JP3551816B2 - Seismic isolation method for existing buildings - Google Patents

Seismic isolation method for existing buildings Download PDF

Info

Publication number
JP3551816B2
JP3551816B2 JP06294699A JP6294699A JP3551816B2 JP 3551816 B2 JP3551816 B2 JP 3551816B2 JP 06294699 A JP06294699 A JP 06294699A JP 6294699 A JP6294699 A JP 6294699A JP 3551816 B2 JP3551816 B2 JP 3551816B2
Authority
JP
Japan
Prior art keywords
seismic isolation
concrete
axial force
isolation device
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06294699A
Other languages
Japanese (ja)
Other versions
JP2000257273A (en
Inventor
啓治 佐藤
田中  勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP06294699A priority Critical patent/JP3551816B2/en
Publication of JP2000257273A publication Critical patent/JP2000257273A/en
Application granted granted Critical
Publication of JP3551816B2 publication Critical patent/JP3551816B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、既存の建物に免震装置を介装して免震建物にする際に適用される、既存建物の免震化工法に関するものである。
【0002】
【従来の技術】
近年、鉄筋コンクリート(RC)造、SRC造あるいは鉄骨造等の各種の既に存在する建物において、免震装置を特定の階に増設することにより、建物全体あるいはその一部を免震建物とする要請が高まりつつある。このような既存建物の免震化は、一般に建物の基礎部分(軸力材)や特定の階層の柱(軸力材)の柱頭、中間あるいは柱脚に、免震装置を新たに挿入することによってなされるために、上記柱等を一旦切断する必要がある。
【0003】
このため、別途梁や床スラブ間に仮設の軸力支持部材を多数本配設することにより、軸力材に作用している荷重を仮支持する工法が知られているが、上記既存建物の内部においては、常時一般業務や作業が行なわれているために、当該建物を免震化させるに際して、極力上記平常業務を妨げることなく、しかも万一作業中に地震が発生した場合においても、既存建物の安全性を確保し得る免震化工法の開発が強く要望されていた。
【0004】
【発明が解決しようとする課題】
そこで、本出願人は、先に特開平9−273314号にみられるような既存建物の免震化工法を提案した。
この免震化工法は、先ず図7に示すように、既存建物の中間階における柱1の外周を、免震装置を挿入すべき範囲に開口部2aが形成されるとともに周方向に2分割された鋼管2によって囲繞し、次いで鋼管2の分割部分を互いに接合した後に、免震装置を挿入すべき範囲を残して柱1と鋼管2との間に増し打ちコンクリート3、3を打設する。次いで、図8および図9に示すように、免震装置を挿入すべき範囲の柱1を切断し、開口部2aから当該切断部位に免震装置4を挿入した後に、さらに図10に示すように、鋼管2を、増し打ちコンクリート3が打設されていない免震装置4の外方位置において切断することにより、鋼管2を上下方向に分離させて、柱1の軸力を免震装置4に移行させるようにしたものである。
【0005】
このような既存建物の免震化工法にあっては、免震装置を介装すべき柱1の周囲において、この柱1の補強作業も含めた全ての作業を行なうことができるため、柱1から離間した位置に軸力支持部材を仮設する必要が全く無く、よって建物内における平常業務の妨げとなることがないうえに、上記軸力支持部材の取り外しおよび搬出作業といった大掛かりな撤去作業も不要となり、さらに追加の補強作業や、当該周辺補強の撤去に伴う駄目工事も必要無くなるために、作業の大幅な省力化を図ることができて、容易にかつ短期間で既存の建物を耐震建物に改装することができるという優れた利点がある。
【0006】
ところで、上記既存建物の免震化工法においては、柱1を切断して免震装置4によって柱1の軸力を支承するまでの間、増し打ちコンクリート3と鋼管2との接触面における摩擦力によって、柱1に作用する軸力を鋼管2を介して支承しているため、鋼管2と増し打ちコンクリート3との間に大きな接触面積を確保する必要がある。したがって、既存建物の柱1の中間部に免震装置4を介装する場合には問題ないものの、当該既存建物の構造上、柱頭あるいは柱脚に免震装置4を介装する必要が生じた場合には、上方または下方の円管の高さ寸法が小さくなり、よって柱と円管との接触面積が小さくなるために、充分な軸力の伝達が難しくなるおそれがあった。
【0007】
また、鋼管2と増し打ちコンクリート3との接触面積を確保するために、増し打ちコンクリート3の厚さ寸法も大きく設定する必要があり、この結果最終的な柱寸法が大きくなるという傾向もあった。さらに、既存建物内において、分割した鋼管2の溶接作業や、免震装置4を設置した後の鋼管2の切断作業が生じる結果、周囲や免震装置4に対する養生が必要であった。このため、上記課題を解決することができる上記免震化工法の改良が望まれていた。
【0008】
本発明は、上記事情に鑑みてなされたもので、建物内における平常業務の妨げとなることなく、軸力材のいかなる位置に対しても容易に免震装置を設置することができ、しかも簡易な作業で短期間に当該建物の免震化を図ることが可能となる既存建物の免震化工法を提供することを目的とするものである。
【0009】
【課題を解決するための手段】
請求項1に記載の本発明に係る既存建物の免震化工法は、既存建物の軸力材の所望の部位に、免震装置を介装するための工法であって、上記軸力材の外周に、少なくとも免震装置を挿入すべき範囲を残して当該免震装置を挿入すべき範囲の上下に増し打ちコンクリートを打設するとともに、当該増し打ちコンクリート打設時にその内部に上記軸力材の外面に沿って増し打ちコンクリートを貫通するように緊張材挿入用のシース管を埋設し、次いで上下の増し打ちコンクリート間に支持板を渡して、その上下端部をシース管に挿通した緊張材にプレストレスを導入することにより増し打ちコンクリートに圧接させ、次いで、軸力材の免震装置を挿入すべき範囲を切断した後に、軸力材の切断部位に免震装置を挿入し、緊張材のプレストレスを解除して支持板を撤去することを特徴とするものである。
【0010】
この際に、請求項2に記載の発明は、上下の上記増し打ちコンクリートを角柱状に形成し、これら増し打ちコンクリートの、少なくとも上記免震装置挿入用の開口部となる面を除いた他の面間に、上記支持材を配設することを特徴とするものである。
【0011】
請求項1または2に記載の発明によれば、既存の柱の周囲に構築した増し打ちコンクリートが、免震化完了後においては、地震時等に免震装置が水平方向に変形した際に生じる応力に対して、上記柱の補強として機能する。また、上記免震装置の取付けに際しては、一般に免震装置の大きさが柱の断面積よりも大きいために、上記増し打ちコンクリートが免震装置取付けのための基礎として利用される。
【0012】
さらに、軸力材を切断して免震装置を設置する際には、当該軸力材に作用する軸力を、上下の増し打ちコンクリート間に架け渡され、上下端部が緊張材にプレストレスを導入することにより増し打ちコンクリートに圧接された支持材によって仮支持させることができるとともに、万一施工時に地震が発生して水平力が作用した場合には、支持材の耐力によって、これに抵抗することにより、施工中の安全性が確保される。
【0013】
この際に、上記緊張材によってプレストレスを導入することにより、既存の軸力材と増し打ちコンクリートとの間、および増し打ちコンクリートと支持材との間の摩擦力が増加するために、上記軸力材に作用する軸力を、より少ない接触面積によって確実に伝達させることが可能になる。
この結果、例えば中間階の柱の柱頭あるいは柱脚に免震装置を設置する場合にも、そのまま適用させることができるとともに、施工後の柱寸法も小さくすることが可能になるため、柱周りの使用スペースの自由度が増加する。
【0014】
また、軸力材を切断する際に、別途梁や床スラブ間に仮設の軸力支持部材を多数本配設して既存建物における軸力を仮支持する場合と比較して、上記軸力支持部材の取り外しおよび搬出作業といった大掛かりな撤去作業が不要になり、しかも追加の補強作業や、当該周辺補強の撤去に伴う駄目工事も必要無くなるために、作業の大幅な省力化も達成することができる。
さらに、図7〜図10に示した方法と比較しても、鋼管2の溶接や切断作業、さらには周囲の養生等が不要になって作業が容易になるうえ、支持材や緊張材は再利用が可能であるため、工期の短縮化および施工費の低減化を図ることが可能になる。
【0015】
この際に、特に請求項2に記載の発明によれば、増し打ちコンクリート間の、少なくとも一部に、支持材が配設されていない開口部が形成されるために、当該開口部から軸力材の切断や、免震装置の取付台の構築、さらには免震装置の挿入等の施工を行なうことができ、作業性が向上する。
【0016】
【発明の実施の形態1】
図1〜図6は、本発明に係る既存建物の免震化工法を、RC造の既存建物の基礎上に立設された柱の中間部に、免震装置を介装して免震化する場合に適用した一実施形態を説明するための工程図である。
この免震化工法においては、先ず図1に示すように、既存建物の基礎10に立設された柱(軸力材)11の外周の全周に、目荒らし処理を施した後、免震装置を挿入すべき位置に免震装置の高さ寸法よりも幾分大きな間隙Wを残して、四角柱状に増し打ちコンクリート12を打設する。この際に、増し打ちコンクリート12の、対向する端部付近にPC鋼棒(緊張材)挿入用のシース管13を埋設しておく。このシース管13は、柱11の外周4面に沿って、それぞれ増し打ちコンクリート12を貫通するように、上下に2本ずつ埋設するとともに、さらに各シース管13には、コンクリート補強のための補強筋13aを配筋しておく(図4参照)。
【0017】
次いで、図2に示すように、上下の上記増し打ちコンクリートの側面12a間に、間隙Wを跨ぐようにして、各々2枚の長方形の鋼板からなる支持板14を渡し、その上下端部に穿設された孔部をシース管13に一致させる。そして、これら支持板14およびシース管13にPC鋼棒(緊張材)15を通し、これにプレストレスを導入したうえで、両端をナット16によって固定する。これにより、支持板14は、増し打ちコンクリート12の側面12aに圧接される。
【0018】
他方、上下の増し打ちコンクリート12の側面12bに対しては、図中裏面側の側面12bに同様の支持板17を、上記間隙Wを跨ぐようにして架け渡すとともに、図中表面側の側面12bには、各々上方および下方のシース管13周りにのみ、定着板18を配設することにより、当該側面12bに免震装置挿入用の開口部Sを形成しておく。そして同様に、支持板17、シース管13および定着板18にPC鋼棒15を通し、これにプレストレスを導入して両端をナット19で固定することにより、支持板17および定着板18を増し打ちコンクリート12の側面12bに圧接させる。なお、上記支持板14、17としては、図示した長方形の鋼板の他、H形鋼、チャンネル材、カットT鋼あるいはアングル材等が使用可能である。
【0019】
このようにして、柱11に作用する軸力を、増し打ちコンクリート12を介して、その側面12a、12bの三面に仮設した支持板13、17によって仮支持させた後に、開口部S側から図中点線で示す柱11の免震装置を挿入すべき部位を切断する。
そして次に、図3〜図5に示すように、増し打ちコンクリート12の対向面に、それぞれ免震装置20の上下部取付台21、22を構築し、開口部S側から上下部取付台21、22間に免震装置20を挿入して据え付ける。なお、図示の免震装置20は、滑り支承によるものであり、下部取付台22上にステンレス等からなる滑り板20aを固定し、上部取付台21に滑り材本体20bを、下面に取り付けられたテフロン等の滑り材20cが上記滑り板20a上を摺動自在となるように固定する。
【0020】
なお、上記免震装置20は、これとは逆に、上部取付台21に滑り板20aを固定し、下部取付台22に滑り材本体bを取り付けてもよい。また、この既存建物において、積層ゴム等を用いた弾性支承による免震装置を介装すべき柱に対しては、同様に増し打ちコンクリート12の対向面に、各々取付台を構築し、これら取付台間に、上記積層ゴム等を用いた免震装置を据え付ければよい。
次いで、PC鋼棒15を緊張させた状態で、ナット16、19を緩めることにより、当該PC鋼棒15を抜出し、支持板14、17および定着板18を取り外すことにより、図6に示すように、上記既存の柱11に対する免震化が完了する。
【0021】
このように、上記既存建物の免震化工法によれば、既存の柱11の周囲に構築した増し打ちコンクリート12によって、柱11を切断する際の軸力の保持および切断後における安全性の確保、免震装置20設置のための基礎、並びに免震化後における既存柱11の補強を、同時に実現することができる。
特に、柱11を切断して免震装置20を設置する際に、上下の増し打ちコンクリート12間に架け渡され、上下端部がPC鋼棒15にプレストレスを導入することにより増し打ちコンクリート12に圧接された支持材14、17によって上記軸力を仮支持させているので、既存の柱11と増し打ちコンクリート12との間、および増し打ちコンクリート12と支持材14、17との間の摩擦力を大幅に増加させることができ、よって柱11に作用する軸力を、従来よりも一層少ない接触面積によって確実に伝達させることができる。
【0022】
この結果、例えば中間階の柱の柱頭あるいは柱脚に免震装置を設置する場合にも、そのまま適用させることができるとともに、施工後の柱寸法も小さくすることが可能になるため、柱周りの使用スペースの自由度を増加させることができる。
加えて、柱11を切断する際に、別途梁や床スラブ間に仮設の軸力支持部材を多数本配設して既存建物における軸力を仮支持する場合と比較して、上記軸力支持部材の取り外しおよび搬出作業といった大掛かりな撤去作業が不要になり、しかも追加の補強作業や、当該周辺補強の撤去に伴う駄目工事も必要無くなるために、作業の大幅な省力化も達成することができる。
【0023】
さらに、図7〜図10に示した方法と比較しても、鋼管2の溶接や切断作業、周囲の養生等が不要になって作業が容易になるうえ、支持材14、17やPC鋼棒15は再利用が可能であるため、工期の短縮化および施工費の低減化を図ることができる。
また、万一施工時に地震が発生して上下の増し打ちコンクリート12間に水平力が作用した場合にも、支持材14、17の耐力によって、これに抵抗することにより、施工中の安全性を確保することができる。
【0024】
しかも、増し打ちコンクリート12間の、一面に、支持材が配設されていない開口部Sを形成しているので、この開口部Sから柱11の切断や、免震装置20の取付台21、22の構築、および免震装置20の挿入等の施工を行なうことができ、作業性が向上する。
【0025】
なお、上記実施の形態の説明においては、免震装置20を柱11の中間部に介装する、いわゆる中間階免震化の場合についてのみ説明したが、これに限定されるものではなく、本発明は、中間階の柱の柱頭、中央部および柱脚、さらには基礎部分等の各種軸力材における様々な位置に対して免震装置を介装する場合に、同様に適用することが可能である。
また、上記実施の形態においては、シース管13を、増し打ちコンクリート12内に、柱11の外周4面に沿って、上下に2本ずつ埋設した場合について説明したが、これに限るものではなく、外周4面に沿って各1本ずつ、あるいは上下に3本以上埋設したり、さらには水平方向にも複数本埋設するようにしてもよい。
【0026】
【発明の効果】
以上説明したように、請求項1または2に記載の本発明に係る既存建物の免震化工法によれば、免震装置を介装すべき軸力材の周囲において、当該軸力材の補強作業も含めた全ての作業を行なうことができるため、上記柱等から離間した位置に軸力支持部材を仮設する必要が全く無く、よって建物内における平常業務の妨げとなることがないうえに、上記軸力支持部材の取り外しおよび搬出作業といった大掛かりな撤去作業も不要となり、さらに追加の補強作業や、当該周辺補強の撤去に伴う駄目工事も必要無くなるために、作業の大幅な省力化を図ることができて、容易にかつ短期間で既存の建物を上記軸力材の所望位置に免震装置が介装された耐震建物に改装することができる。
【0027】
加えて、軸力材の外周に打設した増し打ちコンクリート間に支持材を渡し、緊張材によってプレストレスを導入することにより、増し打ちコンクリートに圧接させているので、上記軸力材と増し打ちコンクリートとの間、および増し打ちコンクリートと支持材との間の摩擦力を増加させて、上記軸力材に作用する軸力を、より少ない接触面積によって確実に伝達させることができ、よって中間階の柱の柱頭あるいは柱脚に免震装置を設置する場合にも、そのまま適用させることができるとともに、施工後の柱寸法も小さくすることが可能になるため、柱周りの使用スペースの自由度を増加させることができる。
【0028】
また、特に請求項2に記載の発明によれば、増し打ちコンクリート間の、少なくとも一部に、支持材が配設されていない開口部が形成されるために、当該開口部から軸力材の切断や、免震装置の取付台の構築、さらには免震装置の挿入等の施工を行なうことができ、作業性を一層向上させることができるといった効果が得られる。
【図面の簡単な説明】
【図1】本発明の一実施形態において柱の周囲に増し打ちコンクリートを打設した状態を示す側面図である。
【図2】図1の増し打ちコンクリート間に支持板を取付けた状態を示す側面図である。
【図3】図2の柱を切断して免震装置を挿入した状態を示す側面図である。
【図4】図3のIV−IV線視断面図である。
【図5】図3のV−V線視断面図である。
【図6】図3の支持板等を撤去した状態を示す側面図である。
【図7】従来の免震化工法において柱の外周を円管および増し打ちコンクリートで保興じた状態を示す縦断面図である。
【図8】図7に柱を切断して免震装置を据え付けた状態を示す縦断面図である。
【図9】図8のIX−IX線視断面図である。
【図10】図8の円管を切断した状態を示す側面図である。
【符号の説明】
11 柱(軸力材)
12 増し打ちコンクリート
12a、12b 側面
13 シース管
14、17 支持板
15 PC鋼棒(緊張材)
18 定着板
20 免震層
20a 滑り板
20c 滑り材
S 開口部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a seismic isolation method for an existing building, which is applied when a seismic isolation device is interposed in an existing building to make it a seismic isolation building.
[0002]
[Prior art]
In recent years, in various existing buildings, such as reinforced concrete (RC), SRC, and steel frames, there has been a request to add a seismic isolation device to a specific floor to make the whole or part of the building a seismic isolation building. Is growing. Such seismic isolation of existing buildings generally involves inserting new seismic isolation devices at the base, middle, or pedestal of a building's foundation (axial members) or columns (axial members) of a specific level. , It is necessary to temporarily cut the pillars and the like.
[0003]
For this reason, a method of temporarily supporting a load acting on an axial force member by separately arranging a large number of temporary axial force support members between beams and floor slabs is known. Inside the building, there is always regular work and work, so when the building is seismically isolated, the existing work is not interrupted as much as possible and even if an earthquake occurs during the work, There has been a strong demand for the development of a seismic isolation method that can ensure the safety of buildings.
[0004]
[Problems to be solved by the invention]
Therefore, the present applicant has previously proposed a seismic isolation method for an existing building as disclosed in JP-A-9-273314.
In this seismic isolation method, first, as shown in FIG. 7, the outer periphery of a pillar 1 on an intermediate floor of an existing building is formed into an opening 2a in a range where a seismic isolation device is to be inserted, and is divided into two parts in a circumferential direction. After the steel pipe 2 is surrounded and the divided parts of the steel pipe 2 are joined to each other, additional concrete 3 and 3 are poured between the column 1 and the steel pipe 2 except for the area where the seismic isolation device is to be inserted. Next, as shown in FIGS. 8 and 9, the column 1 in the range where the seismic isolation device is to be inserted is cut, and after inserting the seismic isolation device 4 from the opening 2 a to the cut portion, as shown in FIG. 10. Next, the steel pipe 2 is cut at an outer position of the seismic isolation device 4 where the additional concrete 3 is not cast, thereby separating the steel pipe 2 in the vertical direction and reducing the axial force of the column 1. It is made to shift to.
[0005]
In such a seismic isolation method for an existing building, all the work including the reinforcement work of the pillar 1 can be performed around the pillar 1 on which the seismic isolation device is to be interposed. There is no need to temporarily install an axial force support member at a position away from the building, so that it does not hinder normal operations in the building, and also does not require extensive removal work such as removal and removal of the axial force support member In addition, additional reinforcement work and wasteful construction work related to the removal of the surrounding reinforcements are not required, so it is possible to significantly reduce labor and easily convert existing buildings to earthquake-resistant buildings in a short period of time. There is an excellent advantage that it can be renovated.
[0006]
By the way, in the above-mentioned seismic isolation method for an existing building, the frictional force at the contact surface between the additional concrete 3 and the steel pipe 2 until the column 1 is cut and the axial force of the column 1 is supported by the seismic isolation device 4. Thus, the axial force acting on the column 1 is supported through the steel pipe 2, so that it is necessary to secure a large contact area between the steel pipe 2 and the additional concrete 3. Therefore, although there is no problem in the case where the seismic isolation device 4 is interposed in the middle part of the pillar 1 of the existing building, it is necessary to interpose the seismic isolation device 4 on the capital or the pedestal due to the structure of the existing building. In such a case, the height dimension of the upper or lower circular tube is reduced, and the contact area between the column and the circular tube is reduced, so that it may be difficult to transmit a sufficient axial force.
[0007]
Further, in order to secure a contact area between the steel pipe 2 and the additional concrete 3, it is necessary to set the thickness of the additional concrete 3 large, and as a result, there is also a tendency that the final column size becomes large. . Furthermore, in the existing building, the welding work of the divided steel pipes 2 and the cutting work of the steel pipes 2 after the seismic isolation device 4 is installed occur, so that the surroundings and the seismic isolation device 4 need to be cured. Therefore, improvement of the seismic isolation method that can solve the above-mentioned problems has been desired.
[0008]
The present invention has been made in view of the above circumstances, and it is possible to easily install a seismic isolation device at any position of an axial force member without hindering normal operations in a building, and furthermore, in a simple manner. It is an object of the present invention to provide a seismic isolation method for an existing building that enables the building to be seismically isolated in a short period of time with simple operations.
[0009]
[Means for Solving the Problems]
The seismic isolation method for an existing building according to the present invention according to claim 1 is a method for interposing a seismic isolation device on a desired portion of an axial force member of an existing building, the outer periphery, as well as concrete is struck increased above and below the range to be inserted the seismic isolation device leaving the scope to be inserted at least seismic isolation device, the axial force material therein to the widening concrete after casting A sheath tube for inserting a tendon material is buried along the outer surface of the stretch concrete , and then a support plate is passed between the upper and lower concrete struts, and the upper and lower ends thereof are inserted into the sheath tube. After prestressing, the concrete is pressed against the reinforced concrete, then the area where the axial seismic isolation device is to be inserted is cut. Solve the prestress of It is characterized in that removing the support plate and.
[0010]
At this time, the invention according to claim 2 is that the upper and lower additional concrete is formed in a prismatic shape, and other of the additional concrete except at least a surface serving as an opening for inserting the seismic isolation device. The support member is provided between the surfaces.
[0011]
According to the invention as set forth in claim 1 or 2, after-strength concrete built around the existing pillar is generated when the seismic isolation device is deformed in the horizontal direction during an earthquake or the like after the completion of seismic isolation. It functions as reinforcement of the column against stress. In addition, when mounting the seismic isolation device, the additional concrete is used as a base for mounting the seismic isolation device because the size of the seismic isolation device is generally larger than the cross-sectional area of the column.
[0012]
Furthermore, when installing the seismic isolation device by cutting the axial force material, the axial force acting on the axial force material is bridged between the upper and lower additional concrete, and the upper and lower ends are prestressed by the tendon. Can be temporarily supported by the support material pressed against the reinforced concrete, and if an earthquake occurs at the time of construction and a horizontal force is applied, the support By doing so, safety during construction is ensured.
[0013]
At this time, by introducing a prestress by the tendon, the frictional force between the existing axial force material and the additional concrete and between the additional concrete and the support material increases. The axial force acting on the force member can be transmitted reliably with a smaller contact area.
As a result, for example, even when the seismic isolation device is installed on the column cap or column base of the column on the middle floor, the seismic isolation device can be applied as it is, and the dimension of the column after construction can be reduced. The degree of freedom of the used space increases.
[0014]
Also, when cutting the axial force material, compared to the case where a large number of temporary axial force support members are separately provided between beams and floor slabs to temporarily support the axial force in the existing building, Extensive removal work such as removal and unloading of components is not required, and additional reinforcement work and useless work associated with removal of the peripheral reinforcement are not required, so that significant labor savings can be achieved. .
Further, compared to the method shown in FIGS. 7 to 10, welding and cutting work of the steel pipe 2 and further curing of the surroundings are not required, and the work becomes easy. Since it can be used, it is possible to shorten the construction period and reduce the construction cost.
[0015]
At this time, in particular, according to the second aspect of the present invention, at least a portion between the additional concrete and the supporting material is not provided with the opening, and the axial force is applied from the opening. Construction such as cutting of materials, construction of a base for mounting a seismic isolation device, and insertion of a seismic isolation device can be performed, thereby improving workability.
[0016]
Embodiment 1 of the present invention
FIGS. 1 to 6 show that the seismic isolation method of an existing building according to the present invention is applied to a seismic isolation device by installing a seismic isolation device in the middle of a pillar erected on the foundation of an existing RC building. It is a flowchart for explaining one embodiment applied to the case.
In this seismic isolation method, first, as shown in FIG. 1, a roughening treatment is applied to the entire periphery of a column (axial member) 11 erected on a foundation 10 of an existing building. At the position where the device is to be inserted, the additional concrete 12 is cast into a quadrangular prism, leaving a gap W somewhat larger than the height of the seismic isolation device. At this time, a sheath pipe 13 for inserting a PC steel rod (tensile material) is buried near the opposite end of the additional concrete 12. The sheath pipes 13 are buried two by two vertically along the outer periphery 4 of the column 11 so as to penetrate the additional concrete 12, and each sheath pipe 13 is further reinforced for concrete reinforcement. The streaks 13a are arranged (see FIG. 4).
[0017]
Next, as shown in FIG. 2, a support plate 14 made of two rectangular steel plates is passed across the gap W between the upper and lower side faces 12a of the additional concrete, and the upper and lower ends thereof are punched. The provided hole is made to coincide with the sheath tube 13. Then, a PC steel rod (tensile member) 15 is passed through the support plate 14 and the sheath tube 13, a prestress is introduced therein, and both ends are fixed by nuts 16. Thereby, the support plate 14 is pressed against the side surface 12 a of the additional concrete 12.
[0018]
On the other hand, with respect to the side surface 12b of the up and down concrete 12, a similar support plate 17 is bridged over the side surface 12b on the back side in the figure so as to straddle the gap W, and the side surface 12b on the surface side in the figure. The fixing plate 18 is provided only around the upper and lower sheath tubes 13 to form openings S for inserting the seismic isolation device in the side surface 12b. Similarly, the PC steel rod 15 is passed through the support plate 17, the sheath tube 13, and the fixing plate 18, and a prestress is introduced into the PC steel rod 15, and both ends are fixed with nuts 19, so that the support plate 17 and the fixing plate 18 are increased. It is brought into pressure contact with the side surface 12b of the cast concrete 12. As the support plates 14 and 17, other than the rectangular steel plate shown in the figure, an H-shaped steel, a channel material, a cut T steel, an angle material, or the like can be used.
[0019]
In this way, the axial force acting on the column 11 is temporarily supported by the temporary supporting plates 13 and 17 on the three side surfaces 12a and 12b via the additional concrete 12, and then viewed from the opening S side. The part of the pillar 11 indicated by the middle dotted line where the seismic isolation device is to be inserted is cut.
Next, as shown in FIGS. 3 to 5, upper and lower mounting bases 21 and 22 are respectively constructed on the opposing surfaces of the additional concrete 12, and the upper and lower mounting bases 21 from the opening S side. , 22 and the seismic isolation device 20 is inserted and installed. The illustrated seismic isolation device 20 is based on a sliding bearing, in which a sliding plate 20a made of stainless steel or the like is fixed on a lower mounting base 22, and a sliding material body 20b is mounted on an upper mounting base 21 on the lower surface. A sliding member 20c such as Teflon is fixed so as to be slidable on the sliding plate 20a.
[0020]
Conversely, in the seismic isolation device 20, the sliding plate 20a may be fixed to the upper mounting base 21 and the sliding material body b may be mounted to the lower mounting base 22. In addition, in this existing building, a mounting base is similarly constructed on a facing surface of the upholstered concrete 12 for a column on which a seismic isolation device using an elastic bearing using laminated rubber or the like is to be interposed. What is necessary is just to install the seismic isolation device using the said laminated rubber etc. in a stand.
Next, by loosening the nuts 16 and 19 in a state where the PC steel bar 15 is tensioned, the PC steel bar 15 is pulled out, and the support plates 14 and 17 and the fixing plate 18 are removed, as shown in FIG. The seismic isolation of the existing column 11 is completed.
[0021]
As described above, according to the seismic isolation method for the existing building, the additional concrete 12 built around the existing column 11 retains the axial force when cutting the column 11 and ensures safety after cutting. The foundation for installing the seismic isolation device 20 and the reinforcement of the existing column 11 after the seismic isolation can be realized at the same time.
In particular, when the pillar 11 is cut and the seismic isolation device 20 is installed, it is bridged between the upper and lower extra concrete 12, and the upper and lower ends of the extra concrete 12 are introduced by introducing prestress into the PC steel bar 15. Since the above-mentioned axial force is temporarily supported by the supporting members 14 and 17 pressed against, the friction between the existing column 11 and the additional concrete 12 and between the additional concrete 12 and the supporting members 14 and 17 are provided. The force can be greatly increased, so that the axial force acting on the column 11 can be reliably transmitted with a smaller contact area than before.
[0022]
As a result, for example, even when the seismic isolation device is installed on the column cap or column base of the column on the middle floor, the seismic isolation device can be applied as it is, and the dimension of the column after construction can be reduced. The degree of freedom of the used space can be increased.
In addition, when the pillar 11 is cut, a large number of temporary axial force supporting members are separately provided between the beams and the floor slab to temporarily support the axial force in the existing building. Extensive removal work such as removal and unloading of components is not required, and additional reinforcement work and useless work associated with removal of the peripheral reinforcement are not required, so that significant labor savings can be achieved. .
[0023]
Further, compared to the method shown in FIGS. 7 to 10, welding and cutting work of the steel pipe 2 and surrounding curing are not required, and the work becomes easy. In addition, the support members 14 and 17 and the PC steel rod are used. 15 can be reused, so that the construction period can be shortened and the construction cost can be reduced.
Also, in the event that an earthquake occurs during construction and a horizontal force acts between the upper and lower reinforced concrete 12, the strength of the supporting members 14 and 17 resists this, thereby increasing the safety during construction. Can be secured.
[0024]
Moreover, since the opening S where the supporting material is not provided is formed on one surface between the additional concrete 12, the pillar 11 is cut from the opening S, the mounting base 21 of the seismic isolation device 20, 22 and the seismic isolation device 20 can be inserted, and the workability is improved.
[0025]
In the description of the above embodiment, only the case of so-called middle floor seismic isolation, in which the seismic isolation device 20 is interposed in the middle of the pillar 11, has been described. However, the present invention is not limited to this. The invention can be similarly applied to the case where the seismic isolation device is interposed at various positions in various axial force members such as the capital, the center and the column base of the column on the middle floor, and the foundation. It is.
Further, in the above-described embodiment, the case where two sheath pipes 13 are buried vertically in the additional concrete 12 along the outer periphery 4 of the pillar 11 is not limited to this. It is also possible to embed one by one along the outer peripheral surface, three or more at the top and bottom, or a plurality of them in the horizontal direction.
[0026]
【The invention's effect】
As described above, according to the seismic isolation method for an existing building according to the first or second aspect of the present invention, reinforcement of the axial force member around the axial force member on which the seismic isolation device is to be interposed is provided. Since all work including work can be performed, there is no need to temporarily install an axial force support member at a position away from the pillar etc., so that it does not interfere with normal work in the building, Large-scale removal work such as removal and unloading of the above-mentioned axial force support member is not required, and additional reinforcement work and useless work associated with removal of the peripheral reinforcement are not required. Thus, an existing building can be easily and quickly remodeled into a seismic building having a seismic isolation device at a desired position of the axial force member.
[0027]
In addition, the supporting material is passed between the additional concrete placed on the outer periphery of the axial force member and the prestress is introduced by the tendon material, so that the concrete is pressed against the additional concrete. By increasing the frictional force between the concrete and the additional concrete and the support material, the axial force acting on the axial force material can be reliably transmitted with a smaller contact area, so that the intermediate floor When installing a seismic isolation device on the column cap or column base of a column, it can be applied as it is, and the dimension of the column after construction can be reduced. Can be increased.
[0028]
According to the second aspect of the present invention, an opening in which the support material is not provided is formed at least in part between the additional concrete, so that the axial force material is removed from the opening. Cutting, construction of a mounting base for the seismic isolation device, insertion of the seismic isolation device, and the like can be performed, and the effect of further improving workability can be obtained.
[Brief description of the drawings]
FIG. 1 is a side view showing a state in which additional concrete is poured around a column in an embodiment of the present invention.
FIG. 2 is a side view showing a state where a support plate is attached between the additional concrete of FIG. 1;
FIG. 3 is a side view showing a state where the pillar of FIG. 2 is cut and a seismic isolation device is inserted.
FIG. 4 is a sectional view taken along line IV-IV of FIG. 3;
FIG. 5 is a sectional view taken along line VV of FIG. 3;
FIG. 6 is a side view showing a state where a support plate and the like in FIG. 3 are removed.
FIG. 7 is a longitudinal sectional view showing a state in which the outer periphery of a pillar is reinforced with a circular pipe and additional concrete in a conventional seismic isolation method.
FIG. 8 is a longitudinal sectional view showing a state in which a pillar is cut and a seismic isolation device is installed in FIG. 7;
9 is a sectional view taken along line IX-IX in FIG.
FIG. 10 is a side view showing a state where the circular pipe of FIG. 8 is cut.
[Explanation of symbols]
11 pillars (axial material)
12 Additional concrete 12a, 12b Side surface 13 Sheath tube 14, 17 Support plate 15 PC steel rod (tensile material)
18 Fixing plate 20 Seismic isolation layer 20a Sliding plate 20c Sliding material S Opening

Claims (2)

既存建物の軸力材の所望の部位に、免震装置を介装するための工法であって、上記軸力材の外周に、少なくとも上記免震装置を挿入すべき範囲を残して当該免震装置を挿入すべき範囲の上下に増し打ちコンクリートを打設するとともに、当該増し打ちコンクリート打設時にその内部に上記軸力材の外面に沿って上記増し打ちコンクリートを貫通するように緊張材挿入用のシース管を埋設し、次いで上下の上記増し打ちコンクリート間に支持板を渡して、その上下端部を上記シース管に挿通した緊張材にプレストレスを導入することにより、上記増し打ちコンクリートに圧接させ、次いで、上記軸力材の上記免震装置を挿入すべき範囲を切断した後に、上記軸力材の切断部位に上記免震装置を挿入し、上記緊張材のプレストレスを解除して上記支持板を撤去することを特徴とする既存建物の免震化工法。Into the desired site in the axial force material existing buildings, a method for interposing a vibration isolating apparatus, the outer periphery of the axial force member, the seismic isolation leaving the scope to be inserted at least the isolator while concrete is struck increased above and below the range to be inserted the device, therein the said widening concrete after casting along the outer surface of the axial force material for a tension member inserted so as to pass through the widening concrete The sheath tube is buried, and then a support plate is passed between the upper and lower concrete, and the upper and lower ends thereof are prestressed into the tendon material inserted into the sheath tube, so that the concrete is pressed against the additional concrete. Then, after cutting the area where the seismic isolation device of the axial force member is to be inserted, the seismic isolation device is inserted into the cut portion of the axial force material, and the prestress of the tendon is released to release the tension member. Base sinkers method of existing buildings, which comprises removing the holding plates. 上下の上記増し打ちコンクリートを角柱状に形成し、これら増し打ちコンクリートの、少なくとも上記免震装置挿入用の開口部となる面を除いた他の面間に、上記支持材を配設することを特徴とする請求項1に記載の既存建物の免震化工法。Forming the upper and lower additional concrete into a prismatic shape, and disposing the support material between at least the other surfaces of the additional concrete except the surface serving as the opening for inserting the seismic isolation device. The seismic isolation method of an existing building according to claim 1, wherein
JP06294699A 1999-03-10 1999-03-10 Seismic isolation method for existing buildings Expired - Lifetime JP3551816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06294699A JP3551816B2 (en) 1999-03-10 1999-03-10 Seismic isolation method for existing buildings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06294699A JP3551816B2 (en) 1999-03-10 1999-03-10 Seismic isolation method for existing buildings

Publications (2)

Publication Number Publication Date
JP2000257273A JP2000257273A (en) 2000-09-19
JP3551816B2 true JP3551816B2 (en) 2004-08-11

Family

ID=13214993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06294699A Expired - Lifetime JP3551816B2 (en) 1999-03-10 1999-03-10 Seismic isolation method for existing buildings

Country Status (1)

Country Link
JP (1) JP3551816B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5792646B2 (en) * 2012-01-23 2015-10-14 間瀬建設株式会社 Seismic isolation method
JP6114071B2 (en) * 2013-03-01 2017-04-12 株式会社奥村組 Seismic isolation method for existing buildings and temporary structure under construction
JP6087680B2 (en) * 2013-03-21 2017-03-01 大成建設株式会社 Seismic isolation method for existing buildings
JP6208090B2 (en) * 2014-08-07 2017-10-04 株式会社奥村組 Temporary support structure for seismic isolation work and seismic isolation method for existing buildings
CN114753695B (en) * 2022-04-11 2024-02-13 上海建工一建集团有限公司 Sliding shock-absorbing support for in-situ replacement of existing factory building roof truss and construction method

Also Published As

Publication number Publication date
JP2000257273A (en) 2000-09-19

Similar Documents

Publication Publication Date Title
JP2006322215A (en) Foundation for facility
JP6022631B1 (en) Seismic isolation device replacement method and seismic isolation structure
JP2004285738A (en) Box girder bridge structure and method of constructing the same
JP2010261270A (en) Composite structure and method for constructing composite structure building
JP3551816B2 (en) Seismic isolation method for existing buildings
JP3772248B2 (en) Seismic isolation method for intermediate floors of existing buildings
JP2001311314A (en) Method for realizing base isolation structure of existing building
JP2011149265A (en) Beam member and building structure
JP3579811B2 (en) Method of installing seismic isolation device on existing structure and seismic isolation device used therefor
JP3728653B2 (en) Bonding structure between flat slab and concrete-filled steel pipe column and flat slab construction method
JP2001049873A (en) Vibration-isolation construction method of existing building
JPH1150418A (en) Temporary receive work of bridge girder and frame base therefor
JP2003306908A (en) Connecting structure of superstructure work and substructure work of bridge and its construction method
JP6031626B1 (en) Replacing the seismic isolation device in the pile head seismic isolation structure
JP5378896B2 (en) Seismic isolation method for existing buildings
JP3004242B2 (en) Building material for vibration control, vibration control structure and construction method
JP2000303703A (en) Widening construction method for concrete-made structure, construction method for temporary receiving frame on bridge, and reinforcing method for bridge
JP4124031B2 (en) How to install seismic isolation devices on existing pillars
JP3918705B2 (en) Seismic isolation method for existing buildings
JP3731682B2 (en) Seismic isolation method for existing buildings
JP6114071B2 (en) Seismic isolation method for existing buildings and temporary structure under construction
JP2001271499A (en) Temporary bearing construction method for existing building by steel batter brace member
JP7217195B2 (en) Double floor construction method
JP2001254532A (en) Mounting structure and mounting method of seismic isolator
CN221346303U (en) Assembled cast-in-situ beam column node template fixed knot constructs

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040419

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 10

EXPY Cancellation because of completion of term