WO2023282210A1 - Exposure device, exposure method, method for manufacturing flat panel display, and method for creating exposure data - Google Patents

Exposure device, exposure method, method for manufacturing flat panel display, and method for creating exposure data Download PDF

Info

Publication number
WO2023282210A1
WO2023282210A1 PCT/JP2022/026496 JP2022026496W WO2023282210A1 WO 2023282210 A1 WO2023282210 A1 WO 2023282210A1 JP 2022026496 W JP2022026496 W JP 2022026496W WO 2023282210 A1 WO2023282210 A1 WO 2023282210A1
Authority
WO
WIPO (PCT)
Prior art keywords
exposure
light
optical system
exposure target
projection optical
Prior art date
Application number
PCT/JP2022/026496
Other languages
French (fr)
Japanese (ja)
Inventor
正紀 加藤
仁 水野
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to JP2023533108A priority Critical patent/JPWO2023282210A1/ja
Priority to CN202280047260.7A priority patent/CN117597632A/en
Priority to KR1020247000251A priority patent/KR20240017069A/en
Publication of WO2023282210A1 publication Critical patent/WO2023282210A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70283Mask effects on the imaging process
    • G03F7/70291Addressable masks, e.g. spatial light modulators [SLMs], digital micro-mirror devices [DMDs] or liquid crystal display [LCD] patterning devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/70475Stitching, i.e. connecting image fields to produce a device field, the field occupied by a device such as a memory chip, processor chip, CCD, flat panel display

Definitions

  • the present invention relates to an exposure apparatus, an exposure method, a flat panel display manufacturing method, and an exposure data creation method.
  • This application claims priority based on Japanese Patent Application No. 2021-111848 filed on July 5, 2021, the content of which is incorporated herein.
  • an exposure apparatus that irradiates a substrate with illumination light through an optical system
  • light modulated by a spatial light modulator is passed through a projection optical system, and an image of this light is projected onto a resist coated on the substrate.
  • An exposure apparatus that forms an image and performs exposure is known (see, for example, Patent Document 1).
  • a plurality of spatial light modulators having a plurality of elements, an illumination optical system for illuminating the plurality of spatial light modulators with pulsed light, and light emitted from the spatial light modulators a stage on which the exposure target is placed; a first state in which the plurality of elements guide the pulsed light to the projection optical system; and a control unit for switching to a second state in which the stage is not guided to the optical system, wherein the stage moves the exposure target in a predetermined scanning direction while overlapping the scanning exposure field by the plurality of the projection optical systems.
  • the light irradiated onto the exposure object scans the exposure object, and the control unit switches the plurality of elements between the first state and the second state in the exposure, and
  • the number of the pulsed light beams irradiated via the projection optical system onto the overlapping portion where exposure is performed in an overlapped manner is such that the projection optical system is applied to the non-overlap portion where exposure is performed without overlapping on the exposure object.
  • An exposure apparatus is provided that controls the plurality of elements to be greater than the number of the pulsed lights irradiated through the exposure apparatus.
  • a method of exposing an object to be exposed using the above-described exposure apparatus wherein the stage overlaps the scanning exposure field by a plurality of the projection optical systems, and the exposure is performed.
  • the light irradiating the object to be exposed scans the object to be exposed.
  • the number of the pulsed lights irradiated via the projection optical system to the overlapping portion exposed on the exposure target is changed to the non-overlap exposure target on the exposure target without overlap.
  • An exposure method is provided in which the plurality of elements are controlled so that the number of the pulsed lights irradiated onto the wrap portion via the projection optical system is greater than the number of the pulsed lights.
  • a method of manufacturing a flat panel display including exposing an exposure target by the exposure method described above and developing the exposed exposure target.
  • a plurality of spatial light modulators having a plurality of elements, an illumination optical system for illuminating the plurality of spatial light modulators with pulsed light, and light emitted from the spatial light modulators a stage on which the exposure target is placed; a first state in which the plurality of elements guide the pulsed light to the projection optical system; and a control unit for switching to a second state in which the stage is not guided to the optical system, wherein the stage moves the exposure target in a predetermined scanning direction while overlapping the scanning exposure field by the plurality of the projection optical systems.
  • an exposure data creation method for creating exposure data for controlling the plurality of elements so that the number of the pulsed lights irradiated through the device is larger than the number of the pulsed lights.
  • FIG. 1 is a diagram showing an overview of an external configuration of an exposure apparatus according to a first embodiment
  • FIG. 3 is a diagram showing an overview of the configurations of an illumination module and a projection module
  • It is a figure which shows the outline
  • 4 is a diagram showing an overview of the configuration of an optical modulation section
  • FIG. 4 is a diagram showing the outline of the configuration of the light modulating section, and showing the ON state of the mirror in the center of the paper.
  • FIG. 4 is a diagram showing the outline of the configuration of the light modulating section, and showing the OFF state of the mirror in the center of the paper.
  • (A) shows the exposure fields of two projection modules
  • (B) is a diagram showing an exposure region formed on an exposure target.
  • FIG. 10 is a diagram schematically showing an arrangement example of rectangular projection areas of spatial light modulators projected onto a substrate of an exposure apparatus according to a second embodiment;
  • FIG. 10 is a diagram showing a state of joint exposure (normal exposure mode) using only two projection areas in FIG. 9;
  • FIG. 10 is a diagram schematically showing an arrangement example of rectangular projection areas of spatial light modulators projected onto a substrate of an exposure apparatus according to a second embodiment;
  • FIG. 10 is a diagram showing a state of joint exposure (normal exposure mode) using only two projection areas in FIG. 9;
  • FIG. 10 is a diagram showing a state of joint exposure (normal exposure mode) using only two projection areas in FIG. 9;
  • FIG. 10 is a diagram schematically showing an example of a special exposure mode for a negative resist
  • FIG. 11 is a diagram showing an example of distribution in the Y direction of the cumulative number of ON-state mirrors that are exposed in the spliced region in a modified example
  • (A) is a diagram showing an example of distribution in normal exposure mode
  • (B) is a diagram showing an example of distribution in special exposure mode.
  • (A) is a diagram showing an exposure region formed on an exposure target when the exposure target is exposed according to the third embodiment.
  • (B) is a diagram showing an exposure region formed on an exposure target.
  • C is a graph showing the integrated number of pulses by scanning exposure. It is a figure which shows typically an example of the exposure mode of the exposure apparatus which concerns on 4th Embodiment.
  • FIG. 1 is a diagram showing an overview of the external configuration of an exposure apparatus 1 according to the first embodiment.
  • the exposure apparatus 1 is an apparatus that irradiates an exposure target with modulated light.
  • the exposure apparatus 1 is a step-and-scan projection exposure apparatus that exposes rectangular glass substrates used in electronic devices such as liquid crystal displays (flat panel displays). is a so-called scanner.
  • the glass substrate, which is the object to be exposed may have at least one side length or diagonal length of 500 mm or more.
  • the glass substrate, which is the object to be exposed may be a substrate for a flat panel display.
  • An exposure target (for example, a substrate for a flat panel display) exposed by the exposure apparatus 1 is developed and provided as a product.
  • a resist eg, negative resist
  • the apparatus main body of the exposure apparatus 1 is configured similarly to the apparatus main body disclosed in US Patent Application Publication No. 2008/0030702, for example.
  • the exposure apparatus 1 includes a base 11, an anti-vibration table 12, a main column 13, a stage 14, an optical surface plate 15, an illumination module 16, a projection module 17 (projection optical system), a light source unit 18, an optical fiber 19, and an optical modulator 20. (not shown in FIG. 1) and a control unit 21 .
  • the direction parallel to the optical axis direction of the projection module 17 that irradiates the light modulated by the light modulation section 20 onto the exposure object is defined as the Z-axis direction
  • the direction of a predetermined plane orthogonal to the Z-axis is defined as the X-axis direction
  • the X-axis direction and the Y-axis direction are directions orthogonal (intersecting) each other.
  • the X-axis direction is the scanning movement direction of the exposure object (substrate) 23 and the Y-axis direction is the stepping direction of the exposure object (substrate) 23 .
  • the base 11 is the base of the exposure apparatus 1 and is installed on the anti-vibration table 12 .
  • the base 11 supports a stage 14 on which an object to be exposed is placed so as to be movable in the X-axis direction and the Y-axis direction.
  • the stage 14 supports the exposure target.
  • the stage 14 is for positioning the exposure object with high precision with respect to a plurality of partial images of the circuit pattern projected via the projection module 17 in scanning exposure.
  • the stage 14 drives the object to be exposed in directions of six degrees of freedom (the above-described X-, Y-, and Z-axis directions and rotational directions about the respective axes).
  • the stage 14 is moved at a predetermined constant speed in the X-axis direction during scanning exposure, and is step-moved in the Y-axis direction when changing the exposure target area on the exposure object. A plurality of exposure target areas are formed on the exposure target.
  • the stage 14 relatively moves the object to be exposed and the projection module 17 in the scanning direction.
  • the exposure apparatus 1 is capable of exposing a plurality of exposure target areas on one exposure target.
  • a stage device such as that disclosed in US Patent Application Publication No. 2012/0057140 can be used.
  • the stage device is a so-called coarse and fine movement stage device including, for example, a gantry type two-dimensional coarse movement stage and a fine movement stage that is finely driven with respect to the two-dimensional coarse movement stage.
  • the coarse movement stage can move the exposure object in directions of three degrees of freedom in the horizontal plane
  • the fine movement stage can finely move the exposure object in directions of six degrees of freedom.
  • the main column 13 supports the optical surface plate 15 above the stage 14 (in the positive direction of the Z axis).
  • the optical platen 15 supports the illumination module 16 , the projection module 17 and the light modulation section 20 .
  • FIG. 2 is a diagram showing the outline of the configuration of the lighting module 16, the projection module 17, and the light modulating section 20.
  • the illumination module 16 is arranged above the optical surface plate 15 and connected to the light source unit 18 via the optical fiber 19 .
  • the lighting modules 16 include a first lighting module 16A, a second lighting module 16B, a third lighting module 16C and a fourth lighting module 16D.
  • the first lighting module 16A to the fourth lighting module 16D are not distinguished, they are collectively referred to as the lighting module 16.
  • FIG. 1 when the first lighting module 16A to the fourth lighting module 16D are not distinguished, they are collectively referred to as the lighting module 16.
  • Each of the first lighting module 16A to the fourth lighting module 16D converts the light emitted from the light source unit 18 via the optical fiber 19 into a first light modulating section 20A, a second light modulating section 20B, and a third light modulating section. The light is guided to each of 20C and the fourth optical modulation section 20D. The lighting module 16 illuminates the light modulating section 20 .
  • the light modulation unit 20 is controlled based on drawing data (digital data such as a two-dimensional bitmap format) of a circuit pattern to be transferred to a substrate 23 as an exposure object, and is controlled by an illumination module.
  • the spatial intensity distribution of illumination light from 16 is dynamically modulated according to the pattern to be exposed.
  • the modulated light modulated by the light modulating section 20 is guided to the projection module 17 .
  • the first optical modulating section 20A to the fourth optical modulating section 20D are arranged at different positions on the XY plane. In the following description, when the first optical modulation section 20A to the fourth optical modulation section 20D are not distinguished, they are collectively referred to as the optical modulation section 20.
  • the projection module 17 is arranged below the optical surface plate 15 and irradiates the substrate 23 (having a photosensitive layer on its surface) placed on the stage 14 with the modulated light modulated by the light modulation section 20 .
  • the projection module 17 forms an image on the substrate 23 with the light modulated by the light modulation unit 20 (image of light intensity distribution according to the pattern), and exposes the photosensitive layer (photoresist) of the substrate 23 .
  • the projection module 17 projects the image of the dynamically variable pattern generated by the light modulating section 20 onto the substrate 23 .
  • the projection module 17 includes first projection modules 17A to A fourth projection module 17D is included. In the following description, when the first projection module 17A to the fourth projection module 17D are not distinguished, they are collectively referred to as the projection module 17.
  • a unit composed of the first illumination module 16A, the first light modulation section 20A, and the first projection module 17A is called a first exposure module.
  • a unit composed of the second illumination module 16B, the second light modulation section 20B, and the second projection module 17B is called a second exposure module.
  • Each exposure module is provided at a mutually different position on the XY plane, and can expose a pattern at a different position of the exposure target placed on the stage 14 .
  • the stage 14 can scan-expose the entire surface of the exposure target or the entire surface of the exposure target area by moving relative to the exposure module in the X-axis direction, which is the scanning direction. 1, the first illumination module 16A, the first projection module 17A, and the first exposure module 20A in FIG.
  • a plurality of the second exposure modules of the second illumination module 16B, the second projection module 17B, and the second light modulation section 20B in FIG. 2 are arranged side by side in the Y-axis direction.
  • a plurality of third exposure modules including the third illumination module 16C, the third projection module 17C, and the third light modulation section 20C in FIG. 2 are arranged side by side in the Y-axis direction.
  • a plurality of fourth exposure modules including the fourth illumination module 16D, the fourth projection module 17D, and the fourth light modulation section 20D in FIG. 2 are arranged side by side in the Y-axis direction.
  • the illumination module 16 is also called an illumination system.
  • the illumination module 16 (illumination system) illuminates a spatial light modulator 201 (spatial light modulation element) of the light modulation section 20, which will be described later.
  • the projection module 17 is also called a projection unit.
  • the projection module 17 (projection section) may be a one-to-one system that projects the image of the pattern on the light modulation section 20 at one-to-one magnification, or may be an enlargement system or a reduction system.
  • the projection module 17 is preferably made of one or two kinds of glass materials (especially quartz or fluorite).
  • a pair of light source units 18 (light source unit R18R, light source unit L18L) is provided.
  • the light source unit 18 a light source unit using a laser with high coherence as a light source, a light source unit using a light source such as a semiconductor laser type UV-LD, and a light source unit using a lens relay type retarder can be adopted.
  • Examples of the light source 18a included in the light source unit 18 include lamps and laser diodes that emit light with wavelengths of 405 nm and 365 nm.
  • the light source unit 18 may include a light distribution system that supplies illumination light (pulse light) with approximately the same illuminance to each optical fiber 19 .
  • the light source unit 18 outputs an ultraviolet pulse having a peak intensity at a specific wavelength within the ultraviolet wavelength range (300 to 436 nm) and an extremely short emission time of, for example, within several tens of picoseconds at a frequency of 100 kHz or higher.
  • a possible fiber amplifier laser light source can also be utilized.
  • the exposure apparatus 1 includes a position measuring unit (not shown) composed of an interferometer, an encoder, etc., in addition to the units described above, and measures the relative position of the stage 14 with respect to the optical surface plate 15 .
  • the exposure apparatus 1 includes an AF (Auto Focus) section 42 that measures the position of the stage 14 or the substrate 23 on the stage 14 in the Z-axis direction, in addition to the above-described sections. Furthermore, when the exposure apparatus 1 exposes a pattern (base layer) that has already been exposed on the substrate 23 so that another pattern is superimposed thereon, the alignment pattern formed on the base layer is used to align the relative positions of the respective patterns.
  • An alignment unit 41 is provided to measure the position of the mark.
  • the AF unit 42 and/or the alignment unit 41 may have a TTL (Through the lens) configuration for measurement via the projection module 17 .
  • FIG. 3 is a diagram showing the outline of the configuration of the exposure module. Taking the first exposure module as an example, an example of specific configurations of the illumination module 16, the light modulation section 20, and the projection module 17 will be described.
  • the illumination module 16 includes a module shutter 161 and an illumination optical system 162.
  • the module shutter 161 switches whether or not to guide the pulsed light supplied from the optical fiber 19 at a predetermined intensity and at a predetermined cycle to the illumination optical system 162 .
  • the illumination optical system 162 emits pulsed light supplied from the optical fiber 19 to the light modulation section 20 via a collimator lens 162A, a fly-eye lens 162C, a condenser lens 162E, and the like, so that the light modulation section 20 is almost Illuminate evenly.
  • the fly-eye lens 162 ⁇ /b>C wavefront-divides the pulsed light incident on the fly-eye lens 162 ⁇ /b>C, and the condenser lens 162 ⁇ /b>E superimposes the wavefront-divided light onto the light modulation section 20 .
  • the illumination optical system 162 may have a rod integrator instead of the fly-eye lens 162C.
  • the illumination optical system 162 of this embodiment further includes a variable neutral density filter 162B, a variable aperture stop 162D and a plane mirror 162F.
  • the variable neutral density filter 162B attenuates the illuminance of the illumination light (pulse light) incident on the fly-eye lens 162C to adjust the exposure amount.
  • the variable aperture stop 162D changes the illumination ⁇ by adjusting the size (diameter) of a substantially circular light source image formed on the exit surface side of the fly-eye lens 162C.
  • the plane mirror 162F reflects the illumination light (pulse light) from the condenser lens 162E so that the light modulation section 20 is obliquely illuminated.
  • the light modulation unit 20 includes a spatial light modulator (SLM) 201 that functions as a variable mask that changes the pattern of the spatial intensity distribution of the reflected light of the illumination light at high speed based on drawing data, and an off light.
  • SLM spatial light modulator
  • An absorbing plate 202 is provided.
  • the spatial light modulator 201 is a digital mirror device (digital micromirror device, DMD).
  • the spatial light modulator 201 can spatially and temporally modulate the illumination light.
  • FIG. 4 is a diagram showing an overview of the configuration of the spatial light modulator 201 of this embodiment. Description will be made using a three-dimensional orthogonal coordinate system of Xm-axis, Ym-axis, and Zm-axis in FIG.
  • the spatial light modulator 201 comprises a plurality of micromirrors 203 (mirrors) arranged on the XmYm plane.
  • the micromirrors 203 constitute elements (pixels) of the spatial light modulator 201 .
  • the micromirror 203 can change the tilt angle around the Xm axis and around the Ym axis. For example, as shown in FIG. 5, the micromirror 203 is turned on (first state) by tilting around the Ym axis.
  • the micromirror 203 is turned off (second state) by tilting around the Xm axis as shown in FIG.
  • Micromirrors 203 in the ON state guide the pulsed light to projection module 17 .
  • a micromirror 203 in the off state does not direct pulsed light to the projection module 17 .
  • the spatial light modulator 201 controls the direction in which incident light is reflected for each micromirror (element) by switching the tilt direction of the micromirror 203 for each micromirror 203 .
  • the digital micromirror device of the spatial light modulator 201 has a pixel count of about 4 Mpixels, and can switch the on state and off state of the micromirror 203 at a period of about 10 kHz.
  • a plurality of elements of the spatial light modulator 201 are individually controlled at predetermined time intervals.
  • the element is the micromirror 203
  • the predetermined time interval is the period (for example, period 10 kHz) at which the micromirror 203 is switched between the ON state and the OFF state.
  • the off-light absorption plate 202 absorbs light (off-light) emitted (reflected) from the elements of the spatial light modulator 201 that are turned off. Light emitted from the ON-state elements of the spatial light modulator 201 is guided to the projection module 17 .
  • the projection module 17 projects the light emitted from the ON-state elements of the spatial light modulator 201 onto the exposure object.
  • the projection module 17 includes a magnification adjustment section 171 and a focus adjustment section 172 .
  • Light modulated by the spatial light modulator 201 enters the magnification adjustment unit 171 .
  • the magnification adjustment unit 171 adjusts the magnification of the imaging plane 163 of the modulated light emitted from the spatial light modulator 201 by driving some lenses in the optical axis direction.
  • Imaging plane 163 is the imaging plane (best focus plane) produced by projection module 17 that is conjugate with the overall reflective surface of spatial light modulator 201 .
  • the magnification adjustment unit 171 adjusts the magnification of the image on the surface of the substrate 23 as the exposure target.
  • the focus adjustment unit 172 drives the entire lens group in the optical axis direction so that the modulated light emitted from the spatial light modulator 201 forms an image on the surface of the substrate 23 measured by the AF unit 42 described above. Then, adjust the imaging position, that is, the focus.
  • the projection module 17 projects only the light image emitted from the turned-on element of the spatial light modulator 201 onto the surface of the exposure object. Therefore, the projection module 17 can project and expose the surface of the substrate 23 with the image of the pattern formed by the ON elements of the spatial light modulator 201 . That is, the projection module 17 can form a spatially modulated image of the variable mask on the surface of the substrate 23 .
  • the spatial light modulator 201 can switch the micromirror 203 between the ON state and the OFF state at a predetermined period (frequency) as described above, the projection module 17 can generate temporally modulated modulated light (i.e.
  • modulated light in which the light and dark shape (light distribution) in the XY plane of the imaging light flux that is reflected by the spatial light modulator 201 and enters the projection module 17 changes rapidly with time is formed on the surface of the substrate 23. can do.
  • the numerical aperture (NA) on the substrate 23 side of the imaging light flux reflected by the micromirrors in the ON state of the spatial light modulator 201 is adjusted (limited) to adjust the resolution and the depth of focus DOF.
  • a variable aperture stop 173 is provided for use in varying the .
  • the variable aperture stop 162D and the variable aperture stop 173 are optically substantially conjugate.
  • the spatial light modulator 201 is illuminated with pulsed light supplied at a predetermined cycle. Therefore, the spatial light modulator 201 is driven with a cycle that is an integral multiple of the cycle of the pulsed light. For example, where Tm is the period of the driving frequency (10 kHz) of the micromirrors of the spatial light modulator 201 and Tp is the period of the pulsed light, Tm/Tp is set to be an integer.
  • the projection module 17 irradiates the substrate 23 with pulsed light modulated by the spatial light modulator 201 .
  • a pattern is formed on the substrate 23 by an aggregate of pulsed light.
  • a plurality of pulsed lights (its center position) guided to the exposure object by the projection module 17 are guided to different positions on the substrate 23 .
  • the Xm-axis is parallel to the X-axis and the Ym-axis is parallel to the Y-axis.
  • the micromirror 203 in the ON state tilts with respect to the X-axis direction, which is the scanning direction.
  • the Ym axis is also called the first tilt axis T1.
  • the plurality of micromirrors 203 rotate around the first tilt axis T1 (Ym axis), and the plurality of micromirrors 203 adjust their tilts with respect to the scanning direction to turn on. , to emit light to the projection module 17 .
  • the plurality of micromirrors 203 are arranged linearly in the scanning direction, and the plurality of micromirrors 203 are also arranged in the direction of the first tilt axis T1.
  • control unit 21 is configured by, for example, a computer having an arithmetic unit such as a CPU and a storage unit.
  • the computer controls each part of the exposure apparatus 1 according to a program that controls each part that operates in exposure processing.
  • the controller 21 controls operations of the illumination module 16, the light modulator 20, the projection module 17, and the stage 14, for example.
  • the controller 21 switches the plurality of micromirrors 203 between an ON state (first state) and an OFF state (second state).
  • the storage unit is configured using a computer-readable storage medium device such as memory.
  • the storage unit stores various information regarding exposure processing.
  • the storage unit stores, for example, information about the exposure pattern in the exposure process (including recipe information such as target exposure amount and scanning speed in addition to drawing data).
  • the storage unit stores information input via the communication unit or the input unit, for example.
  • the communication unit includes a communication interface for connecting the exposure apparatus to an external device.
  • the input unit includes input devices such as a mouse, keyboard, and touch panel. The input unit receives input of various information for the exposure apparatus.
  • the stage 14 relatively moves the substrate 23 in a predetermined scanning direction with respect to the exposure module.
  • the light emitted by the exposure module scans the substrate 23 based on the information on the exposure pattern stored in the storage unit, and a predetermined exposure pattern is formed.
  • FIG. 7 is a diagram showing the exposure fields of view PIa and PIb of two adjacent projection modules 17 on the substrate 23 .
  • the exposure fields PIa and PIb are rectangular.
  • the long side directions of the exposure fields PIa and PIb are inclined with respect to the X direction and the Y direction.
  • the exposure fields of view PIa and PIb have shapes similar to the shape of the entire region where many micromirrors of the spatial light modulator 201 are arranged.
  • a central area PIac is an area of the exposure visual field PIa in which two long sides overlap in the X direction.
  • the edge area on the -Y side that is not included in the central area PIac is referred to as a first edge area PIa1.
  • a +Y-side end region of the exposure field PIa that is not included in the central region PIac is referred to as a second end region PIa2.
  • a central area PIbc is an area where two long sides of the exposure field PIb overlap in the X direction.
  • the edge area on the -Y side that is not included in the central area PIbc is referred to as a first edge area PIb1.
  • a +Y-side end region of the exposure visual field PIb that is not included in the central region PIbc is referred to as a second end region PIb2.
  • the Y-direction lengths of the central regions PIac and PIbc of the exposure fields PIa and PIb are both the width Ws.
  • Each of the first end regions PIa1, PIb1 and the second end regions PIa2, PIb2 has a width Wo.
  • the X-direction positions of the first end region PIa1 and the second end region PIb2 substantially match.
  • the shape and position of the exposure fields PIa and PIb are set by setting the arrangement of the exposure modules, the diaphragm, and the like.
  • FIG. 7 is a diagram showing an exposure area formed on the substrate 23 when the exposure target is scanned in the X direction by the stage 14 and exposed by the exposure visual fields PIa and PIb.
  • a scanning exposure area SIa exposed by the exposure field PIa and a scanning exposure area SIb exposed by the exposure field PIb are formed.
  • the scanning exposure areas SIa and SIb are obtained by extending the exposure visual fields PIa and PIb in the X direction by scanning exposure in the X direction.
  • the non-scanning direction end portions of the scanning exposure regions SIa and SIb overlap the non-scanning direction end portions of the adjacent scanning exposure regions SIa and SIb.
  • the exposed area by the first end area PIa1 and the exposed area by the second end area PIb2 match.
  • a "non-scanning direction" is a direction that intersects the scanning direction.
  • FIG. 7C is a graph showing the amount of exposure on the substrate 23 exposed by scanning exposure in the X direction.
  • the vertical axis of the graph is the amount of exposure.
  • the amount of exposure is a value that indicates the amount of exposure in the "overlap area” relative to the amount of exposure on the object to be exposed in the "non-overlap area", which will be described later.
  • the horizontal axis is the coordinate in the Y direction.
  • the amount of light E on the object to be exposed is a constant value E1.
  • the exposure amount E in the portion exposed by one of the scanning exposure fields SIa and SIb (hereinafter also referred to as “non-overlapping portion”) Sa and Sb
  • the exposure amount E in the portion Oa where the two are overlapped and exposed (hereinafter also referred to as “overlap portion”) has a value of E1. Therefore, the amount of light E in the non-overlapping portions Sa and Sb is equal to the amount of light E in the overlapping portion Oa.
  • the non-overlapping portions Sa and Sb are regions exposed without overlapping.
  • FIG. 7 is a graph showing the integrated illuminance (integrated exposure amount) of the light irradiated to the exposure object by the scanning exposure in the X direction.
  • the vertical axis of the graph is the integrated illuminance.
  • the integrated illuminance is the total sum of (pulse) light applied to the exposure object in each of the "non-overlap area" and the "overlap area”. That is, the greater the number of pulses, the greater the integrated illuminance, and the less the number of pulses, the smaller the integrated illuminance.
  • the horizontal axis is the coordinate in the Y direction. As shown in FIG.
  • the integrated illuminance in the overlapping portion Oa is higher than the integrated illuminance in the non-overlapping portions Sa and Sb.
  • the amount of exposure E in the non-overlapping portions Sa and Sb and the amount of exposure E in the overlapping portion Oa are equal.
  • the control unit 21 controls the ON state and OFF state of the micromirror 203 of the spatial light modulator 201 in regions corresponding to the regions of the exposure visual fields PIa and PIb (first end region PIa1 and second end region PIb2). More specifically, the control unit 21 controls the plurality of micromirrors 203 so that the number of pulsed lights irradiated to the overlapping portion Oa is greater than the number of pulsed lights irradiated to the non-overlapping portions Sa and Sb. do.
  • the number of ON-state micromirrors 203 per unit area in the overlapping portion Oa can be greater than the number of ON-state micromirrors 203 per unit area in the non-overlapping portions Sa and Sb.
  • the integrated illuminance in the overlapping portion Oa can be made higher than the integrated illuminance in the non-overlapping portions Sa and Sb.
  • the control unit 21 controls the plurality of micromirrors 203 so that the number of pulsed lights irradiated on the overlapping portion Oa is greater than the number of pulsed lights irradiated on the non-overlapping portions Sa and Sb. to control.
  • the amount of exposure E in the non-overlapping portions Sa and Sb and the amount of exposure E in the overlapping portion Oa are equal. Therefore, the non-overlapping portions Sa, Sb and the overlapping portion Oa can be prevented from being uneven in the amount of exposure.
  • the plurality of micromirrors 203 are arranged so that the number of pulsed lights irradiated on the overlapping portion Oa is greater than the number of pulsed lights irradiated on the non-overlapping portions Sa and Sb. to control.
  • the amount of exposure E in the non-overlapping portions Sa and Sb and the amount of exposure E in the overlapping portion Oa are equal. Therefore, the non-overlapping portions Sa, Sb and the overlapping portion Oa can be prevented from being uneven in the amount of exposure.
  • the exposure apparatus 1 may include a master clock (oscillator that generates a master clock) (not shown) that serves as a reference for synchronization.
  • a master clock oscillator that generates a master clock
  • devices such as the stage 14, the illumination module 16, the projection module 17, and the light modulation section 20 may be driven based on the master clock.
  • the control unit 21 can control the timing of pulse emission of the light source 18 and the operation of each device on the basis of the master clock. By referring to the master clock, the operation timing of each device is appropriately adjusted individually, and the relationship of operation timings among a plurality of devices is appropriately set.
  • FIGS. 8A-8B show a comparative embodiment.
  • FIG. 8A is a diagram showing exposure fields PIa and PIb of two adjacent projection modules 17.
  • FIG. 8B is a diagram showing an exposure area formed on the substrate 23 when exposed through the exposure fields PIa and PIb.
  • FIG. 8C is a graph showing the amount of exposure by scanning exposure in the X direction.
  • D of FIG. 8 is a graph showing the integrated illuminance of light applied to the substrate 23 by scanning exposure in the X direction.
  • the integrated illuminance in the overlapping portion Oa is equal to the integrated illuminance in the non-overlapping portions Sa and Sb.
  • the photosensitivity E in the overlapping portion Oa is lower than the photosensitivity E2 in the non-overlapping portions Sa and Sb.
  • the photosensitivity is lowered in the overlapping portion Oa.
  • the non-overlapping portions Sa, Sb and the overlapping portion Oa have a large bias in the amount of exposure.
  • the number of pulsed lights irradiated to the overlapping portion Oa is equal to the number of pulsed lights irradiated to the non-overlapping portions Sa and Sb.
  • the first end region PIa1 and the second end region PIb2 are substantially aligned in the X direction.
  • the positional relationship with the two-end region PIb2 is not limited to the illustrated example.
  • the integrated illuminance in the overlapping portion can be adjusted. For example, when the exposure field of view PIa and the exposure field of view PIb are close to each other, the integrated illuminance in the overlapping portion increases.
  • the configuration of the light shielding member is not particularly limited, but is disclosed in WO 2020/145044, WO 2020/203002, WO 2020/203003, WO 2020/203111, and WO 2020/138497.
  • a light-shielding member such as a light-shielding member or a light-reducing filter can be used.
  • the light shielding member can shield the light irradiated to the central regions PIac and PIbc of the exposure fields PIa and PIb (see (A) of FIG. 7). Thereby, the integrated illuminance of the central regions PIac and PIbc can be made lower than those of the first end region PIa1 and the second end region PIb2.
  • the position of the edge portion of the scanning exposure field may shift in the widening direction. If the number of ON-state micromirrors is adjusted at a position near the center of the scanning exposure field, such positional deviation is less likely to occur. Taking this into consideration, it is preferable to select the micromirrors to be turned on. Adjusting the number of micromirrors that are in the ON state evenly on both edge portions of the scanning exposure field may facilitate the suppression of positional deviation. Misalignment may be intentionally introduced by adjusting the number of micromirrors that are turned on unevenly at both edges of the scanning exposure field.
  • the exposure apparatus 1 can manufacture an electronic device such as a liquid crystal display (flat panel display) using the exposure method described above.
  • FIG. 9 is a diagram schematically showing an arrangement example of rectangular projection areas PIa and PIb of the spatial light modulator 201 projected onto the substrate 23 by each of the projection modules 17A and 17B shown in FIG.
  • An example of an exposure apparatus 1 and an exposure method according to the second embodiment will be described with reference to this figure.
  • the same reference numerals may be given to the same configurations as in the first embodiment, and the description thereof may be omitted.
  • the projection modules 17C and 17D other than the projection modules 17A and 17B are not shown in FIG. 9, the projection modules 17C and 17D are similar to the projection modules 17A and 17B.
  • the centers Axa and Axb of the projection fields 17a and 17b are assumed to be the optical axis positions of the projection modules 17A and 17B, respectively, and coincide with the centers of the exposure fields (hereinafter also referred to as projection regions) PIa and PIb.
  • the projection area PIa and the projection area PIb are arranged with an angle of ⁇ p in the XY plane parallel to the surface of the substrate 23, and are arranged with a predetermined gap in the Y direction. Splice exposure is performed by scanning and exposing the substrate 23 in the X direction so that the ends of the projection regions PIa and PIb in the Y direction overlap each other.
  • the portion where the projection areas PIa and PIb overlap is referred to as a joint area (joint portion) PIw
  • the non-overlapping portions are referred to as non-joint areas PIac and PIbc.
  • Wo be the width of the spliced region PIw
  • Ws be the width of the non-spliced regions PIac and PIbc.
  • the angle ⁇ p is determined by the dimensions and arrangement pitch of the micromirrors on the spatial light modulator 201, the drawing accuracy (drawing resolution) of the pattern line width projected onto the substrate 23 via the projection module 17, and the like. It is generally within 10 degrees.
  • the width Wo of the joint area PIw in the Y direction can slightly shift each spatial light modulator 201 in the XY directions. , Wo>Dx ⁇ sin ⁇ p in consideration of the adjustment range in the case of micro-rotation within the XY plane.
  • FIG. 10 is a diagram showing a state of joint exposure (normal exposure mode) using only the two projection areas PIa and PIb in FIG.
  • the black points (dots) inside each of the projection areas PIa and PIb in FIG. 10 show examples of the arrangement of the micromirrors that are turned on.
  • the line A plurality of micromirrors located on each of L1 and L2 are selected and sequentially turned on (dots) in synchronization with the scanning movement position of the substrate 23 and the cycle of the pulsed light. Therefore, a plurality of dots on one line L1 or L2 are pulse-exposed on the same point on the substrate 23 in the X direction.
  • the number of ON-state micromirrors (the number of dots) positioned on the lines L1 and L2 in the non-splice area Ws is determined according to the target exposure amount.
  • the integrated number (pulse number) Nt of the micromirrors in the ON state is determined corresponding to the target exposure amount.
  • the above is the same for each position of the lines L6 and L7 in the non-joining area Ws in the adjacent projection area PIa, and the integrated number (number of pulses) of the micromirrors in the ON state is set to be Nt.
  • the portion in the Y direction where the integrated number is zero is the area where the micromirrors are set to the OFF state and no exposure is performed (non-exposure portion on the drawing data).
  • the integrated number of ON-state micromirrors (dots) positioned on each of the lines L3, L4, and L5 passing through the joint region Wo in FIG. 10 is also set to be Nt corresponding to the target exposure amount.
  • Wo>Dx ⁇ sin ⁇ p is set.
  • the joint region Wo is overexposed. Therefore, in the normal exposure mode, the number of dots positioned on each of the lines L3, L4, and L5 in the joint region Wo on the projection region PIa side, and the number of dots on the lines LL3 and L4 in the joint region Wo on the projection region PIb side. , L5 and the number of dots positioned on each of them is set to be the integrated number (number of pulses) Nt.
  • the micromirror of the spatial light modulator 201 corresponds to the number of pixels (3840 ⁇ 1920) of the 4K screen, depending on the illuminance of the illumination light and the angle ⁇ p, the line L1,
  • the integrated number Nt of the ON-state micromirrors (dots) on L2, L6, and L7 is desirably 30 or more, preferably 50 or more.
  • the size of one dot on the substrate 23 is about 1 ⁇ m.
  • some photoresists for example, negative resists, even if the same exposure amount (accumulated number Nt) is given to the spliced region Wo as to the non-spliced region Ws, the exposure dose is insufficient after resist development. (variation in line width due to non-linearity of photosensitive characteristics, etc.).
  • FIG. 11 is a diagram schematically showing an example of a special exposure mode for negative resist.
  • the projection areas PIa and PIb and the lines L1 to L7 in FIG. 11 are the same as in FIG. 10, and the patterns exposed in the projection areas PIa and PIb are also the same as in FIG. As described with reference to FIG. 10, Wo>Dx ⁇ sin ⁇ p is set.
  • the drawing pattern data for driving the mirrors of the DMD is created such that the integrated number with (the number of micromirrors in the ON state) is greater than the number Nt corresponding to the target exposure amount.
  • the dots indicated by arrows are added to the dots in FIG.
  • How much the number of dots (the number of micromirrors in the ON state) should be increased in the spliced region PIw, that is, how much the amount of exposure applied to the spliced region PIw should be increased depends on the type of negative resist and the resist layer. It can be obtained by preliminary test exposure, etc., taking into consideration the thickness, etc.
  • the cumulative number Np at the center position (on line L4) in the width direction of the joint region PIw is greater than Nt and reaches the maximum value.
  • the exposure apparatus 1 of this type is required to have an error of several percent or less, preferably 2% or less, with respect to the target exposure amount. If the cumulative number Nt (see FIGS. 10 and 11) for obtaining the target exposure amount is set to 50, the increase or decrease of one of the dots results in an error of ⁇ 2%. Therefore, it is desirable that the integrated number Nt corresponding to the target exposure amount is as large as possible, but the drawing pattern data may increase accordingly. Also, this means that the integrated number Nt can be adjusted relatively freely with respect to the position in the Y direction. It is also possible to finely adjust the exposure amount by making the above differences.
  • FIG. 12 is a diagram showing a modification of the Y-direction distribution of the cumulative number of ON-state mirrors (dots) exposed in the spliced region PIw.
  • 12A and 12B show the illuminance of illumination light projected on the spatial light modulator 201 that generates the left projection area PIb and the spatial light modulator 201 that generates the right projection area PIa. Schematically shows correspondence when a difference occurs.
  • 12A corresponds to the normal exposure mode of FIG. 10
  • FIG. 12B corresponds to the special exposure mode of FIG.
  • the left projection area PIb has a higher illuminance than the right projection area PIa. Therefore, the integrated number Nt1 of ON-state mirrors required to obtain the target exposure amount on the projection area PIb side is less than the integrated number Nt2 of ON-state mirrors required to obtain the target exposure amount on the projection area PIa side. is set to be less. Then, as shown in FIG. 12A, the integrated number in the joint region PIw is set so as to linearly change between Nt1 and Nt2 according to the position in the Y direction.
  • (B) of FIG. 12 also shows a case in which there is a difference in illuminance between the left and right sides, and in the joint region PIw, the number of integrated pieces is set to be larger than the linear change in (A). be done.
  • This modification is used when the illuminance of illumination light to the spatial light modulators 201 cannot be precisely aligned among a large number of exposure modules, or when the reflected light intensity from the spatial light modulators 201 is precisely aligned between modules. It can be applied when the exposure apparatus is no longer available, and the operation time for stable operation of the exposure apparatus can be extended.
  • the number of micromirrors in the ON state is adjusted at the edge portion of the pattern existing in the splice region PIw shown in FIG. position may shift in the Y direction (line width widens).
  • the additional ON-state micromirrors are selected to be located inside the edge of the projected pattern in the ON state. As a result, it is possible to suppress the positional deviation of the pattern existing in the splicing region PIw and the fluctuation of the line width.
  • both edges in the Y direction of the pattern existing in the joint region PIw are slightly widened. Micromirrors corresponding to both edge portions can be intentionally added and turned on so as to do so.
  • FIG. 13A is a diagram showing an exposure region formed on an exposure target when the exposure target (substrate 23) according to the third embodiment is exposed.
  • (B) is a diagram showing an exposure region formed on an exposure target.
  • (C) is a graph showing the integrated number of pulses by scanning exposure.
  • An example of an exposure apparatus 1 and an exposure method according to the third embodiment will be described with reference to this figure. In the following description, the same reference numerals may be given to the same configurations as in the first embodiment, and the description thereof may be omitted.
  • FIG. 7 shows an example of exposing the overlapping portion Oa using two projection modules 17 adjacent in a direction intersecting the scanning direction (for example, the Y direction). An example is shown in which two projection modules 17 (for example, 17b and 17d) adjacent in direction are used to make the integrated pulse number in the overlapping portion Oa higher than the integrated pulse number in the non-overlapping portions Sa and Sb.
  • FIG. 13 shows the exposure regions formed on the exposure object when the exposure object is scanned in the X direction by the stage 14 and exposed by the exposure visual fields PIa and PIb. As shown in FIG. 13A, a scanning exposure area SIa exposed by the exposure field PIa and a scanning exposure area SIb exposed by the exposure field PIb are formed on the exposure object.
  • the scanning exposure areas SIa and SIb are obtained by extending the exposure visual fields PIa and PIb in the X direction by scanning exposure in the X direction.
  • the scanning-direction end of the scanning exposure region SIa overlaps the scanning-direction end of the adjacent scanning exposure region SIb.
  • the non-overlapping portions Sa and Sb are areas exposed only in the scanning exposure area SIa or only in the scanning exposure area SIb without the scanning exposure area SIa and the scanning exposure area SIb overlapping.
  • the number of integrated pulses in the overlapping portion Oa can be made higher than the number of integrated pulses in the non-overlapping portions Sa and Sb.
  • the scanning exposure area SIa and the scanning exposure area SIb can have an overlapping portion Oa in the non-scanning direction. As a result, the moving distance of the stage 14 in the scanning direction can be reduced while keeping the line width of the negative resist at a predetermined amount.
  • the stage 14 scans the exposure object in the +X direction to form the scanning exposure area SIa
  • the stage 14 is moved in the -X direction by an amount corresponding to the overlapping portion Oa, and then the exposure object can be scanned in the +X direction by the stage 14 to form the scanning exposure area SIb.
  • the scanning exposure area SIa and the scanning exposure area SIb are formed by scanning the exposure object in the same direction.
  • the scanning direction of the exposure object may be reversed from the scanning direction of the exposure object when forming the scanning exposure region SIb.
  • the width of the overlapping portion Oa in the scanning direction can be changed. For example, if the width is increased, it is possible to average and reduce the effects of stage movement errors that may occur during scanning exposure. If the width is shortened, the exposure time of the overlapping portion Oa can be shortened, and the overall distance traveled by the stage can be shortened.
  • the horizontal axis indicates the position of the exposure object in the scanning direction.
  • the vertical axis is the integrated pulse number.
  • the integrated pulse number can be monotonically changed (monotonously increased or monotonously decreased).
  • the integrated pulse number can be monotonously changed (monotonously increased or monotonously decreased).
  • the monotonous change includes not only linear monotonous change as shown in FIG. 13C, but also nonlinear monotonous change.
  • the resist has non-linear photosensitivity, it is particularly effective to non-linearly change the cumulative number of pulses when exposing the overlapping portion Oa.
  • FIG. 14 is a diagram schematically showing an example of exposure modes of an exposure apparatus according to the fourth embodiment.
  • An example of an exposure apparatus 1 and an exposure method according to the fourth embodiment will be described with reference to this figure.
  • the same reference numerals may be given to the same configurations as in the first embodiment, and the description thereof may be omitted.
  • the number of integrated pulsed lights irradiated to the overlapping portion Oa can be made larger than the number of integrated pulsed lights irradiated to the non-overlapping portions Sa and Sb. That is, the number of micromirrors that can be used for exposing the overlapping portion Oa can be made larger than the number of micromirrors that can be used for exposing the non-overlapping portions Sa, Sb.
  • the exposure length (that is, the number of pulses) is increased or the number of pulses is decreased to relatively increase the substantial integrated illuminance in the overlapping portion, but the integrated illuminance in the overlapping portion is
  • the adjustment method is not limited to this.
  • a method of correcting the line width to the design value based on the actual exposure result is also conceivable. In this case, it is possible to set the line width of the negative resist to a predetermined amount by adding or deleting pulses near the edge of the line that is actually exposed.
  • the line width of the pattern to be exposed is changed by increasing or decreasing the number of pulses in the vicinity of the pattern so that the shape and line width of the pattern formed by the negative resist in the overlapping portion and the non-overlapping portion are substantially the same. Correction and shape correction by increasing or decreasing the number of pulses to places other than the pattern edge portion may be corrected from the exposure result.
  • the exposure method of the embodiment includes the following aspects. Increase or decrease the number of pulses in the vicinity of the exposure pattern in the non-overlapping portion, the overlapping portion, or both so that the line width and shape of the exposure pattern in the non-overlapping portion and the overlapping portion are approximately the same, or in the vicinity of the pattern
  • the resist formed on the exposure target is, for example, a negative resist in which the light-irradiated portion is formed by photoreaction after development.
  • the exposure data creation method of the embodiment includes the following aspects. Increase or decrease the number of pulses in the vicinity of the exposure pattern in the non-overlapping portion, the overlapping portion, or both so that the line width and shape of the exposure pattern in the non-overlapping portion and the overlapping portion are approximately the same, or in the vicinity of the pattern A method of creating exposure data that increases or decreases the number of internal pulses.
  • the resist formed on the exposure target is, for example, a negative resist in which the light-irradiated portion is formed by photoreaction after development.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

This exposure device comprises an illumination optical system, a plurality of spatial light modulators illuminated by light from the illumination optical system, a plurality of projection optical systems that irradiate an exposure target with light emitted from the spatial light modulators, and a stage on which the exposure target is placed. The stage moves the exposure target in a predetermined scanning direction while using the plurality of projection optical systems to cause scanning exposure fields of view to overlap, so that the light radiated onto the exposure target scans the exposure target. The spatial light modulators are set so that during exposure, the illuminance of an overlapping portion (Oa) that is overlapped and exposed on the exposure target is higher than the illuminance of non-overlapping portions (Sa, Sb) exposed without overlap on the exposure target.

Description

露光装置、露光方法およびフラットパネルディスプレイの製造方法、ならびに露光データ作成方法Exposure Apparatus, Exposure Method, Flat Panel Display Manufacturing Method, and Exposure Data Creation Method
 本発明は、露光装置、露光方法およびフラットパネルディスプレイの製造方法、ならびに露光データ作成方法に関する。
 本願は、2021年7月5日に出願された日本国特願2021-111848号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an exposure apparatus, an exposure method, a flat panel display manufacturing method, and an exposure data creation method.
This application claims priority based on Japanese Patent Application No. 2021-111848 filed on July 5, 2021, the content of which is incorporated herein.
 従来、光学系を介して基板に照明光を照射する露光装置として、空間光変調器を利用して変調した光を投影光学系に通し、この光による像を基板に塗布されているレジスト上に結像させて露光する露光装置が知られている(例えば特許文献1参照)。 Conventionally, as an exposure apparatus that irradiates a substrate with illumination light through an optical system, light modulated by a spatial light modulator is passed through a projection optical system, and an image of this light is projected onto a resist coated on the substrate. An exposure apparatus that forms an image and performs exposure is known (see, for example, Patent Document 1).
日本国特開2005-266779号公報Japanese Patent Application Laid-Open No. 2005-266779
 本発明の第1の態様によれば、複数の素子を有する複数の空間光変調器と、パルス光により、前記複数の空間光変調器を照明する照明光学系と、前記空間光変調器から出射される光を露光対象に照射する複数の投影光学系と、前記露光対象が載置されるステージと、前記複数の素子を、前記パルス光を前記投影光学系に導く第1状態と、前記投影光学系に導かない第2状態とに切り替える制御部と、を備え、前記ステージは、複数の前記投影光学系によって走査露光視野をオーバーラップさせつつ、前記露光対象を所定の走査方向に移動させることにより、前記露光対象に照射される光が前記露光対象上を走査し、前記制御部は、露光において、前記複数の素子の前記第1状態と前記第2状態とを切り替え、前記露光対象上でオーバーラップされて露光されるオーバーラップ部に前記投影光学系を介して照射される前記パルス光の数が、前記露光対象上でオーバーラップなしで露光される非オーバーラップ部に前記投影光学系を介して照射される前記パルス光の数よりも多くなるように、前記複数の素子を制御する、露光装置が提供される。 According to the first aspect of the present invention, a plurality of spatial light modulators having a plurality of elements, an illumination optical system for illuminating the plurality of spatial light modulators with pulsed light, and light emitted from the spatial light modulators a stage on which the exposure target is placed; a first state in which the plurality of elements guide the pulsed light to the projection optical system; and a control unit for switching to a second state in which the stage is not guided to the optical system, wherein the stage moves the exposure target in a predetermined scanning direction while overlapping the scanning exposure field by the plurality of the projection optical systems. the light irradiated onto the exposure object scans the exposure object, and the control unit switches the plurality of elements between the first state and the second state in the exposure, and The number of the pulsed light beams irradiated via the projection optical system onto the overlapping portion where exposure is performed in an overlapped manner is such that the projection optical system is applied to the non-overlap portion where exposure is performed without overlapping on the exposure object. An exposure apparatus is provided that controls the plurality of elements to be greater than the number of the pulsed lights irradiated through the exposure apparatus.
 本発明の第2の態様によれば、上述の露光装置を用いて露光対象を露光する方法であって、前記ステージは、複数の前記投影光学系によって走査露光視野をオーバーラップさせつつ、前記露光対象を所定の走査方向に移動させることにより、前記露光対象に照射される光が前記露光対象上を走査し、この際、露光において、前記複数の素子の前記第1状態と前記第2状態とを切り替え、前記露光対象上でオーバーラップされて露光されるオーバーラップ部に前記投影光学系を介して照射される前記パルス光の数が、前記露光対象上でオーバーラップなしで露光される非オーバーラップ部に前記投影光学系を介して照射される前記パルス光の数よりも多くなるように、前記複数の素子を制御する、露光方法が提供される。 According to a second aspect of the present invention, there is provided a method of exposing an object to be exposed using the above-described exposure apparatus, wherein the stage overlaps the scanning exposure field by a plurality of the projection optical systems, and the exposure is performed. By moving the object in a predetermined scanning direction, the light irradiating the object to be exposed scans the object to be exposed. , and the number of the pulsed lights irradiated via the projection optical system to the overlapping portion exposed on the exposure target is changed to the non-overlap exposure target on the exposure target without overlap. An exposure method is provided in which the plurality of elements are controlled so that the number of the pulsed lights irradiated onto the wrap portion via the projection optical system is greater than the number of the pulsed lights.
 本発明の第3の態様によれば、上述の露光方法により露光対象を露光することと、前記露光された露光対象を現像することと、を含むフラットパネルディスプレイの製造方法が提供される。 According to a third aspect of the present invention, there is provided a method of manufacturing a flat panel display including exposing an exposure target by the exposure method described above and developing the exposed exposure target.
 本発明の第4の態様によれば、複数の素子を有する複数の空間光変調器と、パルス光により、前記複数の空間光変調器を照明する照明光学系と、前記空間光変調器から出射される光を露光対象に照射する複数の投影光学系と、前記露光対象が載置されるステージと、前記複数の素子を、前記パルス光を前記投影光学系に導く第1状態と、前記投影光学系に導かない第2状態とに切り替える制御部と、を備え、前記ステージは、複数の前記投影光学系によって走査露光視野をオーバーラップさせつつ、前記露光対象を所定の走査方向に移動させることにより、前記露光対象に照射される光が前記露光対象上を走査する露光装置に用いられ、露光において、前記複数の素子の前記第1状態と前記第2状態とを切り替え、前記露光対象上でオーバーラップされて露光されるオーバーラップ部に前記投影光学系を介して照射される前記パルス光の数が、前記露光対象上でオーバーラップなしで露光される非オーバーラップ部に前記投影光学系を介して照射される前記パルス光の数よりも多くなるように、前記複数の素子を制御する露光データを作成する、露光データ作成方法が提供される。 According to a fourth aspect of the present invention, a plurality of spatial light modulators having a plurality of elements, an illumination optical system for illuminating the plurality of spatial light modulators with pulsed light, and light emitted from the spatial light modulators a stage on which the exposure target is placed; a first state in which the plurality of elements guide the pulsed light to the projection optical system; and a control unit for switching to a second state in which the stage is not guided to the optical system, wherein the stage moves the exposure target in a predetermined scanning direction while overlapping the scanning exposure field by the plurality of the projection optical systems. is used in an exposure apparatus for scanning the exposure target with the light irradiated onto the exposure target, and in the exposure, the plurality of elements are switched between the first state and the second state, and The number of the pulsed light beams irradiated via the projection optical system onto the overlapping portion where exposure is performed in an overlapped manner is such that the projection optical system is applied to the non-overlap portion where exposure is performed without overlapping on the exposure object. There is provided an exposure data creation method for creating exposure data for controlling the plurality of elements so that the number of the pulsed lights irradiated through the device is larger than the number of the pulsed lights.
第1実施形態の露光装置の外観構成の概要を示す図である。1 is a diagram showing an overview of an external configuration of an exposure apparatus according to a first embodiment; FIG. 照明モジュール及び投影モジュールの構成の概要を示す図である。FIG. 3 is a diagram showing an overview of the configurations of an illumination module and a projection module; 照明モジュールの構成の概要を示す図である。It is a figure which shows the outline|summary of a structure of a lighting module. 光変調部の構成の概要を示す図である。4 is a diagram showing an overview of the configuration of an optical modulation section; FIG. 光変調部の構成の概要を示す図であって、紙面中央のミラーのオン状態を示す図である。FIG. 4 is a diagram showing the outline of the configuration of the light modulating section, and showing the ON state of the mirror in the center of the paper. 光変調部の構成の概要を示す図であって、紙面中央のミラーのオフ状態を示す図である。FIG. 4 is a diagram showing the outline of the configuration of the light modulating section, and showing the OFF state of the mirror in the center of the paper. (A)は、2つの投影モジュールの露光視野を示す図である。(B)は、露光対象物上に形成される露光領域を示す図である。(C)は、走査露光による感光量を示すグラフである。(D)は、露光対象物に照射される光の積算照度(積算露光量)を示すグラフである。(A) shows the exposure fields of two projection modules; (B) is a diagram showing an exposure region formed on an exposure target. (C) is a graph showing the amount of exposure by scanning exposure. (D) is a graph showing the integrated illuminance (integrated exposure amount) of light applied to the exposure target. (A)は、2つの投影モジュールの露光視野を示す図である。(B)は、露光対象物上に形成される露光領域を示す図である。(C)は、走査露光による感光量を示すグラフである。(D)は、露光対象物に照射される光の積算照度(積算露光量)を示すグラフである。(A) shows the exposure fields of two projection modules; (B) is a diagram showing an exposure region formed on an exposure target. (C) is a graph showing the amount of exposure by scanning exposure. (D) is a graph showing the integrated illuminance (integrated exposure amount) of light applied to the exposure target. 第2実施形態に係る露光装置の基板上に投影される空間光変調器の矩形状の投影領域の配置例を模式的に示す図である。FIG. 10 is a diagram schematically showing an arrangement example of rectangular projection areas of spatial light modulators projected onto a substrate of an exposure apparatus according to a second embodiment; 図9中の2つの投影領域のみによる継ぎ露光(通常露光モード)の様子を示す図である。FIG. 10 is a diagram showing a state of joint exposure (normal exposure mode) using only two projection areas in FIG. 9; ネガレジストの場合の特殊露光モードの一例を模式的に示す図である。FIG. 10 is a diagram schematically showing an example of a special exposure mode for a negative resist; 変形例において継ぎ領域内に露光されるオン状態のミラーの積算個数のY方向の分布の一例を示す図である。(A)は、通常露光モードにおける分布の一例を示す図であり、(B)は、特殊露光モードにおける分布の一例を示す図である。FIG. 11 is a diagram showing an example of distribution in the Y direction of the cumulative number of ON-state mirrors that are exposed in the spliced region in a modified example; (A) is a diagram showing an example of distribution in normal exposure mode, and (B) is a diagram showing an example of distribution in special exposure mode. (A)は、第3実施形態に係る露光対象物が露光された際に露光対象物上に形成される露光領域を示す図である。(B)は、露光対象物上に形成される露光領域を示す図である。(C)は、走査露光による積算パルス数を示すグラフである。(A) is a diagram showing an exposure region formed on an exposure target when the exposure target is exposed according to the third embodiment. (B) is a diagram showing an exposure region formed on an exposure target. (C) is a graph showing the integrated number of pulses by scanning exposure. 第4実施形態に係る露光装置の露光モードの一例を模式的に示す図である。It is a figure which shows typically an example of the exposure mode of the exposure apparatus which concerns on 4th Embodiment.
 以下、本発明の実施形態について図面を参照して説明する。本発明の以下の詳細な説明は、例示的なものに過ぎず、限定するものではない。図面及び以下の詳細な説明の全体にわたって、同じ又は同様の参照符号が使用される。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following detailed description of the invention is exemplary only, and not limiting. The same or similar reference numerals will be used throughout the drawings and the following detailed description.
[第1実施形態]
[露光装置]
 図1は、第1実施形態の露光装置1の外観構成の概要を示す図である。露光装置1は、露光対象物に変調光を照射する装置である。特定の実施形態において、露光装置1は、液晶表示装置(フラットパネルディスプレイ)などの電子デバイスに用いられる矩形(角型)のガラス基板を露光対象物とするステップ・アンド・スキャン方式の投影露光装置、いわゆるスキャナである。露光対象物であるガラス基板は、少なくとも一辺の長さ、または対角長が500mm以上であってよい。露光対象物であるガラス基板は、フラットパネルディスプレイ用の基板であってもよい。露光装置1によって露光された露光対象物(例えば、フラットパネルディスプレイ用の基板)は、現像されることによって製品に供される。露光対象物の表面にはレジスト(例えば、ネガレジスト)が形成される。
 露光装置1の装置本体は、例えば、米国特許出願公開第2008/0030702号明細書に開示される装置本体と同様に構成されている。
[First embodiment]
[Exposure device]
FIG. 1 is a diagram showing an overview of the external configuration of an exposure apparatus 1 according to the first embodiment. The exposure apparatus 1 is an apparatus that irradiates an exposure target with modulated light. In a specific embodiment, the exposure apparatus 1 is a step-and-scan projection exposure apparatus that exposes rectangular glass substrates used in electronic devices such as liquid crystal displays (flat panel displays). is a so-called scanner. The glass substrate, which is the object to be exposed, may have at least one side length or diagonal length of 500 mm or more. The glass substrate, which is the object to be exposed, may be a substrate for a flat panel display. An exposure target (for example, a substrate for a flat panel display) exposed by the exposure apparatus 1 is developed and provided as a product. A resist (eg, negative resist) is formed on the surface of the exposure object.
The apparatus main body of the exposure apparatus 1 is configured similarly to the apparatus main body disclosed in US Patent Application Publication No. 2008/0030702, for example.
 露光装置1は、ベース11、防振台12、メインコラム13、ステージ14、光学定盤15、照明モジュール16、投影モジュール17(投影光学系)、光源ユニット18、光ファイバ19、光変調部20(図1には不図示)および制御部21を備える。
 以下において、光変調部20で変調された光を露光対象物に照射する投影モジュール17の光軸方向に平行な方向をZ軸方向とし、Z軸に直交する所定平面の方向をX軸方向、Y軸方向とする三次元直交座標系を必要に応じて用いて説明する。X軸方向とY軸方向とは互いに直交(交差)する方向である。本実施形態において、X軸方向は、露光対象物(基板)23の走査移動方向であり、Y軸方向は、露光対象物(基板)23のステッピング方向である。
The exposure apparatus 1 includes a base 11, an anti-vibration table 12, a main column 13, a stage 14, an optical surface plate 15, an illumination module 16, a projection module 17 (projection optical system), a light source unit 18, an optical fiber 19, and an optical modulator 20. (not shown in FIG. 1) and a control unit 21 .
In the following, the direction parallel to the optical axis direction of the projection module 17 that irradiates the light modulated by the light modulation section 20 onto the exposure object is defined as the Z-axis direction, the direction of a predetermined plane orthogonal to the Z-axis is defined as the X-axis direction, Description will be made using a three-dimensional orthogonal coordinate system with the Y-axis direction as necessary. The X-axis direction and the Y-axis direction are directions orthogonal (intersecting) each other. In this embodiment, the X-axis direction is the scanning movement direction of the exposure object (substrate) 23 and the Y-axis direction is the stepping direction of the exposure object (substrate) 23 .
 ベース11は、露光装置1の基台であり、防振台12の上に設置される。ベース11は、露光対象物が載置されるステージ14を、X軸方向及びY軸方向に移動可能に支持する。 The base 11 is the base of the exposure apparatus 1 and is installed on the anti-vibration table 12 . The base 11 supports a stage 14 on which an object to be exposed is placed so as to be movable in the X-axis direction and the Y-axis direction.
 ステージ14は、露光対象物を支持するものである。ステージ14は、走査露光において、投影モジュール17を介して投影される回路パターンの複数の部分像に対して露光対象物を高精度に位置決めするためのものである。ステージ14は、露光対象物を6自由度方向(上述のX軸、Y軸及びZ軸方向およびそれぞれの軸に対する回転方向)に駆動する。 The stage 14 supports the exposure target. The stage 14 is for positioning the exposure object with high precision with respect to a plurality of partial images of the circuit pattern projected via the projection module 17 in scanning exposure. The stage 14 drives the object to be exposed in directions of six degrees of freedom (the above-described X-, Y-, and Z-axis directions and rotational directions about the respective axes).
 ステージ14は、走査露光時にX軸方向に所定の等速度で移動され、露光対象物上の露光対象領域を変更する際にY軸方向にステップ移動される。なお、露光対象物は、複数の露光対象領域が形成される。ステージ14は、露光対象物と投影モジュール17とを走査方向に相対移動させる。 The stage 14 is moved at a predetermined constant speed in the X-axis direction during scanning exposure, and is step-moved in the Y-axis direction when changing the exposure target area on the exposure object. A plurality of exposure target areas are formed on the exposure target. The stage 14 relatively moves the object to be exposed and the projection module 17 in the scanning direction.
 露光装置1は、1枚の露光対象物上で、複数の露光対象領域をそれぞれ露光することが可能である。ステージ14の構成としては、特に限定されないが、米国特許出願公開第2012/0057140号明細書などに開示されるようなステージ装置を用いることができる。ステージ装置は、例えば、ガントリタイプの2次元粗動ステージと、該2次元粗動ステージに対して微少駆動される微動ステージとを含む、いわゆる粗微動構成のステージ装置である。粗微動構成のステージ装置は、粗動ステージによって露光対象物が水平面内の3自由度方向に移動可能、かつ微動ステージによって露光対象物が6自由度方向に微動可能となっている。 The exposure apparatus 1 is capable of exposing a plurality of exposure target areas on one exposure target. Although the configuration of the stage 14 is not particularly limited, a stage device such as that disclosed in US Patent Application Publication No. 2012/0057140 can be used. The stage device is a so-called coarse and fine movement stage device including, for example, a gantry type two-dimensional coarse movement stage and a fine movement stage that is finely driven with respect to the two-dimensional coarse movement stage. In the coarse and fine movement stage device, the coarse movement stage can move the exposure object in directions of three degrees of freedom in the horizontal plane, and the fine movement stage can finely move the exposure object in directions of six degrees of freedom.
 メインコラム13は、ステージ14の上方(Z軸の正方向)に光学定盤15を支持する。光学定盤15は、照明モジュール16と投影モジュール17と光変調部20とを支持する。 The main column 13 supports the optical surface plate 15 above the stage 14 (in the positive direction of the Z axis). The optical platen 15 supports the illumination module 16 , the projection module 17 and the light modulation section 20 .
 図2は、照明モジュール16と投影モジュール17と光変調部20との構成の概要を示す図である。
 照明モジュール16は、光学定盤15の上方に配置され、光ファイバ19を介して光源ユニット18に接続される。本実施形態の一例において、照明モジュール16には、第1照明モジュール16A、第2照明モジュール16B、第3照明モジュール16C及び第4照明モジュール16Dが含まれる。以下の説明において、第1照明モジュール16A~第4照明モジュール16Dを区別しない場合には、これらを総称して照明モジュール16と記載する。
FIG. 2 is a diagram showing the outline of the configuration of the lighting module 16, the projection module 17, and the light modulating section 20. As shown in FIG.
The illumination module 16 is arranged above the optical surface plate 15 and connected to the light source unit 18 via the optical fiber 19 . In one example of this embodiment, the lighting modules 16 include a first lighting module 16A, a second lighting module 16B, a third lighting module 16C and a fourth lighting module 16D. In the following description, when the first lighting module 16A to the fourth lighting module 16D are not distinguished, they are collectively referred to as the lighting module 16. FIG.
 第1照明モジュール16A~第4照明モジュール16Dの各々は、光ファイバ19を介した光源ユニット18から出射される光を、第1光変調部20A、第2光変調部20B、第3光変調部20C及び第4光変調部20Dの各々へ導光する。照明モジュール16は、光変調部20を照明する。 Each of the first lighting module 16A to the fourth lighting module 16D converts the light emitted from the light source unit 18 via the optical fiber 19 into a first light modulating section 20A, a second light modulating section 20B, and a third light modulating section. The light is guided to each of 20C and the fourth optical modulation section 20D. The lighting module 16 illuminates the light modulating section 20 .
 光変調部20は、後段でさらに詳述するが、露光対象物としての基板23に転写すべき回路パターンの描画データ(2次元のビットマップ形式等のデジタルデータ)に基づいて制御され、照明モジュール16からの照明光の空間的な強度分布を露光すべきパターンに応じて動的に変調する。光変調部20により変調された変調光は、投影モジュール17に導かれる。第1光変調部20A~第4光変調部20Dは、XY平面上内で互いに異なる位置に配置される。以下の説明において、第1光変調部20A~第4光変調部20Dを区別しない場合には、これらを総称して光変調部20と記載する。 The light modulation unit 20 is controlled based on drawing data (digital data such as a two-dimensional bitmap format) of a circuit pattern to be transferred to a substrate 23 as an exposure object, and is controlled by an illumination module. The spatial intensity distribution of illumination light from 16 is dynamically modulated according to the pattern to be exposed. The modulated light modulated by the light modulating section 20 is guided to the projection module 17 . The first optical modulating section 20A to the fourth optical modulating section 20D are arranged at different positions on the XY plane. In the following description, when the first optical modulation section 20A to the fourth optical modulation section 20D are not distinguished, they are collectively referred to as the optical modulation section 20. FIG.
 投影モジュール17は、光学定盤15の下方に配置され、光変調部20により変調された変調光をステージ14上に載置された基板23(表面に感光層を有する)に照射する。投影モジュール17は、光変調部20で変調された光(パターンに応じた光強度分布の像)を、基板23上で結像させ、基板23の感光層(フォトレジスト)を露光する。換言すると、投影モジュール17は、光変調部20で生成される動的な可変パターンの像を基板23に投影する。本実施形態の一例において、投影モジュール17には、上述した第1照明モジュール16A~第4照明モジュール16Dおよび第1光変調部20A~第4光変調部20Dに対応する、第1投影モジュール17A~第4投影モジュール17Dが含まれる。以下の説明において、第1投影モジュール17A~第4投影モジュール17Dを区別しない場合には、これらを総称して投影モジュール17と記載する。 The projection module 17 is arranged below the optical surface plate 15 and irradiates the substrate 23 (having a photosensitive layer on its surface) placed on the stage 14 with the modulated light modulated by the light modulation section 20 . The projection module 17 forms an image on the substrate 23 with the light modulated by the light modulation unit 20 (image of light intensity distribution according to the pattern), and exposes the photosensitive layer (photoresist) of the substrate 23 . In other words, the projection module 17 projects the image of the dynamically variable pattern generated by the light modulating section 20 onto the substrate 23 . In one example of the present embodiment, the projection module 17 includes first projection modules 17A to A fourth projection module 17D is included. In the following description, when the first projection module 17A to the fourth projection module 17D are not distinguished, they are collectively referred to as the projection module 17. FIG.
 第1照明モジュール16Aと、第1光変調部20Aと、第1投影モジュール17Aとより構成されるユニットを、第1露光モジュールと呼ぶ。同様に、第2照明モジュール16Bと、第2光変調部20Bと、第2投影モジュール17Bとより構成されるユニットを、第2露光モジュールと呼ぶ。各露光モジュールは、XY平面上で互いに異なる位置に設けられ、ステージ14に載置された露光対象物の異なる位置に、パターンを露光することができる。ステージ14は、露光モジュールに対して走査方向であるX軸方向へ、相対的に移動することで、露光対象物の全面もしくは露光対象領域の全面を走査露光することができる。また、図1からも分かるように、図2中における第1照明モジュール16A、第1投影モジュール17A及び第1光変調部20Aの第1露光モジュールは、Y軸方向にも複数並んで配置されている。同様に、図2中における第2照明モジュール16B、第2投影モジュール17B及び第2光変調部20Bの第2露光モジュールは、Y軸方向にも複数並んで配置されている。同様に、図2中における第3照明モジュール16C、第3投影モジュール17C及び第3光変調部20Cによる第3露光モジュールは、Y軸方向にも複数並んで配置されている。同様に、図2中における第4照明モジュール16D、第4投影モジュール17D及び第4光変調部20Dによる第4露光モジュールは、Y軸方向にも複数並んで配置されている。 A unit composed of the first illumination module 16A, the first light modulation section 20A, and the first projection module 17A is called a first exposure module. Similarly, a unit composed of the second illumination module 16B, the second light modulation section 20B, and the second projection module 17B is called a second exposure module. Each exposure module is provided at a mutually different position on the XY plane, and can expose a pattern at a different position of the exposure target placed on the stage 14 . The stage 14 can scan-expose the entire surface of the exposure target or the entire surface of the exposure target area by moving relative to the exposure module in the X-axis direction, which is the scanning direction. 1, the first illumination module 16A, the first projection module 17A, and the first exposure module 20A in FIG. 2 are arranged side by side in the Y-axis direction. there is Similarly, a plurality of the second exposure modules of the second illumination module 16B, the second projection module 17B, and the second light modulation section 20B in FIG. 2 are arranged side by side in the Y-axis direction. Similarly, a plurality of third exposure modules including the third illumination module 16C, the third projection module 17C, and the third light modulation section 20C in FIG. 2 are arranged side by side in the Y-axis direction. Similarly, a plurality of fourth exposure modules including the fourth illumination module 16D, the fourth projection module 17D, and the fourth light modulation section 20D in FIG. 2 are arranged side by side in the Y-axis direction.
 なお、照明モジュール16を照明系ともいう。照明モジュール16(照明系)は、光変調部20の後述する空間光変調器201(空間光変調素子)を照明する。
 また、投影モジュール17は、投影部ともいう。投影モジュール17(投影部)は、光変調部20上のパターンの像を等倍で投影する等倍系であってもよく、拡大系または縮小系であってもよい。また、投影モジュール17は、単一もしくは2種の硝材(特に石英もしくは蛍石)により構成されることが好ましい。
Note that the illumination module 16 is also called an illumination system. The illumination module 16 (illumination system) illuminates a spatial light modulator 201 (spatial light modulation element) of the light modulation section 20, which will be described later.
The projection module 17 is also called a projection unit. The projection module 17 (projection section) may be a one-to-one system that projects the image of the pattern on the light modulation section 20 at one-to-one magnification, or may be an enlargement system or a reduction system. Also, the projection module 17 is preferably made of one or two kinds of glass materials (especially quartz or fluorite).
 図1に示すように、光源ユニット18は、一対(光源ユニットR18R、光源ユニットL18L)設けられている。光源ユニット18としては、干渉性の高いレーザを光源とする光源ユニット、半導体レーザタイプのUV-LDのような光源を用いた光源ユニット、およびレンズリレー式のリターダによる光源ユニットを採用することができる。光源ユニット18が備える光源18aとしては、405nmや365nmといった波長を出射するランプやレーザダイオードなどが挙げられる。光源ユニット18は、各光ファイバ19にほぼ同じ照度の照明光(パルス光)を供給する光分配系を含んでもよい。また、光源ユニット18として、紫外波長域(300~436nm)内の特定の波長にピーク強度を有して、発光時間が、例えば数十ピコ秒以内と極めて短い紫外パルスを100KHz以上の周波数で出力可能なファイバーアンプレーザ光源を利用することもできる。 As shown in FIG. 1, a pair of light source units 18 (light source unit R18R, light source unit L18L) is provided. As the light source unit 18, a light source unit using a laser with high coherence as a light source, a light source unit using a light source such as a semiconductor laser type UV-LD, and a light source unit using a lens relay type retarder can be adopted. . Examples of the light source 18a included in the light source unit 18 include lamps and laser diodes that emit light with wavelengths of 405 nm and 365 nm. The light source unit 18 may include a light distribution system that supplies illumination light (pulse light) with approximately the same illuminance to each optical fiber 19 . In addition, the light source unit 18 outputs an ultraviolet pulse having a peak intensity at a specific wavelength within the ultraviolet wavelength range (300 to 436 nm) and an extremely short emission time of, for example, within several tens of picoseconds at a frequency of 100 kHz or higher. A possible fiber amplifier laser light source can also be utilized.
 露光装置1は、上述した各部に加えて、干渉計やエンコーダなどで構成される位置計測部(不図示)を備えており、光学定盤15に対するステージ14の相対位置を計測する。 露光装置1は、上述した各部に加えて、ステージ14もしくはステージ14上の基板23のZ軸方向の位置を計測するAF(Auto Focus)部42を備えている。さらに露光装置1は、基板23上に既に露光されたパターン(下地層)に対して別のパターンを重ねて露光する際に、それぞれのパターンの相対位置を合わせる為に下地層に形成されたアライメントマークの位置を計測するアライメント部41を備える。AF部42および/またはアライメント部41は、投影モジュール17を介して計測するTTL(Through the lens)の構成であってもよい。 The exposure apparatus 1 includes a position measuring unit (not shown) composed of an interferometer, an encoder, etc., in addition to the units described above, and measures the relative position of the stage 14 with respect to the optical surface plate 15 . The exposure apparatus 1 includes an AF (Auto Focus) section 42 that measures the position of the stage 14 or the substrate 23 on the stage 14 in the Z-axis direction, in addition to the above-described sections. Furthermore, when the exposure apparatus 1 exposes a pattern (base layer) that has already been exposed on the substrate 23 so that another pattern is superimposed thereon, the alignment pattern formed on the base layer is used to align the relative positions of the respective patterns. An alignment unit 41 is provided to measure the position of the mark. The AF unit 42 and/or the alignment unit 41 may have a TTL (Through the lens) configuration for measurement via the projection module 17 .
 図3は、露光モジュールの構成の概要を示す図である。第1露光モジュールを一例にして、照明モジュール16と光変調部20と投影モジュール17との具体的な構成の一例について説明する。 FIG. 3 is a diagram showing the outline of the configuration of the exposure module. Taking the first exposure module as an example, an example of specific configurations of the illumination module 16, the light modulation section 20, and the projection module 17 will be described.
 照明モジュール16は、モジュールシャッタ161と、照明光学系162とを備える。 モジュールシャッタ161は、光ファイバ19から所定の強度、所定の周期で供給されるパルス光を、照明光学系162に導光するか否かを切り替える。 The illumination module 16 includes a module shutter 161 and an illumination optical system 162. The module shutter 161 switches whether or not to guide the pulsed light supplied from the optical fiber 19 at a predetermined intensity and at a predetermined cycle to the illumination optical system 162 .
 照明光学系162は、光ファイバ19から供給されるパルス光を、コリメータレンズ162A、フライアイレンズ162C、コンデンサーレンズ162Eなどを介して、光変調部20に出射することにより、光変調部20をほぼ均一に照明する。フライアイレンズ162Cは、フライアイレンズ162Cに入射されるパルス光を波面分割し、コンデンサーレンズ162Eは、波面分割された光を光変調部20上に重畳させる。なお、照明光学系162は、フライアイレンズ162Cに代わり、ロッドインテグレータを備えていてもよい。本実施形態の照明光学系162は、さらに可変減光フィルタ162B、可変開口絞り162D及び平面ミラー162Fを備える。可変減光フィルタ162Bは、フライアイレンズ162Cに入射する照明光(パルス光)の照度を減衰させて露光量を調整する。可変開口絞り162Dは、フライアイレンズ162Cの射出面側に形成されるほぼ円形の光源像の大きさ(直径)を調整して照明σを変化させる。平面ミラー162Fは、コンデンサーレンズ162Eからの照明光(パルス光)が光変調部20を傾斜照明するように反射させる。 The illumination optical system 162 emits pulsed light supplied from the optical fiber 19 to the light modulation section 20 via a collimator lens 162A, a fly-eye lens 162C, a condenser lens 162E, and the like, so that the light modulation section 20 is almost Illuminate evenly. The fly-eye lens 162</b>C wavefront-divides the pulsed light incident on the fly-eye lens 162</b>C, and the condenser lens 162</b>E superimposes the wavefront-divided light onto the light modulation section 20 . The illumination optical system 162 may have a rod integrator instead of the fly-eye lens 162C. The illumination optical system 162 of this embodiment further includes a variable neutral density filter 162B, a variable aperture stop 162D and a plane mirror 162F. The variable neutral density filter 162B attenuates the illuminance of the illumination light (pulse light) incident on the fly-eye lens 162C to adjust the exposure amount. The variable aperture stop 162D changes the illumination σ by adjusting the size (diameter) of a substantially circular light source image formed on the exit surface side of the fly-eye lens 162C. The plane mirror 162F reflects the illumination light (pulse light) from the condenser lens 162E so that the light modulation section 20 is obliquely illuminated.
 光変調部20は、照明光の反射光の空間的な強度分布を描画データに基づいて高速にパターン変更される可変マスクとして機能する空間光変調器(SLM:Spatial Light Modulator)201と、オフ光吸収板202を備える。 The light modulation unit 20 includes a spatial light modulator (SLM) 201 that functions as a variable mask that changes the pattern of the spatial intensity distribution of the reflected light of the illumination light at high speed based on drawing data, and an off light. An absorbing plate 202 is provided.
 空間光変調器201は、デジタルミラーデバイス(デジタルマイクロミラーデバイス、DMD)である。空間光変調器201は、照明光を空間的に、且つ、時間的に変調することができる。 The spatial light modulator 201 is a digital mirror device (digital micromirror device, DMD). The spatial light modulator 201 can spatially and temporally modulate the illumination light.
 図4は、本実施形態の空間光変調器201の構成の概要を示す図である。同図においてXm軸・Ym軸・Zm軸の三次元直交座標系を用いて説明する。空間光変調器201は、XmYm平面に配列された複数のマイクロミラー203(ミラー)を備える。マイクロミラー203は、空間光変調器201の素子(画素)を構成する。マイクロミラー203は、Xm軸周り及びYm軸周りに傾斜角をそれぞれ変更可能である。マイクロミラー203は、例えば図5に示すように、Ym軸周りに傾斜することでオン状態(第1の状態)になる。マイクロミラー203は、図6に示すようにXm軸周りに傾斜することでオフ状態(第2の状態)になる。オン状態のマイクロミラー203は、投影モジュール17へパルス光を導く。オフ状態のマイクロミラー203は、投影モジュール17へパルス光を導かない。 FIG. 4 is a diagram showing an overview of the configuration of the spatial light modulator 201 of this embodiment. Description will be made using a three-dimensional orthogonal coordinate system of Xm-axis, Ym-axis, and Zm-axis in FIG. The spatial light modulator 201 comprises a plurality of micromirrors 203 (mirrors) arranged on the XmYm plane. The micromirrors 203 constitute elements (pixels) of the spatial light modulator 201 . The micromirror 203 can change the tilt angle around the Xm axis and around the Ym axis. For example, as shown in FIG. 5, the micromirror 203 is turned on (first state) by tilting around the Ym axis. The micromirror 203 is turned off (second state) by tilting around the Xm axis as shown in FIG. Micromirrors 203 in the ON state guide the pulsed light to projection module 17 . A micromirror 203 in the off state does not direct pulsed light to the projection module 17 .
 空間光変調器201は、マイクロミラー203の傾斜方向をマイクロミラー203ごとに切り替えることにより、入射光が反射される方向をマイクロミラー(素子)ごとに制御する。一例として、空間光変調器201のデジタルマイクロミラーデバイスは、4Mpixel程度の画素数を有しており、10kHz程度の周期でマイクロミラー203のオン状態とオフ状態とを切り替え可能である。
 空間光変調器201は、複数の素子が所定時間間隔で個別に制御される。空間光変調器201がDMDである場合、素子とは、マイクロミラー203であり、所定時間間隔とは、マイクロミラー203のオン状態とオフ状態とを切り替える周期(例えば、周期10kHz)である。
The spatial light modulator 201 controls the direction in which incident light is reflected for each micromirror (element) by switching the tilt direction of the micromirror 203 for each micromirror 203 . As an example, the digital micromirror device of the spatial light modulator 201 has a pixel count of about 4 Mpixels, and can switch the on state and off state of the micromirror 203 at a period of about 10 kHz.
A plurality of elements of the spatial light modulator 201 are individually controlled at predetermined time intervals. When the spatial light modulator 201 is a DMD, the element is the micromirror 203, and the predetermined time interval is the period (for example, period 10 kHz) at which the micromirror 203 is switched between the ON state and the OFF state.
 図3に戻り、オフ光吸収板202は、空間光変調器201のオフ状態にされた素子から出射(反射)される光(オフ光)を吸収する。空間光変調器201のオン状態にされた素子から出射される光は、投影モジュール17に導光される。 Returning to FIG. 3, the off-light absorption plate 202 absorbs light (off-light) emitted (reflected) from the elements of the spatial light modulator 201 that are turned off. Light emitted from the ON-state elements of the spatial light modulator 201 is guided to the projection module 17 .
 投影モジュール17は、空間光変調器201のオン状態にされた素子から射出された光を、露光対象物上に投影する。投影モジュール17は、倍率調整部171とフォーカス調整部172とを備える。倍率調整部171には、空間光変調器201によって変調された光(変調光)が入射する。 The projection module 17 projects the light emitted from the ON-state elements of the spatial light modulator 201 onto the exposure object. The projection module 17 includes a magnification adjustment section 171 and a focus adjustment section 172 . Light modulated by the spatial light modulator 201 (modulated light) enters the magnification adjustment unit 171 .
 倍率調整部171は、一部のレンズを光軸方向に駆動することで、空間光変調器201から出射された変調光の結像面163の倍率を調整する。結像面163は、投影モジュール17によって作られる、空間光変調器201の全体的な反射面と共役な結像面(ベストフォーカス面)である。換言すれば、倍率調整部171は、露光対象物としての基板23の表面における像の倍率を調整する。 The magnification adjustment unit 171 adjusts the magnification of the imaging plane 163 of the modulated light emitted from the spatial light modulator 201 by driving some lenses in the optical axis direction. Imaging plane 163 is the imaging plane (best focus plane) produced by projection module 17 that is conjugate with the overall reflective surface of spatial light modulator 201 . In other words, the magnification adjustment unit 171 adjusts the magnification of the image on the surface of the substrate 23 as the exposure target.
 フォーカス調整部172は、レンズ群全体を光軸方向に駆動することで、空間光変調器201から出射された変調光が、先述したAF部42により計測された基板23の表面に結像するように、結像位置、つまりフォーカスを調整する。 The focus adjustment unit 172 drives the entire lens group in the optical axis direction so that the modulated light emitted from the spatial light modulator 201 forms an image on the surface of the substrate 23 measured by the AF unit 42 described above. Then, adjust the imaging position, that is, the focus.
 投影モジュール17は、空間光変調器201のオン状態にされた素子から射出される光の像のみを、露光対象物の表面に投影する。そのため、投影モジュール17は、空間光変調器201のオン素子により形成されたパターンの像を、基板23の表面に投影露光することができる。つまり、投影モジュール17は、空間的に変調された可変マスクの像を、基板23の表面に形成することができる。また空間光変調器201は、先述のとおり所定の周期(周波数)でマイクロミラー203のオン状態とオフ状態とを切り替えることができるため、投影モジュール17は、時間的に変調された変調光(即ち、空間光変調器201で反射されて投影モジュール17に入射する結像光束のXY面内での明暗の形状(光分布)が時間と共に高速に変化する変調光)を、基板23の表面に形成することができる。
 投影モジュール17の瞳位置には、空間光変調器201のオン状態のマイクロミラーで反射された結像光束の基板23側の開口数(NA)を調整(制限)して、解像度や焦点深度DOFを変化させる際に使われる可変開口絞り173が設けられる。可変開口絞り162Dと可変開口絞り173とは光学的にほぼ共役な関係となっている。
The projection module 17 projects only the light image emitted from the turned-on element of the spatial light modulator 201 onto the surface of the exposure object. Therefore, the projection module 17 can project and expose the surface of the substrate 23 with the image of the pattern formed by the ON elements of the spatial light modulator 201 . That is, the projection module 17 can form a spatially modulated image of the variable mask on the surface of the substrate 23 . In addition, since the spatial light modulator 201 can switch the micromirror 203 between the ON state and the OFF state at a predetermined period (frequency) as described above, the projection module 17 can generate temporally modulated modulated light (i.e. , modulated light in which the light and dark shape (light distribution) in the XY plane of the imaging light flux that is reflected by the spatial light modulator 201 and enters the projection module 17 changes rapidly with time is formed on the surface of the substrate 23. can do.
At the pupil position of the projection module 17, the numerical aperture (NA) on the substrate 23 side of the imaging light flux reflected by the micromirrors in the ON state of the spatial light modulator 201 is adjusted (limited) to adjust the resolution and the depth of focus DOF. A variable aperture stop 173 is provided for use in varying the . The variable aperture stop 162D and the variable aperture stop 173 are optically substantially conjugate.
 先述したとおり、空間光変調器201は、所定の周期で供給されるパルス光により照明される。よって、空間光変調器201は、パルス光の周期の整数倍の周期で駆動される。例えば、空間光変調器201のマイクロミラーの駆動周波数(10KHz)の周期をTm、パルス光の周期をTpとしたとき、Tm/Tpが整数になるように設定される。投影モジュール17は、空間光変調器201により変調されたパルス光を、基板23に照射する。基板23には、パルス光の集合体によりパターンが形成される。投影モジュール17により露光対象物に導かれる複数のパルス光(その中心位置)は、基板23上の異なる位置に導かれる。 As described above, the spatial light modulator 201 is illuminated with pulsed light supplied at a predetermined cycle. Therefore, the spatial light modulator 201 is driven with a cycle that is an integral multiple of the cycle of the pulsed light. For example, where Tm is the period of the driving frequency (10 kHz) of the micromirrors of the spatial light modulator 201 and Tp is the period of the pulsed light, Tm/Tp is set to be an integer. The projection module 17 irradiates the substrate 23 with pulsed light modulated by the spatial light modulator 201 . A pattern is formed on the substrate 23 by an aggregate of pulsed light. A plurality of pulsed lights (its center position) guided to the exposure object by the projection module 17 are guided to different positions on the substrate 23 .
 図4から図6に示す空間光変調器201では、Xm軸がX軸と平行となり、Ym軸がY軸と平行になる。これにより、オン状態のマイクロミラー203(Ym軸回りに傾斜したマイクロミラー203)が、走査方向であるX軸方向に対して傾斜する。 In the spatial light modulator 201 shown in FIGS. 4 to 6, the Xm-axis is parallel to the X-axis and the Ym-axis is parallel to the Y-axis. As a result, the micromirror 203 in the ON state (the micromirror 203 tilted about the Ym axis) tilts with respect to the X-axis direction, which is the scanning direction.
 Ym軸を第1チルト軸T1ともいう。空間光変調器201では、複数のマイクロミラー203がそれぞれ第1チルト軸T1(Ym軸)回りに回転し、複数のマイクロミラー203がそれぞれの走査方向に対する傾斜を調整してオン状態となることで、投影モジュール17へ光を出射させる。
 なお、空間光変調器201では、複数のマイクロミラー203が走査方向に直線状に並び、かつ、複数のマイクロミラー203が第1チルト軸T1方向にも並ぶ。
The Ym axis is also called the first tilt axis T1. In the spatial light modulator 201, the plurality of micromirrors 203 rotate around the first tilt axis T1 (Ym axis), and the plurality of micromirrors 203 adjust their tilts with respect to the scanning direction to turn on. , to emit light to the projection module 17 .
In the spatial light modulator 201, the plurality of micromirrors 203 are arranged linearly in the scanning direction, and the plurality of micromirrors 203 are also arranged in the direction of the first tilt axis T1.
 図2に示すように、制御部21は、例えば、CPU等の演算部と記憶部とを有するコンピュータによって構成される。コンピュータは、露光処理で動作する各部の制御を実行させるプログラムに従って、露光装置1の各部を制御する。制御部21は、例えば、照明モジュール16、光変調部20、投影モジュール17およびステージ14の動作を制御する。制御部21は、複数のマイクロミラー203を、オン状態(第1状態)と、オフ状態(第2状態)とに切り替える。 As shown in FIG. 2, the control unit 21 is configured by, for example, a computer having an arithmetic unit such as a CPU and a storage unit. The computer controls each part of the exposure apparatus 1 according to a program that controls each part that operates in exposure processing. The controller 21 controls operations of the illumination module 16, the light modulator 20, the projection module 17, and the stage 14, for example. The controller 21 switches the plurality of micromirrors 203 between an ON state (first state) and an OFF state (second state).
 記憶部は、メモリなどの、コンピュータ読み出し可能な記憶媒体装置を用いて構成される。記憶部は、露光処理に関する各種情報を記憶する。記憶部は、例えば、露光処理の際の露光パターンに関する情報(描画データの他に、目標露光量、走査速度等のレシピ情報が含まれる)を記憶する。記憶部は、例えば、通信部または入力部を介して入力された情報を記憶する。通信部は、露光装置を外部装置に接続するための通信インタフェースを含んで構成される。入力部は、マウスやキーボード、タッチパネル等の入力装置を含んで構成される。入力部は、露光装置に対する各種情報の入力を受け付ける。 The storage unit is configured using a computer-readable storage medium device such as memory. The storage unit stores various information regarding exposure processing. The storage unit stores, for example, information about the exposure pattern in the exposure process (including recipe information such as target exposure amount and scanning speed in addition to drawing data). The storage unit stores information input via the communication unit or the input unit, for example. The communication unit includes a communication interface for connecting the exposure apparatus to an external device. The input unit includes input devices such as a mouse, keyboard, and touch panel. The input unit receives input of various information for the exposure apparatus.
[露光方法]
 ステージ14は、露光モジュールに対して、基板23を所定の走査方向に相対的に移動させる。これにより、露光モジュールによって照射される光は、記憶部に記憶された露光パターンに関する情報に基づいて、基板23を走査し、所定の露光パターンが形成される。
[Exposure method]
The stage 14 relatively moves the substrate 23 in a predetermined scanning direction with respect to the exposure module. As a result, the light emitted by the exposure module scans the substrate 23 based on the information on the exposure pattern stored in the storage unit, and a predetermined exposure pattern is formed.
 図7の(A)は、基板23上での、隣り合う2つの投影モジュール17の露光視野PIa,PIbを示す図である。図7の(A)に示すように、露光視野PIa,PIbは矩形状である。露光視野PIa,PIbの長辺方向はX方向およびY方向に対して傾斜する。露光視野PIa,PIbは、それぞれ空間光変調器201の多数のマイクロミラーが配列する領域全体の形状と相似した形状である。 (A) of FIG. 7 is a diagram showing the exposure fields of view PIa and PIb of two adjacent projection modules 17 on the substrate 23 . As shown in FIG. 7A, the exposure fields PIa and PIb are rectangular. The long side directions of the exposure fields PIa and PIb are inclined with respect to the X direction and the Y direction. The exposure fields of view PIa and PIb have shapes similar to the shape of the entire region where many micromirrors of the spatial light modulator 201 are arranged.
 露光視野PIaのうち、2つの長辺がX方向に重なる領域を中央領域PIacという。露光視野PIaのうち、中央領域PIacに含まれない-Y側の端部領域を第1端領域PIa1という。露光視野PIaのうち、中央領域PIacに含まれない+Y側の端部領域を第2端領域PIa2という。 A central area PIac is an area of the exposure visual field PIa in which two long sides overlap in the X direction. In the exposure visual field PIa, the edge area on the -Y side that is not included in the central area PIac is referred to as a first edge area PIa1. A +Y-side end region of the exposure field PIa that is not included in the central region PIac is referred to as a second end region PIa2.
 露光視野PIbのうち、2つの長辺がX方向に重なる領域を中央領域PIbcという。露光視野PIbのうち、中央領域PIbcに含まれない-Y側の端部領域を第1端領域PIb1という。露光視野PIbのうち、中央領域PIbcに含まれない+Y側の端部領域を第2端領域PIb2という。 A central area PIbc is an area where two long sides of the exposure field PIb overlap in the X direction. In the exposure visual field PIb, the edge area on the -Y side that is not included in the central area PIbc is referred to as a first edge area PIb1. A +Y-side end region of the exposure visual field PIb that is not included in the central region PIbc is referred to as a second end region PIb2.
 露光視野PIa,PIbの中央領域PIac,PIbcのY方向の長さはいずれも幅Wsである。第1端領域PIa1,PIb1および第2端領域PIa2,PIb2の長さは、いずれも幅Woである。Y方向に隣り合う露光視野PIa,PIbにおいて、第1端領域PIa1と第2端領域PIb2のX方向の位置は、概ね一致している。
 露光視野PIa,PIbの形状および位置の設定は、露光モジュールの配置、絞りなどの設定により行なう。
The Y-direction lengths of the central regions PIac and PIbc of the exposure fields PIa and PIb are both the width Ws. Each of the first end regions PIa1, PIb1 and the second end regions PIa2, PIb2 has a width Wo. In the exposure fields PIa and PIb adjacent to each other in the Y direction, the X-direction positions of the first end region PIa1 and the second end region PIb2 substantially match.
The shape and position of the exposure fields PIa and PIb are set by setting the arrangement of the exposure modules, the diaphragm, and the like.
 図7の(B)は、露光対象物がステージ14によりX方向に走査され、露光視野PIa,PIbにより露光された際に、基板23上に形成される露光領域を示す図である。図7の(B)に示すように、基板23上には、露光視野PIaにより露光される走査露光領域SIaと、露光視野PIbにより露光される走査露光領域SIbとが形成される。 (B) of FIG. 7 is a diagram showing an exposure area formed on the substrate 23 when the exposure target is scanned in the X direction by the stage 14 and exposed by the exposure visual fields PIa and PIb. As shown in FIG. 7B, on the substrate 23, a scanning exposure area SIa exposed by the exposure field PIa and a scanning exposure area SIb exposed by the exposure field PIb are formed.
 走査露光領域SIa,SIbは、露光視野PIa,PIbがX方向への走査露光によりX方向に延長されたものであるといえる。走査露光領域SIa,SIbの非走査方向の端部は、隣り合う他の走査露光領域SIa,SIbの非走査方向の端部とオーバーラップしている。例えば、第1端領域PIa1による露光領域と、第2端領域PIb2による露光領域とは一致する。「非走査方向」は、走査方向に交差する方向である。 It can be said that the scanning exposure areas SIa and SIb are obtained by extending the exposure visual fields PIa and PIb in the X direction by scanning exposure in the X direction. The non-scanning direction end portions of the scanning exposure regions SIa and SIb overlap the non-scanning direction end portions of the adjacent scanning exposure regions SIa and SIb. For example, the exposed area by the first end area PIa1 and the exposed area by the second end area PIb2 match. A "non-scanning direction" is a direction that intersects the scanning direction.
 図7の(C)は、X方向への走査露光により、感光された基板23上の感光量を示すグラフである。グラフの縦軸は感光量である。感光量は、後述する「非オーバーラップ領域」における露光対象物上の感光量に対する「オーバーラップ領域」における感光量を示した値である。横軸はY方向の座標である。
 図7の(C)に示すように、露光対象物上の感光量Eは、一定の値E1となる。すなわち、Y方向のうち、走査露光視野SIa,SIbの1つにより露光された部分(以下、「非オーバーラップ部」とも呼ぶ)Sa,Sbにおける感光量Eと、走査露光視野SIa,SIbの2つがオーバーラップして露光された部分(以下、「オーバーラップ部」とも呼ぶ)Oaにおける感光量Eとは、共に感光量Eの値がE1となる。そのため、非オーバーラップ部Sa,Sbにおける感光量Eと、オーバーラップ部Oaにおける感光量Eとは等しい。
 非オーバーラップ部Sa,Sbは、オーバーラップなしで露光される領域である。
FIG. 7C is a graph showing the amount of exposure on the substrate 23 exposed by scanning exposure in the X direction. The vertical axis of the graph is the amount of exposure. The amount of exposure is a value that indicates the amount of exposure in the "overlap area" relative to the amount of exposure on the object to be exposed in the "non-overlap area", which will be described later. The horizontal axis is the coordinate in the Y direction.
As shown in FIG. 7C, the amount of light E on the object to be exposed is a constant value E1. That is, in the Y direction, the exposure amount E in the portion exposed by one of the scanning exposure fields SIa and SIb (hereinafter also referred to as “non-overlapping portion”) Sa and Sb The exposure amount E in the portion Oa where the two are overlapped and exposed (hereinafter also referred to as "overlap portion") has a value of E1. Therefore, the amount of light E in the non-overlapping portions Sa and Sb is equal to the amount of light E in the overlapping portion Oa.
The non-overlapping portions Sa and Sb are regions exposed without overlapping.
 図7の(D)は、X方向への走査露光により露光対象物に照射される光の積算照度(積算露光量)を示すグラフである。グラフの縦軸は積算照度である。積算照度とは、「非オーバーラップ領域」と「オーバーラップ領域」のそれぞれにおいて露光対象物に照射される(パルス)光の総和である。つまり、パルス数が多くなればなるほど積算照度は大きくなり、パルス数が少なくなればなるほど積算照度は小さくなる。横軸はY方向の座標である。
 図7の(D)に示すように、オーバーラップ部Oaにおける積算照度は、非オーバーラップ部Sa,Sbにおける積算照度より高い。これにより、非オーバーラップ部Sa,Sbにおける感光量Eと、オーバーラップ部Oaにおける感光量Eとは等しくなる。
(D) of FIG. 7 is a graph showing the integrated illuminance (integrated exposure amount) of the light irradiated to the exposure object by the scanning exposure in the X direction. The vertical axis of the graph is the integrated illuminance. The integrated illuminance is the total sum of (pulse) light applied to the exposure object in each of the "non-overlap area" and the "overlap area". That is, the greater the number of pulses, the greater the integrated illuminance, and the less the number of pulses, the smaller the integrated illuminance. The horizontal axis is the coordinate in the Y direction.
As shown in FIG. 7D, the integrated illuminance in the overlapping portion Oa is higher than the integrated illuminance in the non-overlapping portions Sa and Sb. As a result, the amount of exposure E in the non-overlapping portions Sa and Sb and the amount of exposure E in the overlapping portion Oa are equal.
 オーバーラップ部Oaにおける積算照度を、非オーバーラップ部Sa,Sbにおける積算照度より高くするには、次の手法を採用する。
 制御部21は、露光視野PIa,PIbの領域(第1端領域PIa1および第2端領域PIb2)に相当する領域において、空間光変調器201のマイクロミラー203のオン状態およびオフ状態を制御する。詳しくは、制御部21は、オーバーラップ部Oaに照射されるパルス光の数が、非オーバーラップ部Sa,Sbに照射されるパルス光の数よりも多くなるように複数のマイクロミラー203を制御する。例えば、オーバーラップ部Oaにおける、単位面積当たりのオン状態のマイクロミラー203の数を、非オーバーラップ部Sa,Sbにおける、単位面積当たりのオン状態のマイクロミラー203の数より多くすることができる。
 これにより、オーバーラップ部Oaにおける積算照度を、非オーバーラップ部Sa,Sbにおける積算照度より高くすることができる。
The following method is employed to make the integrated illuminance in the overlapping portion Oa higher than the integrated illuminance in the non-overlapping portions Sa and Sb.
The control unit 21 controls the ON state and OFF state of the micromirror 203 of the spatial light modulator 201 in regions corresponding to the regions of the exposure visual fields PIa and PIb (first end region PIa1 and second end region PIb2). More specifically, the control unit 21 controls the plurality of micromirrors 203 so that the number of pulsed lights irradiated to the overlapping portion Oa is greater than the number of pulsed lights irradiated to the non-overlapping portions Sa and Sb. do. For example, the number of ON-state micromirrors 203 per unit area in the overlapping portion Oa can be greater than the number of ON-state micromirrors 203 per unit area in the non-overlapping portions Sa and Sb.
Thereby, the integrated illuminance in the overlapping portion Oa can be made higher than the integrated illuminance in the non-overlapping portions Sa and Sb.
 露光装置1では、制御部21は、オーバーラップ部Oaに照射されるパルス光の数が、非オーバーラップ部Sa,Sbに照射されるパルス光の数よりも多くなるように複数のマイクロミラー203を制御する。これにより、非オーバーラップ部Sa,Sbにおける感光量Eと、オーバーラップ部Oaにおける感光量Eとは等しくなる。したがって、非オーバーラップ部Sa,Sbとオーバーラップ部Oaとの感光量の偏りを抑制することができる。 In the exposure apparatus 1, the control unit 21 controls the plurality of micromirrors 203 so that the number of pulsed lights irradiated on the overlapping portion Oa is greater than the number of pulsed lights irradiated on the non-overlapping portions Sa and Sb. to control. As a result, the amount of exposure E in the non-overlapping portions Sa and Sb and the amount of exposure E in the overlapping portion Oa are equal. Therefore, the non-overlapping portions Sa, Sb and the overlapping portion Oa can be prevented from being uneven in the amount of exposure.
 露光装置1を用いた露光方法では、オーバーラップ部Oaに照射されるパルス光の数が、非オーバーラップ部Sa,Sbに照射されるパルス光の数よりも多くなるように複数のマイクロミラー203を制御する。これにより、非オーバーラップ部Sa,Sbにおける感光量Eと、オーバーラップ部Oaにおける感光量Eとは等しくなる。したがって、非オーバーラップ部Sa,Sbとオーバーラップ部Oaとの感光量の偏りを抑制することができる。 In the exposure method using the exposure apparatus 1, the plurality of micromirrors 203 are arranged so that the number of pulsed lights irradiated on the overlapping portion Oa is greater than the number of pulsed lights irradiated on the non-overlapping portions Sa and Sb. to control. As a result, the amount of exposure E in the non-overlapping portions Sa and Sb and the amount of exposure E in the overlapping portion Oa are equal. Therefore, the non-overlapping portions Sa, Sb and the overlapping portion Oa can be prevented from being uneven in the amount of exposure.
 露光装置1は、同期用の基準となるマスタークロック(マスタークロックを発する発振器)(不図示)を備えていてもよい。露光装置1では、例えば、ステージ14、照明モジュール16、投影モジュール17、光変調部20などのデバイスは、マスタークロックを基準として駆動されてもよい。制御部21は、マスタークロックを基準として、光源18のパルス発光のタイミングや各デバイスの動作を制御可能である。マスタークロックの参照により、各デバイスの動作タイミングが個別に適切に調整されるとともに、複数のデバイスの間の動作タイミングの関係が適切に設定される。 The exposure apparatus 1 may include a master clock (oscillator that generates a master clock) (not shown) that serves as a reference for synchronization. In the exposure apparatus 1, devices such as the stage 14, the illumination module 16, the projection module 17, and the light modulation section 20 may be driven based on the master clock. The control unit 21 can control the timing of pulse emission of the light source 18 and the operation of each device on the basis of the master clock. By referring to the master clock, the operation timing of each device is appropriately adjusted individually, and the relationship of operation timings among a plurality of devices is appropriately set.
 実施形態の露光装置1における効果を明確にするため、比較形態を提示する。
 図8の(A)~(B)は、比較形態を示す。図8の(A)は、隣り合う2つの投影モジュール17の露光視野PIa,PIbを示す図である。図8の(B)は、露光視野PIa,PIbにより露光された際に、基板23上に形成される露光領域を示す図である。図8の(C)は、X方向への走査露光による感光量を示すグラフである。図8の(D)は、X方向への走査露光により基板23に照射される光の積算照度を示すグラフである。
In order to clarify the effects of the exposure apparatus 1 of the embodiment, a comparative form is presented.
FIGS. 8A-8B show a comparative embodiment. FIG. 8A is a diagram showing exposure fields PIa and PIb of two adjacent projection modules 17. FIG. FIG. 8B is a diagram showing an exposure area formed on the substrate 23 when exposed through the exposure fields PIa and PIb. FIG. 8C is a graph showing the amount of exposure by scanning exposure in the X direction. (D) of FIG. 8 is a graph showing the integrated illuminance of light applied to the substrate 23 by scanning exposure in the X direction.
 図8の(D)に示すように、オーバーラップ部Oaにおける積算照度は、非オーバーラップ部Sa,Sbにおける積算照度と等しい。図8の(C)に示すように、オーバーラップ部Oaにおける感光量Eは、非オーバーラップ部Sa,Sbの感光量E2より低い。この比較形態では、オーバーラップ部Oaにおいて感光量の低下が生じている。そのため、非オーバーラップ部Sa,Sbとオーバーラップ部Oaにおける感光量の偏りは大きくなる。 この比較形態では、例えば、オーバーラップ部Oaに照射されるパルス光の数が、非オーバーラップ部Sa,Sbに照射されるパルス光の数と等しい。 As shown in (D) of FIG. 8, the integrated illuminance in the overlapping portion Oa is equal to the integrated illuminance in the non-overlapping portions Sa and Sb. As shown in FIG. 8C, the photosensitivity E in the overlapping portion Oa is lower than the photosensitivity E2 in the non-overlapping portions Sa and Sb. In this comparative example, the photosensitivity is lowered in the overlapping portion Oa. As a result, the non-overlapping portions Sa, Sb and the overlapping portion Oa have a large bias in the amount of exposure. In this comparative form, for example, the number of pulsed lights irradiated to the overlapping portion Oa is equal to the number of pulsed lights irradiated to the non-overlapping portions Sa and Sb.
 図7の(A)に示すように、露光装置1では、第1端領域PIa1と、第2端領域PIb2とはX方向の位置はほぼ一致しているが、第1端領域PIa1と、第2端領域PIb2との位置関係は図示例に限定されない。図7の(A)に比べて、露光視野PIaと露光視野PIbとを互いに接近する方向または離間する方向に位置調整すると、オーバーラップ部における積算照度を調整することができる。例えば、露光視野PIaと露光視野PIbとが互いに近いと、オーバーラップ部における積算照度は大きくなる。 As shown in FIG. 7A, in the exposure apparatus 1, the first end region PIa1 and the second end region PIb2 are substantially aligned in the X direction. The positional relationship with the two-end region PIb2 is not limited to the illustrated example. Compared to FIG. 7A, by adjusting the positions of the exposure fields of view PIa and PIb in the direction of approaching or separating from each other, the integrated illuminance in the overlapping portion can be adjusted. For example, when the exposure field of view PIa and the exposure field of view PIb are close to each other, the integrated illuminance in the overlapping portion increases.
[露光データ作成方法]
 図7の(C)および(D)に示す露光データを作成する方法の一例を説明する。
 図2に示す制御部21に、オーバーラップ部Oaおよび非オーバーラップ部Sa,Sbにおけるオン状態のマイクロミラー203の数を調整するための情報を入力する。これにより、オーバーラップ部Oaに照射されるパルス光の数が、非オーバーラップ部Sa,Sbに照射されるパルス光の数よりも多くなるような露光データを得る。
[Exposure data creation method]
An example of a method for creating the exposure data shown in (C) and (D) of FIG. 7 will be described.
Information for adjusting the number of ON-state micromirrors 203 in the overlapping portion Oa and the non-overlapping portions Sa and Sb is input to the control portion 21 shown in FIG. As a result, exposure data is obtained such that the number of pulsed lights irradiated onto the overlapping portion Oa is greater than the number of pulsed lights irradiated onto the non-overlapping portions Sa and Sb.
 露光装置1では、次に示すように、オン状態のマイクロミラーの数の調整だけでなく、遮光部材を用いる手法を併用してもよい。遮光部材の構成としては、特に限定されないが、国際公開2020/145044号、国際公開2020/203002号、国際公開2020/203003号、国際公開2020/203111号、および国際公開2020/138497号に開示されるような遮光部材、或いは減光フィルターを用いることができる。 In the exposure apparatus 1, as described below, not only the adjustment of the number of micromirrors in the ON state, but also the method of using the light shielding member may be used. The configuration of the light shielding member is not particularly limited, but is disclosed in WO 2020/145044, WO 2020/203002, WO 2020/203003, WO 2020/203111, and WO 2020/138497. A light-shielding member such as a light-shielding member or a light-reducing filter can be used.
 遮光部材は、露光視野PIa,PIb(図7の(A)参照)のうちの中央領域PIac,PIbcに照射される光を遮光することができる。これにより、中央領域PIac,PIbcの積算照度を、第1端領域PIa1および第2端領域PIb2に比べて低くすることができる。 The light shielding member can shield the light irradiated to the central regions PIac and PIbc of the exposure fields PIa and PIb (see (A) of FIG. 7). Thereby, the integrated illuminance of the central regions PIac and PIbc can be made lower than those of the first end region PIa1 and the second end region PIb2.
 実施形態の露光装置では、走査露光視野のエッジ部においてオン状態のマイクロミラーの数の調整を行うと、走査露光視野のエッジ部の位置が拡幅方向にずれる場合がある。走査露光視野の中央に近い位置においてオン状態のマイクロミラーの数の調整を行うと、このような位置ずれは生じにくい。このことを考慮して、オン状態とするマイクロミラーを選択することが好ましい。
 走査露光視野の両方のエッジ部に均等にオン状態のマイクロミラーの数の調整を行うと、位置ずれを抑制しやすくなる場合がある。走査露光視野の両方のエッジ部に不均等にオン状態のマイクロミラーの数の調整を行うことによって、意図的に位置ずれを生じさせてもよい。
In the exposure apparatus of the embodiment, when the number of micromirrors in the ON state is adjusted in the edge portion of the scanning exposure field, the position of the edge portion of the scanning exposure field may shift in the widening direction. If the number of ON-state micromirrors is adjusted at a position near the center of the scanning exposure field, such positional deviation is less likely to occur. Taking this into consideration, it is preferable to select the micromirrors to be turned on.
Adjusting the number of micromirrors that are in the ON state evenly on both edge portions of the scanning exposure field may facilitate the suppression of positional deviation. Misalignment may be intentionally introduced by adjusting the number of micromirrors that are turned on unevenly at both edges of the scanning exposure field.
[フラットパネルディスプレイの製造方法]
 露光装置1は、前述の露光方法を用いて、液晶表示装置(フラットパネルディスプレイ)などの電子デバイスを製造することができる。
[Manufacturing method of flat panel display]
The exposure apparatus 1 can manufacture an electronic device such as a liquid crystal display (flat panel display) using the exposure method described above.
[第2実施形態]
 図9は、図2に示した投影モジュール17A、17Bの各々によって基板23上に投影される空間光変調器201の矩形状の投影領域PIa、PIbの配置例を模式的に示す図である。同図を参照しながら、第2実施形態に係る露光装置1及び露光方法の一例について説明する。以降の説明において、第1実施形態と同様の構成については、同様の符号を付すことにより説明を省略する場合がある。なお、図9では投影モジュール17A、17B以外の投影モジュール17C、17Dについて図示を省略しているが、投影モジュール17C、17Dについても投影モジュール17A、17Bと同様のことが言える。
[Second embodiment]
FIG. 9 is a diagram schematically showing an arrangement example of rectangular projection areas PIa and PIb of the spatial light modulator 201 projected onto the substrate 23 by each of the projection modules 17A and 17B shown in FIG. An example of an exposure apparatus 1 and an exposure method according to the second embodiment will be described with reference to this figure. In the following description, the same reference numerals may be given to the same configurations as in the first embodiment, and the description thereof may be omitted. Although the projection modules 17C and 17D other than the projection modules 17A and 17B are not shown in FIG. 9, the projection modules 17C and 17D are similar to the projection modules 17A and 17B.
 17a、17bは円形の投影視野を表す。ここで、投影視野17a、17bの各々の中心Axa、Axbをそれぞれ投影モジュール17A、17Bの光軸位置とし、露光視野(以下、投影領域とも呼ぶ)PIa、PIbの各々の中心と一致しているものとする。Y方向に一定間隔を空けて並ぶ複数の投影領域PIaと、Y方向に一定間隔を空けて並ぶ投影領域PIbとは、X方向にも一定の間隔で配置される。さらに、投影領域PIaと投影領域PIbは、基板23の表面と平行なXY面内で角度θpだけ傾いて配置されると共に、互いにY方向に所定の間を空けて配置される。基板23のX方向の走査露光によって、投影領域PIa、PIbの各々のY方向の端部がオーバーラップすることで継ぎ露光が行われる。 17a and 17b represent circular projection fields. Here, the centers Axa and Axb of the projection fields 17a and 17b are assumed to be the optical axis positions of the projection modules 17A and 17B, respectively, and coincide with the centers of the exposure fields (hereinafter also referred to as projection regions) PIa and PIb. shall be A plurality of projection areas PIa arranged at regular intervals in the Y direction and projection areas PIb arranged at regular intervals in the Y direction are also arranged at regular intervals in the X direction. Further, the projection area PIa and the projection area PIb are arranged with an angle of θp in the XY plane parallel to the surface of the substrate 23, and are arranged with a predetermined gap in the Y direction. Splice exposure is performed by scanning and exposing the substrate 23 in the X direction so that the ends of the projection regions PIa and PIb in the Y direction overlap each other.
 ここで、投影領域PIa、PIbがオーバーラップする部分を継ぎ領域(継ぎ部)PIwとし、オーバーラップしない部分を非継ぎ領域PIac、PIbcとする。継ぎ領域PIwの幅をWo、非継ぎ領域PIac、PIbcの幅をWsとする。なお、角度θpは、空間光変調器201上のマイクロミラーの寸法や配列ピッチ、投影モジュール17を介して基板23上に投影されるパターン線幅の描画精度(描画分解能)等で決められるが、おおむね10度以内である。 Here, the portion where the projection areas PIa and PIb overlap is referred to as a joint area (joint portion) PIw, and the non-overlapping portions are referred to as non-joint areas PIac and PIbc. Let Wo be the width of the spliced region PIw, and Ws be the width of the non-spliced regions PIac and PIbc. The angle θp is determined by the dimensions and arrangement pitch of the micromirrors on the spatial light modulator 201, the drawing accuracy (drawing resolution) of the pattern line width projected onto the substrate 23 via the projection module 17, and the like. It is generally within 10 degrees.
 また、投影領域PIa、PIbの短辺(X方向に延びた辺)の寸法をDxとすると、継ぎ領域PIwのY方向の幅Woは、各空間光変調器201をXY方向に微小シフトさせたり、XY面内で微小回転させたりする場合の調整範囲を考慮して、Wo>Dx・sinθpに設定される。 Further, if the dimension of the short sides (sides extending in the X direction) of the projection areas PIa and PIb is Dx, the width Wo of the joint area PIw in the Y direction can slightly shift each spatial light modulator 201 in the XY directions. , Wo>Dx·sin θp in consideration of the adjustment range in the case of micro-rotation within the XY plane.
 次に、2つの投影領域PIa、PIbによる通常の継ぎ露光の状態(通常)を、図10により模式的に説明する。図10は、図9中の2つの投影領域PIa、PIbのみによる継ぎ露光(通常露光モード)の様子を示す図である。図10における投影領域PIa、PIbの各々の内部の黒点(ドット)は、オン状態になるマイクロミラーの配置の例を示す。 Next, the state of normal joint exposure (normal) by the two projection areas PIa and PIb will be schematically described with reference to FIG. FIG. 10 is a diagram showing a state of joint exposure (normal exposure mode) using only the two projection areas PIa and PIb in FIG. The black points (dots) inside each of the projection areas PIa and PIb in FIG. 10 show examples of the arrangement of the micromirrors that are turned on.
 図10に示すように、基板23上で、投影領域PIb内の非継ぎ領域Ws内を通る基板23上の線L1、L2を想定し、線L1、L2上でパターン部分を露光する場合、線L1上及び線L2上の各々に位置する複数のマイクロミラーが選択されて、基板23の走査移動位置、並びにパルス光の周期に同期して順次オン状態(ドット)になる。その為、1本の線L1上又はL2上の複数のドットは、基板23上ではX方向の同一点上でパルス露光される。
 非継ぎ領域Ws内で線L1、L2上に位置するオン状態のマイクロミラーの数(ドット数)は、目標露光量に応じて決まった数となる。従って、図10の下段に示すように、非継ぎ領域Wsでは、目標露光量に対応してオン状態のマイクロミラーの積算個数(パルス数)Ntが定まっている。
 以上のことは、隣の投影領域PIa内の非継ぎ領域Ws内の線L6、L7の各位置においても同様であり、オン状態のマイクロミラーの積算個数(パルス数)はNtになるように設定されている。なお、図10の下段において、積算個数がゼロになっているY方向の部分は、マイクロミラーがオフ状態に設定されて露光が行われない領域(描画データ上で非露光の部分)である。
As shown in FIG. 10, assuming lines L1 and L2 on the substrate 23 passing through the non-splicing region Ws in the projection region PIb, when exposing the pattern portion on the lines L1 and L2, the line A plurality of micromirrors located on each of L1 and L2 are selected and sequentially turned on (dots) in synchronization with the scanning movement position of the substrate 23 and the cycle of the pulsed light. Therefore, a plurality of dots on one line L1 or L2 are pulse-exposed on the same point on the substrate 23 in the X direction.
The number of ON-state micromirrors (the number of dots) positioned on the lines L1 and L2 in the non-splice area Ws is determined according to the target exposure amount. Therefore, as shown in the lower part of FIG. 10, in the non-splice region Ws, the integrated number (pulse number) Nt of the micromirrors in the ON state is determined corresponding to the target exposure amount.
The above is the same for each position of the lines L6 and L7 in the non-joining area Ws in the adjacent projection area PIa, and the integrated number (number of pulses) of the micromirrors in the ON state is set to be Nt. It is In the lower part of FIG. 10, the portion in the Y direction where the integrated number is zero is the area where the micromirrors are set to the OFF state and no exposure is performed (non-exposure portion on the drawing data).
 一方、図10中の継ぎ領域Wo内を通る線L3、L4、L5上の各々に位置するオン状態のマイクロミラー(ドット)の積算個数も、目標露光量に対応したNtになるように設定される。ここで、図9で説明したように、Wo>Dx・sinθpに設定されているので、継ぎ領域WoのY方向の幅の中心に位置する線L4上では、投影領域PIa側のみ、及びPIb側のみで、それぞれドットの積算個数Ntが得られるが、この場合継ぎ領域Woがオーバー露光状態になってしまう。その為、通常露光のモードでは、投影領域PIa側の継ぎ領域Wo内で線L3、L4、L5の各々の上に位置するドット数と、投影領域PIb側の継ぎ領域Wo内で線LL3、L4、L5の各々の上に位置するドット数との和が、積算個数(パルス数)Ntになるように設定される。 On the other hand, the integrated number of ON-state micromirrors (dots) positioned on each of the lines L3, L4, and L5 passing through the joint region Wo in FIG. 10 is also set to be Nt corresponding to the target exposure amount. be. Here, as described with reference to FIG. 9, Wo>Dx·sin θp is set. However, in this case, the joint region Wo is overexposed. Therefore, in the normal exposure mode, the number of dots positioned on each of the lines L3, L4, and L5 in the joint region Wo on the projection region PIa side, and the number of dots on the lines LL3 and L4 in the joint region Wo on the projection region PIb side. , L5 and the number of dots positioned on each of them is set to be the integrated number (number of pulses) Nt.
 なお、空間光変調器201のマイクロミラーが4K画面の画素数(3840×1920)に対応したものである場合、照明光の照度と角度θpにも依るが、非継ぎ領域Ws内の線L1、L2、L6、L7上のオン状態のマイクロミラー(ドット)の積算個数Ntは30個以上、好ましくは50個以上であることが望ましい。また、基板23上での1つのドットの大きさは1μm程度となる。
 しかしながら、一部のフォトレジスト、例えばネガ型レジストでは、継ぎ領域Woに非継ぎ領域Wsと同じ露光量(積算個数Nt)を与えても、レジスト現像後は、その露光量では不足するような現象(感光特性の非線形性による線幅の変化等)がある。
When the micromirror of the spatial light modulator 201 corresponds to the number of pixels (3840×1920) of the 4K screen, depending on the illuminance of the illumination light and the angle θp, the line L1, The integrated number Nt of the ON-state micromirrors (dots) on L2, L6, and L7 is desirably 30 or more, preferably 50 or more. Also, the size of one dot on the substrate 23 is about 1 μm.
However, in some photoresists, for example, negative resists, even if the same exposure amount (accumulated number Nt) is given to the spliced region Wo as to the non-spliced region Ws, the exposure dose is insufficient after resist development. (variation in line width due to non-linearity of photosensitive characteristics, etc.).
 図11は、ネガ型レジストの場合の特殊露光モードの一例を模式的に示す図である。図11中の投影領域PIa、PIb、線L1~L7の各々は、図10中のものと同じであり、投影領域PIa、PIbで露光されるパターンも図10と同じとする。
 図10で説明したように、Wo>Dx・sinθpに設定されている。これにより、継ぎ領域PIw内では、投影領域PIa内の線L3、L4、L5上のドット数(オン状態のマイクロミラーの数)と、投影領域PIb内の線L3、L4、L5上のドット数(オン状態のマイクロミラーの数)との積算個数を、目標露光量に対応した数Ntよりも多くなるように、DMDのミラーを駆動する描画パターンデータが作成される。
FIG. 11 is a diagram schematically showing an example of a special exposure mode for negative resist. The projection areas PIa and PIb and the lines L1 to L7 in FIG. 11 are the same as in FIG. 10, and the patterns exposed in the projection areas PIa and PIb are also the same as in FIG.
As described with reference to FIG. 10, Wo>Dx·sin θp is set. As a result, within the joint region PIw, the number of dots on the lines L3, L4, and L5 in the projection region PIa (the number of micromirrors in the ON state) and the number of dots on the lines L3, L4, and L5 in the projection region PIb The drawing pattern data for driving the mirrors of the DMD is created such that the integrated number with (the number of micromirrors in the ON state) is greater than the number Nt corresponding to the target exposure amount.
 図11中に示したドットのうち、矢印で示したドットは、図10中のドットに対して追加されたものである。継ぎ領域PIw内で、どの程度ドット数(オン状態のマイクロミラーの数)を増加させるか、即ち、継ぎ領域PIwに与える露光量をどの程度増加させるかは、ネガ型レジストの種類やレジスト層の厚さ等を勘案した事前のテスト露光等で求められる。図11では、継ぎ領域PIwの幅方向の中心の位置(線L4上)での積算個数NpがNtよりも大きく、最大値となる。 Of the dots shown in FIG. 11, the dots indicated by arrows are added to the dots in FIG. How much the number of dots (the number of micromirrors in the ON state) should be increased in the spliced region PIw, that is, how much the amount of exposure applied to the spliced region PIw should be increased depends on the type of negative resist and the resist layer. It can be obtained by preliminary test exposure, etc., taking into consideration the thickness, etc. In FIG. 11, the cumulative number Np at the center position (on line L4) in the width direction of the joint region PIw is greater than Nt and reaches the maximum value.
 この種の露光装置1では、目標露光量に対する誤差を数%以下、望ましくは2%以下にすることが要求される。仮に、目標露光量を得るための積算個数Nt(図10、11参照)が50個に設定される場合、その内の1つのドットの増減が±2%の誤差となる。そのため、目標露光量に対応した積算個数Ntは、できるだけ多い方が望ましいが、それに応じて描画パターンデータが増大することもある。
 また、このことは、Y方向の位置に関して積算個数Ntを比較的に自由に調整できることを意味するので、投影領域PIa、PIb内に現れる露光すべきパターンに応じて、積算個数Ntを±1ドット以上異ならせて、露光量を微調整することも可能である。それ故、投影領域PIa、PIb内に微細なライン&スペース(L&S)パターンとコンタクトホール(ビアホール)等が混在する場合、即ち、周期的パターンと孤立パターンが混在する場合に、それらに対して僅かに異なる露光量を与えることもできる。従って、各露光モジュール(投影モジュール17)で露光されるパターン中の局所的な部分で露光量が微調整でき、より精密な線幅(現像後のレジスト像の寸法)制御が可能となる。
The exposure apparatus 1 of this type is required to have an error of several percent or less, preferably 2% or less, with respect to the target exposure amount. If the cumulative number Nt (see FIGS. 10 and 11) for obtaining the target exposure amount is set to 50, the increase or decrease of one of the dots results in an error of ±2%. Therefore, it is desirable that the integrated number Nt corresponding to the target exposure amount is as large as possible, but the drawing pattern data may increase accordingly.
Also, this means that the integrated number Nt can be adjusted relatively freely with respect to the position in the Y direction. It is also possible to finely adjust the exposure amount by making the above differences. Therefore, when fine line & space (L&S) patterns and contact holes (via holes) and the like coexist in the projection areas PIa and PIb, that is, when periodic patterns and isolated patterns coexist, there is little can be given different exposures. Therefore, it is possible to finely adjust the exposure amount in a local portion of the pattern exposed by each exposure module (projection module 17), thereby enabling more precise control of the line width (dimension of the resist image after development).
[変形例]
 図12は、継ぎ領域PIw内に露光されるオン状態のミラー(ドット)の積算個数のY方向の分布の変形例を示す図である。図12の(A)及び(B)は、左側の投影領域PIbを生成する空間光変調器201と、右側の投影領域PIaを生成する空間光変調器201とに投射される照明光の照度に差が生じた場合の対応を模式的に示す。そして、図12の(A)は、図10の通常露光モードの場合に対応し、(B)は図11の特殊露光モードの場合に対応する。
[Modification]
FIG. 12 is a diagram showing a modification of the Y-direction distribution of the cumulative number of ON-state mirrors (dots) exposed in the spliced region PIw. 12A and 12B show the illuminance of illumination light projected on the spatial light modulator 201 that generates the left projection area PIb and the spatial light modulator 201 that generates the right projection area PIa. Schematically shows correspondence when a difference occurs. 12A corresponds to the normal exposure mode of FIG. 10, and FIG. 12B corresponds to the special exposure mode of FIG.
 図12の(A)では、左側の投影領域PIbの方が右側の投影領域PIaよりも照度が高い。その為、投影領域PIb側で目標露光量を得るのに必要なオン状態のミラーの積算個数Nt1は、投影領域PIa側で目標露光量を得るのに必要なオン状態のミラーの積算個数Nt2よりも少なく設定される。そして、図12の(A)のように継ぎ領域PIw内の積算個数は、Nt1とNt2の間で、Y方向の位置に応じて線形に変化するように設定される。 In FIG. 12A, the left projection area PIb has a higher illuminance than the right projection area PIa. Therefore, the integrated number Nt1 of ON-state mirrors required to obtain the target exposure amount on the projection area PIb side is less than the integrated number Nt2 of ON-state mirrors required to obtain the target exposure amount on the projection area PIa side. is set to be less. Then, as shown in FIG. 12A, the integrated number in the joint region PIw is set so as to linearly change between Nt1 and Nt2 according to the position in the Y direction.
 図12の(B)も(A)と同様に、左側と右側で照度差が生じていた場合であり、継ぎ領域PIw内では、(A)の線形変化よりも積算個数が多くなるように設定される。本変形例は、多数の露光モジュール間で、空間光変調器201への照明光の照度が精密に揃えられなくなった場合、或いはモジュール間で空間光変調器201からの反射光強度を精密に揃えられなくなった場合等に適用でき、露光装置の安定稼働の運用時間を延ばすことができる。 Similarly to (A), (B) of FIG. 12 also shows a case in which there is a difference in illuminance between the left and right sides, and in the joint region PIw, the number of integrated pieces is set to be larger than the linear change in (A). be done. This modification is used when the illuminance of illumination light to the spatial light modulators 201 cannot be precisely aligned among a large number of exposure modules, or when the reflected light intensity from the spatial light modulators 201 is precisely aligned between modules. It can be applied when the exposure apparatus is no longer available, and the operation time for stable operation of the exposure apparatus can be extended.
 以上の第2実施形態や変形例では、図11に示した継ぎ領域PIw内に存在するパターンのX方向に延びたエッジ部においてオン状態のマイクロミラーの数の調整を行うと、パターンのエッジ部の位置がY方向にずれる(線幅が広がる)場合がある。その場合、追加されるオン状態のマイクロミラーは、オン状態で投影されるパターンのエッジ部よりも内側に位置するように選定される。それにより、継ぎ領域PIw内に存在するパターンの位置ずれや線幅の変動を抑えることができる。また、ネガ型レジストの露光時に継ぎ領域PIw内のパターンの線幅が非線形性の影響で細くなる傾向の場合は、継ぎ領域PIw内に存在するパターンのY方向の両方のエッジ部が僅かに拡幅するように、両方のエッジ部に対応したマイクロミラーを意図的に追加してオン状態にすることもできる。 In the second embodiment and the modification described above, if the number of micromirrors in the ON state is adjusted at the edge portion of the pattern existing in the splice region PIw shown in FIG. position may shift in the Y direction (line width widens). In that case, the additional ON-state micromirrors are selected to be located inside the edge of the projected pattern in the ON state. As a result, it is possible to suppress the positional deviation of the pattern existing in the splicing region PIw and the fluctuation of the line width. Further, when the line width of the pattern in the joint region PIw tends to become thin due to the influence of nonlinearity during the exposure of the negative resist, both edges in the Y direction of the pattern existing in the joint region PIw are slightly widened. Micromirrors corresponding to both edge portions can be intentionally added and turned on so as to do so.
[第3実施形態]
 図13の(A)は、第3実施形態に係る露光対象物(基板23)が露光された際に露光対象物上に形成される露光領域を示す図である。(B)は、露光対象物上に形成される露光領域を示す図である。(C)は、走査露光による積算パルス数を示すグラフである。同図を参照しながら、第3実施形態に係る露光装置1及び露光方法の一例について説明する。以降の説明において、第1実施形態と同様の構成については、同様の符号を付すことにより説明を省略する場合がある。
 図7では、走査方向と交差する方向(例えばY方向)に隣り合う2つの投影モジュール17を用いて、オーバーラップ部Oaを露光する例を示しているが、図13の(A)では、走査方向に隣り合う2つの投影モジュール17(例えば、17bと17d)を用いて、オーバーラップ部Oaにおける積算パルス数を、非オーバーラップ部Sa、Sbにおける積算パルス数より高くする例を示す。
[Third Embodiment]
FIG. 13A is a diagram showing an exposure region formed on an exposure target when the exposure target (substrate 23) according to the third embodiment is exposed. (B) is a diagram showing an exposure region formed on an exposure target. (C) is a graph showing the integrated number of pulses by scanning exposure. An example of an exposure apparatus 1 and an exposure method according to the third embodiment will be described with reference to this figure. In the following description, the same reference numerals may be given to the same configurations as in the first embodiment, and the description thereof may be omitted.
FIG. 7 shows an example of exposing the overlapping portion Oa using two projection modules 17 adjacent in a direction intersecting the scanning direction (for example, the Y direction). An example is shown in which two projection modules 17 (for example, 17b and 17d) adjacent in direction are used to make the integrated pulse number in the overlapping portion Oa higher than the integrated pulse number in the non-overlapping portions Sa and Sb.
 図13の(A)は、露光対象物がステージ14によりX方向に走査され、露光視野PIa、PIbにより露光された際に、露光対象物上に形成される露光領域を示す。図13の(A)に示すように、露光対象物上には、露光視野PIaにより露光される走査露光領域SIaと、露光視野PIbにより露光される走査露光領域SIbとが形成される。 (A) of FIG. 13 shows the exposure regions formed on the exposure object when the exposure object is scanned in the X direction by the stage 14 and exposed by the exposure visual fields PIa and PIb. As shown in FIG. 13A, a scanning exposure area SIa exposed by the exposure field PIa and a scanning exposure area SIb exposed by the exposure field PIb are formed on the exposure object.
 走査露光領域SIa、SIbは、露光視野PIa、PIbがX方向への走査露光によりX方向に延長されたものであるといえる。走査露光領域SIaの走査方向の端部は、隣り合う走査露光領域SIbの走査方向の端部とオーバーラップしている。
 非オーバーラップ部Sa、Sbは、走査露光領域SIaと走査露光領域SIbがオーバーラップすることなく、走査露光領域SIaのみ、または、走査露光領域SIbのみで露光される領域である。オーバーラップ部Oaにおける積算パルス数を、非オーバーラップ部Sa,Sbにおける積算パルス数より高くすることができる。なお、走査露光領域SIaと走査露光領域SIbは、図7に示す通り、非走査方向においてオーバーラップ部Oaを有することができる。
 これにより、ネガレジストの線幅を所定量にしつつ、ステージ14の走査方向の移動距離を小さくすることができる。
It can be said that the scanning exposure areas SIa and SIb are obtained by extending the exposure visual fields PIa and PIb in the X direction by scanning exposure in the X direction. The scanning-direction end of the scanning exposure region SIa overlaps the scanning-direction end of the adjacent scanning exposure region SIb.
The non-overlapping portions Sa and Sb are areas exposed only in the scanning exposure area SIa or only in the scanning exposure area SIb without the scanning exposure area SIa and the scanning exposure area SIb overlapping. The number of integrated pulses in the overlapping portion Oa can be made higher than the number of integrated pulses in the non-overlapping portions Sa and Sb. As shown in FIG. 7, the scanning exposure area SIa and the scanning exposure area SIb can have an overlapping portion Oa in the non-scanning direction.
As a result, the moving distance of the stage 14 in the scanning direction can be reduced while keeping the line width of the negative resist at a predetermined amount.
 なお、1つの投影モジュール17を用いた場合でも、オーバーラップ部Oaを形成することが可能である。この場合、露光対象物をステージ14により+X方向に走査し、走査露光領域SIaを形成したあと、オーバーラップ部Oaに対応する分だけ、ステージ14をーX方向に移動させ、その後、露光対象物をステージ14により+X方向に走査し、走査露光領域SIbを形成することができる。 Note that it is possible to form the overlapping portion Oa even when one projection module 17 is used. In this case, after the stage 14 scans the exposure object in the +X direction to form the scanning exposure area SIa, the stage 14 is moved in the -X direction by an amount corresponding to the overlapping portion Oa, and then the exposure object can be scanned in the +X direction by the stage 14 to form the scanning exposure area SIb.
 この例(1つの投影モジュール17を用いた場合)では、走査露光領域SIa、走査露光領域SIbは、露光対象物を同じ方向に走査することで形成しているが、走査露光領域SIaを形成するときに露光対象物を走査する向きと、走査露光領域SIbを形成するときに露光対象物を走査する向きとは逆向きにしてもよい。 In this example (when one projection module 17 is used), the scanning exposure area SIa and the scanning exposure area SIb are formed by scanning the exposure object in the same direction. Sometimes, the scanning direction of the exposure object may be reversed from the scanning direction of the exposure object when forming the scanning exposure region SIb.
 図13において、オーバーラップ部Oaの走査方向における幅は変更可能である。例えば、幅を大きくすれば、走査露光時に発生しうるステージの移動誤差の影響を平均化して低減することができる。幅を短くすれば、オーバーラップ部Oaの露光時間を短縮でき、ステージが走行する全体距離を短縮することができる。 In FIG. 13, the width of the overlapping portion Oa in the scanning direction can be changed. For example, if the width is increased, it is possible to average and reduce the effects of stage movement errors that may occur during scanning exposure. If the width is shortened, the exposure time of the overlapping portion Oa can be shortened, and the overall distance traveled by the stage can be shortened.
 図13の(C)において、横軸は、露光対象物の走査方向における位置を示す。縦軸は、積算パルス数である。露光視野PIaによりオーバーラップ部Oaを露光する際、積算パルス数を単調変化(単調増加、または、単調減少)させることができる。露光視野PIbによりオーバーラップ部Oaを露光する際、積算パルス数を単調変化(単調増加、または、単調減少)させることができる。単調変化には、図13の(C)のように線形的に単調変化する場合だけでなく、非線形的に単調変化する場合も含まれる。レジストの感光特性が非線形の場合には、オーバーラップ部Oaを露光する際、積算パルス数を非線形的に変化させることは、特に有効である。 In (C) of FIG. 13, the horizontal axis indicates the position of the exposure object in the scanning direction. The vertical axis is the integrated pulse number. When exposing the overlapping portion Oa with the exposure field PIa, the integrated pulse number can be monotonically changed (monotonously increased or monotonously decreased). When exposing the overlapping portion Oa with the exposure visual field PIb, the integrated pulse number can be monotonously changed (monotonously increased or monotonously decreased). The monotonous change includes not only linear monotonous change as shown in FIG. 13C, but also nonlinear monotonous change. When the resist has non-linear photosensitivity, it is particularly effective to non-linearly change the cumulative number of pulses when exposing the overlapping portion Oa.
[第4実施形態]
 図14は、第4実施形態に係る露光装置の露光モードの一例を模式的に示す図である。同図を参照しながら、第4実施形態に係る露光装置1及び露光方法の一例について説明する。以降の説明において、第1実施形態と同様の構成については、同様の符号を付すことにより説明を省略する場合がある。
[Fourth embodiment]
FIG. 14 is a diagram schematically showing an example of exposure modes of an exposure apparatus according to the fourth embodiment. An example of an exposure apparatus 1 and an exposure method according to the fourth embodiment will be described with reference to this figure. In the following description, the same reference numerals may be given to the same configurations as in the first embodiment, and the description thereof may be omitted.
 図14に示すように、非オーバーラップ部Sa、Sbを露光する際には、空間光変調器201の多数のマイクロミラーの2次元配列のうち長辺と短辺をなす周辺領域(網点部)のマイクロミラー以外のマイクロミラーを使い露光し、オーバーラップ部Oaを露光する際は、周辺領域(網点部)のマイクロミラーも使い露光してもよい。これにより、ネガレジストの露光時には、オーバーラップ部Oaに照射される積算パルス光の数を、非オーバーラップ部Sa、Sbに照射される積算パルス光の数よりも多くすることができる。つまり、オーバーラップ部Oaを露光するのに使用可能なマイクロミラーの数を、非オーバーラップ部Sa、Sbを露光するのに使用可能なマイクロミラーの数より多くすることができる。 As shown in FIG. 14, when exposing the non-overlapping portions Sa and Sb, the peripheral regions (dotted portions) of the two-dimensional array of the large number of micromirrors of the spatial light modulator 201, which form the long sides and short sides ), and when the overlapping portion Oa is exposed, the micromirrors in the peripheral area (halftone dot portion) may also be used for exposure. As a result, when the negative resist is exposed, the number of integrated pulsed lights irradiated to the overlapping portion Oa can be made larger than the number of integrated pulsed lights irradiated to the non-overlapping portions Sa and Sb. That is, the number of micromirrors that can be used for exposing the overlapping portion Oa can be made larger than the number of micromirrors that can be used for exposing the non-overlapping portions Sa, Sb.
 なお、上記実施形態で引用した露光装置などに関する全ての米国特許出願公開明細書及び米国特許明細書の開示を援用して本明細書の記載の一部とする。 The disclosures of all US patent application publication specifications and US patent specifications relating to the exposure apparatus and the like cited in the above embodiments are incorporated into the description of this specification.
 以上、図面を参照してこの発明の一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、この発明の要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。
 上記実施形態では、露光の長さ(すなわち、パルス数)を増やすこと、またはパルス数を減らすことによって実質的な積算照度をオーバーラップ部で相対的に高くするが、オーバーラップ部の積算照度を調整する手法はこれに限らない。例えば、実際の露光結果に基づいて、線幅を設計値になるように補正する手法も考えられる。この場合には、実際に露光される線のエッジ付近にパルスを追加・削除することでネガレジストの線幅を所定量にすることが可能である。そのため、実質的に均一なパターンを形成することができる。 なお、実質的にオーバーラップ部と非オーバーラップ部のネガレジストで形成されるパターンの形状および線幅が互いに同じとなるように、露光されるパターンのパターン近傍へのパルス数の増減による線幅補正とパターンエッジ部以外の場所へのパルス数の増減による形状補正について、露光結果から補正を行ってもよい。
Although one embodiment of the present invention has been described in detail above with reference to the drawings, the specific configuration is not limited to the above, and various design changes, etc., can be made without departing from the gist of the present invention. It is possible to
In the above embodiment, the exposure length (that is, the number of pulses) is increased or the number of pulses is decreased to relatively increase the substantial integrated illuminance in the overlapping portion, but the integrated illuminance in the overlapping portion is The adjustment method is not limited to this. For example, a method of correcting the line width to the design value based on the actual exposure result is also conceivable. In this case, it is possible to set the line width of the negative resist to a predetermined amount by adding or deleting pulses near the edge of the line that is actually exposed. Therefore, a substantially uniform pattern can be formed. In addition, the line width of the pattern to be exposed is changed by increasing or decreasing the number of pulses in the vicinity of the pattern so that the shape and line width of the pattern formed by the negative resist in the overlapping portion and the non-overlapping portion are substantially the same. Correction and shape correction by increasing or decreasing the number of pulses to places other than the pattern edge portion may be corrected from the exposure result.
 実施形態の露光方法は、次の態様を含む。
 非オーバーラップ部の露光パターンの線幅と形状と、オーバーラップ部のおのおのがほぼ同じとなるように非オーバーラップもしくはオーバーラップ部、又はその双方の露光パターン近傍のパルス数を増減させる又はパターン近傍以外の内部のパルス数を増減させる露光方法。
 露光対象に形成されるレジストは、例えば、光が照射された部分が光反応により現像後に形成されるネガ型のレジストである。
The exposure method of the embodiment includes the following aspects.
Increase or decrease the number of pulses in the vicinity of the exposure pattern in the non-overlapping portion, the overlapping portion, or both so that the line width and shape of the exposure pattern in the non-overlapping portion and the overlapping portion are approximately the same, or in the vicinity of the pattern An exposure method that increases or decreases the number of internal pulses.
The resist formed on the exposure target is, for example, a negative resist in which the light-irradiated portion is formed by photoreaction after development.
 実施形態の露光データ作成方法は、次の態様を含む。
 非オーバーラップ部の露光パターンの線幅と形状と、オーバーラップ部のおのおのがほぼ同じとなるように非オーバーラップもしくはオーバーラップ部、又はその双方の露光パターン近傍のパルス数を増減させる又はパターン近傍以外の内部のパルス数を増減させる露光データ作成方法。
 露光対象に形成されるレジストは、例えば、光が照射された部分が光反応により現像後に形成されるネガ型のレジストである。
The exposure data creation method of the embodiment includes the following aspects.
Increase or decrease the number of pulses in the vicinity of the exposure pattern in the non-overlapping portion, the overlapping portion, or both so that the line width and shape of the exposure pattern in the non-overlapping portion and the overlapping portion are approximately the same, or in the vicinity of the pattern A method of creating exposure data that increases or decreases the number of internal pulses.
The resist formed on the exposure target is, for example, a negative resist in which the light-irradiated portion is formed by photoreaction after development.
1 露光装置
14 ステージ
17 投影モジュール(投影光学系)
162 照明光学系
201 空間光変調器
203 マイクロミラー(素子)
Oa オーバーラップ部
Sa,Sb 非オーバーラップ部
1 exposure device 14 stage 17 projection module (projection optical system)
162 illumination optical system 201 spatial light modulator 203 micromirror (element)
Oa overlapping portion Sa, Sb non-overlapping portion

Claims (4)

  1.  複数の素子を有する複数の空間光変調器と、
     パルス光により、前記複数の空間光変調器を照明する照明光学系と、
     前記空間光変調器から出射される光を露光対象に照射する複数の投影光学系と、
     前記露光対象が載置されるステージと、
     前記複数の素子を、前記パルス光を前記投影光学系に導く第1状態と、前記投影光学系に導かない第2状態とに切り替える制御部と、
    を備え、
     前記ステージは、複数の前記投影光学系によって走査露光視野をオーバーラップさせつつ、前記露光対象を所定の走査方向に移動させることにより、前記露光対象に照射される光が前記露光対象上を走査し、
     前記制御部は、露光において、前記複数の素子の前記第1状態と前記第2状態とを切り替え、前記露光対象上でオーバーラップされて露光されるオーバーラップ部に前記投影光学系を介して照射される前記パルス光の数が、前記露光対象上でオーバーラップなしで露光される非オーバーラップ部に前記投影光学系を介して照射される前記パルス光の数よりも多くなるように、前記複数の素子を制御する、露光装置。
    a plurality of spatial light modulators having a plurality of elements;
    an illumination optical system that illuminates the plurality of spatial light modulators with pulsed light;
    a plurality of projection optical systems that irradiate an exposure target with light emitted from the spatial light modulator;
    a stage on which the exposure target is placed;
    a control unit that switches the plurality of elements between a first state in which the pulsed light is led to the projection optical system and a second state in which the pulsed light is not led to the projection optical system;
    with
    The stage moves the exposure target in a predetermined scanning direction while overlapping scanning exposure fields by the plurality of projection optical systems, so that the light irradiated onto the exposure target scans the exposure target. ,
    In exposure, the control unit switches between the first state and the second state of the plurality of elements, and irradiates an overlapping portion of the exposure target that is overlapped and exposed through the projection optical system. The number of the pulsed lights applied is greater than the number of the pulsed lights applied via the projection optical system to a non-overlapping portion exposed without overlapping on the exposure target. An exposure device that controls the elements of
  2.  請求項1に記載の露光装置を用いて露光対象を露光する方法であって、
     前記ステージは、複数の前記投影光学系によって走査露光視野をオーバーラップさせつつ、前記露光対象を所定の走査方向に移動させることにより、前記露光対象に照射される光が前記露光対象上を走査し、
     この際、露光において、前記複数の素子の前記第1状態と前記第2状態とを切り替え、前記露光対象上でオーバーラップされて露光されるオーバーラップ部に前記投影光学系を介して照射される前記パルス光の数が、前記露光対象上でオーバーラップなしで露光される非オーバーラップ部に前記投影光学系を介して照射される前記パルス光の数よりも多くなるように、前記複数の素子を制御する、露光方法。
    A method of exposing an exposure target using the exposure apparatus according to claim 1,
    The stage moves the exposure target in a predetermined scanning direction while overlapping scanning exposure fields by the plurality of projection optical systems, so that the light irradiated onto the exposure target scans the exposure target. ,
    At this time, in the exposure, the plurality of elements are switched between the first state and the second state, and the overlapping portion of the exposure target that is overlapped and exposed is irradiated via the projection optical system. The plurality of elements so that the number of the pulsed lights is greater than the number of the pulsed lights irradiated via the projection optical system to a non-overlapping portion of the exposure target to be exposed without overlapping. exposure method.
  3.  請求項2に記載の露光方法により露光対象を露光することと、
     前記露光された露光対象を現像することと、
     を含むフラットパネルディスプレイの製造方法。
    exposing an exposure target by the exposure method according to claim 2;
    developing the exposed exposure object;
    A method of manufacturing a flat panel display comprising:
  4.  複数の素子を有する複数の空間光変調器と、パルス光により、前記複数の空間光変調器を照明する照明光学系と、前記空間光変調器から出射される光を露光対象に照射する複数の投影光学系と、前記露光対象が載置されるステージと、前記複数の素子を、前記パルス光を前記投影光学系に導く第1状態と、前記投影光学系に導かない第2状態とに切り替える制御部と、を備え、前記ステージは、複数の前記投影光学系によって走査露光視野をオーバーラップさせつつ、前記露光対象を所定の走査方向に移動させることにより、前記露光対象に照射される光が前記露光対象上を走査する露光装置に用いられ、
     露光において、前記複数の素子の前記第1状態と前記第2状態とを切り替え、前記露光対象上でオーバーラップされて露光されるオーバーラップ部に前記投影光学系を介して照射される前記パルス光の数が、前記露光対象上でオーバーラップなしで露光される非オーバーラップ部に前記投影光学系を介して照射される前記パルス光の数よりも多くなるように、前記複数の素子を制御する露光データを作成する、露光データ作成方法。
    a plurality of spatial light modulators having a plurality of elements; an illumination optical system that illuminates the plurality of spatial light modulators with pulsed light; A projection optical system, a stage on which the exposure target is placed, and the plurality of elements are switched between a first state in which the pulsed light is led to the projection optical system and a second state in which the pulsed light is not led to the projection optical system. and a control unit, wherein the stage moves the exposure target in a predetermined scanning direction while overlapping the scanning exposure field by the plurality of projection optical systems, thereby controlling the light irradiated to the exposure target. Used in an exposure device that scans the exposure target,
    In the exposure, the pulsed light is irradiated via the projection optical system to the overlapping portion of the exposure target, which is exposed by switching the first state and the second state of the plurality of elements. is greater than the number of the pulsed lights irradiated via the projection optical system to a non-overlapping portion exposed without overlapping on the exposure target. An exposure data creation method for creating exposure data.
PCT/JP2022/026496 2021-07-05 2022-07-01 Exposure device, exposure method, method for manufacturing flat panel display, and method for creating exposure data WO2023282210A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023533108A JPWO2023282210A1 (en) 2021-07-05 2022-07-01
CN202280047260.7A CN117597632A (en) 2021-07-05 2022-07-01 Exposure apparatus, exposure method, method for manufacturing flat panel display, and method for generating exposure data
KR1020247000251A KR20240017069A (en) 2021-07-05 2022-07-01 Exposure apparatus, exposure method and flat panel display manufacturing method, and exposure data creation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021111848 2021-07-05
JP2021-111848 2021-07-05

Publications (1)

Publication Number Publication Date
WO2023282210A1 true WO2023282210A1 (en) 2023-01-12

Family

ID=84800655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026496 WO2023282210A1 (en) 2021-07-05 2022-07-01 Exposure device, exposure method, method for manufacturing flat panel display, and method for creating exposure data

Country Status (5)

Country Link
JP (1) JPWO2023282210A1 (en)
KR (1) KR20240017069A (en)
CN (1) CN117597632A (en)
TW (1) TW202309675A (en)
WO (1) WO2023282210A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004066371A1 (en) * 2003-01-23 2004-08-05 Nikon Corporation Exposure device
JP2009169189A (en) * 2008-01-17 2009-07-30 Nikon Corp Exposure method and apparatus, and device manufacturing method
JP2011059716A (en) * 2004-11-08 2011-03-24 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
JP2019028084A (en) * 2017-07-25 2019-02-21 凸版印刷株式会社 Exposure device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005266779A (en) 2004-02-18 2005-09-29 Fuji Photo Film Co Ltd Exposure apparatus and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004066371A1 (en) * 2003-01-23 2004-08-05 Nikon Corporation Exposure device
JP2011059716A (en) * 2004-11-08 2011-03-24 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
JP2009169189A (en) * 2008-01-17 2009-07-30 Nikon Corp Exposure method and apparatus, and device manufacturing method
JP2019028084A (en) * 2017-07-25 2019-02-21 凸版印刷株式会社 Exposure device

Also Published As

Publication number Publication date
TW202309675A (en) 2023-03-01
JPWO2023282210A1 (en) 2023-01-12
CN117597632A (en) 2024-02-23
KR20240017069A (en) 2024-02-06

Similar Documents

Publication Publication Date Title
JP5741868B2 (en) Pattern forming method, pattern forming apparatus, and device manufacturing method
JP5326259B2 (en) Illumination optical apparatus, exposure apparatus, and device manufacturing method
US7719753B2 (en) Method of operation for SLM-based optical lithography tool
KR20080068006A (en) Exposure apparatus, exposure method and device manufacturing method
JP2004327660A (en) Scanning projection aligner, exposure method, and device manufacturing method
WO2010061674A1 (en) Correction unit, illumination optical system, exposure device, and device manufacturing method
JP5700272B2 (en) Illumination optical system, exposure apparatus, and device manufacturing method
JP2004303951A (en) Aligner and exposure method
JP2012253163A (en) Wavefront aberration measuring device, wavefront aberration measuring method, exposure device, exposure method, and manufacturing method of device
WO2023282210A1 (en) Exposure device, exposure method, method for manufacturing flat panel display, and method for creating exposure data
JP3476098B2 (en) Exposure equipment
WO2023127499A1 (en) Exposure device
WO2014104001A1 (en) Spatial light modulator and method for driving same, and exposure method and device
US20240111215A1 (en) Exposure apparatus, exposure method, and manufacturing method for electronic device
WO2023282205A1 (en) Exposure device and device manufacturing method
WO2023282168A1 (en) Exposure device
WO2023282212A1 (en) Exposure device, exposure method, and method for manufacturing electronic device
JP4505666B2 (en) Exposure apparatus, illumination apparatus, and microdevice manufacturing method
JP2009032749A (en) Exposure apparatus and device manufacturing method
KR20240006639A (en) Exposure apparatus, exposure method and manufacturing method of flat panel display
JP5682799B2 (en) Illumination optical system, exposure apparatus, and device manufacturing method
JP2012028543A (en) Illumination optical system, exposure device, and device manufacturing method
JP2009117672A (en) Illumination optical system, exposure apparatus, and device manufacturing method
JP2010225954A (en) Correction unit, lighting optical system, exposure device, and device manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22837626

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023533108

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280047260.7

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20247000251

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247000251

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22837626

Country of ref document: EP

Kind code of ref document: A1