じて定まる)に従って選択、決定すればよい。
【0054】
その後、ステップ107において、計測点P1〜P5における検波出力信号Fa〜Feに対するオフセット値Δa〜Δeを求める。図8(a)において、検波出力信号からZ方向への変位への変換係数をkとすると、合焦基準面であるパターン領域40B上の計測点P3における検波出力信号Fcに対するオフセット値Δcは0である。また、計測点P1,P2,P4,P5における検波出力信号Fa,Fb,Fd,Feに対するオフセット値Δa,Δb,Δd,Δeは、それぞれ(Z−Z)/kとなる。
【0055】
次に、ステップ108において、補正演算部30Bは、図8(a)の最良結像面42での検波出力信号のオフセット値BFa〜BFeに、ステップ107で求めたオフセット値Δa〜Δeを加算する。これは、実線で示す最良結像面42を点線で示すような仮想的な段差を含む最良結像面42Aに変換するのと等価であり、その仮想的な最良結像面42Aに対してパターン領域40A〜40Cを合焦させることになる。
【0056】
即ち、ステップ109において、補正演算部30Bは、仮想的な最良結像面42Aの検波出力信号、即ち(BFa+Δa)〜(BFe+Δe)を偏差検出部30Cに供給する。また、偏差検出部30Cには実際のパターン領域40A〜40Cに対応する検波出力信号Fa〜Feがリアルタイムで供給されている。そこで、偏差検出部30Cが、Z・レベリングステージ20用の駆動部18に対して、例えば最小自乗法を利用して、オフセット値(BFa+Δa)〜(BFe+Δe)と検波出力信号Fa〜Feとの偏差の自乗和が最小になるような駆動信号を供給する。これにより、図8(b)に示すように、合焦基準面であるパターン領域40Bは、実際の最良結像面42に合致する。その後、ステップ110で露光を行うことにより、最も線幅の狭いパターンが高い解像度で露光される。
【0057】
このとき、パターン領域40B以外のパターン領域40A,40Cは投影光学系の焦点深度内に設定されるが、前述のステップ107においてオフセット値Δa〜Δeが焦点深度を超え得るときには、例えばオフセット値Δa〜Δeに重み付けを行ってパターン領域40A,40Cが焦点深度内に入るように合焦基準面を見掛け上Z方向にシフトさせるようにしてもよい。これは、ショット領域の全面が焦点深度内に入っている場合にも適用可である。また、単純にパターン領域40A,40Cが焦点深度の幅内に入るように、合焦基準面(パターン領域40B)をシフトさせてもよい。
【0058】
なお、上述の実施例では図7に示すように、偏差検出部30Cで目標値と実際の検波出力信号とを比較する方式であるため、目標値である最良結像面42に段差のオフセット値Δa〜Δeを加算していた。しかしながら、図7において実際の検波出力信号にオフセット補正を行って偏差検出部30Cに供給する方式を採るときには、実際の検波出力信号からそれらオフセット値Δa〜Δeを差し引けばよい。
【0059】
なお、実際には、図5のショット領域SAの全面に分布する計測点での検波出力信号が得られ、ショット領域SAの全面での凹凸分布が識別される。しかしながら、図7においてADC30Aからリアルタイムで供給される検波出力信号は図5のスリット像ST上の5点での検波出力信号のみである。また、スリット像ST上のデータを用いるのみでは、スリット像STに平行な軸の回りの傾斜角の補正ができない。そこで、そのスリット像STに平行な軸の回りのウエハWの傾斜角の補正は一例としてオープンループで行う。即ち、ショット領域SAをスリット像STに対して走査することにより、図8(a)に示すように、仮想的な最良結像面42Aの検波出力信号と、実際のパターン領域での検波出力信号とが求められる。そこで、予め、図4の駆動部18の制御量とZ・レベリングステージ20の傾斜角の関係とを求めておき、実際のパターン領域での検波出力信号と仮想的な最良結像面42Aの検波出力信号との差分を打ち消す量だけZ・レベリングステージ20の傾斜角を制御する。これにより、オープンループ制御で、図5のショット領域SAの全面に分布する最も線幅の狭いパターンが露光されるパターン領域が全体として投影光学系PLの最良結像面に合焦される。
【0060】
なお、図11のステップ104において、ステップ104Aで示すように、XYステージ21をX方向に一定ピッチでステッピングさせて、そのXYステージ21が停止する毎に、即ちその一定ピッチで検波出力信号Fa〜Feをモメリに格納するようにしてもよい。この方法により、XYステージ21の動きに伴う空気の揺らぎの影響が低減されるという効果がある。
【0061】
また、図11のステップ101〜102の動作の代わりに、図12のステップ111及び112のようにしてもよい。即ち、このステップ111では、先ずXYステージ21を駆動して、図5に示すように、ショット領域SAを計測開始位置SBに移動させる。その後、ステップ112において、図5のスリット像STの中央の計測点P3でオートフォーカスを行って、Z・レベリングステージ20のフォーカス位置をロックする。その後、図11のステップ104又は104Aに移行してショット領域SAの全面での検波出力信号のサンプリングを行う。その後の処理は図11の動作と同じである。この図12のシーケンスでは、ウエハステージ21の動作に無駄がなく計測が効率的に行われる。
【0062】
なお、上述実施例では、図4においてXYステージ21を駆動した際のZ・レベリングステージ20の走り面と投影光学系PLの最良結像面とがほぼ平行であるとみなしていた。これに対して、Z・レベリングステージ20の走り面と投影光学系PLの結像面とが平行でない場合には、次のような補正動作が必要となる。即ち、XYステージ21を駆動したときのZ・レベリングステージ20の走り面と投影光学系PLの結像面との偏差(像面傾斜、湾曲等)を装置定数として例えば補正演算部30B内のメモリに持つようにする。この場合、例えば図11のステップ104の方法で求めた検波出力信号は、Z・レベリングステージ20の走り面を基準とした計測結果を示しているので、その計測結果に装置定数として記憶している結像面との偏差量を加算してやればよい。
【0063】
また、上述実施例では図5に示すように、ウエハW上の1つのショット領域SAで凹凸分布を求めているが、ウエハW上の他のいくつか(1つ以上)のショット領域でも同じ計測を行って、得られた検波出力信号を平均化し、平均化して得られた結果とプロセス構造との比較からウエハ上の各ショット領域内の凹凸分布を求めてもよい。これにより、フォトレジストの塗布むらの影響等が軽減される。
【0064】
次に、上述実施例では図5に示したようにウエハW上の所定のショット領域SA内でZ方向の位置検出を行っていたが、ウエハWの全面で例えばショット領域の配列ピッチの整数分の1のピッチでZ方向の位置検出を行ってもよい。具体的に、ショット領域のX方向への配列ピッチがPであれば、X方向でのフォーカス位置計測の間隔は、2以上の整数Nを用いてP/Nとなる。このとき、ショット領域の配列ピッチと同じ周期で、多点AF系からの検波出力信号の出力変化が繰り返される。
【0065】
この場合、ウエハの露光面に塵等の異物があるか、又はウエハに反り等による形状変化があると、そのショット領域での多点AF系の出力変化が他のショット領域での出力変化と異なる。そこで、検波出力信号をショット領域の配列ピッチに対応する周期でサンプリングした値の平均値からの偏差が、所定の閥値以上となっているショット領域に対しては、合焦基準面に対する検波出力信号のオフセット量を別に算出することが望ましい。また、この様な異物や反り等の影響が表されているショット領域に対しては、警告またはエラーとしてアシスト処理(オペレータコール)等の処理を行っても良い。
【0066】
次に、上述実施例ではSカーブ状に変化する検波出力信号FSよりウエハWの露光面のZ方向の位置(フォーカス位置)を計測している。
図13の曲線44は、その検波出力信号FSの一例を示し、この図13において、従来は曲線44の内で直線45でほぼ近似できる区間を用いて、検波出力信号FSからZ方向の位置を求めていた。しかしながら、これではZ方向での位置検出範囲が狭いという不都合がある。そこで、位置検出範囲を広くするため、例えば図4のZ・レベリングステージ20を移動ピッチΔZでZ方向に移動させたときの検波出力信号FS(実際にはFSa〜FSeのそれぞれについて計測する)をメモリに記憶させておく、即ち、図13の曲線44を近似的に求めておくのが望ましい。この場合、Z方向の位置に対して検波出力信号FSの値が記憶される。
