JP3550319B2 - Optical recording medium - Google Patents

Optical recording medium Download PDF

Info

Publication number
JP3550319B2
JP3550319B2 JP15299699A JP15299699A JP3550319B2 JP 3550319 B2 JP3550319 B2 JP 3550319B2 JP 15299699 A JP15299699 A JP 15299699A JP 15299699 A JP15299699 A JP 15299699A JP 3550319 B2 JP3550319 B2 JP 3550319B2
Authority
JP
Japan
Prior art keywords
transparent dielectric
layer
dielectric layer
recording
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15299699A
Other languages
Japanese (ja)
Other versions
JP2000339763A (en
Inventor
信 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP15299699A priority Critical patent/JP3550319B2/en
Publication of JP2000339763A publication Critical patent/JP2000339763A/en
Application granted granted Critical
Publication of JP3550319B2 publication Critical patent/JP3550319B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、照射するレーザ光等の光線の出力に応じて非晶質又は結晶質の2状態に相変化する記録層を有し、前記2状態における記録ビットの光の反射率差を利用してデジタル情報を記録、再生するものであって、書き換え可能な光記録媒体に関する。
【0002】
【従来の技術】
従来の相転移を利用した書き換え可能な光記録媒体M(以下、媒体Mという)の部分断面図を図3に示す。同図において、1はポリカーボネート等の樹脂、ガラス等から成るディスク状の基板、2はZnS−SiO等から成る第一透明誘電体層、3はGeTe等から成り非晶質又は結晶質の2状態に相変化可能な記録層、4はZnS−SiO等から成る第二透明誘電体層、5はAl等の高反射率材料から成る反射層である。
【0003】
このような書き換え可能な媒体Mにおいて、記録層3は結晶質状態と非結晶質状態とで光の反射率が異なっており、一般的に結晶質状態の方が反射率が高いものが多い。そして、媒体Mの動作原理は以下のようなものである。まず、記録層3の全ての記録ビットを結晶化しておく。即ち、反射率が高い状態とし初期化しておく。情報の書込には、媒体Mを回転させながら2種のレーザパワーにパルス変調されたレーザビームを照射し、高出力(10数〜20mW程度)のレーザビームが照射された記録ビットでは記録層3材料の融点よりも高温になり、溶融して急冷され非晶質化する。一方、中出力(5〜10mW程度)のレーザビームが照射された記録ビットでは、前記融点以下の結晶化可能温度範囲まで昇温された後、冷却され結晶質状態になる。
【0004】
上記の書込動作は、古い情報が残留している上から直接行うことができ、各記録ビットは新しい情報に対応した状態に変化する。つまり、重ね書きによるオーバーライト(Over Writeで、以下、OWと略す)が可能である。再生は、読取用の低出力(1〜2mW程度)のレーザビームを照射して、高反射率の結晶質相か低反射率の非晶質相かを判読し、0,1のデジタル情報として読み取る。
【0005】
上記記録層3の材料としては、Te,Se,Sのうちの1元素を含む材料のカルコゲン化物が適しており、カルコゲン化物は非晶質になりやすいという特徴がある。具体的には、GeTe系材料、GeSbTe系材料、InSeTlCo系材料、InSbTe系材料等がある。
【0006】
そして、従来このような相変化型の媒体Mにおいて、相変化型の記録層と、記録層の少なくとも片面に炭素又は炭素を主成分とする熱拡散層を有し、熱拡散層の外表面にダイヤモンド薄膜等から成る熱絶縁層を備えたことで、レーザ光照射部分の記録層を均一に加熱することが可能となり、記録層の局部的な温度上昇が防止されるため記録層の劣化、基板の熱損傷、接着剤の熱損傷が防止される光記録媒体が提案されている(従来例1:特公平7−34271号公報参照)。
【0007】
また、従来例2として、相変化型の記録層を有し、記録層の両側に接して誘電体保護層を設けた光学情報記録媒体において、透明基板から順次、ZnSを主成分とする第一保護層、記録層、ZnSを主成分とする第二保護層、MgO又はAlのいずれかから成る第三保護層及び反射層を形成し、第三保護層の部材として第二保護層の部材よりヤング率が大きい部材を使用することにより、記録消去に伴う膜の変形を防止でき、従って繰り返しにおける記録データの信頼性が高まるものが公知である(従来例2:特開平7−307036号公報参照)。
【0008】
【発明が解決しようとする課題】
しかしながら、上記従来例1では、高線速記録に対しては多少の効果はあるものの未だ不十分であり、また多数回の繰り返し記録再生に対する耐久性の点で効果が小さいという問題点があった。また、熱拡散層と熱絶縁層の熱伝導率については示しているが、熱浴ともなる反射層との関連が開示されていないため、記録層の冷却速度を十分に制御することができないという問題点もある。
【0009】
また、従来例2について、記録層側の第二保護層の熱伝導率が反射層側の第三保護層の熱伝導率よりも低いため、記録層の結晶化速度が十分速い材料を用いると冷却速度が遅くなり、その結果急激な冷却により形成される非晶質の記録マークが歪み易いという問題点があった。
【0010】
従って、本発明は上記事情に鑑みて完成されたものであり、その目的は、幅広い線速度で歪みのない非晶質の記録マークを形成でき、消去の際消し残りのないものとなり、また記録層の熱流動を抑制することで繰り返し記録による劣化を防止することにある。
【0011】
【課題を解決するための手段】
本発明の光記録媒体は、ディスク状の透明基板上に、照射する光の出力に応じて非晶質又は結晶質に相変化する記録層と反射層とが設けられ、該記録層の反射層側に複数の透明誘電体層を積層した光記録媒体であって、前記複数の透明誘電体層は記録層側の第一の透明誘電体層と反射層側の第二の透明誘電体層とを含み、第一の透明誘電体層の600℃での熱伝導率を0.015cal/cm・sec・℃以上に、かつ150℃での熱伝導率を0.1cal/cm・sec・℃以下に、第二の透明誘電体層の150℃での熱伝導率を0.007cal/cm・sec・℃以下に、更に第一の透明誘電体層のヤング率を2.0×10kg/cm(SI単位系変換:2.0×1011Pa)以上に、第二の透明誘電体層のヤング率を2.5×10kg/cm(SI単位系変換:2.5×1011Pa)以下に規定して、第一の透明誘電体層は第二の透明誘電体層よりも150℃における熱伝導率が高くかつヤング率が大きいことを特徴とする。なお、ヤング率の単位をkg/cmをSI単位系であるPaには、1kg/cm=9.80665×10Paで換算した。
【0012】
本発明は、上記構成により、低線速度では記録層の融点近傍で熱伝導率の高い第一の透明誘電体層により溶融後非晶質化するための冷却時間を十分短くすることができ、その結果歪みのない非晶質マークを形成可能となる。また、高線速度では結晶化速度の大きい記録層と記録層の結晶化温度近傍で熱伝導率の低い第二の透明誘電体層とを用いることにより、高速消去及び良好な消去特性が可能となる。更に、記録層側にヤング率の大きい第一の透明誘電体層を設けることにより、記録層の流動を抑制し繰り返し記録による劣化を小さくする。
【0013】
また本発明において、好ましくは、第一の透明誘電体層の600℃での熱伝導率が0.015cal/cm・sec・℃以上であり、かつ150℃での熱伝導率が0.1cal/cm・sec・℃以下であり、第二の透明誘電体層の150℃での熱伝導率が0.007cal/cm・sec・℃以下である。
【0014】
このような構成により、低線速度で歪みのない非晶質マークを形成可能となり、また高線速度では高速消去及び良好な消去特性が可能となるという本発明の効果が更に向上する。
【0015】
【発明の実施の形態】
本発明の媒体について以下に説明する。図1は本発明の媒体M1の基本的な層構成を示す部分断面図であり、図1において、11はポリカーボネート,ポリオレフィン,エポキシ樹脂,アクリル樹脂,ガラス,樹脂層を表面に形成した強化ガラス,透光性セラミック等から成るディスク状の透明基板、12はZnS−SiO等から成る第三の透明誘電体層、13は相変化型の記録層、14は第一の透明誘電体層、15は第二の透明誘電体層、16はAl,Al−Ti合金,Al−Cr合金等から成る反射層である。
【0016】
本発明において、記録層13はGeTe,GeSbTe,InSeTlCo,InSbTe等のカルコゲン化物から成る材料がよく、なかでもGeTe,GeSbTeが書き換え可能回数が大きく、結晶化する際に短時間で結晶化が可能であり、非晶質状態の安定性も高いという点で好ましい。
【0017】
また、GeSbTe(a+b+c=100原子%)とした場合、5at(原子)%≦a≦70at%がよく、a<5at%では結晶化速度が遅く、70at%<aでは非晶質状態が不安定になる。0at%≦b≦50at%がよく、50at%<bでは非晶質状態が不安定になる。40at%≦c≦70at%がよく、c<40at%では結晶化温度が高くなりすぎ、70at%<cのときも結晶化温度が高くなりすぎる。特に、GeSbTe又はGeSbTeが好ましく、この場合結晶化速度が速く、高線速度での消去特性が良好である。
【0018】
また、記録層3の厚さは5〜50nmがよく、5nm未満では結晶質状態と非晶質状態間の反射率差が小さくなり、50nmを超えると繰り返し記録再生によるBER等の特性劣化が大きくなる。より好ましくは10〜40nmである。
【0019】
上記第一の透明誘電体層14の組成は、SiN,AlO,MgO,ZrO,SiAlON,MgAlO等が良く、第二透明誘電体層15の組成は、ZnS,ZnSSiO,SiO,ZrO,AlSiO,MgSiO,MgAlSiO,(ZnS)80(SiO20等が好ましい。
【0020】
第一の透明誘電体層14の厚さは15nm以下が良く、15nmを超えると記録感度が低下し易い。また第二の透明誘電体層15の厚さは5〜25nmが良く、5nm以下では記録感度が低下し易く、25nmを超えると昇温時の冷却速度が遅くなり非晶質マークが歪み易くなり、ジッターが劣化する。
【0021】
また、本発明において、第一の透明誘電体層14の600℃での熱伝導率が0.015cal/cm・sec・℃以上であり、かつ150℃での熱伝導率が0.1cal/cm・sec・℃以下であり、第二の透明誘電体層15の150℃での熱伝導率が0.007cal/cm・sec・℃以下が好適である。第一の透明誘電体層14の600℃での熱伝導率が0.015cal/cm・sec・℃未満では、冷却速度が遅くなり非晶質マークが歪み易く、第一の透明誘電体層14の150℃での熱伝導率が0.1cal/cm・sec・℃を超えると、冷却速度が速すぎ、高線速度での消去特性が劣化する。第二の透明誘電体層15の150℃での熱伝導率が0.007cal/cm・sec・℃を超えると、冷却速度が速すぎ、高線速度での消去特性が劣化する。
【0022】
また、第一の透明誘電体層14のヤング率は2.0×10kg/cm(SI単位系変換:2.0×1011Pa)以上が好ましく、2.0×10kg/cm(SI単位系変換:2.0×1011Pa)未満では加熱時の記録層13の流動を抑える効果が低下し、繰り返し記録再生に対する耐久性が劣化する。より好ましくは、3.0×10kg/cm(SI単位系変換:2.9×1011Pa)以上である。更に、第二の透明誘電体層15のヤング率は第一の透明誘電体層14のヤング率未満かつ2.5×10kg/cm(SI単位系変換:2.5×1011Pa)以下を満たすのが良く、前記条件から外れると、繰り返し記録により透明誘電体層15に微小クラックが生じジッターが劣化する。
【0023】
上記実施形態においては、光を透明基板11側から入射する場合の構成について説明したが、図2に示すように光を記録層側から入射する場合にも本発明は適用できる。同図において、21はディスク状の透明基板、22はZnS−SiO等から成る第三の透明誘電体層、23は第二の透明誘電体層、24は第一の透明誘電体層、25は相変化型の記録層、26はAl,Al−Ti合金,Al−Cr合金等から成る反射層である。
【0024】
また、記録層13の反射層16側に、第一の透明誘電体層14及び第二の透明誘電体層15以外の透明誘電体層から成る中間層等を形成しても良い。
【0025】
かくして、本発明の光記録媒体は、低線速度では記録層の融点近傍で熱伝導率の高い第一の透明誘電体層により溶融後非晶質化するための冷却時間を十分短くすることができ、歪みのない非晶質マークを形成可能となる。また、高線速度では結晶化速度の大きい記録層と記録層の結晶化温度近傍で熱伝導率の低い第二の透明誘電体層とを用いることにより、高速消去に適し、良好な消去特性が可能となる。更に、ヤング率の大きい第一の透明誘電体層を設けることにより、記録層の流動を抑制し繰り返し記録に対する劣化を小さくするという作用効果を有する。
【0026】
本発明において、上記各層を透明基板11の両面に各々積層するか、片面に上記各層を積層した2枚の透明基板11を貼り合わせることにより、2倍の記録容量としてもよい。また、本発明は、レーザビームをパルス変調する光強度変調方式によるものに限らず、電子ビーム、電磁波等のエネルギー線による加熱方式も応用可能である。本発明の媒体M1,M2は相変化型の書き換え可能な光ディスクであり、CD−RW(Compact Disc ReWritable )、DVD−RW(Digital Versatile Disc ReWritable )等の光ディスクに適用できる。
【0027】
尚、本発明は上記の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の変更は何等差し支えない。
【0028】
【実施例】
本発明の実施例を以下に説明する。
【0029】
(実施例1)
図1の媒体M1(光ディスク)を以下のようにして構成した。ポリカーボネートから成る3.5インチ径のディスク状の透明基板11の主面上に、以下の各層をRF(高周波)スパッタリング法により順次成膜した。
【0030】
膜厚約150nm,(ZnS)80(SiO20から成る第三の透明誘電体層12、膜厚約20nm,GeSbTeから成る記録層13、膜厚約10nm,各種材料から成る第一の透明誘電体層14、膜厚約20nm,各種材料から成る第二の透明誘電体層15、Al−Cr合金から成る反射層16である。
【0031】
そして、表1の如く第一の透明誘電体層14と第二の透明誘電体層15の材料を変化させた場合に、光ディスクのトラックの線速度が5m/sの時の記録ビットのジッター(%)及びOW消去比(dB)、前記線速度が15m/sの時の記録ビットのジッター(%)及びOW消去比(dB)、前記線速度が15m/sの時に10回OWを行った場合のジッター(%)について測定した結果を表1に示す。
【0032】
尚、ジッター特性の測定は、光ディスクのトラックの線速度を5m/s又は15m/sとし、光波長830nmで13mW(非晶質状態に対応)と5mW(結晶質状態に対応)にパルス変調されたレーザビームを照射し、0.6〜2.8μmの記録ビットを形成した後、1mWのレーザビームで再生した場合の記録ビット端部のジッター特性を測定したものである。また、OW消去比は、前記線速度を5m/s又は15m/sとし、光波長830nmで13mWと5mWにパルス変調されたレーザビームを照射し、0.6μmの記録ビットを4MHz(線速度5m/s),12MHz(線速度15m/s)で記録を行い、次いで1.6μmの記録ビットを1.6MHz(線速度5m/s),4.8MHz(線速度15m/s)でOWし、OW前の信号レベルとOW後の信号レベルの差をOW消去比とした。
【0033】
表1において、α1 は第一の透明誘電体層14の熱伝導率、α2 は第二の透明誘電体層15の熱伝導率、Y1 は第一の透明誘電体層14のヤング率、Y2 は第二の透明誘電体層15のヤング率、ジッター及びOW消去比の欄の5m/s,15m/sは透明基板11のトラックの線速度である。
【0034】
【表1】

Figure 0003550319
【0035】
表1に示すように、本発明のNO.1〜6,9〜15では、線速度5m/sでのジッターは5.5%以下、線速度15m/sでのジッターは6.8%以下、線速度5m/sでのOW消去比は−27.0dB以下、線速度15m/sでのOW消去比は−24.1dB以下、10回OW後のジッターは7.9%以下と優れた特性を示した。
【0036】
これに対し、比較例について、NO.7は線速度5m/sでのジッター及び10回OW後のジッターが劣化し、NO.8は線速度15m/sでのOW消去比及び10回OW後のジッターが劣化した。NO.16は線速度15m/sでのOW消去比が不十分であり、NO.17は線速度15m/sでのOW消去比が非常に劣化した。
【0037】
【発明の効果】
本発明は、記録層の反射層側に複数の透明誘電体層を積層し、複数の透明誘電体層は記録層側の第一の透明誘電体層と反射層側の第二の透明誘電体層とを含み、第一の透明誘電体層は第二の透明誘電体層よりも熱伝導率が高くかつヤング率が大きいことことにより、低線速度では記録層の融点近傍で熱伝導率の高い第一の透明誘電体層により溶融後非晶質化するための冷却時間を十分短くすることができ、歪みのない非晶質マークを形成可能となる。また、高線速度では結晶化速度の大きい記録層と記録層の結晶化温度近傍で熱伝導率の低い第二の透明誘電体層とを用いることにより、高速消去に適し、良好な消去特性が可能となる。更に、ヤング率の大きい第一の透明誘電体層を設けることにより、記録層の流動を抑制し繰り返し記録に対する劣化を抑制するという作用効果を有する。
【図面の簡単な説明】
【図1】本発明の光記録媒体M1の部分断面図である。
【図2】本発明の光記録媒体M2の部分断面図である。
【図3】従来の光記録媒体Mの部分断面図である。
【符号の説明】
1:透明基板
2:第一透明誘電体層
3:記録層
4:第二透明誘電体層
5:反射層
11:透明基板
12:第三の透明誘電体層
13:記録層
14:第一の透明誘電体層
15:第二の透明誘電体層
16:反射層[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention includes a recording layer that changes into two states, amorphous or crystalline, according to the output of a light beam such as a laser beam to be irradiated, and utilizes a difference in the reflectance of recording bits in the two states. The present invention relates to a rewritable optical recording medium for recording and reproducing digital information.
[0002]
[Prior art]
FIG. 3 is a partial cross-sectional view of a conventional rewritable optical recording medium M using a phase transition (hereinafter, referred to as a medium M). In the figure, 1 is a disk-shaped substrate made of resin such as polycarbonate, glass or the like, 2 is a first transparent dielectric layer made of ZnS—SiO 2 or the like, 3 is amorphous or crystalline 2 made of GeTe or the like. The recording layer 4 can be changed into a state, 4 is a second transparent dielectric layer made of ZnS—SiO 2 or the like, and 5 is a reflection layer made of a high reflectance material such as Al.
[0003]
In such a rewritable medium M, the recording layer 3 has a different light reflectivity between the crystalline state and the non-crystalline state, and in many cases, the crystalline state generally has a higher reflectivity. The operating principle of the medium M is as follows. First, all the recording bits of the recording layer 3 are crystallized. That is, initialization is performed in a state where the reflectance is high. For writing information, a laser beam pulse-modulated to two kinds of laser power is irradiated while rotating the medium M, and a recording layer is irradiated with a recording bit irradiated with a laser beam of high output (about 10 to 20 mW). The temperature becomes higher than the melting points of the three materials, and the materials are melted and rapidly cooled to become amorphous. On the other hand, a recording bit irradiated with a laser beam of medium output (about 5 to 10 mW) is heated to a crystallization-possible temperature range equal to or lower than the melting point, and then cooled to a crystalline state.
[0004]
The above-described write operation can be performed directly after the old information remains, and each recording bit changes to a state corresponding to the new information. In other words, overwriting by overwriting (Over Write, hereinafter abbreviated as OW) is possible. Reproduction is performed by irradiating a low-output (about 1 to 2 mW) laser beam for reading to determine whether the crystalline phase has a high reflectivity or an amorphous phase having a low reflectivity, and outputs digital information of 0,1. read.
[0005]
As a material of the recording layer 3, a chalcogenide of a material containing one element of Te, Se, and S is suitable, and the chalcogenide has a characteristic that it is likely to be amorphous. Specifically, there are a GeTe-based material, a GeSbTe-based material, an InSeTlCo-based material, an InSbTe-based material, and the like.
[0006]
Conventionally, such a phase change type medium M has a phase change type recording layer, and a heat diffusion layer mainly composed of carbon or carbon on at least one surface of the recording layer. By providing a thermal insulating layer made of a diamond thin film, etc., it is possible to uniformly heat the recording layer in the laser beam irradiated area, and to prevent a local rise in temperature of the recording layer, thereby deteriorating the recording layer, An optical recording medium has been proposed in which the heat damage of the adhesive and the adhesive is prevented (see Conventional Example 1: Japanese Patent Publication No. 7-34271).
[0007]
Further, as a conventional example 2, in an optical information recording medium having a phase change type recording layer and provided with a dielectric protection layer in contact with both sides of the recording layer, a first layer mainly composed of ZnS is sequentially formed from a transparent substrate. Forming a protective layer, a recording layer, a second protective layer mainly composed of ZnS, a third protective layer made of either MgO or Al 2 O 3 and a reflective layer, and forming a second protective layer as a member of the third protective layer It is known that the use of a member having a Young's modulus greater than that of the above member can prevent the film from being deformed due to recording and erasing, thereby increasing the reliability of recorded data in repetition (conventional example 2: JP-A-7-307036). Reference).
[0008]
[Problems to be solved by the invention]
However, the above-mentioned conventional example 1 has a problem that although it has some effect on high linear velocity recording, it is still insufficient, and has a small effect in terms of durability against repeated recording and reproduction many times. . In addition, although the thermal conductivity of the thermal diffusion layer and the thermal insulating layer is shown, the cooling rate of the recording layer cannot be sufficiently controlled because the relationship between the thermal diffusion layer and the heat insulating layer is not disclosed. There are also problems.
[0009]
Further, in Conventional Example 2, since the thermal conductivity of the second protective layer on the recording layer side is lower than the thermal conductivity of the third protective layer on the reflective layer side, if a material having a sufficiently high crystallization rate of the recording layer is used. There has been a problem that the cooling rate becomes slow, and as a result, amorphous recording marks formed by rapid cooling are easily distorted.
[0010]
Accordingly, the present invention has been completed in view of the above circumstances, and an object thereof is to form an amorphous recording mark without distortion at a wide range of linear velocities, so that there is no erasing residue at the time of erasing, and the recording An object of the present invention is to prevent the deterioration due to repeated recording by suppressing the heat flow of the layer.
[0011]
[Means for Solving the Problems]
The optical recording medium of the present invention is provided on a disk-shaped transparent substrate, a recording layer and a reflective layer that change to an amorphous or crystalline phase in accordance with the output of irradiation light, and a reflective layer of the recording layer. An optical recording medium having a plurality of transparent dielectric layers laminated on a side thereof, wherein the plurality of transparent dielectric layers include a first transparent dielectric layer on a recording layer side and a second transparent dielectric layer on a reflective layer side. And the thermal conductivity of the first transparent dielectric layer at 600 ° C. is 0.015 cal / cm · sec · ° C. or more, and the thermal conductivity at 150 ° C. is 0.1 cal / cm · sec · ° C. or less. In addition, the thermal conductivity at 150 ° C. of the second transparent dielectric layer is set to 0.007 cal / cm · sec · ° C. or less, and the Young's modulus of the first transparent dielectric layer is set to 2.0 × 10 6 kg /. cm 2 (SI unit system conversion: 2.0 × 10 11 Pa) or more, and the Young's modulus of the second transparent dielectric layer is 2.5 The heat conductivity at 150 ° C. of the first transparent dielectric layer is higher than that of the second transparent dielectric layer, defined as × 10 6 kg / cm 2 (SI unit system conversion: 2.5 × 10 11 Pa) or less. And high Young's modulus. The unit of Young's modulus was kg / cm 2, which was converted into Pa as the SI unit system by 1 kg / cm 2 = 9.80665 × 10 4 Pa.
[0012]
According to the present invention, with the above configuration, at a low linear velocity, the cooling time for melting and amorphizing after the first transparent dielectric layer having a high thermal conductivity near the melting point of the recording layer can be sufficiently reduced, As a result, an amorphous mark without distortion can be formed. Further, by using a recording layer having a high crystallization rate at a high linear velocity and a second transparent dielectric layer having a low thermal conductivity near the crystallization temperature of the recording layer, high-speed erasing and good erasing characteristics can be achieved. Become. Further, by providing a first transparent dielectric layer having a large Young's modulus on the recording layer side, the flow of the recording layer is suppressed, and deterioration due to repeated recording is reduced.
[0013]
In the present invention, preferably, the thermal conductivity of the first transparent dielectric layer at 600 ° C. is 0.015 cal / cm · sec · ° C. or more, and the thermal conductivity at 150 ° C. is 0.1 cal / cm. cm · sec · ° C. or less, and the thermal conductivity at 150 ° C. of the second transparent dielectric layer is 0.007 cal / cm · sec · ° C. or less.
[0014]
With such a configuration, it is possible to form an amorphous mark without distortion at a low linear velocity, and to further improve the effect of the present invention that high-speed erasing and good erasing characteristics are possible at a high linear velocity.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
The medium of the present invention will be described below. FIG. 1 is a partial sectional view showing a basic layer structure of a medium M1 of the present invention. In FIG. 1, reference numeral 11 denotes polycarbonate, polyolefin, epoxy resin, acrylic resin, glass, tempered glass having a resin layer formed on the surface, A disk-shaped transparent substrate made of a translucent ceramic or the like; 12, a third transparent dielectric layer made of ZnS—SiO 2 or the like; 13, a phase-change recording layer; 14, a first transparent dielectric layer; Is a second transparent dielectric layer, and 16 is a reflective layer made of Al, Al-Ti alloy, Al-Cr alloy or the like.
[0016]
In the present invention, the recording layer 13 is preferably made of a chalcogenide material such as GeTe, GeSbTe, InSeTlCo, and InSbTe. Among them, GeTe and GeSbTe have a large number of rewritable times, and can be crystallized in a short time during crystallization. This is preferable in that the stability of the amorphous state is high.
[0017]
Moreover, Ge a Sb b Te c ( a + b + c = 100 atomic%) and the case, 5at (atomic)% ≦ a ≦ 70 at% selfishness, a <5at% at slow crystallization rate, 70 at% <a in amorphous The quality condition becomes unstable. It is preferable that 0 at% ≦ b ≦ 50 at%, and when 50 at% <b, the amorphous state becomes unstable. 40 at% ≦ c ≦ 70 at% is good, and when c <40 at%, the crystallization temperature is too high, and when 70 at% <c, the crystallization temperature is too high. In particular, Ge 2 Sb 2 Te 5 or GeSb 2 Te 4 is preferable. In this case, the crystallization speed is high and the erasing characteristics at a high linear velocity are good.
[0018]
The thickness of the recording layer 3 is preferably 5 to 50 nm, and if it is less than 5 nm, the difference in reflectance between the crystalline state and the amorphous state is small. Become. More preferably, it is 10 to 40 nm.
[0019]
The composition of the first transparent dielectric layer 14 is preferably SiN, AlO, MgO, ZrO, SiAlON, MgAlO or the like, and the composition of the second transparent dielectric layer 15 is ZnS, ZnSSiO, SiO, ZrO, AlSiO, MgSiO. , MgAlSiO, (ZnS) 80 (SiO 2 ) 20 and the like are preferable.
[0020]
The thickness of the first transparent dielectric layer 14 is preferably 15 nm or less, and if it exceeds 15 nm, the recording sensitivity tends to decrease. The thickness of the second transparent dielectric layer 15 is preferably 5 to 25 nm, and if it is 5 nm or less, the recording sensitivity tends to decrease, and if it exceeds 25 nm, the cooling rate at the time of temperature rise becomes slow, and the amorphous mark tends to be distorted. And the jitter is degraded.
[0021]
In the present invention, the thermal conductivity of the first transparent dielectric layer 14 at 600 ° C. is 0.015 cal / cm · sec · ° C. or more, and the thermal conductivity at 150 ° C. is 0.1 cal / cm. .Sec..degree. C. or less, and the thermal conductivity at 150.degree. C. of the second transparent dielectric layer 15 is preferably 0.007 cal / cm.sec..degree. If the thermal conductivity at 600 ° C. of the first transparent dielectric layer 14 is less than 0.015 cal / cm · sec · ° C., the cooling rate becomes slow, and the amorphous marks are easily distorted. If the thermal conductivity at 150 ° C. exceeds 0.1 cal / cm · sec · ° C., the cooling rate is too high, and the erasing characteristics at high linear velocities deteriorate. If the thermal conductivity at 150 ° C. of the second transparent dielectric layer 15 exceeds 0.007 cal / cm · sec · ° C., the cooling rate is too high, and the erasing characteristics at high linear velocity deteriorate.
[0022]
Also, the Young's modulus of the first transparent dielectric layer 14 is preferably 2.0 × 10 6 kg / cm 2 (SI unit system conversion: 2.0 × 10 11 Pa) or more, and 2.0 × 10 6 kg / cm 2. If it is less than cm 2 (SI unit system conversion: 2.0 × 10 11 Pa), the effect of suppressing the flow of the recording layer 13 at the time of heating is reduced, and the durability against repeated recording and reproduction is deteriorated. More preferably, it is 3.0 × 10 6 kg / cm 2 (SI unit system conversion: 2.9 × 10 11 Pa) or more. Further, the Young's modulus of the second transparent dielectric layer 15 is less than the Young's modulus of the first transparent dielectric layer 14 and is 2.5 × 10 6 kg / cm 2 (SI unit system conversion: 2.5 × 10 11 Pa). The following conditions should be satisfied. If the above conditions are not satisfied, minute cracks will occur in the transparent dielectric layer 15 due to repeated recording, and the jitter will deteriorate.
[0023]
In the above embodiment, the configuration in the case where light is incident from the transparent substrate 11 side has been described. However, the present invention can be applied to the case where light is incident from the recording layer side as shown in FIG. In the figure, the transparent substrate of the disk-shaped 21, the third transparent dielectric layer made of ZnS-SiO 2 or the like is 22, the second transparent dielectric layer 23, the first transparent dielectric layer 24, 25 Is a phase change type recording layer, and 26 is a reflection layer made of Al, Al-Ti alloy, Al-Cr alloy or the like.
[0024]
Further, on the reflection layer 16 side of the recording layer 13, an intermediate layer or the like made of a transparent dielectric layer other than the first transparent dielectric layer 14 and the second transparent dielectric layer 15 may be formed.
[0025]
Thus, in the optical recording medium of the present invention, at a low linear velocity, the first transparent dielectric layer having a high thermal conductivity near the melting point of the recording layer can sufficiently shorten the cooling time for melting and amorphization after melting. Thus, an amorphous mark without distortion can be formed. In addition, by using a recording layer having a high crystallization rate at a high linear velocity and a second transparent dielectric layer having a low thermal conductivity near the crystallization temperature of the recording layer, it is suitable for high-speed erasing and good erasing characteristics are obtained. It becomes possible. Further, the provision of the first transparent dielectric layer having a large Young's modulus has the effect of suppressing the flow of the recording layer and reducing the deterioration due to repeated recording.
[0026]
In the present invention, the recording capacity may be doubled by laminating the respective layers on both surfaces of the transparent substrate 11 or laminating two transparent substrates 11 having the respective layers laminated on one surface. The present invention is not limited to the light intensity modulation method of pulse-modulating a laser beam, but may be applied to a heating method using an energy beam such as an electron beam or an electromagnetic wave. The media M1 and M2 of the present invention are phase-change rewritable optical disks, and can be applied to optical disks such as CD-RW (Compact Disc Rewritable) and DVD-RW (Digital Versatile Disc Rewritable).
[0027]
It should be noted that the present invention is not limited to the above embodiment, and various changes may be made without departing from the scope of the present invention.
[0028]
【Example】
Embodiments of the present invention will be described below.
[0029]
(Example 1)
The medium M1 (optical disk) of FIG. 1 was configured as follows. The following layers were sequentially formed on the main surface of a 3.5-inch diameter disk-shaped transparent substrate 11 made of polycarbonate by RF (high frequency) sputtering.
[0030]
A third transparent dielectric layer 12 made of (ZnS) 80 (SiO 2 ) 20 with a thickness of about 150 nm, a recording layer 13 made of Ge 2 Sb 2 Te 5 with a thickness of about 20 nm, a thickness of about 10 nm, made of various materials A first transparent dielectric layer 14 of about 20 nm in thickness, a second transparent dielectric layer 15 of various materials, and a reflective layer 16 of an Al—Cr alloy.
[0031]
When the material of the first transparent dielectric layer 14 and the material of the second transparent dielectric layer 15 are changed as shown in Table 1, the recording bit jitter when the track linear velocity of the optical disk is 5 m / s is obtained. %) and OW erase ratio (dB), the recording bit jitter (%) and OW erase ratio when the linear velocity is 15 m / s (dB), subjected to 10 4 times OW when the linear velocity is 15 m / s Table 1 shows the results of measuring the jitter (%) when the test was performed.
[0032]
The jitter characteristic was measured by setting the linear velocity of the track of the optical disk to 5 m / s or 15 m / s, and pulse-modulating 13 mW (corresponding to an amorphous state) and 5 mW (corresponding to a crystalline state) at an optical wavelength of 830 nm. The laser beam was irradiated to form a recording bit of 0.6 to 2.8 μm, and then the jitter characteristic at the end of the recording bit was measured when reproducing with a laser beam of 1 mW. The OW erasing ratio is set at 5 m / s or 15 m / s by irradiating a laser beam pulse-modulated to 13 mW and 5 mW at an optical wavelength of 830 nm, and a 0.6 μm recording bit to 4 MHz (linear velocity 5 m / s). / S), recording at 12 MHz (linear velocity 15 m / s), and then OWing 1.6 μm recording bits at 1.6 MHz (linear velocity 5 m / s) and 4.8 MHz (linear velocity 15 m / s), The difference between the signal level before OW and the signal level after OW was defined as the OW erasure ratio.
[0033]
In Table 1, α1 is the thermal conductivity of the first transparent dielectric layer 14, α2 is the thermal conductivity of the second transparent dielectric layer 15, Y1 is the Young's modulus of the first transparent dielectric layer 14, and Y2 is 5 m / s and 15 m / s in the columns of Young's modulus, jitter and OW erasure ratio of the second transparent dielectric layer 15 are linear velocities of tracks on the transparent substrate 11.
[0034]
[Table 1]
Figure 0003550319
[0035]
As shown in Table 1, the NO. From 1 to 6, 9 to 15, the jitter at a linear velocity of 5 m / s is 5.5% or less, the jitter at a linear velocity of 15 m / s is 6.8% or less, and the OW erasure ratio at a linear velocity of 5 m / s is -27.0dB below, OW erase ratio at a linear velocity 15 m / s is -24.1dB less, the jitter after 10 4 times OW showed excellent characteristics than 7.9%.
[0036]
On the other hand, in Comparative Example, NO. 7 jitter after jitter and 10 4 times OW at a linear velocity 5 m / s is degraded, NO. 8 jitter after OW OW erase ratio and 10 four times at a linear velocity 15 m / s is deteriorated. NO. No. 16 has an insufficient OW erasing ratio at a linear velocity of 15 m / s. In No. 17, the OW erase ratio at a linear velocity of 15 m / s was extremely deteriorated.
[0037]
【The invention's effect】
According to the present invention, a plurality of transparent dielectric layers are stacked on the reflective layer side of the recording layer, and the plurality of transparent dielectric layers are a first transparent dielectric layer on the recording layer side and a second transparent dielectric layer on the reflective layer side. The first transparent dielectric layer has a higher thermal conductivity and a higher Young's modulus than the second transparent dielectric layer, so that at a low linear velocity, the first transparent dielectric layer has a thermal conductivity near the melting point of the recording layer. The high first transparent dielectric layer makes it possible to sufficiently shorten the cooling time for melting and amorphization after melting, and to form an amorphous mark without distortion. In addition, by using a recording layer having a high crystallization rate at a high linear velocity and a second transparent dielectric layer having a low thermal conductivity near the crystallization temperature of the recording layer, the recording layer is suitable for high-speed erasing and has good erasing characteristics. It becomes possible. Further, the provision of the first transparent dielectric layer having a large Young's modulus has the effect of suppressing the flow of the recording layer and suppressing deterioration due to repeated recording.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional view of an optical recording medium M1 of the present invention.
FIG. 2 is a partial sectional view of an optical recording medium M2 of the present invention.
FIG. 3 is a partial cross-sectional view of a conventional optical recording medium M.
[Explanation of symbols]
1: transparent substrate 2: first transparent dielectric layer 3: recording layer 4: second transparent dielectric layer 5: reflective layer 11: transparent substrate 12: third transparent dielectric layer 13: recording layer 14: first Transparent dielectric layer 15: second transparent dielectric layer 16: reflective layer

Claims (1)

ディスク状の透明基板上に、照射する光の出力に応じて非晶質又は結晶質に相変化する記録層と反射層とが設けられ、該記録層の反射層側に複数の透明誘電体層を積層した光記録媒体であって、
前記複数の透明誘電体層は記録層側の第一の透明誘電体層と反射層側の第二の透明誘電体層とを含み、第一の透明誘電体層の600℃での熱伝導率を0.015cal/cm・sec・℃以上に、かつ150℃での熱伝導率を0.1cal/cm・sec・℃以下に、第二の透明誘電体層の150℃での熱伝導率を0.007cal/cm・sec・℃以下に、更に第一の透明誘電体層のヤング率を2.0×10kg/cm (SI単位系変換:2.0×10 11 Pa)以上に、第二の透明誘電体層のヤング率を2.5×10kg/cm (SI単位系変換:2.5×10 11 Pa)以下に規定して、第一の透明誘電体層は第二の透明誘電体層よりも150℃における熱伝導率が高くかつヤング率が大きいことを特徴とする光記録媒体。
On a disk-shaped transparent substrate, a recording layer and a reflection layer that change into an amorphous or crystalline phase in accordance with the output of light to be irradiated are provided, and a plurality of transparent dielectric layers are provided on the reflection layer side of the recording layer. An optical recording medium comprising:
The plurality of transparent dielectric layers include a first transparent dielectric layer on the recording layer side and a second transparent dielectric layer on the reflective layer side, and the thermal conductivity of the first transparent dielectric layer at 600 ° C. Is set to 0.015 cal / cm · sec · ° C. or more, the thermal conductivity at 150 ° C. is set to 0.1 cal / cm · sec · ° C. or less, and the thermal conductivity at 150 ° C. of the second transparent dielectric layer is set to 0.007 cal / cm · sec · ° C. or less, and further, the Young's modulus of the first transparent dielectric layer to 2.0 × 10 6 kg / cm 2 (SI unit system conversion: 2.0 × 10 11 Pa) or more. The Young's modulus of the second transparent dielectric layer is specified to be 2.5 × 10 6 kg / cm 2 (SI unit system conversion: 2.5 × 10 11 Pa) or less. optical recording, wherein large high and the Young's modulus thermal conductivity at 0.99 ° C. than the second transparent dielectric layer Body.
JP15299699A 1999-05-31 1999-05-31 Optical recording medium Expired - Fee Related JP3550319B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15299699A JP3550319B2 (en) 1999-05-31 1999-05-31 Optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15299699A JP3550319B2 (en) 1999-05-31 1999-05-31 Optical recording medium

Publications (2)

Publication Number Publication Date
JP2000339763A JP2000339763A (en) 2000-12-08
JP3550319B2 true JP3550319B2 (en) 2004-08-04

Family

ID=15552685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15299699A Expired - Fee Related JP3550319B2 (en) 1999-05-31 1999-05-31 Optical recording medium

Country Status (1)

Country Link
JP (1) JP3550319B2 (en)

Also Published As

Publication number Publication date
JP2000339763A (en) 2000-12-08

Similar Documents

Publication Publication Date Title
JP2004071079A (en) Information recording medium
JP2005122872A (en) Two-layer phase-change type information recording medium and its recording and reproducing method
JPH06282876A (en) Optical recording medium
JP3963781B2 (en) Optical recording medium
JP2002298433A (en) Phase change optical recording medium
JP3550319B2 (en) Optical recording medium
JPH04360039A (en) Optical recording medium
JP2001067722A (en) Optical recording medium
JP3550317B2 (en) Optical recording medium
JP3687264B2 (en) Optical information recording medium and manufacturing method thereof
JP3506621B2 (en) Optical recording medium
JP2000339764A (en) Optical recording medium
JP2947942B2 (en) Optical information recording medium, method for manufacturing the same, and target used for the manufacture
JPH03152736A (en) Optical information recording medium and protective film for optical information recording medium
JP2639174B2 (en) Optical recording medium
JPH05144084A (en) Optical recording medium and production thereof
JPH07111786B2 (en) Optical recording medium, protective film for optical recording medium, and manufacturing method of protective film
JPH07307036A (en) Optical recording medium
JP2004005767A (en) Optical recording medium
JP2000011450A (en) Optical information recording medium
JP2972435B2 (en) Information optical recording medium and recording / reproducing method thereof
JP2000043414A (en) Phase change type optical recording medium
JPH05151617A (en) Optical information recording medium and manufacture thereof
JP2000348380A (en) Optical recording medium
JPH08129777A (en) Optical information recording medium

Legal Events

Date Code Title Description
A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040423

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080430

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees