JP3547004B2 - Method of manufacturing semiconductor wafer doped with nitrogen - Google Patents

Method of manufacturing semiconductor wafer doped with nitrogen Download PDF

Info

Publication number
JP3547004B2
JP3547004B2 JP2000261546A JP2000261546A JP3547004B2 JP 3547004 B2 JP3547004 B2 JP 3547004B2 JP 2000261546 A JP2000261546 A JP 2000261546A JP 2000261546 A JP2000261546 A JP 2000261546A JP 3547004 B2 JP3547004 B2 JP 3547004B2
Authority
JP
Japan
Prior art keywords
single crystal
gas
doping
nitrogen
semiconductor wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000261546A
Other languages
Japanese (ja)
Other versions
JP2001106590A (en
Inventor
フォン アモン ヴィルフリート
ヴァイトナー ヘルベルト
ツェムケ ディルク
フライ クリストフ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siltronic AG
Original Assignee
Siltronic AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siltronic AG filed Critical Siltronic AG
Publication of JP2001106590A publication Critical patent/JP2001106590A/en
Application granted granted Critical
Publication of JP3547004B2 publication Critical patent/JP3547004B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/02Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt
    • C30B15/04Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt adding doping materials, e.g. for n-p-junction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10S117/916Oxygen testing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、Nを含有するドーピング物質ガスから由来する窒素をドープした半導体ウェハを製造する方法に関する。該方法は、半導体材料の溶融物から単結晶を引上げる工程及び引上げた単結晶から窒素をドープした半導体ウェハを分離する工程を含む。
【0002】
【従来の技術】
単結晶から半導体ウェハを分離することは通常のことである。単結晶は、ゾーン移動(floating zone methode、FZ法)によるか、又は坩堝内に入れられた溶融物の引上げ(Czochralski-Methode、CZ法)により得られる。米国特許第4,591,409号明細書には、CZ法により引上げられた単結晶内の窒素の均一な分配を達成することを目的とした方法が記載されてる。この方法によれば、引上げ工程中に酸化二窒素のようなガスの存在保証すべきである。学問的文献においては、窒素ガス、又はヘリウムとNHの混合物を溶融したシリコンと反応させることが報告されている(W. Kaiser, C. D. Thurmond, J. Appl. Phys. 30, No. 3, 427-431 (1959))。しかしながら、該刊行文献からは、如何にすれば窒素を所定の濃度でかつ均一に分配して含有する半導体ウェハを再現可能な方法で得ることができるかは想到することはできない。再現可能なドーピングは、NHの熱的不安定性のために適当な手段を用いないと達成不可能である。
【0003】
【発明が解決しようとする課題】
従って、本発明の課題は、窒素を所定の濃度でかつ均一に分配して含有する半導体ウェハを再現可能に得ることができる方法を提供することである。
【0004】
【課題を解決するための手段】
前記課題は、本発明により、ドーピング物質ガスを半導体材料に供給する、半導体材料の溶融物から単結晶の引上げる工程、及び引上げた単結晶から窒素をドープした半導体ウェハを分離する工程を含む、Nを含有するドーピング物質ガスから由来する窒素をドープした半導体ウェハを製造する方法において、ドーピング物質ガスを半導体材料に最大、単結晶の一部の引出しが開始されるまでの間供給し、該単結晶から半導体ウェハを分離することにより解決される。
【0005】
本発明による方法は、前記の米国特許明細書に記載された方法と比較すると、単結晶内の窒素の軸方向の分布が均一である、即ち単結晶内の窒素濃度の軸方向の勾配があまり際立っていないという利点を有する。さらに、本方法により、ドーピング物質ガスから由来する酸素が引上げ装置内の黒煙含有の組込み部材を腐食させ、COを生成しかつその結果半導体材料を炭素で不純化することが回避される。
【0006】
本発明によれば、引上げ装置内での単結晶の引上げ工程中に、最大、半導体ウェハへのさらなる加工が予定されている単結晶の部分が引上げられるまでの間、半導体材料にドーピング物質ガスを接触させることを提案する。単結晶の上記部分は、円柱状の形を有する単結晶、即ち直胴部の全部又はほぼ全部の区分を意味する。この区分に境を接する円錐状の区分、即ち肩部及び尾部は、半導体ウェハに加工しないのが有利である。半導体材料へのドーピング物質ガスの供給の終了後に、単結晶を従来の方法で例えば純粋な不活性ガス雰囲気中で最後まで引上げる。
【0007】
CZ法により引上げる場合には、半導体材料とドーピング物質ガスの接触は、好ましくは早くとも、坩堝内に入れられた半導体材料が完全に溶融した際に開始すべきである。FZ法により移動させる場合には、半導体材料とドーピング物質ガスの接触は、好ましくは早くとも、いわゆるネック部の移動が既に開始した際、好ましくはネック部の移動が既に終了しかつ円錐部(肩部)始点が移動する際に開始すべきである。この場合には、半導体材料へのドーピング物質ガスの供給は、単結晶の直胴部の移動が開始する前に終了する。
【0008】
ドーピング物質ガスは、一定の貫流速度及びNH3の一定の濃度で一定時間にわたり引上げ装置を貫流させる。好ましくは、ドーピング物質ガスは冷却した状態で供給する。また好ましくは、ドーピング物質ガスを溶融液状の半導体材料の自由表面に向けて導く。例えば、ガス流を冷却した管(特にFZ法の場合)を通して又は引上げるべき単結晶を包囲する熱シールド(特にCZ法の場合)を通して溶融物の自由表面に接近させて誘導する。さらに、磁力線が軸方向に配向された磁界内で単結晶を引上げるのが、CZ法の場合には単結晶内の窒素の軸方向で均一な分布のために有利であることが立証された。
【0009】
溶融物内の窒素の高すぎる濃度の存在は単結晶の成長を妨害することがありかつ溶融物内に溶解した窒素は実際にもはや溶融物から飛散することができるないことが判明した。従って、単結晶内の窒素の濃度は5×1015at/cm、好ましくは3×1015at/cm以上に上昇させないのが特に有利である。それに相応して、引上げ室を通るドーピング物質ガスの貫流速度、ドーピング物質ガス内のNHの濃度及び半導体材料とドーピング物質ガスとの接触時間は、限界値をできるだけ上回らないように選択すべきである。典型的には、例えば30〜120kgの重量でCZ法により1つの単結晶を引上げるためにはNH0.01〜20Nl(Normliter)、好ましくは0.1〜3Nlの全量で十分である。それというのも、提供されたNHのほぼ25〜50%の窒素が溶融物表面に向けられた有効ガス誘導の際に半導体材料によって吸収されるからである。あまり有効でないガス誘導の際には、ドーピング物質ガスの需要は相応して増大する。
【0010】
ドーピング物質ガスとしては、NH3を含有するガス、好ましくはNH3と不活性ガスの混合物、特に好ましくはNH3/アルゴン混合物を準備する。