【0067】
そして、実際にZ方向の位置計測を行う際には、検波出力信号FSの値がVであれば、曲線44からZ方向の位置Zが正確に求められる。これに対して、曲線44を直線45で近似した場合には、検波出力信号がVのときのZ方向の位置はZとなり誤差が生ずる。
次に、上述実施例では、実際の計測結果に基づいてZ・レベリングステージ20の傾斜角の制御を行っている。しかしながら、投影光学系PLの結像面のXYステージ21の走り面に対する傾斜角は予め既知であるので、その傾斜角を予めZ・レベリングステージ20で行っておくようにしてもよい。これにより、多点AF系でZ方向の位置検出を行った場合に、傾斜角のずれ量が少なくなり、各計測点毎に算出されるオフセット値が小さくなる。従って、合焦に要する時間が短縮されると共に、合焦精度も向上する。
【0068】
また、上述実施例では、図4に示すように多点AF系の受光系に配置されたプレーンパラレル12の傾斜角により、多点AF系の仮想的な基準面と最良結像面との位置関係を調整できるようになっている。これは、検波出力信号FSa〜FSeに共通に現れるオフセット値はそのプレーンパラレル12の傾斜角で除去できることをも意味する。
【0069】
ところが、受光系側にのみプレーンパラレル12を設けたものでは補正量が少ないので、送光系側にもプレーンパラレルを配置してもよい。このように2枚のプレーンパラレルで結像位置を補正することにより、結像位置の補正量を大きくできる。しかも、送光系及び受光系の双方にプレーンパラレルを入れて補正することにより、ウエハ上での明暗パターンの位置ずれをも補正できる。
【0070】
なお、多点AF系の送光系にプレーンパラレルを配置し、例えば図11のステップ109でこのプレーンパラレルを用いて共通のオフセット補正を行うと、ステップ104で検波出力信号を計測したときと、ステップ109で検波出力信号を計測するときとで、ウエハW上でのスリット像STの位置ずれが生ずる。そこで、この位置ずれの影響を低減させるためには、プレーンパラレルの傾斜角に対するウエハW上でのスリット像STの位置ずれ量を予め測定しておき、ステップ109で各計測点に対応して最良結像面のオフセット値に付加するオフセット量を、その予め測定しておいた位置ずれ量に基づいて補正すればよい。
【0071】
次に、上述実施例では、図5に示すように、ウエハW上のショット領域SAに対して対角線方向に斜めにZ方向の位置検出用のスリット像STが投影され、このスリット像ST上の5点が計測点P1〜P5として選択されている。これに対して、図14に示すように、ショット領域SA上に、X方向及びY方向に所定ピッチで2次元的にN個(図14ではNは25)の計測点P11,P12,…,P74を設定し、これら計測点にそれぞれ焦点検出用のパターン像を投影してもよい。この場合、各パターン像を受光する受光素子(受光画素)の個数も計測点と同じ個数になり、例えば同期検波方式を採用する場合、全ての計測点からのパターン像の光電変換信号を並行して処理するのは困難である。そこで、例えば図7に示すようなセレクター回路13A〜13Eを用いて、それらN個の光電変換信号から5個ずつの光電変換信号を選択し、時分割的に同期検波を行うようにしてもよい。このような時分割方式により、回路構成が簡略化される。
【0072】
また、焦点検出を行うのに、スリット像を投影する代わりに、例えば所定ピッチの格子状のパターン像をウエハ上に斜めに投影するようにしてもよい。この場合、そのウエハからの反射光を用いて、例えば2次元CCD等の2次元の撮像素子上にその格子状のパターン像を再結像し、再結像された像の横ずれ量から対応するウエハの露光面でのZ方向への位置ずれ量が求められる。
【0073】
また、スリット像を投影して例えば1次元のラインセンサ上での再結像されたパターン像の位置を検出してZ方向への位置ずれ量を求める方式でもよい。この方式ではキャリブレーション用のプレーンパラレルを設けなくてもよく、常に電気的なオフセットを用いるようにすればよい。ショット領域内の高さが異なる少なくとも2つのパターン領域(スクライブライン等を含む)の各々に少なくとも1つの計測点を設定すればよいが、例えば各パターン領域に複数の計測点を設定し、オフセット値Δa〜Δeを求めるときは領域毎にその複数の計測値を統計処理又は平均化又は加重平均化処理して、オートフォーカス動作時には領域毎にその求めたオフセットを1つの計測点に与えてその計測点での検波出力信号を用いるようにしてもよい。要は、1つのパターン領域内に複数の計測点があるとき、各計測点毎にそのオフセットを求める必要はなく、また複数の計測点の各々で全てショット面と結像面とを合わせるようなオートフォーカス動作を行わなくてもよく、パターン領域毎に少なくとも1つの計測点でのオフセットを求め、当該計測点を用いてオートフォーカス動作を行えばよい。
【0074】
次に、上述実施例の図4に示す斜入射方式のAF系(焦点位置検出系)では、焦点検出用の照明光ILとして、ウエハW上のフォトレジストに対して非感光性、又は感光性の弱い波長域の光が使用されている。更に、フォトレジストでは、入射する光束による薄膜干渉が生ずるため、特にその光束が単色光の場合にはそのフォトレジストの厚さによって反射される光の強度がかなり弱くなることがある。そこで、その薄膜干渉の悪影響を軽減するためには、その照明光ILとして100nm以上の帯域幅を有する光束を使用することが望ましい。具体的に、照明光ILとしては、ハロゲンランプから照射される光束より波長選択フィルタにより選択された、例えば700nm〜900nm程度の波長域の光束が使用できる。また、発光ダイオードからの700nm〜900nm程度の波長域内の照明光を使用してもよい。更に、例えば複数個の半導体レーザ素子からの光束を混合して得られる複数個の単色光を照明光ILとしてもよい。
【0075】
但し、照明光ILとして所定の波長域、又は複数波長の光束を使用した場合、波長に対する光強度の分布が均一でなく、例えば特定の波長の光強度が強いと、その特定の波長で薄膜干渉の影響を受ける恐れがある。そこで、それを避けるためには、図4に示すように、AF系のアレイセンサー15の前に、波長に対する光電変換信号の分布を均一化するための光学フィルタ板60を配置することが望ましい。なお、その光学フィルタ板60は、照明光ILを発生する不図示の光源とそのアレイセンサー15との間のどの位置に配置されていてもよい。
【0076】
図15を参照して、具体的にその光学フィルタ板60の特性の一例につき説明する。先ず、照明光ILの波長λに対する光強度L(λ)の分布が図15(a)に示すように山型であるとする。この場合、光学フィルタ板60の波長λに対する透過率T(λ)の分布は、図15(b)に示すように、ほぼ谷型に設定する。但し、透過率T(λ)はアレイセンサー15における波長感度特性を考慮して補正してある。
【0077】
即ち、例えばアレイセンサー15における波長λに対する検出感度(出力信号/入射する光強度)PSV(λ)が、図15(c)の点線で示すように右上がりとなっているものとする。この場合、光学フィルタ板60を通過してアレイセンサー15で受光される光束の波長λに対する光強度L(λ)の分布は、光強度L(λ)と透過率T(λ)との積であるため、その光強度L(λ)の分布が図15(c)の実線のように多少右下がりの特性となるように透過率T(λ)の分布を定めておく。このとき、波長λの光束に対してアレイセンサー15から出力される光電変換信号SR(λ)は、検出感度PSV(λ)と光強度L(λ)との積であるため、図15(d)に示すように波長λに対してほぼ平坦な特性となる。これにより、フォトレジストにおける薄膜干渉の悪影響を低減することができ、安定にウエハの表面の段差計測を行うことができる。
【0078】
なお、本発明は上述実施例に限定されず本発明の要旨を逸脱しない範囲で種々の構成を取り得ることは勿論である。
【0079】
【発明の効果】
本発明によれば、複数の計測点に対応する光電検出手段のそれぞれの検出信号、投影光学系の最良結像面の湾曲又は傾斜、及び基板の露光面のプロセス構造に基づいて、複数の計測点毎に独立に基板上の合焦の基準面を投影光学系による像面に合わせ込むためのオフセット値を求める演算手段を設けたため、基板の各ショット領域の凹凸の状態に依らず、各露光領域(ショット領域)を最適な状態で投影光学系による結像面に合わせ込んで露光を行うことができる利点がある。

