JP3550597B2 - Exposure equipment - Google Patents

Exposure equipment Download PDF

Info

Publication number
JP3550597B2
JP3550597B2 JP16006295A JP16006295A JP3550597B2 JP 3550597 B2 JP3550597 B2 JP 3550597B2 JP 16006295 A JP16006295 A JP 16006295A JP 16006295 A JP16006295 A JP 16006295A JP 3550597 B2 JP3550597 B2 JP 3550597B2
Authority
JP
Japan
Prior art keywords
light
projection
optical systems
illumination
light amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16006295A
Other languages
Japanese (ja)
Other versions
JPH08330218A (en
Inventor
雅夫 滝口
廣 白数
晋 森
哲男 菊池
規彰 山元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP16006295A priority Critical patent/JP3550597B2/en
Publication of JPH08330218A publication Critical patent/JPH08330218A/en
Application granted granted Critical
Publication of JP3550597B2 publication Critical patent/JP3550597B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70191Optical correction elements, filters or phase plates for controlling intensity, wavelength, polarisation, phase or the like
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging

Description

【0001】
【産業上の利用分野】
本発明は露光装置に係り、更に詳しくは、半導体素子又は液晶表示基板等の製造のためのフォトリソグラフィ工程において、マスクのパターンを大面積の感光基板上に露光するのに使用して好適な露光装置に関する。
【0002】
【背景技術】
近年、パソコン、テレビ等の表示素子として、液晶表示基板が多用されるようになつた。この液晶表示基板は、ガラス基板上に透明薄膜電極をフォトリソグラフィの手法で所望の形状にパターニングして作られる。このリソグラフィのための装置として、従来は、原板としてのレチクル(マスク)上に形成された焼き付けるべき原画パターンを、ガラス基板をステッピングさせながら、単一の投影光学系を介して100mm角程度の投影領域毎に順次基板上のフオトレジスト層に露光する、いわゆるステッピング・アンド・リピート方式の投影露光装置が用いられていた。この種の露光装置では、照明系は単一なので照度ムラと光量がある一定値になる様に、NDフィルタ等を交換して所望の性能を得ていた。
【0003】
しかしながら、このステッピング・アンド・リピート方式の投影露光装置では、原板であるレチクルの大きさと比較して焼き付けを行うべきガラス基板上の面積が広いため、1枚のガラス基板に対して複数枚のレチクルが必要となり、処理時間に複数回分のレチクル交換時間が含まれることを避けられず、スループットが必然的に低下するという問題があった。特に、最近では液晶表示基板の大面積化が要求されるようになり、これに伴って投影露光装置においても露光領域の拡大によりスループットの向上を図れるものが望まれるようになってきた。
【0004】
このような背景の下、本願出願人は、先に特願平5−161588号等で、大型の液晶パネル(液晶表示基板)又は大面積の半導体素子等を高いスループットで製造することができる走査型露光装置を提案した。この走査型露光装置は、一度にガラス基板全体を露光できるほどの大型マスクを持ち、ガラス基板の短辺方向に充分に長い露光領域(投影領域)に光を配光するために、小領域の光を与える複数の照明光学系と複数の投影光学系を適切に配置し、これらの照明光学系及び投影光学系に対し、マスクとガラス基板とを同期して走査することによって、複数の投影領域を逐次露光し、感光基板上にマスクのパターンの全体を転写するものである。
【0005】
【発明が解決しようとする課題】
上記の走査型露光装置では、複数の照明光学系の光束の強度を均一にして全照明領域内の光束の強度を一致させる必要がある。このための手段として、組み立て時に、照明光学系毎に、光束の強度を検出し、強度に応じてNDフィルタ等を適宜選択的に使用することにより、照明光学系毎の照度のバラツキを防止するという手法が採用されていた。しかしながら、この方法は、各投影領域内の照度の均一化はある程度実現できるが、光源の経時的照度変化等は各光源毎に異なるので、照明光学系相互間で経時的に照度むら(照度差)が生じるという不都合のあることが、その後判明した。
【0006】
また、照度の差(光束強度差)は露光パターンの線幅に影響を与え、特に、隣り合う投影領域の境界付近の照度に違いがあると、パターン線幅に差が生じ、液晶パネルに組み上げた場合に色ムラ等の不都合が発生することも判明した。
【0007】
本発明は、かかる事情の下になされたもので、その第1の目的は、投影領域相互間の経時的な光量ムラに起因する露光不良の発生を防止することができる露光装置を提供することにある。
【0008】
また、本発明の第2の目的は、相互に隣接する投影領域の境界付近の照度差を少なくすることができる投影露光装置を提供することにある。
【0009】
【課題を解決するための手段】
請求項1記載の発明は、マスクと感光基板とを所定の走査方向に同期して移動しつつ前記マスク上のパターンを投影光学系を介して前記感光基板上に逐次転写する露光装置であって、前記マスク上の複数の部分領域のそれぞれを照明する複数の照明光学系と;前記各照明光学系に対応してそれぞれ配置され、前記マスク上の前記各部分領域の像を前記感光基板上にそれぞれ投影する複数の投影光学系と;前記各照明光学系に少なくとも各1つ設けられ、前記走査方向に沿って透過率が連続的に増加又は減少する部分を有する複数の平面フィルタと;前記各部分領域の像がそれぞれ投影される各投影領域内の検出領域に照射される照明光の光量を前記感光基板表面とほぼ同一面上で検出する第1の光量センサと;前記各照明光学系内に配置され、当該各照明光学系内の照明光の光量を検出する複数の第2の光量センサと;前記複数の平面フィルタを独立して走査方向に駆動する駆動手段と;前記第1の光量センサ及び前記複数の第2の光量センサの出力を選択的に取り込むと共にこの出力に基づいて前記駆動手段を制御する制御手段とを有する。
【0010】
請求項2記載の発明は、請求項1記載の露光装置において、前記複数の照明光学系は、前記マスク上に前記走査方向に互いに変位してかつ前記走査方向と直交する方向に沿って所定間隔で配置された複数の部分領域のそれぞれを照明すると共に、前記複数の投影光学系は、相互に隣接する前記部分領域の像の前記走査方向に直交する方向の一部が前記走査方向に沿って相互に重複する状態で前記感光基板上に投影することを特徴とする。
【0011】
請求項3記載の発明は、請求項1又は2に記載の露光装置において、前記各照明光学系の内部に照明光束の照度ムラ低減用のオプティカルインテグレータがそれぞれ設けられ、当該オプティカルインテグレータより光源側に前記各平面フィルタがそれぞれ配置されていることを特徴とする。
請求項4記載の発明は、請求項1に記載の露光装置において、前記複数の第2の光量センサは、前記駆動手段と前記第1の光量センサとを連動させて前記各投影領域内での光量に基づき出力のキャリブレーションが行われることを特徴とする。
請求項5記載の発明は、請求項1又は4に記載の露光装置において、前記制御手段は、前記マスク上のパターンを前記感光基板上に転写中、前記複数の第2の光量センサの出力に基づいて前記駆動手段を制御することを特徴とする。
請求項6記載の発明は、請求項1に記載の露光装置において、前記第1の光量センサは、前記感光基板表面とほぼ同一面で、前記複数の投影光学系の投影領域に対応して2次元に移動可能であることを特徴とする。
請求項7記載の発明は、請求項1又は4に記載の露光装置において、前記第1の光量センサは、前記投影領域内における複数点の計測値に基づいて前記照明光の光量を求めることを特徴とする。
【0012】
【作用】
請求項1記載の発明によれば、露光開始に先立ち、マスク及び感光基板のない状態で、第1の光量センサによって各投影領域内の検出領域に照射される照明光の光量が感光基板表面とほぼ同一面上で検出される。制御手段では、第1の光量センサの出力を取り込んで全ての投影領域の光量(又は単位面積当たりの光量である照度)が均一となるように、各照明光学系内に設けられた平面フィルタを駆動手段を介してそれぞれ独立して走査方向に駆動する。これによって、露光開始前に全ての投影領域の照度が均一となる。なお、上記の検出領域(点)としては、各投影光学系内に単一領域(例えば、中央領域)を設定しても複数領域を設定してもよいが、1〜3領域とすることがスループットの面では好ましい。複数の領域を設定した場合には、これらの平均値をその投影領域の光量値とする。
【0013】
露光が開始されると、各照明光学系内に配置された、第2の光量センサによって当該各照明光学系内の照明光の光量が検出され、制御手段では、これらの複数の光量センサの出力を常時取り込むことにより、露光中の光量の変動を補正するように駆動手段を介して各平面フィルタを走査方向に独立して駆動制御する。これによって、露光中の光量の変動による照明光学系相互間(投影領域相互間)の照度のバラツキが防止される。
【0014】
請求項2記載の発明によれば、第1の光量センサによって光量が検出される各投影領域内の検出領域を、相互に隣接する部分領域の像の走査方向に直交する方向の一部が走査方向に沿って相互に重複する部分(継ぎ部)内に設定すれば、露光開始に先立ち、第1の光量センサによって各投影領域内の前記検出領域に照射される照明光の光量が感光基板表面とほぼ同一面上で検出される。制御手段では、第1の光量センサの出力を取り込んで、相互に隣接する投影領域内の像が重複する部分(継ぎ部)の光量(又は照度)が均一となるように、各平面フィルタを駆動手段を介してそれぞれ独立して走査方向に駆動する。これによって、前記の重複する部分(継ぎ部)の照度変化を最小限にすることができる。
【0015】
請求項3記載の発明によれば、オプティカルインテグレータより光源側に各平面フィルタがそれぞれ配置されていることから、平面フィルタを通る照明光束が小さいので、小面積の平面フィルタを使用することができる。
請求項4記載の発明によれば、複数の第2の光量センサでは、駆動手段と第1の光量センサとを連動させて各投影領域内での光量に基づき出力のキャリブレーションが行われることから、そのキャリブレーション時に得られた値を各投影領域の光強度の調整に用いることが可能となる。
請求項5記載の発明によれば、制御手段は、マスク上のパターンを感光基板上に転写中、複数の第2の光量センサの出力に基づいて駆動手段を制御することから、投影領域の光強度(照度)を、パターン転写中も均一かつ一定に保つことができる。
請求項6記載の発明によれば、第1の光量センサは、感光基板表面とほぼ同一面で、複数の投影光学系の投影領域に対応して2次元に移動可能であることから、複数の投影光学系の投影領域の位置を問わず、光量(又は照度)を測定できる。
請求項7記載の発明によれば、第1の光量センサは、投影領域内における複数点の計測値に基づいて照明光の光量を求めることから、複数の計測値における光量の平均値を各投影領域の光量値とすることができる。
【0016】
【実施例】
以下、本発明の一実施例について図1ないし図5に基づいて説明する。
【0017】
図1には、一実施例に係る露光装置10の構成が概略的に示されている。この露光装置10は、マスク12上の複数(ここでは5つ)の部分領域のそれぞれを上方から照明する複数(ここでは5つ)の照明光学系L01、LO2、L03、L04、L05と、照明光学系L01、LO2、L03、L04、L05のそれぞれに対応してマスク12の下方に配置された5つの投影光学系PL1、PL2、PL3、PL4、PL5とを有している。これらの投影光学系PL1〜PL5の下方には、当該投影光学系PL1〜PL5に関してマスク12と共役となる位置に感光基板14が配置されている。
【0018】
マスク12は、図2に示されるように、マスクステージ16上に保持されており、このマスクステージ16は、断面L字状部材から成るキャリッジ18の垂直部の上端に当該キャリッジ18の水平部に対向して片持ち支持状態で一体的に取り付けられている。このキャリッジ18の水平部は基板ステージ20とされており、この基板ステージ20上に感光基板14が載置されている。キャリッジ18は、図2におけるX方向(図1における紙面直交方向)に移動可能に構成されている。
【0019】
また、本実施例では、キャリッジ18の基板ステージ20上に、当該キャリッジ18の移動軸(X軸)と直交する駆動軸(Y軸)を有する検出センサ駆動部22が配され、この検出センサ駆動部22上に感光基板14表面と同一面の高さになるようにフォトディテクタから成る第1の光量センサとしての均一性測定センサ24が載置されている。この均一性測定センサ24は、キャリッジ18(基板ステージ20)の走査方向とは直交する方向(Y軸方向)にだけ移動可能であるが、基板ステージ20が走査方向へ移動可能であるので、結果的にこの均一性測定センサ24は2次元に移動でき、後述する複数の投影領域(PA1〜PA5)の位置を問わず、光量(又は照度)測定できる。また、この均一性測定センサ24の受光面の面積は受光素子の感度むらを考慮するとあまり大きくない方がよい。かかる意味からは、場所の相違による感度むらがないのであれば、Y方向に延設されたアレイ状の受光素子によって均一性センサを構成することも可能である。
【0020】
前記照明光学系L01は、超高圧水銀ランプ等の光源26、楕円鏡28、シャッタ29、レンズ系30、オプティカルインテグレータとしてのフライアイレンズ32、ハーフミラー34、レンズ系36、視野絞り38、レンズ系40等を有する。これによれば、シャッタ29が開いている状態では、光源26から射出した光束Lは、楕円鏡28、レンズ系30を介してフライアイレンズ32によつて強度を均一化される。そして、ハーフミラー34、レンズ系36を介して視野絞り38によつて所望の形状に整形され、レンズ系40を介してマスク12のパターン面上に視野絞り38の像を形成する。以下、この視野絞りの像が形成される領域を照明領域というものとする。
【0021】
他の照明光学系LO2〜LO5も、照明光学系L01と全く同様にして構成されているが、図1では、図示の便宜上、レンズ系40に対応するもののみをそれぞれLO2〜LO5で示している。
【0022】
前記投影光学系PL1〜PL5は、いずれも等倍の正立像を結像する光学系が使用されている。
【0023】
従って、複数の照明光学系LO1〜LO5のそれぞれから射出された光束はマスク12上の異なる小領域(照明領域)をそれぞれ照明する。マスク12を透過した複数の光束は、それぞれ異なる投影光学系PL1〜PL5を介して感光基板14上の異なる投影領域(図2ないし図3にPA1〜PA5で示す)にマスク12の照明領域に対応したパターン像を結像する。
【0024】
ところで、感光基板14上の投影領域は、図3に示されるように、隣合う領域同士(例えば、PA1とPA2、PA2とPA3)が図のX方向に所定量変位するように、且つ隣合う領域の同図におけるY方向の端部同士(図中、破線で示す部分)がX方向(走査方向)に沿って相互に重複するように配置される。よつて、上記複数の投影光学系PL1〜PL5も各投影領域PA1〜PA5の配置に応じてX方向に所定量変位するとともにY方向に重複して配置されている。
【0025】
また、複数の照明光学系LO1〜LO5の配置は、マスク12上の照明領域が上記の投影領域PA1〜PA5と同様の配置となるように配置される。
【0026】
このため、キャリッジ18をX方向に沿って移動することにより、それぞれ図示しない固定支持部により固定された照明光学系LO1〜LO5、投影光学系PL1〜PL5に対し、マスク12と感光基板14とが同期してX方向(図1において、紙面に垂直な方向)に走査され、マスク12上のパターンの像が感光基板14上の投影領域PA1〜PA5に逐次転写され、最終的にマスク12上のパターン領域の全面が感光基板14上の露光領域EAに転写される。
【0027】
照明光学系L01を構成するレンズ系30の光源寄りの位置には、図1紙面直交方向(X方向)に沿って移動可能な平面フィルタ42(これについては、後に詳述する)が設けられている。この平面フィルタ42は、駆動手段としてのフィルタ駆動部44によって駆動されるようになっている。残りの照明光学系L02〜L05の内部にも、図1では図示を省略したが、平面フィルタ42が同様にX方向に沿って移動可能に設けられており同様に、各別のフィルタ駆動部44によってそれぞれ駆動されるようになっている。
【0028】
ところで、前述した如く、各照明光学系LO1〜LO5の光路中にはハーフミラー34が設けられており、このハーフミラー34によって分割された参照光(光束Lの一部)を集光レンズを介して感光基板14との共役面で受光するフォトディテクタから成る第2の光量センサとしての照明系内照度センサ46がそれぞれ設けられている。
【0029】
これらの照明系内照度センサ46は、常時光束Lの強度を検出し、得られた信号P1〜P5をマイクロコンピュータから成る制御手段としての制御部48に入力されるようになっている。この制御部48には、これらの信号P1〜P5の他、均一性測定センサ24からの信号P0も入力されるようになっており、この制御部48では、後述するように、信号P1〜P5及び信号P0に基づいて各フィルタ駆動部44をそれぞれ制御するようになっている。
【0030】
ここで、平面フィルタ42について図4に基づいて詳述する。この平面フィルタ42は、図4(B)に示されるように厚さが一定で、図4(A)に示されるように、幅が一定なフィルタである。この平面フィルタ42の特徴は、図4(C)に示されるように、長さXのうち図における左端から所定長さX1 の部分の透過率が100%で、点X1 から右端までの部分で直線的に透過率が減少していくような透過率の変化特性を有する点にある。所定長さX1 としては、当該平面フィルタ42を通過する光束(仮想線Aにて表示)を十分に満足するだけの長さが設定される。なお、右端での透過率は0%でもそれ以外であっても構わないし、透過率変化の傾きも特に問わない。この場合、平面フィルタ42を通過する光束を十分満足する領域で透過率ほぼ100%の部分を有するので、光量を無駄にしなくて済む。
【0031】
本実施例では、この平面フィルタ42がその長手方向を紙面直交方向(X方向)として照明光学系L01〜L05内にそれぞれ配置されている。
【0032】
次に、上述のようにして構成された本実施例の装置10の動作について説明する。まず、最初に、各投影領域の内部の光強度(本明細書では、光量あるいは照度と同様の意味で用いる)の不均一性が存在しない(換言すれば、各投影領域内の照度はNDフィルタ等によって予め調整されている)場合について説明する。この場合は、各投影領域内では、光強度が均一であるから投影領域PA1〜PA5の内部で各1点の光強度の検出を行ない、これに基づいて投影領域PA1〜PA5相互間の照度が同一となるようにすれば、全投影領域において照明光強度が均一になる。
【0033】
▲1▼ マスク12の無い状態で、全てのシャッタ42を開いて全ての光源26からの光の光路を開放した状態で、制御部48では、キャリッジ18を図示しない駆動系を介して走査方向に駆動すると共に検出センサ駆動部22をY軸方向に駆動して、均一性測定センサ24を投影光学系PL1〜PL5の投影領域PA1〜PA5の下で走査し、5つの投影領域(露光領域)のそれぞれについて少なくとも1点の検出領域、例えば中点の照度を計測する。
【0034】
次に、制御部48では、計測された各投影領域における光強度データP0に基づき、各投影光学系PL1〜PL5の投影領域PA1〜PA5を合せた全露光領域において照明光強度が均一になるように、各フィルタ駆動部44を制御して平面フィルタ42を駆動し、各々投影光学系PL1〜P5に対応する照明光学系LO1〜LO5の光強度を設定する。この場合において、平面フィルタ42の透過率の変化の傾斜は既知であり、フィルタ42の長手方向の位置と透過率とは1:1に対応しているので、フィルタ42を駆動すべき量は計算で求められる。従って、必ずしも照明光学系LO1〜LO5に付設された照度センサ46による検出は必要ないが、照度センサ46によって各照明光学系内の照度(P1〜P5)を検出しながら平面フィルタ42を駆動しても良い。
【0035】
設定後、制御部48では、再び上述したと同じ手順で均一性測定センサ24を用いて露光面の照明光強度を計測し確認する。この手順を繰り返して照明光強度の均一性が規格内に入つたら、このときの均一性測定センサ24の計測値P0を露光面照度として図示しないメモリに記憶する。また、このとき、各投影領域の中心部分の照度を基準照度とし、各照明系内照度センサ46の出力と基準照度とを比較することで、照明系内照度センサ46のキャリブレーションを行なう。この後、一旦、シャッタ29を閉じる。
【0036】
▲2▼ このようにして、照度の事前調整が完了した後、露光が行なわれる。マスク12をマスクステージ16上に載置し、感光基板14を基板ステージ20上に載置してマスク12と感光基板14との所定の位置合わせが完了すると、シャッタ29を開き、キャリッジ18を駆動して前記の如くして露光を行なう。
【0037】
この露光中は、均一性測定センサ24を使用できないので、制御部48は各照明系内照度センサ46の出力をモニタし、変化に対してはそれを抑さえるように各フィルタ駆動部44を駆動制御して平面フィルタ42を走査方向に移動させる。より具体的には、メモリに記憶された露光面の照度に対し、感光基板14の露光量が最適になるように図示しない駆動系を介してキャリッジ18の移動速度を制御すると同時に、各照明光学系LO1〜LO5の照明光強度を照度センサ46の検出値P1〜P5がキャリブレーションの際にメモリに記憶された値PM1〜PM5に保たれるよう各々フィルタ駆動部44を介して平面フィルタ42を駆動する。これにより、全投影領域PA1〜PA5の光強度(照度)を、露光中も均一かつ一定に保つことができる。
【0038】
次に、各投影領域の内部の光強度の不均一性が存在する通常の場合について説明する。
【0039】
▲3▼ マスクの無い状態で、全てのシャッタ42を開いて全ての光源26からの光の光路を開放した状態で、制御部48では、上記の如くして均一性測定センサ24を投影光学系PL1〜PL5の投影領域PA1〜PA5の下で走査し、5つの投影領域(露光領域)のそれぞれについて予め定めた検出領域の照度を計測する。
【0040】
制御部48では、均一性測定センサからの信号P0に基づいて、各投影領域の光束の強度を求め、これら強度のうちほぼ中央に位置する投影領域PA3の光強度を基準値として設定する。
【0041】
投影領域PA1〜PA5のうち重複する投影領域の継ぎ部同士の強度が等しくなるように基準となる投影領域から順に(PA3→PA2→PA1、及びPA3→PA4→PA5)、対応する各照明光学系LO1〜LO5の光束の強度を制御する。つまり、他の光束の強度がこの基準値に等しくなるべく、フィルタ駆動部44を駆動制御する。
【0042】
ここで、3つの投影光学系PL1、PL2、PL3による投影領域PA1、PA2、PA3を例にとって、投影領域の継ぎ部の光強度制御について図5を参照しつつ説明する。
【0043】
まず、制御部48では均一性測定センサ24を用いて投影領域PA1〜PA3の重複する継ぎ部の任意の点I、I2−1 、I2−2 、Iの光束の強度を測定し、メモリに記憶する。
【0044】
次に、制御する基準の強度を決定する。例えば、中央に位置する投影領域PA2の強度を基準とする。この場合、投影領域PA2の光束の強度は変更しない。この後、投影領域PA2の継ぎ部の基準点I2−1 、I2−2 それぞれに対応する投影領域PA1の継ぎ部の点I、投影領域PA3の継ぎ部の点Iの強度がそれぞれI2−1 、I2−2 とほぼ等しくなるように各照明光学系の光束の強度を制御する。投影領域PA1の光束の強度の設定は、点Iの強度が基準点I2−1 と等しくなるように、フィルタ駆動部44を制御して平面フィルタ42を駆動することにより行なう。同様に、投影領域PA3についても継ぎ部の点Iの強度が基準点I2−2 と等しくなるように、フィルタ駆動部44を制御する。制御後、それぞれの照明光学系内照度センサ46の値を記憶する。
【0045】
全接続部に対し、このような照度調整のための平面フィルタ42の駆動制御を行なった後、均一測定センサ24を用いて各投影領域の照明光の接続部付近と中心部分の照度を測定し、全体的な照度差が仕様を満足していなければ、再度フィルタ駆動部44を駆動制御した上で照度の均一性を測定する。
【0046】
上記の方法で、各照明光の隣り合う接続部との照度差と全体的な照度差が仕様値内であれば、各照明光の中心部分の照度を基準照度とし、各照明系内照度センサ46の出力と基準照度を比較することで、照明系内照度センサ46のキャリブレーションを行ない、その後、一旦、シャッタを閉じる。
【0047】
▲4▼ このようにして照度の事前調整が完了した後、露光が行なわれる。この露光中は、先に説明した、各投影領域の内部の光強度の不均一性が存在しない場合と、同様の照度調整がなされる。
【0048】
このように、均一性測定センサ24にて検出した継ぎ部の光強度に基づいて隣合う重複する継ぎ部同士の光束の強度が一致するように、各フィルタ駆動部44を制御することにより、投影領域の継ぎ部における光束の強度の急激な変化を最小限にできる。
【0049】
複数枚の感光基板を処理した後に、定期的に上記▲3▼の照度調整の動作を行ない、露光中は各照明系内照度センサ46の出力に基づいて照度変化を抑制するように平面フィルタ42を駆動すれば、照度変化を抑さえ、継ぎムラを無くすことができる。
【0050】
上述のように本実施例によると、各投影領域の重複する継ぎ部どうしが同一強度となるように各照明光学系の強度を制御することにより感光基板上での光強度分布が急激に変化することを最小限に抑えることができ、これにより、アクテイブマトリクス液晶デバイスの製造等において、継ぎ部のコントラスト変化を解消することができる。
【0051】
なお、平面フィルタ42としては、上記実施例で説明したもの以外に、図6に示されるような透過率の変化特性を有するものを使用してもよい。この平面フィルタは、透過率100%の部分を持たないが、装置によっては、このような平面フィルタを搭載することもできる。
【0052】
あるいは、図7に示されるように、1本の光軸に同一の透過率の変化特性を有する平面フィルタを2枚用いてもよい。このようにすれば、透過率が変化する部分が相互に重なった位置では、光速の通過断面全面で透過率を一定にすることができる。この2枚のフィルタは、それぞれに駆動装置を設けて駆動してもよく、あるいは一つの駆動装置で駆動してもよい。しかしながら、平面フィルタが1枚であっても、各照明光学系内にはフライアイレンズが設けられると共に、走査方向に透過率の傾斜勾配を持たせているので、光量が平均化されて傾斜ムラは生じないので、平面フィルタの透過率の連続的変化が直接的に悪影響を与えることは、殆どないものと考えられる。
【0053】
なお、上記実施例では、照明光学系毎に光源を備えた場合を例示したが、本発明はこれに限定されるものではなく、例えば、光源の数より照明光学系(ないしは投影光学系)の数の方が多い場合には、光源と照明光学系とを多分岐光ファイバにて接続し、光を光源の数以上に分岐させることで照度差を比較的少なくするようにしてもよい。
【0054】
また、上記実施例では、投影領域の照度調整(光束の強度調整、光量の調整)を、平面フィルタの位置制御により行なう場合について説明したが、これと併せて制御部48により、電源に対する印加電圧(もしくは、電源電流)をフイードバツク制御するようにしてもよい。
【0055】
更に、上記実施例では、光源とフライアイレンズとの間に平面フィルタが配置されているので、平面フィルタの位置を透過する光束が小さいため、平面フィルタとして小面積のものを使用することができる。
【0056】
なお、上記実施例では、等倍の投影光学系を用いる場合について例示したが、本発明はこれに限らず、所定の倍率を有する投影光学系、屈折系、反射系等のいずれの光学系を用いても良い。
【0057】
また、上記実施例では、視野絞りの開口形状を台形としたものについて述べたが、本発明はこれに限らず、例えば六角形の開口を有する視野絞りを用いても良い。
【0058】
更に、上記実施例では、投影領域が図3に示されるような配置となるように照明光学系および投影光学系を配置する構成のものについて述べたが、本発明はこれに限らず、投影領域PA2、PA4を形成する照明光学系および投影光学系を除いた構成としても良い。この場合、マスク12と感光基板14をX方向に走査した後、Y方向に所定量ステツプして再度X方向とは逆の方向に走査することにより、マスク12のパターン領域の全面を感光基板14上に転写することができる。
【0059】
【発明の効果】
以上説明したように、本発明によれば、露光中の光量の変動による照明光学系相互間(投影領域相互間)の照度のバラツキを防止することができ、投影領域相互間の経時的な光量ムラに起因する露光不良の発生を防止することができるという従来にない優れた効果がある。
【0060】
特に、請求項2記載の発明にあっては、相互に隣接する投影領域の境界付近の照度差を少なくすることをができるという効果がある。
【図面の簡単な説明】
【図1】一実施例の露光装置の概略構成を示す図である。
【図2】図1の露光装置の外観斜視図である。
【図3】図1の装置における感光基板上の投影領域を示す図である。
【図4】平面フィルタを示す図であって、(A)は平面図、(B)は正面図、(C)は透過率の変化特性を示す図である。
【図5】継ぎ部の照度調整を説明するための図である。
【図6】平面フィルタの他の例を示す図である。
【図7】平面フィルタを2枚用いる場合の例を示す図である。
【符号の説明】
10 露光装置
12 マスク
14 感光基板
24 均一性測定センサ(第1の光量センサ)
32 フライアイレンズ(オプティカルインテグレータ)
42 平面フィルタ
44 フィルタ駆動部(駆動手段)
46 照明系内照度センサ(第2の光量センサ)
48 制御部(制御手段)
PL1〜PL5 投影光学系
L01〜L05 照明光学系
PA1〜PA5 投影領域
[0001]
[Industrial applications]
The present invention relates to an exposure apparatus, and more particularly, to an exposure method suitable for use in exposing a mask pattern onto a large-area photosensitive substrate in a photolithography process for manufacturing a semiconductor element or a liquid crystal display substrate. Equipment related.
[0002]
[Background Art]
In recent years, liquid crystal display substrates have been frequently used as display elements for personal computers, televisions, and the like. This liquid crystal display substrate is formed by patterning a transparent thin-film electrode into a desired shape on a glass substrate by photolithography. Conventionally, as an apparatus for this lithography, an original image pattern to be printed, formed on a reticle (mask) as an original plate, is projected to a size of about 100 mm square through a single projection optical system while stepping a glass substrate. A so-called stepping-and-repeat type projection exposure apparatus that sequentially exposes a photoresist layer on a substrate for each region has been used. In this type of exposure apparatus, since there is only one illumination system, desired performance is obtained by replacing the ND filter or the like so that the illuminance unevenness and the light amount become a certain value.
[0003]
However, in this stepping and repeat type projection exposure apparatus, since the area on the glass substrate to be printed is large compared to the size of the reticle as the original plate, a plurality of reticles are required for one glass substrate. Is required, and the processing time inevitably includes a reticle exchange time for a plurality of times, and there is a problem that the throughput is necessarily reduced. In particular, recently, a large area of a liquid crystal display substrate has been required, and accordingly, a projection exposure apparatus which can improve throughput by expanding an exposure area has been desired.
[0004]
Against this background, the applicant of the present application has disclosed in Japanese Patent Application No. 5-161588 and the like that a large liquid crystal panel (liquid crystal display substrate) or a semiconductor element having a large area can be manufactured at a high throughput. Mold exposure equipment was proposed. This scanning exposure apparatus has a large mask capable of exposing the entire glass substrate at one time, and distributes light to a sufficiently long exposure area (projection area) in the short side direction of the glass substrate. By properly arranging a plurality of illumination optical systems that provide light and a plurality of projection optical systems, and scanning the mask and the glass substrate in synchronization with the illumination optical system and the projection optical system, a plurality of projection areas are provided. Are sequentially exposed, and the entire pattern of the mask is transferred onto the photosensitive substrate.
[0005]
[Problems to be solved by the invention]
In the above-described scanning exposure apparatus, it is necessary to make the intensities of the luminous fluxes of the plurality of illumination optical systems uniform so that the intensities of the luminous fluxes in the entire illumination area match. As a means for this, at the time of assembly, the intensity of the light beam is detected for each illumination optical system, and an ND filter or the like is appropriately and selectively used in accordance with the intensity, thereby preventing variations in illuminance for each illumination optical system. That method was adopted. However, this method can achieve a certain degree of uniformity of illuminance in each projection area, but changes in illuminance over time of the light sources differ for each light source, so that illuminance unevenness (illuminance difference) between illumination optical systems over time. ) Was subsequently found to be inconvenient.
[0006]
Also, the difference in illuminance (luminous flux intensity difference) affects the line width of the exposure pattern. In particular, if there is a difference in illuminance near the boundary between adjacent projection areas, a difference in pattern line width occurs, and the liquid crystal panel is assembled. It has also been found that in such a case, inconveniences such as color unevenness occur.
[0007]
The present invention has been made under such circumstances, and a first object of the present invention is to provide an exposure apparatus capable of preventing occurrence of exposure failure due to uneven light quantity over time between projection areas. It is in.
[0008]
A second object of the present invention is to provide a projection exposure apparatus capable of reducing the illuminance difference near the boundary between mutually adjacent projection areas.
[0009]
[Means for Solving the Problems]
The invention according to claim 1 is an exposure apparatus that sequentially transfers a pattern on the mask onto the photosensitive substrate via a projection optical system while moving the mask and the photosensitive substrate in synchronization with a predetermined scanning direction. A plurality of illumination optical systems for illuminating each of the plurality of partial regions on the mask; and a plurality of illumination optical systems arranged corresponding to the respective illumination optical systems, and images of the respective partial regions on the mask on the photosensitive substrate. A plurality of projection optical systems each for projecting; a plurality of planar filters provided at least one in each of the illumination optical systems, the plurality of planar filters having a portion whose transmittance continuously increases or decreases along the scanning direction; A first light amount sensor for detecting a light amount of illumination light applied to a detection area in each projection area on which an image of the partial area is projected, on substantially the same plane as the photosensitive substrate surface; Placed in A plurality of second light amount sensors for detecting the amount of illumination light in each of the illumination optical systems; a driving unit for independently driving the plurality of planar filters in a scanning direction; the first light amount sensor and the plurality of light amount sensors; And control means for selectively taking in the output of the second light quantity sensor and controlling the driving means based on the output.
[0010]
According to a second aspect of the present invention, in the exposure apparatus according to the first aspect, the plurality of illumination optical systems are displaced from each other in the scanning direction on the mask and have predetermined intervals along a direction orthogonal to the scanning direction. Along with illuminating each of the plurality of partial regions arranged in the, the plurality of projection optical systems, along the scanning direction, a part of a direction orthogonal to the scanning direction of the images of the partial regions adjacent to each other. The projection is performed on the photosensitive substrate in a state of overlapping each other.
[0011]
According to a third aspect of the present invention, in the exposure apparatus according to the first or second aspect, an optical integrator for reducing illuminance non-uniformity of an illumination light beam is provided inside each of the illumination optical systems, and is closer to a light source than the optical integrator. Each of the planar filters is disposed.
According to a fourth aspect of the present invention, in the exposure apparatus according to the first aspect, the plurality of second light quantity sensors are arranged in each of the projection areas by interlocking the driving unit and the first light quantity sensor. The output calibration is performed based on the light quantity.
According to a fifth aspect of the present invention, in the exposure apparatus according to the first or fourth aspect, the control unit outputs the output of the plurality of second light amount sensors while transferring the pattern on the mask onto the photosensitive substrate. The driving means is controlled based on the control signal.
According to a sixth aspect of the present invention, in the exposure apparatus according to the first aspect, the first light amount sensor is located on substantially the same plane as the surface of the photosensitive substrate and corresponds to a projection area of the plurality of projection optical systems. It is characterized by being movable in a dimension.
According to a seventh aspect of the present invention, in the exposure apparatus according to the first or fourth aspect, the first light amount sensor determines the light amount of the illumination light based on measurement values of a plurality of points in the projection area. Features.
[0012]
[Action]
According to the first aspect of the present invention, prior to the start of the exposure, the light amount of the illumination light applied to the detection area in each projection area by the first light amount sensor in a state where the mask and the photosensitive substrate are not present is equal to the photosensitive substrate surface. Detected on almost the same plane. The control means takes in the output of the first light quantity sensor and sets a flat filter provided in each illumination optical system so that the light quantity (or illuminance, which is the light quantity per unit area) of all the projection areas becomes uniform. They are independently driven in the scanning direction via driving means. Thus, the illuminance of all the projection areas becomes uniform before the start of the exposure. The detection area (point) may be a single area (for example, a central area) or a plurality of areas in each projection optical system. It is preferable in terms of throughput. When a plurality of areas are set, the average value of them is used as the light amount value of the projection area.
[0013]
When the exposure is started, the light quantity of the illumination light in each illumination optical system is detected by a second light quantity sensor disposed in each illumination optical system, and the control means outputs the outputs of the plurality of light quantity sensors. , The driving of each planar filter is independently controlled in the scanning direction via the driving means so as to correct the fluctuation of the light amount during the exposure. This prevents variations in illuminance between illumination optical systems (between projection areas) due to fluctuations in the amount of light during exposure.
[0014]
According to the second aspect of the present invention, the detection area in each of the projection areas where the light amount is detected by the first light amount sensor is partially scanned in a direction orthogonal to the scanning direction of the images of the partial areas adjacent to each other. If it is set in a mutually overlapping portion (joint portion) along the direction, prior to the start of the exposure, the first light intensity sensor illuminates the detection area in each projection area with the amount of illumination light applied to the detection area. Is detected on almost the same plane. The control means takes in the output of the first light quantity sensor and drives each flat filter so that the light quantity (or illuminance) of the portion (joint) where the images in the mutually adjacent projection areas overlap is uniform. It is independently driven in the scanning direction via the means. As a result, it is possible to minimize the change in illuminance of the overlapping portion (joint portion).
[0015]
According to the third aspect of the present invention, since each of the planar filters is arranged closer to the light source than the optical integrator, the illuminating light beam passing through the planar filter is small, so that a planar filter with a small area can be used.
According to the fourth aspect of the present invention, in the plurality of second light amount sensors, the output unit is calibrated based on the light amount in each projection area by interlocking the driving means and the first light amount sensor. The value obtained during the calibration can be used for adjusting the light intensity of each projection area.
According to the fifth aspect of the present invention, the control unit controls the driving unit based on the outputs of the plurality of second light amount sensors during the transfer of the pattern on the mask onto the photosensitive substrate. The intensity (illuminance) can be kept uniform and constant during pattern transfer.
According to the invention described in claim 6, the first light amount sensor is two-dimensionally movable substantially in the same plane as the surface of the photosensitive substrate and corresponding to the projection areas of the plurality of projection optical systems. The light amount (or illuminance) can be measured regardless of the position of the projection area of the projection optical system.
According to the seventh aspect of the present invention, since the first light quantity sensor obtains the light quantity of the illumination light based on the measurement values at a plurality of points in the projection area, the first light quantity sensor calculates the average value of the light quantity at the plurality of measurement values for each projection. It can be the light amount value of the area.
[0016]
【Example】
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
[0017]
FIG. 1 schematically shows a configuration of an exposure apparatus 10 according to one embodiment. The exposure apparatus 10 includes a plurality (here, five) of illumination optical systems L01, LO2, L03, L04, and L05 that illuminate each of a plurality (here, five) of partial regions on the mask 12 from above. It has five projection optical systems PL1, PL2, PL3, PL4, and PL5 arranged below the mask 12 corresponding to the optical systems L01, LO2, L03, L04, and L05, respectively. Below these projection optical systems PL1 to PL5, a photosensitive substrate 14 is arranged at a position conjugate with the mask 12 with respect to the projection optical systems PL1 to PL5.
[0018]
As shown in FIG. 2, the mask 12 is held on a mask stage 16, and the mask stage 16 is mounted on the upper end of the vertical portion of the carriage 18 having an L-shaped cross section. They are integrally attached to each other in a cantilevered support state. The horizontal portion of the carriage 18 is a substrate stage 20, and the photosensitive substrate 14 is mounted on the substrate stage 20. The carriage 18 is configured to be movable in the X direction in FIG. 2 (a direction orthogonal to the plane of FIG. 1).
[0019]
In this embodiment, a detection sensor drive unit 22 having a drive axis (Y axis) orthogonal to the movement axis (X axis) of the carriage 18 is disposed on the substrate stage 20 of the carriage 18. A uniformity measuring sensor 24 as a first light amount sensor made of a photodetector is mounted on the portion 22 so as to be flush with the surface of the photosensitive substrate 14. Although the uniformity measurement sensor 24 can move only in the direction (Y-axis direction) orthogonal to the scanning direction of the carriage 18 (substrate stage 20), the substrate stage 20 can move in the scanning direction. Specifically, the uniformity measurement sensor 24 can move two-dimensionally, and can measure the amount of light (or illuminance) regardless of the positions of a plurality of projection areas (PA1 to PA5) described later. Further, the area of the light receiving surface of the uniformity measuring sensor 24 should not be so large in consideration of the sensitivity unevenness of the light receiving element. In this sense, if there is no sensitivity unevenness due to a difference in location, a uniformity sensor can be configured by an array of light receiving elements extending in the Y direction.
[0020]
The illumination optical system L01 includes a light source 26 such as an ultra-high pressure mercury lamp, an elliptical mirror 28, a shutter 29, a lens system 30, a fly-eye lens 32 as an optical integrator, a half mirror 34, a lens system 36, a field stop 38, and a lens system. 40, etc. According to this, when the shutter 29 is open, the light flux L emitted from the light source 26 is made uniform in intensity by the fly-eye lens 32 via the elliptical mirror 28 and the lens system 30. Then, it is shaped into a desired shape by a field stop 38 via a half mirror 34 and a lens system 36, and an image of the field stop 38 is formed on a pattern surface of the mask 12 via a lens system 40. Hereinafter, an area where the image of the field stop is formed is referred to as an illumination area.
[0021]
The other illumination optical systems LO2 to LO5 are configured in exactly the same manner as the illumination optical system L01. However, in FIG. 1, only components corresponding to the lens system 40 are indicated by LO2 to LO5 for convenience of illustration. .
[0022]
Each of the projection optical systems PL1 to PL5 uses an optical system that forms an erect image at the same magnification.
[0023]
Therefore, the light flux emitted from each of the plurality of illumination optical systems LO1 to LO5 illuminates a different small area (illumination area) on the mask 12. The plurality of light beams transmitted through the mask 12 correspond to different projection areas (indicated by PA1 to PA5 in FIGS. 2 and 3) on the photosensitive substrate 14 via different projection optical systems PL1 to PL5, respectively, and correspond to the illumination areas of the mask 12. The formed pattern image is formed.
[0024]
Incidentally, as shown in FIG. 3, the projection areas on the photosensitive substrate 14 are adjacent to each other such that adjacent areas (for example, PA1 and PA2, PA2 and PA3) are displaced by a predetermined amount in the X direction in the figure. The ends of the regions in the Y direction in the same drawing (portions indicated by broken lines in the drawing) are arranged so as to overlap each other along the X direction (scanning direction). Therefore, the plurality of projection optical systems PL1 to PL5 are also displaced by a predetermined amount in the X direction according to the arrangement of the projection areas PA1 to PA5, and are arranged so as to overlap in the Y direction.
[0025]
The plurality of illumination optical systems LO1 to LO5 are arranged such that the illumination area on the mask 12 has the same arrangement as the above-described projection areas PA1 to PA5.
[0026]
For this reason, by moving the carriage 18 along the X direction, the mask 12 and the photosensitive substrate 14 are moved relative to the illumination optical systems LO1 to LO5 and the projection optical systems PL1 to PL5, which are fixed by fixed support portions (not shown). Synchronously, scanning is performed in the X direction (in FIG. 1, a direction perpendicular to the plane of the paper), and the image of the pattern on the mask 12 is sequentially transferred to the projection areas PA1 to PA5 on the photosensitive substrate 14, and finally on the mask 12. The entire surface of the pattern area is transferred to the exposure area EA on the photosensitive substrate 14.
[0027]
At a position near the light source of the lens system 30 constituting the illumination optical system L01, a plane filter 42 (which will be described in detail later) movable in a direction perpendicular to the paper surface of FIG. 1 (X direction) is provided. I have. The flat filter 42 is driven by a filter driving unit 44 as a driving unit. Although not shown in FIG. 1 inside the remaining illumination optical systems L02 to L05, a plane filter 42 is similarly provided so as to be movable along the X direction. , Respectively.
[0028]
As described above, the half mirror 34 is provided in the optical path of each of the illumination optical systems LO1 to LO5, and the reference light (a part of the light beam L) split by the half mirror 34 passes through the condenser lens. And an in-illumination illuminance sensor 46 as a second light amount sensor composed of a photodetector that receives light at a conjugate plane with the photosensitive substrate 14.
[0029]
These illuminance sensors 46 in the illumination system always detect the intensity of the light beam L, and input the obtained signals P1 to P5 to a control unit 48 as control means including a microcomputer. In addition to these signals P1 to P5, a signal P0 from the uniformity measuring sensor 24 is also input to the control unit 48. The control unit 48 outputs the signals P1 to P5 as described later. Each of the filter driving units 44 is controlled based on the signal P0 and the signal P0.
[0030]
Here, the plane filter 42 will be described in detail with reference to FIG. The planar filter 42 has a constant thickness as shown in FIG. 4B and a constant width as shown in FIG. 4A. As shown in FIG. 4C, this flat filter 42 has a transmittance of 100% in a portion of a length X from a left end in the figure to a predetermined length X1, and a portion from a point X1 to a right end in the length X. The point is that it has a transmittance changing characteristic such that the transmittance decreases linearly. The predetermined length X1 is set to a length that sufficiently satisfies the light flux (represented by the imaginary line A) passing through the flat filter 42. Note that the transmittance at the right end may be 0% or another value, and the slope of the transmittance change is not particularly limited. In this case, since a region having a transmittance of approximately 100% in a region that sufficiently satisfies the light beam passing through the flat filter 42, the amount of light does not need to be wasted.
[0031]
In the present embodiment, the flat filter 42 is disposed in each of the illumination optical systems L01 to L05, with the longitudinal direction of the flat filter 42 being the direction perpendicular to the paper surface (X direction).
[0032]
Next, the operation of the apparatus 10 according to the present embodiment configured as described above will be described. First, there is no non-uniformity in light intensity (used in the present specification in the same sense as light intensity or illuminance) inside each projection area (in other words, the illuminance in each projection area is equal to the ND filter). Will be described. In this case, since the light intensity is uniform within each projection area, the light intensity at each one point is detected inside the projection areas PA1 to PA5, and based on this, the illuminance between the projection areas PA1 to PA5 is reduced. If they are the same, the illumination light intensity becomes uniform in the entire projection area.
[0033]
{Circle around (1)} In a state where all the shutters 42 are opened and the optical paths of the light from all the light sources 26 are opened without the mask 12, the control unit 48 moves the carriage 18 in the scanning direction via a drive system (not shown). When driven, the detection sensor driving unit 22 is driven in the Y-axis direction, and the uniformity measuring sensor 24 scans under the projection areas PA1 to PA5 of the projection optical systems PL1 to PL5, and the five projection areas (exposure areas) are scanned. The illuminance of at least one detection area, for example, the middle point is measured for each.
[0034]
Next, based on the measured light intensity data P0 in each projection region, the control unit 48 makes the illumination light intensity uniform in all the exposure regions including the projection regions PA1 to PA5 of the projection optical systems PL1 to PL5. Next, the filter driving unit 44 is controlled to drive the plane filter 42, and the light intensity of the illumination optical systems LO1 to LO5 corresponding to the projection optical systems PL1 to P5 is set. In this case, the slope of the change in the transmittance of the flat filter 42 is known, and the position in the longitudinal direction of the filter 42 and the transmittance correspond to 1: 1. Is required. Therefore, although the detection by the illuminance sensors 46 attached to the illumination optical systems LO1 to LO5 is not always necessary, the planar filter 42 is driven while the illuminance (P1 to P5) in each illumination optical system is detected by the illuminance sensor 46. Is also good.
[0035]
After the setting, the control unit 48 measures the illumination light intensity on the exposure surface again using the uniformity measurement sensor 24 in the same procedure as described above, and confirms it. When the uniformity of the illumination light intensity falls within the standard by repeating this procedure, the measured value P0 of the uniformity measurement sensor 24 at this time is stored in a memory (not shown) as the exposure surface illuminance. At this time, the illuminance at the center of each projection area is set as the reference illuminance, and the output of each illuminance illuminance sensor 46 is compared with the reference illuminance to calibrate the illuminance sensor 46 in the illumination system. Thereafter, the shutter 29 is once closed.
[0036]
{Circle around (2)} After the pre-adjustment of the illuminance is completed, exposure is performed. When the mask 12 is placed on the mask stage 16 and the photosensitive substrate 14 is placed on the substrate stage 20 and the predetermined alignment between the mask 12 and the photosensitive substrate 14 is completed, the shutter 29 is opened and the carriage 18 is driven. Then, exposure is performed as described above.
[0037]
During this exposure, since the uniformity measurement sensor 24 cannot be used, the control unit 48 monitors the output of the illuminance sensor 46 in each illumination system, and drives each filter drive unit 44 so as to suppress a change. The flat filter 42 is moved in the scanning direction under control. More specifically, the moving speed of the carriage 18 is controlled via a drive system (not shown) so that the exposure amount of the photosensitive substrate 14 is optimized with respect to the illuminance of the exposure surface stored in the memory. The plane filters 42 are respectively controlled via the filter driving unit 44 so that the illumination light intensities of the systems LO1 to LO5 are maintained at the values PM1 to PM5 stored in the memory at the time of the calibration when the detection values P1 to P5 of the illuminance sensor 46 are maintained. Drive. Thereby, the light intensity (illuminance) of all the projection areas PA1 to PA5 can be kept uniform and constant during the exposure.
[0038]
Next, a normal case in which there is non-uniformity of light intensity inside each projection area will be described.
[0039]
{Circle around (3)} With no mask, in a state where all the shutters 42 are opened and the optical paths of the light from all the light sources 26 are opened, the control unit 48 causes the uniformity measuring sensor 24 to project the projection optical system as described above. Scanning is performed below the projection areas PA1 to PA5 of PL1 to PL5, and the illuminance of a predetermined detection area is measured for each of the five projection areas (exposure areas).
[0040]
The control unit 48 obtains the intensity of the luminous flux of each projection area based on the signal P0 from the uniformity measurement sensor, and sets the light intensity of the projection area PA3 located substantially at the center among these intensities as a reference value.
[0041]
Each of the corresponding illumination optical systems (PA3 → PA2 → PA1 and PA3 → PA4 → PA5) in order from the reference projection area so that the intensity of the joints of the overlapping projection areas among the projection areas PA1 to PA5 is equal. The intensity of the luminous flux of LO1 to LO5 is controlled. That is, the driving of the filter driving unit 44 is controlled so that the intensity of the other light flux becomes equal to the reference value.
[0042]
Here, taking the projection areas PA1, PA2, and PA3 by the three projection optical systems PL1, PL2, and PL3 as an example, light intensity control at a joint of the projection areas will be described with reference to FIG.
[0043]
First, the control unit 48 uses the uniformity measurement sensor 24 to set an arbitrary point I at an overlapping joint of the projection areas PA1 to PA3.1, I2-1, I2-2, I3Is measured and stored in a memory.
[0044]
Next, the strength of the reference to be controlled is determined. For example, the intensity of the projection area PA2 located at the center is used as a reference. In this case, the intensity of the light beam in the projection area PA2 is not changed. Thereafter, the reference point I at the joint of the projection area PA22-1, I2-2Point I at the joint of projection area PA1 corresponding to each1, Point I at the joint of projection area PA33The intensity of each is I2-1, I2-2The intensity of the light beam of each illumination optical system is controlled so as to be substantially equal to The setting of the intensity of the light beam in the projection area PA1 is performed at the point I1Is the reference point I2-1This is performed by controlling the filter driving unit 44 to drive the flat filter 42 so as to be equal to Similarly, for the projection area PA3, the point I3Is the reference point I2-2The filter driving unit 44 is controlled so as to be equal to. After the control, the values of the respective illuminance sensors 46 in the illumination optical system are stored.
[0045]
After the driving control of the flat filter 42 for such illuminance adjustment is performed on all the connection parts, the illuminance near the connection part of the illumination light in each projection area and the central part is measured using the uniform measurement sensor 24. If the overall illuminance difference does not satisfy the specification, the driving of the filter driving unit 44 is controlled again, and then the illuminance uniformity is measured.
[0046]
With the above method, if the illuminance difference between each illumination light and the adjacent connection part and the overall illuminance difference are within the specification values, the illuminance at the central portion of each illumination light is set as the reference illuminance, and the illuminance sensor in each illumination system is used. By comparing the output of 46 with the reference illuminance, the illuminance sensor 46 in the illumination system is calibrated, and then the shutter is once closed.
[0047]
{Circle around (4)} After the pre-adjustment of the illuminance is completed, exposure is performed. During this exposure, the same illuminance adjustment is performed as in the case where there is no non-uniformity of the light intensity inside each projection area as described above.
[0048]
As described above, by controlling the respective filter driving units 44 based on the light intensity of the joint detected by the uniformity measuring sensor 24 so that the light flux intensity of the adjacent overlapping joints coincides with each other, the projection is performed. A sharp change in the intensity of the light beam at the joint of the regions can be minimized.
[0049]
After processing a plurality of photosensitive substrates, the illuminance adjustment operation of the above (3) is periodically performed, and during the exposure, the flat filter 42 controls the illuminance change based on the output of the illuminance sensor 46 in each illumination system. , The change in illuminance can be suppressed, and the joint unevenness can be eliminated.
[0050]
As described above, according to the present embodiment, the light intensity distribution on the photosensitive substrate changes abruptly by controlling the intensity of each illumination optical system so that the overlapping joints of each projection area have the same intensity. This can minimize the change in contrast at the joint portion in the manufacture of an active matrix liquid crystal device or the like.
[0051]
As the flat filter 42, a filter having a transmittance change characteristic as shown in FIG. 6 may be used in addition to the filter described in the above embodiment. This flat filter does not have a portion having a transmittance of 100%, but such a flat filter can be mounted depending on the device.
[0052]
Alternatively, as shown in FIG. 7, two flat filters having the same transmittance change characteristic on one optical axis may be used. In this way, at the position where the portions where the transmittance changes overlap each other, the transmittance can be made constant over the entire cross section of the passage of the light speed. These two filters may be driven by providing respective driving devices, or may be driven by one driving device. However, even if there is only one flat filter, a fly-eye lens is provided in each illumination optical system, and a gradient of transmittance is provided in the scanning direction. Therefore, it is considered that the continuous change of the transmittance of the planar filter has almost no direct adverse effect.
[0053]
In the above embodiment, the case where a light source is provided for each illumination optical system is illustrated. However, the present invention is not limited to this. For example, the number of illumination optical systems (or projection optical systems) may be changed depending on the number of light sources. If the number is larger, the light source and the illumination optical system may be connected by a multi-branch optical fiber, and the light may be branched into more than the number of light sources to make the illuminance difference relatively small.
[0054]
Further, in the above-described embodiment, the case where the illuminance adjustment (the adjustment of the intensity of the light beam and the adjustment of the light amount) of the projection area is performed by controlling the position of the plane filter is described. (Or power supply current) may be feedback controlled.
[0055]
Further, in the above embodiment, since the plane filter is disposed between the light source and the fly-eye lens, the light beam transmitted through the position of the plane filter is small, so that a plane filter having a small area can be used. .
[0056]
In the above-described embodiment, an example in which the same size projection optical system is used has been described. However, the present invention is not limited to this, and any one of a projection optical system having a predetermined magnification, a refraction system, and a reflection system may be used. May be used.
[0057]
In the above embodiment, the trapezoidal aperture of the field stop is described. However, the present invention is not limited to this, and a field stop having a hexagonal aperture may be used.
[0058]
Further, in the above embodiment, the configuration in which the illumination optical system and the projection optical system are arranged so that the projection area is arranged as shown in FIG. 3 has been described. However, the present invention is not limited to this, and the projection area is not limited thereto. A configuration excluding the illumination optical system and the projection optical system that form PA2 and PA4 may be adopted. In this case, after scanning the mask 12 and the photosensitive substrate 14 in the X direction, stepping a predetermined amount in the Y direction and scanning again in the direction opposite to the X direction, the entire surface of the pattern region of the mask 12 is exposed to the photosensitive substrate 14. Can be transferred on top.
[0059]
【The invention's effect】
As described above, according to the present invention, it is possible to prevent a variation in illuminance between the illumination optical systems (between the projection areas) due to a variation in the light quantity during the exposure, and it is possible to prevent a temporal change in the light quantity between the projection areas. There is an unprecedented superior effect that the occurrence of exposure failure due to unevenness can be prevented.
[0060]
In particular, according to the second aspect of the invention, there is an effect that it is possible to reduce the illuminance difference near the boundary between the mutually adjacent projection areas.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a schematic configuration of an exposure apparatus according to an embodiment.
FIG. 2 is an external perspective view of the exposure apparatus of FIG.
FIG. 3 is a view showing a projection area on a photosensitive substrate in the apparatus of FIG. 1;
4A and 4B are diagrams showing a planar filter, wherein FIG. 4A is a plan view, FIG. 4B is a front view, and FIG. 4C is a diagram showing a change characteristic of transmittance.
FIG. 5 is a diagram for explaining illuminance adjustment of a joint.
FIG. 6 is a diagram illustrating another example of the planar filter.
FIG. 7 is a diagram illustrating an example of a case where two planar filters are used.
[Explanation of symbols]
10 Exposure equipment
12 Mask
14 Photosensitive substrate
24 Uniformity measurement sensor (first light quantity sensor)
32 Fly Eye Lens (Optical Integrator)
42 plane filter
44 Filter drive unit (drive means)
46 Illuminance sensor in illumination system (second light quantity sensor)
48 control unit (control means)
PL1 to PL5 Projection optical system
L01-L05 Illumination optical system
PA1 to PA5 Projection area

Claims (7)

マスクと感光基板とを所定の走査方向に同期して移動しつつ前記マスク上のパターンを投影光学系を介して前記感光基板上に逐次転写する露光装置であって、
前記マスク上の複数の部分領域のそれぞれを照明する複数の照明光学系と;
前記各照明光学系に対応してそれぞれ配置され、前記マスク上の前記各部分領域の像を前記感光基板上にそれぞれ投影する複数の投影光学系と;
前記各照明光学系に少なくとも各1つ設けられ、前記走査方向に沿って透過率が連続的に増加又は減少する部分を有する複数の平面フィルタと;
前記各部分領域の像がそれぞれ投影される各投影領域内の検出領域に照射される照明光の光量を前記感光基板表面とほぼ同一面上で検出する第1の光量センサと;
前記各照明光学系内に配置され、当該各照明光学系内の照明光の光量を検出する複数の第2の光量センサと;
前記複数の平面フィルタを独立して走査方向に駆動する駆動手段と;
前記第1の光量センサ及び前記複数の第2の光量センサの出力を選択的に取り込むと共にこの出力に基づいて前記駆動手段を制御する制御手段とを有する露光装置。
An exposure apparatus that sequentially transfers a pattern on the mask onto the photosensitive substrate via a projection optical system while moving the mask and the photosensitive substrate in synchronization with a predetermined scanning direction,
A plurality of illumination optical systems for illuminating each of the plurality of partial regions on the mask;
A plurality of projection optical systems arranged corresponding to the respective illumination optical systems and projecting the images of the respective partial areas on the mask onto the photosensitive substrate;
A plurality of planar filters provided at least one in each of the illumination optical systems and having a portion whose transmittance continuously increases or decreases along the scanning direction;
A first light quantity sensor for detecting the quantity of illumination light applied to a detection area in each projection area on which the image of each of the partial areas is projected on substantially the same plane as the photosensitive substrate surface;
A plurality of second light amount sensors disposed in each of the illumination optical systems and detecting the amount of illumination light in each of the illumination optical systems;
Driving means for independently driving the plurality of planar filters in the scanning direction;
An exposure apparatus comprising: a control unit that selectively takes in outputs of the first light amount sensor and the plurality of second light amount sensors and controls the driving unit based on the outputs.
前記複数の照明光学系は、前記マスク上に前記走査方向に互いに変位してかつ前記走査方向と直交する方向に沿って所定間隔で配置された複数の部分領域のそれぞれを照明すると共に、前記複数の投影光学系は、相互に隣接する前記部分領域の像の前記走査方向に直交する方向の一部が前記走査方向に沿って相互に重複する状態で前記感光基板上に投影することを特徴とする請求項1記載の露光装置。The plurality of illumination optical systems illuminate each of the plurality of partial regions which are displaced from each other in the scanning direction on the mask and are arranged at predetermined intervals along a direction orthogonal to the scanning direction, and The projection optical system is characterized in that the images of the partial areas adjacent to each other are projected on the photosensitive substrate in a state where a part of the direction orthogonal to the scanning direction overlaps with each other along the scanning direction. The exposure apparatus according to claim 1, wherein 前記各照明光学系の内部に照明光束の照度ムラ低減用のオプティカルインテグレータがそれぞれ設けられ、当該オプティカルインテグレータより光源側に前記各平面フィルタがそれぞれ配置されていることを特徴とする請求項1又は2に記載の露光装置。An optical integrator for reducing illuminance unevenness of an illumination light beam is provided inside each of the illumination optical systems, and the planar filters are arranged on a light source side of the optical integrator, respectively. Exposure apparatus according to 1. 前記複数の第2の光量センサは、前記駆動手段と前記第1のThe plurality of second light amount sensors include the driving unit and the first light amount sensor. 光量センサとを連動させて前記各投影領域内での光量に基づき出力のキャリブレーションが行われることを特徴とする請求項1に記載の露光装置。2. The exposure apparatus according to claim 1, wherein output calibration is performed based on a light amount in each of the projection areas in conjunction with a light amount sensor. 前記制御手段は、前記マスク上のパターンを前記感光基板上に転写中、前記複数の第2の光量センサの出力に基づいて前記駆動手段を制御することを特徴とする請求項1又は4に記載の露光装置。5. The control unit according to claim 1, wherein the control unit controls the driving unit based on outputs of the plurality of second light amount sensors while transferring the pattern on the mask onto the photosensitive substrate. 6. Exposure equipment. 前記第1の光量センサは、前記感光基板表面とほぼ同一面で、前記複数の投影光学系の投影領域に対応して2次元に移動可能であることを特徴とする請求項1に記載の露光装置。2. The exposure according to claim 1, wherein the first light quantity sensor is two-dimensionally movable substantially in the same plane as the surface of the photosensitive substrate and corresponding to the projection areas of the plurality of projection optical systems. apparatus. 前記第1の光量センサは、前記投影領域内における複数点の計測値に基づいて前記照明光の光量を求めることを特徴とする請求項1又は4に記載の露光装置。The exposure apparatus according to claim 1, wherein the first light amount sensor obtains a light amount of the illumination light based on measurement values of a plurality of points in the projection area.
JP16006295A 1995-06-02 1995-06-02 Exposure equipment Expired - Lifetime JP3550597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16006295A JP3550597B2 (en) 1995-06-02 1995-06-02 Exposure equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16006295A JP3550597B2 (en) 1995-06-02 1995-06-02 Exposure equipment

Publications (2)

Publication Number Publication Date
JPH08330218A JPH08330218A (en) 1996-12-13
JP3550597B2 true JP3550597B2 (en) 2004-08-04

Family

ID=15707082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16006295A Expired - Lifetime JP3550597B2 (en) 1995-06-02 1995-06-02 Exposure equipment

Country Status (1)

Country Link
JP (1) JP3550597B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000047390A (en) * 1998-05-22 2000-02-18 Nikon Corp Exposure device and its production
JP4649717B2 (en) * 1999-10-01 2011-03-16 株式会社ニコン Exposure method, exposure apparatus, and device manufacturing method

Also Published As

Publication number Publication date
JPH08330218A (en) 1996-12-13

Similar Documents

Publication Publication Date Title
JP3376690B2 (en) Exposure apparatus and exposure method using the same
JP3339149B2 (en) Scanning exposure apparatus and exposure method
US5581075A (en) Multi-beam scanning projection exposure apparatus and method with beam monitoring and control for uniform exposure of large area
KR100562804B1 (en) Maskless lithography systems and methods for utilizing spatial light modulator arrays
US8456617B2 (en) Exposure method, exposure device, and micro device manufacturing method
KR960042227A (en) Projection exposure apparatus
JP2004327660A (en) Scanning projection aligner, exposure method, and device manufacturing method
JP2007052214A (en) Scanning exposure apparatus and method for manufacturing microdevice
JP2004304135A (en) Exposure device, exposing method and manufacturing method of micro-device
US6873400B2 (en) Scanning exposure method and system
US6288772B1 (en) Scanning exposure method and scanning type exposure apparatus
JP2004319899A (en) Exposure device and exposure method
JP2007101592A (en) Scanning exposure apparatus and method for manufacturing microdevice
US5668624A (en) Scan type exposure apparatus
KR100280764B1 (en) Exposure equipment
JP2007059510A (en) Lighting optical device, aligner and manufacturing method of micro device
US20110080570A1 (en) Exposure apparatus and exposure method
JP3550597B2 (en) Exposure equipment
JP3476098B2 (en) Exposure equipment
JP3458477B2 (en) Exposure apparatus and exposure method
JP3620612B2 (en) Exposure amount control device
JPH11160887A (en) Aligner
JPH09213615A (en) Scanning type aligner
WO2023282210A1 (en) Exposure device, exposure method, method for manufacturing flat panel display, and method for creating exposure data
JP2003031461A (en) Exposure system and method of exposure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040404

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term