【0011】
記載の方法で製造した単結晶を、公知方法で、好ましくはワイヤーソー又は内周刃ソーを用いて所望の厚さの半導体ウェハに分割する。通常は、実質的に円柱状の形を有する単結晶の区分のみを完全に又は部分的に半導体ウェハに分割する。
【0012】
【実施例】
CZ法により200mmの直径を有する単結晶を引上げた。単結晶の直胴部成長段階の開始前に、NH0.2%及びアルゴンのガス混合物を3.6l/分の引上げ室を通過する貫流速度で溶融物上に誘導した。直胴部成長段階を開始するために、引上げ室をなおアルゴンだけで洗浄した。単結晶の引き続いての検査により、単結晶の、種結晶に境を接する区分の領域における約1×1014at/cmの窒素の濃度、及び単結晶のこの区分の終端部までの、約10- の偏折係数に相応するに過ぎない窒素濃度の上昇値が判明した。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method of manufacturing a semiconductor wafer doped with nitrogen you derived from dopant gas containing N H 3. The method includes the steps of pulling a single crystal from a melt of semiconductor material and separating a nitrogen-doped semiconductor wafer from the pulled single crystal.
[0002]
[Prior art]
It is common to separate a semiconductor wafer from a single crystal. Single crystals are obtained by zone movement (floating zone method, FZ method) or by pulling the melt placed in a crucible (Czochralski-Methode, CZ method). U.S. Pat. No. 4,591,409 describes a method aimed at achieving a uniform distribution of nitrogen in a single crystal pulled by the CZ method. According to this method, the presence of a gas such as nitrous oxide during the pulling process should be ensured. Academic literature reports that nitrogen gas or a mixture of helium and NH 3 is reacted with molten silicon (W. Kaiser, CD Thurmond, J. Appl. Phys. 30, No. 3, 427). -431 (1959)). However, it is impossible to imagine from the publication how to obtain a semiconductor wafer containing nitrogen at a predetermined concentration and uniformly distributed in a reproducible manner. Reproducible doping is unattainable unless using suitable means for thermal instability of NH 3.
[0003]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a method capable of reproducibly obtaining a semiconductor wafer containing nitrogen at a predetermined concentration and uniformly distributed.
[0004]
[Means for Solving the Problems]
The object is achieved by the present invention supplies the dopant gas to the semiconductor material, comprising the step of separating the semiconductor wafer doped with nitrogen process pulling Ru single crystal from a melt of semiconductor material, from Beauty pulled was single crystal , during a process for manufacturing a semiconductor wafer doped with nitrogen you derived from dopant gas containing N H 3, up to a doping material gas to the semiconductor material, a part of the drawer of a single crystal is started The problem is solved by supplying and separating the semiconductor wafer from the single crystal.
[0005]
The method according to the present invention has a more uniform axial distribution of nitrogen in the single crystal as compared with the method described in the aforementioned U.S. Pat. It has the advantage of not being outstanding. Furthermore, the method avoids that oxygen from the doping gas corrodes the black smoke-containing components in the puller, generates CO and consequently impures the semiconductor material with carbon.
[0006]
According to the present invention, the pulling during the process of the single crystal in the pulling apparatus, the maximum, until the part of the further processing is scheduled single crystal of the semiconductor wafer is pulled, the dopant gas to the semiconductor material It is suggested to make contact. The above-mentioned portion of the single crystal means a single crystal having a cylindrical shape, that is, all or almost all sections of the straight body. Advantageously, the conical sections bordering this section, ie the shoulders and tails, are not machined into semiconductor wafers. After the end of the supply of the dopant gas to the semiconductor material, the single crystal is pulled up in a conventional manner, for example in a pure inert gas atmosphere.
[0007]
If Ru more pulling the CZ method, the contact of the semiconductor material and the doping material gas is preferably the at early, should be started when the semiconductor material is placed in the crucible is completely melted. To move more FZ method, the contact of the semiconductor material and the doping material gas is preferably even early, when the movement of the so-called neck portion has already started, preferably terminates movement of the neck already and conical portion ( shoulder) the starting point should be started when you move. In this case, the supply of the doping substance gas to the semiconductor material ends before the movement of the single-crystal straight body portion starts.
[0008]
The doping gas flows through the puller at a constant flow rate and a constant concentration of NH 3 for a period of time. Preferably, the doping material gas is supplied in a cooled state. Also preferably, the doping substance gas is directed toward the free surface of the molten semiconductor material. For example, the gas stream may be guided close to the free surface of the melt through a cooled tube (particularly in the case of the FZ method) or through a heat shield (especially in the case of the CZ method) surrounding the single crystal to be pulled. Furthermore, it has been demonstrated that pulling a single crystal in a magnetic field in which the magnetic field lines are axially oriented is advantageous in the case of the CZ method because of the axially uniform distribution of nitrogen in the single crystal. .
[0009]
It has been found that the presence of too high a concentration of nitrogen in the melt can hinder the growth of the single crystal and that the nitrogen dissolved in the melt can in fact no longer fly away from the melt. Therefore, it is particularly advantageous not to raise the concentration of nitrogen in the single crystal to 5 × 10 15 at / cm 3 , preferably 3 × 10 15 at / cm 3 or more. Correspondingly, the flow rate of the doping gas through the pulling chamber, the concentration of NH 3 in the doping gas and the contact time between the semiconductor material and the doping gas should be selected such that the limit values are not exceeded as much as possible. is there. Typically, for example, in order to pull more one single crystal CZ method by weight of 30~120kg NH 3 0.01~20Nl (Normliter), is sufficient preferably in total amounts 0.1~3Nl . Also since, because almost 25-50% of the nitrogen of NH 3 that is provided is absorbed by the semiconductor material during the effective gas guiding directed to the melt surface. In the case of less effective gas guidance, the demand for doping gas increases correspondingly.
[0010]
As the doping substance gas, a gas containing NH 3 , preferably a mixture of NH 3 and an inert gas, particularly preferably a NH 3 / argon mixture is prepared.
[0011]
The single crystal produced by the method described is divided into semiconductor wafers of a desired thickness by a known method, preferably using a wire saw or an inner blade saw. Usually, only sections of a single crystal having a substantially cylindrical shape are completely or partially divided into semiconductor wafers.
[0012]
【Example】
It was pulled single crystal with a diameter of more 200mm to CZ method. Prior to the start of the single-crystal straight-body growth phase, a gas mixture of 0.2% NH 3 and argon was guided over the melt at a flow rate through the pulling chamber of 3.6 l / min. To start the straight body growth phase, the pull chamber was still flushed with argon only. Subsequent examination of the single crystal shows that the concentration of nitrogen in the region of the section of the single crystal bordering the seed crystal of about 1 × 10 14 at / cm 3 and about 10 - increased value of the nitrogen concentration that only corresponds to segregation coefficient of 3 was found.

Claims (6)

ドーピング物質ガスを半導体材料に供給、半導体材料の溶融物から単結晶を引上げる工程、及び引上げた単結晶から窒素ドープされた半導体ウェハを分離する工程を含む、NHを含有するドーピング物質ガス由来する窒素ドープされた半導体ウェハを製造する方法において、単結晶の一部の引上げが開始されるまでの間、融液に直接、NH を含有するドーピング物質ガスを供給し、該単結晶から半導体ウェハを分離することを特徴とする窒素ドープされた半導体ウェハの製造方法。Doping substance supplying dopant gas to the semiconductor material, step pulling a single crystal from a melt of semiconductor material, and nitrogen from the pulled was single crystal comprising the step of separating the doped semiconductor wafer, containing NH 3 a method of nitrogen derived from the gas to produce a semiconductor wafer doped, until part of pulling of the single crystal is started, directly in the melt, supplying a dopant gas containing NH 3, and the manufacturing method of semiconductor wafer nitrogen, wherein doped separating the semiconductor wafer from a single crystal. ドーピング物質ガスを引上げ室を通して誘導し、かつ半導体ウェハにドープされた窒素の濃度が最高5×1015at/cmであることができるように設定した、引上げ室を通るドーピング物質ガスの貫流速度及びドーピング物質ガス内のNHの濃度を調整することを特徴とする請求項1記載の方法。The doping material gas is guided through the pulling chamber and the flow rate of the doping gas through the pulling chamber is set such that the concentration of nitrogen doped in the semiconductor wafer can be up to 5 × 10 15 at / cm 3. and the method of claim 1, wherein adjusting the concentration of NH 3 of the doping agent in the gas. 重量30〜120kgのCZ法による単結晶の引上げの際に半導体材料に供給されるNHの量が0.01〜20Nlであることを特徴とする請求項1又は2記載の方法。The method according to claim 1, wherein the amount of NH 3 supplied to the semiconductor material when pulling a single crystal having a weight of 30 to 120 kg by the CZ method is 0.01 to 20 Nl. 単結晶をCZ法により引上げ、かつ半導体材料に対するドーピング物質ガスの供給を、早くとも坩堝内に入れられた半導体材料が溶融された際に開始することを特徴とする請求項1から3までのいずれか1項記載の方法。4. The method as claimed in claim 1, wherein the single crystal is pulled up by the CZ method, and the supply of the doping substance gas to the semiconductor material is started at the earliest when the semiconductor material put in the crucible is melted. Or the method of claim 1. 単結晶をCZ法により軸方向に配向された磁界内で引上げることを特徴とする請求項1から4までのいずれか1項記載の方法。5. The method according to claim 1, wherein the single crystal is pulled in a magnetic field oriented in the axial direction by the CZ method. 単結晶をFZ法により移動させ、かつ半導体材料に対するドーピング物質ガスの供給を、早くともネック部の移動が開始した後に開始し、かつドーピング物質ガスの供給を遅くとも、単結晶の直胴部の移動が開始する前に終了することを特徴とする請求項1又は2項記載の方法。The single crystal is moved by the FZ method, and the supply of the doping material gas to the semiconductor material is started at the earliest after the movement of the neck portion is started, and the supply of the doping material gas is moved at the latest even if the supply of the doping material gas is delayed. 3. The method according to claim 1, wherein the method is terminated before starting.
JP2000261546A 1999-09-02 2000-08-30 Method of manufacturing semiconductor wafer doped with nitrogen Expired - Lifetime JP3547004B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19941902.7 1999-09-02
DE19941902A DE19941902A1 (en) 1999-09-02 1999-09-02 Process for the production of nitrogen-doped semiconductor wafers

Publications (2)

Publication Number Publication Date
JP2001106590A JP2001106590A (en) 2001-04-17
JP3547004B2 true JP3547004B2 (en) 2004-07-28

Family

ID=7920590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000261546A Expired - Lifetime JP3547004B2 (en) 1999-09-02 2000-08-30 Method of manufacturing semiconductor wafer doped with nitrogen

Country Status (6)

Country Link
US (1) US6350314B1 (en)
EP (1) EP1081254B1 (en)
JP (1) JP3547004B2 (en)
KR (1) KR100394971B1 (en)
DE (2) DE19941902A1 (en)
TW (1) TW573083B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10205084B4 (en) 2002-02-07 2008-10-16 Siltronic Ag Process for the thermal treatment of a silicon wafer and silicon wafer produced thereby
DE10336271B4 (en) 2003-08-07 2008-02-07 Siltronic Ag Silicon wafer and process for its production
DE102005013831B4 (en) 2005-03-24 2008-10-16 Siltronic Ag Silicon wafer and method for the thermal treatment of a silicon wafer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4591409A (en) * 1984-05-03 1986-05-27 Texas Instruments Incorporated Control of nitrogen and/or oxygen in silicon via nitride oxide pressure during crystal growth
JPS63239200A (en) * 1987-03-27 1988-10-05 Shin Etsu Handotai Co Ltd Method for strengthening silicon wafer
DE19637182A1 (en) * 1996-09-12 1998-03-19 Wacker Siltronic Halbleitermat Process for the production of silicon wafers with low defect density
TW589415B (en) * 1998-03-09 2004-06-01 Shinetsu Handotai Kk Method for producing silicon single crystal wafer and silicon single crystal wafer

Also Published As

Publication number Publication date
DE19941902A1 (en) 2001-03-15
EP1081254B1 (en) 2001-11-21
EP1081254A1 (en) 2001-03-07
TW573083B (en) 2004-01-21
JP2001106590A (en) 2001-04-17
US6350314B1 (en) 2002-02-26
KR20010061924A (en) 2001-07-07
KR100394971B1 (en) 2003-08-19
DE50000043D1 (en) 2002-01-10

Similar Documents

Publication Publication Date Title
EP1909315A1 (en) Silicon wafer and process for producing the same
KR100912219B1 (en) Apparatus for producing semiconductor single crystal
JPS60251190A (en) Preparation of silicon single crystal
JP4905138B2 (en) Method for producing aluminum oxide single crystal
JPH06345584A (en) Method and apparatus for pulling monocrystal
JP2003002780A (en) Apparatus for producing silicon single crystal and method for producing silicon single crystal using the same
JPH0782085A (en) Improved method for crystallization of silicon crystal
JP3547004B2 (en) Method of manufacturing semiconductor wafer doped with nitrogen
JP2005281076A (en) Method for manufacturing silicon single crystal, silicon single crystal, and silicon wafer
US7384480B2 (en) Apparatus for manufacturing semiconductor single crystal
US7326395B2 (en) Method for producing a single crystal and silicon single crystal wafer
JPH08751B2 (en) Method for producing silicon ingot with high oxygen content by crucible-free zone tension method
US6764548B2 (en) Apparatus and method for producing silicon semiconductor single crystal
JP4273793B2 (en) Single crystal manufacturing method
JP4595450B2 (en) Method for producing carbon-doped silicon single crystal
JP4407192B2 (en) Single crystal manufacturing method
JP2785623B2 (en) Single crystal growth equipment
JP2003246695A (en) Method for producing highly doped silicon single crystal
JPH09278581A (en) Apparatus for producing single crystal and production of single crystal
KR100221087B1 (en) Silicon single crystal and its growing method
JP3900816B2 (en) Silicon wafer manufacturing method
JP2001226195A (en) Method for producing silicon single crystal ingot
JP4341379B2 (en) Single crystal manufacturing method
JPH0798715B2 (en) Method for producing silicon single crystal
JPS63285186A (en) Apparatus for pulling up silicon single crystal

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040107

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040407

R150 Certificate of patent or registration of utility model

Ref document number: 3547004

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term