【0080】
また、投射光学系から投影光学系による露光領域内に焦点検出用のパターンの像を投影した状態で、基板ステージを駆動して基板を走らせることにより、露光領域内の全面に分布する複数の計測点でそれぞれ対応する光電検出手段の検出信号を求め、演算手段が、その全面に分布する複数の計測点での光電検出手段の検出信号、及び基板の露光面のプロセス構造に基づいて、複数の計測点毎に独立に基板上の合焦の基準面を投影光学系による像面に合わせ込むためのオフセット値を求める場合には、簡単な構成の焦点検出用の光学系を使用して、基板の露光領域の全面の凹凸の状態を迅速に計測できる。従って、その露光領域の全面を最適な状態で投影光学系による結像面に合わせ込んで露光を行うことができる利点がある。また、基板の保持具(ウエハホルダ等)の平坦度が悪くても、基板の反りがあっても、基板と保持具との間に異物等があっても、それらに起因する合焦エラーも防止できる。すなわち、露光領域の全面を結像面と合致ないし焦点深度内に設定できる。
【0081】
更に、投射光学系から投影光学系による露光領域内に焦点検出用のパターン像を投影する際に使用される光束を100nm以上の帯域幅を有する光束とした場合には、感光性の基板上の感光材料(フォトレジスト等)での薄膜干渉の悪影響が軽減される利点がある。更に、その基板上の凹凸のエッジ部等により光束が散乱、又は回折されることがあるが、広帯域の光束を使用したときには、たとえ特定の波長の光束が弱くなっても、全体としてSN比の良好な検出信号を得ることができる利点がある。
【0082】
また、投射光学系内から複数の光電検出手段までの光路上に、焦点検出用のパターン像を投影する際に使用される光束の波長感度特性を一様化するための光学的フィルタを配置したときには、例えば広帯域の光束を使用した場合に、それら光電検出手段から出力される検出信号の波長に対する強度分布がほぼ平坦化されている。従って、特に所定の波長の光に影響されることなく、正確に基板の露光面の高さ分布を計測することができる。
【0083】
次に、演算手段が、複数の計測点毎に独立に求められたオフセット値を用いて、投影光学系による結像面の高さに応じた目標値を補正する場合には、この補正後の目標値と実際に得られる検出信号とが合致するような閉ループ制御を行うことにより、高精度にフォーカシング及びレベリングを行うことができる。
【図面の簡単な説明】
【図1】本発明による投影露光装置の一実施例における投影光学系の最良結像面の検出機構を示す一部断面図を含む構成図である。
【図2】(a)は図1の基準マーク板FM上のマーク配置を示す拡大平面図、(b)はこの基準マーク板FM上に再結像される像とマークとの関係を示す拡大図である。
【図3】図1の検出機構から出力される信号KSの変化の様子を示す図である。
【図4】実施例の多点AF系の光学系及び制御系を示す構成図である。
【図5】図4の多点AF系で投影光学系PLの露光フィールド内に投影されるスリット像を示す図である。
【図6】図4中のスリット板14とアレイセンサー15との関係を示す分解斜視図である。
【図7】図4中のアレイセンサー15、セレクター回路13、同期検波回路17、及び主制御ユニット30の詳細な構成を示すブロック図である。
【図8】本実施例で導入されるオフセット値の説明図である。
【図9】図7中の補正値決定部30Eの構成例を示すブロック図である。
【図10】検波出力信号FSと信号KSとの関係を示す図である。
【図11】実施例の焦点検出動作及び露光動作の一例を示すフローチャートである。
【図12】図11の動作の変形例を示すフローチャートである。
【図13】検波出力信号FSとZ方向の位置との関係を示す図である。
【図14】ウエハのショット領域上に2次元的に分布する計測点にそれぞれスリット像を投影する場合を示す拡大平面図である。
【図15】(a)は本発明の実施例の変形例において、AF系で使用される照明光の波長特性を示す図、(b)はその変形例で使用される光学フィルタ板60の透過率分布を示す図、(c)はアレイセンサー15で受光される光束の波長特性、及びアレイセンサー15の波長感度特性を示す図、(d)はアレイセンサー15から出力される光電変換信号の波長特性を示す図である。
【符号の説明】
1 スリット板
10 振動ミラー
12 平行平面板(プレーンパラレル)
13 セレクター回路
14 スリット板
15 アレイセンサー
17 同期検波回路
R レチクル
PL 投影光学系
W ウエハ
20 Z・レベリングステージ
21 XYステージ
30 主制御ユニット
30B 補正演算部
30C 偏差検出部
30F 露光プロセスデータ記憶部
60 光学フィルタ板

Claims (9)

  1. マスクパターンを感光性の基板上に投影する投影光学系と、
    前記基板を保持して前記投影光学系の光軸に垂直な平面内で前記基板の位置決めを行う基板ステージと、
    前記基板の傾斜角及び前記基板の前記投影光学系の光軸方向の高さを調整するフォーカス・レベリングステージと、
    前記感光性の基板に対して非感光性の光を用いて、前記投影光学系の光軸に対して斜めに前記投影光学系による露光領域内の複数の計測点上に焦点検出用のパターンの像を投影する投射光学系と、
    前記複数の計測点からの反射光を集光して前記複数の計測点上の焦点検出用のパターンの像を再結像する受光光学系と、
    該受光光学系により再結像された複数の像のそれぞれの横ずれ量に対応した検出信号を生成する複数の光電検出手段と、
    該複数の光電検出手段からの検出信号に基づいて前記フォーカス・レベリングステージの動作を制御する制御手段と、を有する投影露光装置において、
    前記複数の計測点に対応する前記光電検出手段のそれぞれの検出信号、前記投影光学系の最良結像面の湾曲、及び前記基板の露光面のプロセス構造に基づいて、前記複数の計測点毎に独立に前記基板上の合焦の基準面を前記投影光学系による像面に合わせ込むためのオフセット値を求める演算手段を設けたことを特徴とする投影露光装置。
  2. マスクパターンを感光性の基板上に投影する投影光学系と、
    前記基板を保持して前記投影光学系の光軸に垂直な平面内で前記基板の位置決めを行う基板ステージと、
    前記基板の傾斜角及び前記基板の前記投影光学系の光軸方向の高さを調整するフォーカス・レベリングステージと、
    前記感光性の基板に対して非感光性の光を用いて、前記投影光学系の光軸に対して斜めに前記投影光学系による露光領域内の複数の計測点上に焦点検出用のパターンの像を投影する投射光学系と、
    前記複数の計測点からの反射光を集光して前記複数の計測点上の焦点検出用のパターンの像を再結像する受光光学系と、
    該受光光学系により再結像された複数の像のそれぞれの横ずれ量に対応した検出信号を生成する複数の光電検出手段と、
    該複数の光電検出手段からの検出信号に基づいて前記フォーカス・レベリングステージの動作を制御する制御手段と、を有する投影露光装置において、
    前記複数の計測点に対応する前記光電検出手段のそれぞれの検出信号、前記投影光学系の最良結像面の傾斜、及び前記基板の露光面のプロセス構造に基づいて、前記複数の計測点毎に独立に前記基板上の合焦の基準面を前記投影光学系による像面に合わせ込むためのオフセット値を求める演算手段を設けたことを特徴とする投影露光装置。
  3. 前記投射光学系から前記投影光学系による露光領域内に前記焦点検出用のパターンの像を投影した状態で、前記基板ステージを駆動して前記基板を走らせることにより、前記露光領域内の全面に分布する複数の計測点でそれぞれ対応する前記光電検出手段の検出信号を求め、
    前記演算手段は、前記全面に分布する複数の計測点での前記光電検出手段の検出信号、及び前記基板の露光面のプロセス構造に基づいて、前記複数の計測点毎に独立に前記基板上の合焦の基準面を前記投影光学系による像面に合わせ込むためのオフセット値を求めることを特徴とする請求項1又は2に記載の投影露光装置。
  4. 前記投射光学系から前記投影光学系による露光領域内に前記焦点検出用のパターンの像を投影する際に使用される光束を、100nm以上の帯域幅を有する光束とすることを特徴とする請求項1〜3のいずれか一項に記載の投影露光装置。
  5. 前記投射光学系内から前記複数の光電検出手段までの光路上に、前記投射光学系から前記投影光学系による露光領域内に前記焦点検出用のパターンの像を投影する際に使用される光束の波長感度特性を一様化するための光学的フィルタを配置することを特徴とする請求項1〜4のいずれか一項に記載の投影露光装置。
  6. 前記基板上の合焦の基準面は、前記マスクパターンのうち最も線幅の狭いパターンが露光される領域を含むことを特徴とする請求項1〜5のいずれか一項に記載の投影露光装置。
  7. 前記演算手段は、前記投影光学系の結像特性に応じた第2のオフセット値を前記複数の計測点毎に独立に求めることを特徴とする請求項1〜6のいずれか一項に記載の投影露光装置。
  8. 前記複数の計測点に対して前記基板上のショット領域を走査することにより、前記ショット領域内の凹凸分布を求め、
    前記演算手段は、前記凹凸分布に基づいて、前記複数の計測点毎に独立に前記基板上の合焦の基準面を前記投影光学系による像面に合わせ込むためのオフセット値を求めることを特徴とする請求項1〜7のいずれか一項に記載の投影露光装置。
  9. 前記演算手段は、前記投影光学系の結像面と前記基板ステージの走り面との偏差を記憶し、この偏差量を加算して前記凹凸分布を求めることを特徴とする請求項8に記載の投影露光装置。
JP07287495A 1994-05-18 1995-03-30 投影露光装置 Expired - Fee Related JP3555230B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP07287495A JP3555230B2 (ja) 1994-05-18 1995-03-30 投影露光装置
KR1019950012767A KR100378475B1 (ko) 1994-05-18 1995-05-18 투영노광장치및방법
US09/323,042 US6195154B1 (en) 1994-05-18 1999-06-01 Projection exposure apparatus for transferring mask pattern onto photosensitive substrate
US09/722,311 US6327025B1 (en) 1994-05-18 2000-11-28 Projection exposure apparatus for transferring mask pattern onto photosensitive substrate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10384794 1994-05-18
JP6-103847 1994-05-18
JP07287495A JP3555230B2 (ja) 1994-05-18 1995-03-30 投影露光装置

Publications (2)

Publication Number Publication Date
JPH0837149A JPH0837149A (ja) 1996-02-06
JP3555230B2 true JP3555230B2 (ja) 2004-08-18

Family

ID=26414009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07287495A Expired - Fee Related JP3555230B2 (ja) 1994-05-18 1995-03-30 投影露光装置

Country Status (3)

Country Link
US (2) US6195154B1 (ja)
JP (1) JP3555230B2 (ja)
KR (1) KR100378475B1 (ja)

Families Citing this family (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09304015A (ja) * 1996-05-09 1997-11-28 Nikon Corp 面位置検出方法及び面位置調整装置並びに投影露光装置
JPH1097083A (ja) * 1996-09-19 1998-04-14 Nikon Corp 投影露光方法及び投影露光装置
JP3809268B2 (ja) * 1997-12-19 2006-08-16 キヤノン株式会社 デバイス製造方法
US6529262B1 (en) * 1999-04-14 2003-03-04 Ball Semiconductor, Inc. System and method for performing lithography on a substrate
TWI282909B (en) * 1999-12-23 2007-06-21 Asml Netherlands Bv Lithographic apparatus and a method for manufacturing a device
JP4579376B2 (ja) * 2000-06-19 2010-11-10 キヤノン株式会社 露光装置およびデバイス製造方法
EP1186928B1 (de) * 2000-09-07 2006-01-18 Heidelberger Druckmaschinen Aktiengesellschaft Parallelverarbeitender optischer Entfernungsmesser
US6473237B2 (en) * 2000-11-14 2002-10-29 Ball Semiconductor, Inc. Point array maskless lithography
JP2002195819A (ja) * 2000-12-27 2002-07-10 Nikon Corp 形状測定方法、形状測定装置、露光方法、露光装置、及びデバイス製造方法
JP2002245454A (ja) * 2001-02-20 2002-08-30 Advantest Corp 画像マッチング方法、画像マッチング装置及びウェハ処理装置
JP2003077814A (ja) * 2001-09-05 2003-03-14 Nikon Corp 荷電粒子線露光装置の結像性能の計測方法及びその計測装置、荷電粒子線露光装置
JP2003077813A (ja) * 2001-09-05 2003-03-14 Nikon Corp 荷電粒子線露光装置の結像性能の評価方法、荷電粒子線露光装置の調整方法、ビームぼけ計測装置及び荷電粒子線露光装置
JP2004022655A (ja) * 2002-06-13 2004-01-22 Canon Inc 半導体露光装置及びその制御方法、並びに半導体デバイスの製造方法
US7242455B2 (en) * 2002-12-10 2007-07-10 Nikon Corporation Exposure apparatus and method for producing device
JP3910180B2 (ja) * 2003-01-14 2007-04-25 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置のレベルセンサ
JP3787123B2 (ja) * 2003-02-13 2006-06-21 株式会社東芝 検査方法、プロセッサ及び半導体装置の製造方法
EP1857880B1 (en) 2003-04-09 2015-09-16 Nikon Corporation Exposure method and apparatus and device manufacturing method
CN101002140B (zh) 2003-04-11 2010-12-08 株式会社尼康 保持平板印刷投射透镜下面的浸没流体的设备和方法
EP1614001B1 (en) * 2003-04-11 2009-11-25 Nikon Corporation Cleanup method for optics in immersion lithography
TW201806001A (zh) 2003-05-23 2018-02-16 尼康股份有限公司 曝光裝置及元件製造方法
JP4348118B2 (ja) * 2003-06-04 2009-10-21 富士フイルム株式会社 固体撮像素子及び撮影装置
EP2738792B1 (en) 2003-06-13 2015-08-05 Nikon Corporation Exposure method, substrate stage, exposure apparatus, and device manufacturing method
KR101419663B1 (ko) 2003-06-19 2014-07-15 가부시키가이샤 니콘 노광 장치 및 디바이스 제조방법
JP4335084B2 (ja) * 2003-07-02 2009-09-30 エーエスエムエル ネザーランズ ビー.ブイ. 測定装置を有するリトグラフ投影装置
WO2005006417A1 (ja) 2003-07-09 2005-01-20 Nikon Corporation 露光装置及びデバイス製造方法
KR101785707B1 (ko) 2003-07-28 2017-11-06 가부시키가이샤 니콘 노광 장치 및 디바이스 제조 방법, 그리고 노광 장치의 제어 방법
SG145780A1 (en) 2003-08-29 2008-09-29 Nikon Corp Exposure apparatus and device fabricating method
EP1672681B8 (en) 2003-10-08 2011-09-21 Miyagi Nikon Precision Co., Ltd. Exposure apparatus, substrate carrying method, exposure method, and method for producing device
TW200514138A (en) 2003-10-09 2005-04-16 Nippon Kogaku Kk Exposure equipment and exposure method, manufacture method of component
JP4435613B2 (ja) * 2003-10-14 2010-03-24 ハイデルベルガー ドルツクマシーネン アクチエンゲゼルシヤフト 版の画像付け装置
TW201834020A (zh) 2003-10-28 2018-09-16 日商尼康股份有限公司 照明光學裝置、曝光裝置、曝光方法以及元件製造方法
TWI519819B (zh) 2003-11-20 2016-02-01 尼康股份有限公司 光束變換元件、光學照明裝置、曝光裝置、以及曝光方法
TW201804262A (zh) 2003-12-03 2018-02-01 尼康股份有限公司 曝光裝置、曝光方法、元件製造方法
EP3376523A1 (en) 2004-01-05 2018-09-19 Nikon Corporation Exposure apparatus, exposure method, and device producing method
US7589822B2 (en) 2004-02-02 2009-09-15 Nikon Corporation Stage drive method and stage unit, exposure apparatus, and device manufacturing method
WO2005076321A1 (ja) * 2004-02-03 2005-08-18 Nikon Corporation 露光装置及びデバイス製造方法
KR101942136B1 (ko) 2004-02-04 2019-01-24 가부시키가이샤 니콘 노광 장치, 노광 방법 및 디바이스 제조 방법
TWI511182B (zh) 2004-02-06 2015-12-01 尼康股份有限公司 光學照明裝置、曝光裝置、曝光方法以及元件製造方法
KR101166007B1 (ko) 2004-02-10 2012-07-17 가부시키가이샤 니콘 노광 장치 및 디바이스 제조 방법, 메인터넌스 방법 및노광 방법
WO2005081292A1 (ja) 2004-02-20 2005-09-01 Nikon Corporation 露光装置、供給方法及び回収方法、露光方法、ならびにデバイス製造方法
JP2005284867A (ja) * 2004-03-30 2005-10-13 Canon Inc 駆動制御装置及び方法及び露光装置
US7034917B2 (en) 2004-04-01 2006-04-25 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and device manufactured thereby
US8488099B2 (en) 2004-04-19 2013-07-16 Nikon Corporation Exposure apparatus and device manufacturing method
KR101681101B1 (ko) 2004-06-09 2016-11-30 가부시키가이샤 니콘 기판 유지 장치 및 그것을 구비하는 노광 장치, 노광 방법, 디바이스 제조 방법, 그리고 발액 플레이트
CN108490741A (zh) 2004-06-09 2018-09-04 株式会社尼康 曝光装置及元件制造方法
US8698998B2 (en) 2004-06-21 2014-04-15 Nikon Corporation Exposure apparatus, method for cleaning member thereof, maintenance method for exposure apparatus, maintenance device, and method for producing device
US8368870B2 (en) 2004-06-21 2013-02-05 Nikon Corporation Exposure apparatus and device manufacturing method
EP1783822A4 (en) 2004-06-21 2009-07-15 Nikon Corp EXPOSURE DEVICE, EXPOSURE DEVICE ELEMENT CLEANING METHOD, EXPOSURE DEVICE MAINTENANCE METHOD, MAINTENANCE DEVICE, AND DEVICE MANUFACTURING METHOD
US7463330B2 (en) 2004-07-07 2008-12-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8384874B2 (en) 2004-07-12 2013-02-26 Nikon Corporation Immersion exposure apparatus and device manufacturing method to detect if liquid on base member
EP1783823A4 (en) 2004-07-21 2009-07-22 Nikon Corp EXPOSURE METHOD AND METHOD FOR PRODUCING COMPONENTS
EP3258318B1 (en) 2004-08-03 2019-02-27 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
JP2006113533A (ja) * 2004-08-03 2006-04-27 Nikon Corp 投影光学系、露光装置、および露光方法
JP2006086312A (ja) * 2004-09-16 2006-03-30 Renesas Technology Corp 半導体装置の製造方法
WO2006030908A1 (ja) 2004-09-17 2006-03-23 Nikon Corporation 基板保持装置、露光装置、及びデバイス製造方法
SG188914A1 (en) 2004-09-17 2013-04-30 Nikon Corp Exposure apparatus, exposure method, and method for manufacturing device
US20090021709A1 (en) * 2004-10-13 2009-01-22 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
CN101487981A (zh) 2004-10-13 2009-07-22 株式会社尼康 曝光装置、曝光方法及组件制造方法
EP3306647A1 (en) 2004-10-15 2018-04-11 Nikon Corporation Exposure apparatus and device manufacturing method
TWI416265B (zh) 2004-11-01 2013-11-21 尼康股份有限公司 A method of manufacturing an exposure apparatus and an element
WO2006051909A1 (ja) 2004-11-11 2006-05-18 Nikon Corporation 露光方法、デバイス製造方法、及び基板
KR101559621B1 (ko) 2004-12-06 2015-10-13 가부시키가이샤 니콘 메인터넌스 방법, 메인터넌스 기기, 노광 장치, 및 디바이스 제조 방법
JP4752473B2 (ja) 2004-12-09 2011-08-17 株式会社ニコン 露光装置、露光方法及びデバイス製造方法
EP3285282A1 (en) 2004-12-15 2018-02-21 Nikon Corporation Exposure apparatus and device fabricating method
JP2006184303A (ja) * 2004-12-24 2006-07-13 Olympus Corp 画像検査装置
US7450217B2 (en) 2005-01-12 2008-11-11 Asml Netherlands B.V. Exposure apparatus, coatings for exposure apparatus, lithographic apparatus, device manufacturing method, and device manufactured thereby
JP2006216852A (ja) * 2005-02-04 2006-08-17 Fujitsu Ltd 位置決め装置および位置決め装置の制御方法
WO2006101024A1 (ja) 2005-03-18 2006-09-28 Nikon Corporation 露光方法及び露光装置、デバイス製造方法、並びに露光装置の評価方法
USRE43576E1 (en) 2005-04-08 2012-08-14 Asml Netherlands B.V. Dual stage lithographic apparatus and device manufacturing method
JP4872916B2 (ja) 2005-04-18 2012-02-08 株式会社ニコン 露光装置及び露光方法、並びにデバイス製造方法
KR101455551B1 (ko) 2005-05-12 2014-10-27 가부시키가이샤 니콘 투영 광학계, 노광 장치 및 노광 방법
US7295300B1 (en) * 2005-09-28 2007-11-13 Kla-Tencor Technologies Corporation Detecting surface pits
US8125610B2 (en) 2005-12-02 2012-02-28 ASML Metherlands B.V. Method for preventing or reducing contamination of an immersion type projection apparatus and an immersion type lithographic apparatus
US20070160915A1 (en) * 2006-01-10 2007-07-12 Willard James J Phase shifting mask having a calibration feature and method therefor
CN100590173C (zh) * 2006-03-24 2010-02-17 北京有色金属研究总院 一种荧光粉及其制造方法和所制成的电光源
TWI481968B (zh) 2006-09-08 2015-04-21 尼康股份有限公司 A mask, an exposure device, and an element manufacturing method
JP2008066634A (ja) * 2006-09-11 2008-03-21 Canon Inc 露光装置
JP2008071839A (ja) * 2006-09-12 2008-03-27 Canon Inc 表面位置検出方法、露光装置及びデバイスの製造方法
US7497026B2 (en) * 2007-01-11 2009-03-03 Sokudo Co., Ltd. Method and system for detection of wafer centering in a track lithography tool
JP5110977B2 (ja) * 2007-06-22 2012-12-26 株式会社日立ハイテクノロジーズ 欠陥観察装置及びその方法
JP5267029B2 (ja) 2007-10-12 2013-08-21 株式会社ニコン 照明光学装置、露光装置及びデバイスの製造方法
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
JP5203992B2 (ja) * 2008-03-25 2013-06-05 株式会社ニューフレアテクノロジー 電子ビーム描画装置及び電子ビーム描画方法
NL1036558A1 (nl) * 2008-03-25 2009-09-28 Asml Netherlands Bv Method and lithographic apparatus for acquiring height data relating to a substrate surface.
CN101983420B (zh) * 2008-03-28 2013-06-26 伊雷克托科学工业股份有限公司 用于硅晶片划线的自动聚焦方法与设备
US9176393B2 (en) 2008-05-28 2015-11-03 Asml Netherlands B.V. Lithographic apparatus and a method of operating the apparatus
NL2003363A (en) 2008-09-10 2010-03-15 Asml Netherlands Bv Lithographic apparatus, method of manufacturing an article for a lithographic apparatus and device manufacturing method.
EP4233685A3 (en) 2008-11-18 2023-10-11 Stryker Corporation Endoscopic led light source having a feedback control system
JP5424267B2 (ja) 2010-08-06 2014-02-26 株式会社ブイ・テクノロジー マイクロレンズ露光装置
JPWO2012115002A1 (ja) 2011-02-22 2014-07-07 株式会社ニコン 保持装置、露光装置、及びデバイスの製造方法
US9360306B2 (en) * 2011-09-09 2016-06-07 Inspecto Inc. Three-dimensional profile measurement apparatus and method using amplitude size of projection grid
US9389520B2 (en) 2012-02-03 2016-07-12 Taiwan Semiconductor Manufacturing Company, Ltd. System and method for lithography with leveling sensor
EP4164338A1 (en) 2013-03-15 2023-04-12 Stryker Corporation Endoscopic light source and imaging system
JP6190168B2 (ja) * 2013-06-04 2017-08-30 キヤノン株式会社 合焦方法、合焦装置、露光方法、およびデバイス製造方法
NL2013994A (en) * 2014-03-04 2015-11-02 Asml Netherlands Bv Lithographic apparatus, device manufacturing method and associated data processing apparatus and computer program product.
TWI584080B (zh) * 2015-10-05 2017-05-21 A large area static focusing leveling device and method for optical etching machine
CN106997151B (zh) * 2016-01-22 2019-05-31 上海微电子装备(集团)股份有限公司 光斑布局结构、面形测量方法及曝光视场控制值计算方法
US10690904B2 (en) 2016-04-12 2020-06-23 Stryker Corporation Multiple imaging modality light source
CN107450287B (zh) * 2016-05-31 2019-10-25 上海微电子装备(集团)股份有限公司 调焦调平测量装置及方法
DE102020204773A1 (de) * 2020-04-15 2021-10-21 Robert Bosch Gesellschaft mit beschränkter Haftung Sensoranordnung, umfassend eine Mehrzahl von einzelnen und separaten Sensorelementen
CN112632889B (zh) * 2020-12-17 2022-10-14 上海集成电路装备材料产业创新中心有限公司 一种改善鳍式器件衬底图形不平坦对光刻聚焦影响的方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4383757A (en) 1979-04-02 1983-05-17 Optimetrix Corporation Optical focusing system
JPS58113706A (ja) 1981-12-26 1983-07-06 Nippon Kogaku Kk <Nikon> 水平位置検出装置
US4629313A (en) 1982-10-22 1986-12-16 Nippon Kogaku K.K. Exposure apparatus
US4650983A (en) 1983-11-07 1987-03-17 Nippon Kogaku K. K. Focusing apparatus for projection optical system
JPH0727857B2 (ja) 1985-09-09 1995-03-29 株式会社ニコン 投影光学装置
JPH07105327B2 (ja) 1986-06-27 1995-11-13 キヤノン株式会社 面位置検知装置
US4952815A (en) 1988-04-14 1990-08-28 Nikon Corporation Focusing device for projection exposure apparatus
US5117254A (en) 1988-05-13 1992-05-26 Canon Kabushiki Kaisha Projection exposure apparatus
JPH0652707B2 (ja) 1988-10-11 1994-07-06 キヤノン株式会社 面位置検出方法
US5124562A (en) 1989-01-27 1992-06-23 Canon Kabushiki Kaisha Surface position detecting method at a predetermined and plurality of adjacent points
US5489986A (en) 1989-02-28 1996-02-06 Nikon Corporation Position detecting apparatus
JP2785146B2 (ja) 1990-02-09 1998-08-13 キヤノン株式会社 自動焦点調整制御装置
US5241188A (en) 1991-02-01 1993-08-31 Nikon Corporation Apparatus for detecting a focussing position
US5243195A (en) 1991-04-25 1993-09-07 Nikon Corporation Projection exposure apparatus having an off-axis alignment system and method of alignment therefor
JP2884830B2 (ja) 1991-05-28 1999-04-19 キヤノン株式会社 自動焦点合せ装置
US5502311A (en) 1992-01-17 1996-03-26 Nikon Corporation Method of and apparatus for detecting plane position
JP3255299B2 (ja) 1992-06-19 2002-02-12 株式会社ニコン 位置検出方法及び装置、並びに露光方法及び装置
JP3374413B2 (ja) 1992-07-20 2003-02-04 株式会社ニコン 投影露光装置、投影露光方法、並びに集積回路製造方法
US5461237A (en) 1993-03-26 1995-10-24 Nikon Corporation Surface-position setting apparatus

Also Published As

Publication number Publication date
JPH0837149A (ja) 1996-02-06
KR950034480A (ko) 1995-12-28
US6195154B1 (en) 2001-02-27
US6327025B1 (en) 2001-12-04
KR100378475B1 (ko) 2003-06-02

Similar Documents

Publication Publication Date Title
JP3555230B2 (ja) 投影露光装置
JP3374413B2 (ja) 投影露光装置、投影露光方法、並びに集積回路製造方法
US5693439A (en) Exposure method and apparatus
JP3158446B2 (ja) 表面位置検出装置及び表面位置検出方法、並びに露光装置、露光方法及び半導体製造方法
JP3572430B2 (ja) 露光方法及びその装置
US5218415A (en) Device for optically detecting inclination of a surface
JPH07111233A (ja) 露光方法
JP3880155B2 (ja) 位置決め方法及び位置決め装置
JPH08145645A (ja) 傾き検出装置
JP2938187B2 (ja) パターン形成方法及び同方法を実施するための装置
US6108089A (en) Position detecting apparatus and method for projection exposure apparatus
JP3303329B2 (ja) 焦点置検出装置、露光装置及び方法
US4897553A (en) Projection exposure apparatus
JP3991241B2 (ja) 面位置調整装置及びその方法並びに露光装置及びその方法
US7072027B2 (en) Exposure apparatus, method of controlling same, and method of manufacturing devices
JP3391470B2 (ja) 投影露光装置、及び投影露光方法
JP3518826B2 (ja) 面位置検出方法及び装置並びに露光装置
JP3003646B2 (ja) 投影露光装置
JP3218484B2 (ja) 投影露光装置、露光方法、及び該方法を用いる半導体製造方法
JP3376219B2 (ja) 面位置検出装置および方法
JP2000021711A (ja) 露光装置及びその焦点検出方法
JPH08162393A (ja) 位置合わせ装置
JPH0677096B2 (ja) 投影装置の焦点合せ装置
JPH06314648A (ja) 位置合わせ方法
JPH0564450B2 (ja)

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040503

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees