JP3546843B2 - Arc electric furnace for steelmaking - Google Patents

Arc electric furnace for steelmaking Download PDF

Info

Publication number
JP3546843B2
JP3546843B2 JP2000404303A JP2000404303A JP3546843B2 JP 3546843 B2 JP3546843 B2 JP 3546843B2 JP 2000404303 A JP2000404303 A JP 2000404303A JP 2000404303 A JP2000404303 A JP 2000404303A JP 3546843 B2 JP3546843 B2 JP 3546843B2
Authority
JP
Japan
Prior art keywords
furnace
melted
arc
oxygen gas
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000404303A
Other languages
Japanese (ja)
Other versions
JP2002188888A (en
Inventor
寛 山田
宏 川上
春彦 成瀬
慎司 坂元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Casting and Forging Corp
Original Assignee
Japan Casting and Forging Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Casting and Forging Corp filed Critical Japan Casting and Forging Corp
Priority to JP2000404303A priority Critical patent/JP3546843B2/en
Priority to KR10-2001-0079514A priority patent/KR100471459B1/en
Publication of JP2002188888A publication Critical patent/JP2002188888A/en
Application granted granted Critical
Publication of JP3546843B2 publication Critical patent/JP3546843B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/22Arrangements of air or gas supply devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Furnace Details (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電極間で発生する電弧(または弧光)の熱を利用して冷材の被溶解材を溶解し精練する、製鋼用弧光式電気炉に関するものである。
【0002】
【従来の技術】
弧光式電気炉には、間接式弧光炉と直接式弧光炉とがある。間接式弧光炉とは、上方の電極相互間で発生する弧光の輻射熱によって被溶解材を溶解精練するもので、スタッサノ炉やレンナーフェルト炉の如き輻射弧光式電気炉がある。直接式弧光炉とは、電極と被溶解材との間で発生する弧光の熱によって被溶解材を溶解精練するものであって、電流が一方の電極から鋼滓、溶鋼、鋼滓を経て他方の電極に流れる際に発生する弧光の熱によって溶解精練するエルー式電気炉の如き列式弧光電気炉、上方の電極から流される電流が鋼滓、溶鋼を通って下方炉床の電極に入るジロー式電気炉の如き炉床極式弧光電気炉がある。このような弧光式電気炉は、高温度(1800〜1900℃)の熱が得られるため溶鋼温度調整が容易であること、熱効率が高いこと、炉内雰囲気を酸化性または還元性のいずれにも調整し易いこと、溶鋼中のPやSなどの不純物元素を除去できること、装入原料の制約が少ないこと、炉体設置面積が小さくて設備費が低廉であることなど多くの利点から、普通鋼から合金鋼の製造まで幅広く利用されている。
【0003】
また弧光式電気炉の炉体構造は、籠型パネル式炉殼や分割炉殼などの炉殼鉄皮の炉床側下方面をクロムまたはマグネシア煉瓦などの耐火煉瓦や、マグネシアクリンカー、ドロマイトクリンカー等の不定形耐火物で内張りしその上方の炉壁側上方面を冷却水流通路を内蔵する構造の水冷パネルを内張りする。炉殻側面には開閉扉をもつ出鋼口と出滓口が設けられている。また炉体の炉頂部には、屑鉄や銑鉄の如き冷材や溶銑または溶鋼の他に石灰や螢石などの溶剤やコークスやフェロシリコンなどの還元剤など多くの種類の被溶解材を投入する装入口と該装入口を開閉する炉蓋が設けられている。さらに炉体を稼動するために必要な炉体傾動装置、電極昇降装置など多くの種類の付帯装置の他に、溶解時間を短縮し生産性を向上するために、酸素または酸素と燃料を同時に被溶解材あるいは鋼浴面に噴射する酸素ランスや酸素バーナーが炉壁上方に設けられている。
この様な構造の弧光式電気炉に装入口から冷材や溶剤などの被溶解材を投入した後、炉内に装入された電極に電流を通し、被溶解材との間に電弧を発生させ、その電弧熱並びに炉内に噴射された酸素と溶解材に含まれる炭素や珪素および装入または噴射された燃料などとの酸化反応熱によって、被溶解材を溶解する。被溶解材の溶解中に鋼浴から発生する大量のCOガスは、一部が炉内に侵入する空気中の酸素によって炉内で燃焼し、その燃焼熱で被溶解材の溶解を促進しまた炉内温度を上昇させるが、残りは炉内から排出される。排出されたCOガスは、作業環境を悪化し公害問題を誘発する問題からCOガスドラフト回収装置の燃焼塔で完全燃焼させて排ガス化する。この排ガスの熱は被溶解材の予熱などに一部利用されるが、この方法ではCOガスの燃焼熱の多くが炉内侵入空気や燃焼塔の冷却水などに奪われるために熱損失が大きい。従って炉内にCOガスを燃焼させるための二次燃焼酸素ランスを設置し、これから噴出する酸素によって炉内でCOガスを出来るだけ多く燃焼させ、炉内での熱回収を増やす方法が近年採用されるようになってきている。
【0004】
【発明が解決しようとする課題】
ところが従来の二次燃焼ランスは、炉殻鉄皮の上方部より水冷パネルの貫通孔に差し込むように装着して使用されるが、鋼浴より発生するCOガスを効率よく燃焼させるためには炉体周囲より出来る限り均等に酸素を吹き込むほうが良いため、炉体周囲を略均等に分割するように複数個設置されることが多い。この様に二次燃焼酸素ランスを設けた弧光式電気炉は、炉内で発生するCOガスを炉内で燃焼させ、その燃焼熱が被溶解材を溶解する熱として有効に利用される点では評価できる。しかしながら、炉壁に装着する二次燃焼酸素ランスの数は、普通は4本、多くて8本程度である。これ以上に多い本数の二次燃焼酸素ランスを炉壁に装着することは、炉体の保持強度が低下するため高温度の熱や炉体の傾斜駆動操作に耐え切れず、炉体寿命を短命化し、炉体補修費が嵩む問題があった。またこの様な問題は少ない本数の二次燃焼酸素ランスの装着によって回避できるが、発生するCOガスを十分に燃焼させ被溶解材の溶解熱に再利用するためには、一本の二次燃焼酸素ランスから大量の酸素ガスを勢いよく噴出させねばならず、これに伴って酸素ガスの供給が一部分に滞る弊害が起こり、被溶解材にコールドスポット部またはホットスポット部と呼ばれる不均一な加熱ムラと上昇温度の遅延化現象を出現する問題があった。
【0005】
本発明は、上記の様な問題を解消する事を目的にしたもので、炉体強度を低下する事なく、被溶解材の溶解温度まで均一に昇温しかつ加速し、溶解精練時間も短縮する弧光式電気炉を提供するものである。
【0006】
【課題を解決するための手段】
本発明はその目的を達成したもので、その要旨とは、弧光式電気炉の炉殼鉄皮の炉床側下方面に耐火物層を内張りし、さらに該炉殻鉄皮の炉壁側上方面に冷媒流通炉を内蔵すると共に該炉壁鉄皮を貫通する酸素ガス供給パイプを連接しかつ被溶解材方向に指向する酸素ガス吹き出し口を炉周方向に多数穿設した酸素ガス供給室を任意な位置に併設した冷媒流通パネルを内張りして構成した製鋼用弧光式電気炉である。
【0007】
【発明の実施の形態】
以下、本発明の製鋼用弧光式電気炉について、図面を参照しながら詳細に説明する。
図1および図2は本発明の製鋼用弧光式電気炉の一実施例を示したもので、図1は本発明の縦断面図、図2は図1のX−X線断面図を示す。図1において、1は弧光式電気炉の炉殻鉄皮である。炉殻鉄皮1は、弧光式電気炉の炉体を支持するものであって、普通鋼や特殊鋼などの厚鋼板を溶接または鋲打ちにより、炉壁側上方面Aは円筒形状にまた底部の炉床側下方面Bは皿型に成形加工したもので、必要によっては高温による変形を防止するために補強材を各所に使用した一体物の鉄皮である。炉体は、一般に円形であるが、楕円形あるいは矩形など如何なる形状であっても構わない。2は、耐火物層である。耐火物層2は、炉殻鉄皮1の炉床側下方面Bをクロム煉瓦やマグネシア煉瓦などの各種耐火煉瓦を積み重ねたり、あるいはその上にマグネシアクリンカーやドロマイトなどの不定形耐火物材料を皿状に搗き固めるなどして、内張り耐火物の耐熱構造に施されている。3は冷媒流通パネルで、炉殼鉄皮1の炉壁側上方面Aを、炉内に張り着く様に設けられている。冷媒流通パネル3は、図3で各部分の断面図を示す様に、内部に空間をもつ任意な形状をした例えば矩形断面形状のパネルボックス4の内部に流通ガイド壁5(点線図示)を設けて、水や低温ガスなどの冷媒が、該ボックス全体を冷却するように蛇行しながら、同一方向に流通する冷媒流通路6を内蔵する構造(図aの内部透視図)に製作されている。7は冷媒導入口で冷媒供給装置(図示せず)に連接され、8は冷媒導出口で冷媒供給源回収装置(図示せず)に連接されている。さらに冷媒流通パネル3には、酸素ガス分散供給室9が、任意な位置に設けられる。図3は、冷媒流通パネル3の炉床側下方面B側に酸素ガス分散供給室9を設けた場合の一実施例(図a、図b、図c)を示す。該酸素ガス分散供給室9には、酸素ガス供給源(図示せず)に連通された酸素ガス供給パイプ10が炉殼鉄皮1を貫通して連接し、炉内側には被溶解材方向に指向する酸素ガス吹出し口11が、炉周方向に多数穿設(図d)されている。図2は、酸素ガス吹出し口11を炉周方向に多数穿設した場合の例で、12は出鋼口で、13は出滓口を示す。すなわち、本発明における冷媒流通パネル3は、冷媒流通路6を内蔵する構造で、任意な位置から酸素ガスを導入しまた噴出する酸素ガス分散供給室9が任意な位置に併設して構成されている。
【0008】
図1において、14は電極である。電極14は、被溶解材の溶解進行に伴って上下に可動しかつ電流を伝導する昇降自在な電極把持器(図示せず)に支持され、炉内に装入された被溶解材と電極14との間に弧光を発生させながら、その弧光熱の高温度を利用して被溶解材を溶解し精練する。15は炉蓋で、被溶解材の装入方法や炉体の構造によって構造が異なるが、被溶解材の炉頂装入の場合は炉蓋移動式、炉蓋移行式、炉蓋旋回式などが多く使用されている。また炉蓋15には、電極14の装入口が設けられ、しかも耐熱性が要求される事から耐火煉瓦を内張りしたりあるいは水冷構造に構築されている。
【0009】
上記の様に構築された本発明の製鋼用弧光式電気炉は、屑鉄や銑鉄などの冷材、溶銑や溶鋼の他に生石灰やコークスなどの様に通常使用される被溶解材を、炉頂の被溶解材装入口(図示せず)より装入する。被溶解材の装入が終われば、炉蓋15を被せ、電極14を降下させ炉内に装入した後、電圧電流を徐々に増大せしめながら電弧を発生させ、その電弧熱によって被溶解材を溶解し精練する。溶解精練中には消耗式の酸素パイプ(図示せず)または水冷式の酸素ランス(図示せず)より酸素ガスを鋼浴に吹き込みながら本発明の冷媒流通パネル3に設けた酸素ガス噴出口11から炉内に酸素ガスを吹込む。消耗式の酸素パイプまたは水冷式の酸素ランスより鋼浴に吹込まれた酸素ガスは、被溶解材に含まれる珪素や炭素および炉内に酸素と同時に吹込まれるコークスやその他の燃料などを燃焼させて被溶解材の溶解を促進するが、同時に大量のCOガスを鋼浴より発生させる。本発明の冷媒流通パネル3に設けた酸素ガス噴出口11からも炉内に吹込まれる酸素ガスは、酸素ガス供給源から酸素ガス供給パイプ10を経て酸素ガス分散供給室9に供給され、ここで一旦貯留して均一なガス圧と流量に調整された後、図2で示す様に、炉内側炉周方向に多数穿設した酸素ガス吹出し口11から噴出されながら、鋼浴から発生するCOガスを燃焼する。その大半の燃焼熱が被溶解材の溶解を加速する熱として利用されるため、COガスドラフト回収装置も低能力でよく、作業環境の悪化や公害問題の誘発可能性を著しく低減する効果を奏する
。精練終了末期は、有害な酸化性スラグ(滓)を含有する鋼滓を出滓口13から掻き出した後、加炭材を添加して溶鋼中のC量の調整したりあるいはフェロシリコンやフェロマンガンなどを添加して脱酸反応の促進作業を終えた後、生石灰や螢石を添加して造滓作業を行い、出鋼口12から溶鋼を取り出して一連の作業を終える。
【0010】
上記で述べた様な溶解精練作業は、本発明の製鋼用弧光式電気炉における一作業例を説明したものであって、如何なる操作の溶解精練作業でも使用できる事は言うまでもない。
【0011】
【発明の効果】
以上述べた様な本発明の製鋼用弧光式電気炉によれば、例えば100t電気炉内から発生するCOガスの二次燃焼率は、CO/(CO+CO)の平均値で、従来(4本の二次燃焼ランス使用)の40%から60%に増加した。また電力原単位も400kwh/tから370kwh/tに低減した。さらには被溶解材の偏り溶解現象もなく、均一な速度で被溶解材を溶解し、溶解精練時間も80分から74分に短縮された。
また本発明の製鋼用弧光式電気炉においては、酸素ガス吹出し口を炉内円周に設けても炉体の保持強度が低下する事もなく、酸素ガス吹出し口が冷媒流通パネルに併設する構造に設けられているため、熱による損傷もなく長期間使用できる特徴がある。
【図面の簡単な説明】
【図1】本発明の製鋼用弧光式電気炉の一実施例を示す。
【図2】図1のX−X線断面図を示す。
【図3】本発明における冷媒流通パネルの内部構造を拡大して示したもので、炉殻鉄皮側透視図(図a)とそのY−Y線断面図(図b)と、該図のZ−Z線断面図(図c)および炉内側正面図(図d)を示す。
【符号の説明】
1 炉殼鉄皮
2 耐火物層
3 冷媒流通パネル
4 パネルボックス
5 流通ガイド壁
6 冷媒流通路
7 冷媒導入口
8 冷媒導出口
9 酸素ガス分散供給室
10 酸素ガス供給パイプ
11 酸素ガス吹出し口
12 出鋼口
13 出滓口
14 電極
15 炉壁
A 炉壁側上方面
B 炉壁側下方面
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to an arc light type electric furnace for steelmaking, in which a material to be melted as a cold material is melted and refined using heat of an electric arc (or arc light) generated between electrodes.
[0002]
[Prior art]
The arc type electric furnace includes an indirect type arc furnace and a direct type arc furnace. The indirect arc furnace is used for melting and refining a material to be melted by radiant heat of arc light generated between upper electrodes, and includes a radiation arc electric furnace such as a stassano furnace or a Lenner felt furnace. A direct arc furnace is one in which the material to be melted is melted and refined by the heat of the arc light generated between the electrode and the material to be melted, and an electric current flows from one electrode through the steel slag, the molten steel, and the steel slag to the other. An arc-type electric furnace, such as an Aeru-type electric furnace, which melts and scours by the heat of the arc light generated when flowing to the electrodes, and the electric current flowing from the upper electrode passes through steel slag and molten steel to enter the lower hearth electrode. There is a hearth-type arc light electric furnace such as an electric furnace. Such an arc-type electric furnace is capable of easily adjusting the temperature of molten steel because of obtaining heat at a high temperature (1800 to 1900 ° C.), having high heat efficiency, and changing the atmosphere in the furnace to either oxidizing or reducing. From the advantages of easy adjustment, removal of impurity elements such as P and S in molten steel, less restrictions on raw materials, small installation area of furnace, and low equipment cost, ordinary steel It is widely used from to steel alloy manufacturing.
[0003]
The furnace body structure of the arc-light type electric furnace is such that refractory bricks such as chrome or magnesia brick, magnesia clinker, dolomite clinker, etc. A water-cooled panel having a structure with a built-in cooling water flow passage is lined with an upper surface on the furnace wall side above the irregular-shaped refractory. On the side of the furnace shell, there is a tap hole with a door and a tap hole. At the top of the furnace, there are many kinds of materials to be melted such as cold materials such as scrap iron and pig iron, hot metal or molten steel, solvents such as lime and fluorite, and reducing agents such as coke and ferrosilicon. A charging port and a furnace lid for opening and closing the charging port are provided. In addition to the many types of auxiliary equipment required for operating the furnace, such as the furnace tilting device and the electrode lifting and lowering device, oxygen or oxygen and fuel are simultaneously exposed to shorten melting time and improve productivity. An oxygen lance or an oxygen burner for injecting the molten material or the steel bath surface is provided above the furnace wall.
After charging the material to be melted, such as cold material or solvent, into the arc-type electric furnace with such a structure from the charging inlet, an electric current is passed through the electrodes charged in the furnace to generate an electric arc with the material to be melted. Then, the material to be melted is melted by the heat of the arc and the heat of oxidation reaction between the oxygen injected into the furnace and the carbon and silicon contained in the melted material and the injected or injected fuel. A large amount of CO gas generated from the steel bath during melting of the material to be melted is partially burned in the furnace by oxygen in the air entering the furnace, and the heat of combustion accelerates the melting of the material to be melted. The furnace temperature is raised, but the rest is discharged from the furnace. The exhausted CO gas is completely burnt in the combustion tower of the CO gas draft recovery device and turned into exhaust gas because of the problem of deteriorating the working environment and causing pollution problems. The heat of the exhaust gas is partially used for preheating the material to be melted, but in this method, much of the heat of combustion of the CO gas is taken away by the air entering the furnace or the cooling water of the combustion tower, so that a large heat loss occurs. . Therefore, a method of installing a secondary combustion oxygen lance for burning CO gas in the furnace, burning the CO gas as much as possible in the furnace with oxygen ejected from the lance, and increasing heat recovery in the furnace has been adopted in recent years. It is becoming.
[0004]
[Problems to be solved by the invention]
However, the conventional secondary combustion lance is used by inserting it into the through hole of the water-cooled panel from the upper part of the furnace shell, but in order to efficiently burn the CO gas generated from the steel bath, it is necessary to use the furnace. Since it is better to inject oxygen as uniformly as possible from around the body, a plurality of furnaces are often installed so as to divide the periphery of the furnace substantially evenly. The arc-light type electric furnace provided with the secondary combustion oxygen lance in this way burns CO gas generated in the furnace in the furnace, and the combustion heat is effectively used as heat for melting the material to be melted. Can be evaluated. However, the number of secondary combustion oxygen lances mounted on the furnace wall is usually four, and at most about eight. Attaching a larger number of secondary combustion oxygen lances to the furnace wall will reduce the holding strength of the furnace body, making it difficult to withstand high-temperature heat and tilting operation of the furnace body, thus shortening the life of the furnace body. And the cost of repairing the furnace body increased. Although such a problem can be avoided by installing a small number of secondary combustion oxygen lances, in order to sufficiently combust the generated CO gas and reuse it for the heat of melting of the material to be melted, one secondary combustion oxygen lance is required. A large amount of oxygen gas must be ejected vigorously from the oxygen lance, which causes a problem that the supply of oxygen gas is partially interrupted, causing uneven heating unevenness called cold spots or hot spots on the material to be melted. There was a problem that the phenomenon of delay of the rise temperature appears.
[0005]
The present invention has been made to solve the above-described problems, and uniformly increases the temperature to the melting temperature of the material to be melted and accelerates without lowering the furnace strength, thereby shortening the melting and refining time. To provide an arc light type electric furnace.
[0006]
[Means for Solving the Problems]
The present invention has achieved the object, and the gist of the present invention is that a refractory layer is lined on a lower surface of a hearth side of a furnace shell of an arc light type electric furnace, and further, a refractory layer is formed on a furnace wall side of the furnace shell. An oxygen gas supply chamber having a built-in refrigerant flow furnace on the side and connecting an oxygen gas supply pipe penetrating the furnace wall steel shell and having a large number of oxygen gas outlets perforated in the furnace circumferential direction directed toward the material to be melted is provided. This is a steelmaking arc-type electric furnace constructed by lining a refrigerant distribution panel provided at an arbitrary position.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the arc-type electric furnace for steelmaking of the present invention will be described in detail with reference to the drawings.
FIGS. 1 and 2 show an embodiment of an arc electric furnace for steelmaking of the present invention. FIG. 1 is a longitudinal sectional view of the present invention, and FIG. 2 is a sectional view taken along line XX of FIG. In FIG. 1, reference numeral 1 denotes a furnace shell of an arc electric furnace. The furnace shell 1 is used to support the furnace body of an arc-light type electric furnace. The furnace wall side upper surface A is formed into a cylindrical shape by welding or tacking a thick steel plate such as ordinary steel or special steel. The lower surface B on the hearth side is formed into a dish shape and, if necessary, is a unitary steel shell using reinforcing materials at various places to prevent deformation due to high temperature. The furnace body is generally circular, but may have any shape such as an elliptical shape or a rectangular shape. 2 is a refractory layer. The refractory layer 2 is formed by stacking various refractory bricks such as chrome bricks and magnesia bricks on the hearth side lower surface B of the furnace shell 1 or disposing an irregular refractory material such as magnesia clinker and dolomite on the refractory bricks. It is applied to the heat-resistant structure of the refractory lining by hardening it into a shape. Numeral 3 is a refrigerant distribution panel which is provided so that an upper surface A of the furnace shell 1 on the furnace wall side is stuck in the furnace. As shown in the cross-sectional view of each part in FIG. 3, the refrigerant distribution panel 3 is provided with a distribution guide wall 5 (shown by a dotted line) inside a panel box 4 having an arbitrary shape having a space inside, for example, a rectangular cross-sectional shape. In this structure, a refrigerant such as water or a low-temperature gas meanders so as to cool the entire box and has a built-in refrigerant flow passage 6 flowing in the same direction (internal perspective view in FIG. A). Reference numeral 7 denotes a refrigerant inlet, which is connected to a refrigerant supply device (not shown), and reference numeral 8 denotes a refrigerant outlet, which is connected to a refrigerant supply source recovery device (not shown). Further, the refrigerant distribution panel 3 is provided with an oxygen gas dispersion supply chamber 9 at an arbitrary position. FIG. 3 shows an embodiment (FIGS. A, b, and c) in which an oxygen gas dispersion supply chamber 9 is provided on the lower surface B side of the hearth side of the refrigerant distribution panel 3. An oxygen gas supply pipe 10 connected to an oxygen gas supply source (not shown) penetrates through the furnace shell 1 and connects to the oxygen gas dispersion supply chamber 9. A large number of oxygen gas outlets 11 are formed in the furnace circumferential direction (FIG. D). FIG. 2 shows an example in which a large number of oxygen gas outlets 11 are formed in the furnace circumferential direction. Reference numeral 12 denotes a tapping outlet, and reference numeral 13 denotes a tapping outlet. That is, the refrigerant distribution panel 3 according to the present invention has a structure in which the refrigerant distribution passage 6 is built in, and the oxygen distribution and supply chamber 9 for introducing and ejecting oxygen gas from an arbitrary position is provided at an arbitrary position. I have.
[0008]
In FIG. 1, reference numeral 14 denotes an electrode. The electrode 14 is supported by a vertically movable electrode gripper (not shown) that moves up and down as the material to be melted advances and conducts current, and the material to be melted and the electrode 14 The material to be melted is melted and refined by utilizing the high temperature of the arc light heat while generating arc light between. Reference numeral 15 denotes a furnace lid, which has a different structure depending on the charging method of the material to be melted and the structure of the furnace body. Is often used. Further, the furnace lid 15 is provided with a loading opening for the electrode 14, and since heat resistance is required, a refractory brick is lined or a water-cooled structure is constructed.
[0009]
The arc-type electric furnace for steelmaking of the present invention constructed as described above uses a cold material such as scrap iron and pig iron, a material to be melted which is usually used such as quick lime and coke in addition to hot metal and molten steel, and a furnace top. Of the material to be melted (not shown). When the charging of the material to be melted is completed, the furnace cover 15 is put on, the electrode 14 is lowered and charged into the furnace. Then, an arc is generated while gradually increasing the voltage and current, and the material to be melted is heated by the arc heat. Dissolve and scour. During the melting and refining, the oxygen gas outlet 11 provided in the refrigerant distribution panel 3 of the present invention while blowing oxygen gas into the steel bath from a consumable oxygen pipe (not shown) or a water-cooled oxygen lance (not shown). Oxygen gas into the furnace. Oxygen gas blown into the steel bath from a consumable oxygen pipe or a water-cooled oxygen lance burns silicon and carbon contained in the material to be melted and coke and other fuels blown simultaneously with oxygen into the furnace. To promote the melting of the material to be melted, but at the same time generate a large amount of CO gas from the steel bath. The oxygen gas blown into the furnace also from the oxygen gas ejection port 11 provided in the refrigerant distribution panel 3 of the present invention is supplied from the oxygen gas supply source to the oxygen gas dispersion supply chamber 9 via the oxygen gas supply pipe 10. After the gas is once stored and adjusted to a uniform gas pressure and flow rate, as shown in FIG. 2, CO gas generated from the steel bath is discharged from a large number of oxygen gas blowout ports 11 formed in the furnace inner circumferential direction. Burn gas. Since most of the combustion heat is used as heat for accelerating the melting of the material to be melted, the CO gas draft recovery device may also have a low capacity, and has the effect of significantly reducing the possibility of deteriorating the work environment and causing pollution problems. . At the end of refining, steel slag containing harmful oxidizing slag (slag) is scraped out from the slag port 13 and then a carbonized material is added to adjust the amount of C in the molten steel, or to use ferrosilicon or ferromanganese. After completion of the deoxidation reaction accelerating work by adding lime or the like, slag making work is performed by adding quick lime or fluorite, and molten steel is taken out from the tap hole 12 to complete a series of work.
[0010]
The melting and refining operation as described above is an example of the operation in the arc-type electric furnace for steelmaking of the present invention, and it goes without saying that the melting and refining operation of any operation can be used.
[0011]
【The invention's effect】
According to the arc light type electric furnace for steelmaking of the present invention as described above, the secondary combustion rate of CO gas generated from, for example, a 100-ton electric furnace is an average value of CO 2 / (CO + CO 2 ), which is the conventional value (4). (The use of the secondary combustion lance of the book) from 40% to 60%. Also, the power consumption rate has been reduced from 400 kwh / t to 370 kwh / t. Further, the material to be melted was melted at a uniform rate without the phenomenon of uneven melting of the material to be melted, and the melting and refining time was reduced from 80 minutes to 74 minutes.
Further, in the arc-type electric furnace for steelmaking of the present invention, even if the oxygen gas outlet is provided on the inner circumference of the furnace, the holding strength of the furnace body does not decrease, and the oxygen gas outlet is provided in the refrigerant distribution panel. Since it is provided in the device, there is a feature that it can be used for a long time without damage by heat.
[Brief description of the drawings]
FIG. 1 shows an embodiment of an arc light electric furnace for steelmaking of the present invention.
FIG. 2 is a sectional view taken along line XX of FIG.
FIG. 3 is an enlarged view of the internal structure of the refrigerant distribution panel according to the present invention, which shows a perspective view of the furnace shell side (FIG. A), a cross-sectional view taken along the line YY (FIG. B), and FIG. A sectional view taken along the line ZZ (FIG. C) and a front view inside the furnace (FIG. D) are shown.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Furnace shell 2 Refractory layer 3 Refrigerant distribution panel 4 Panel box 5 Distribution guide wall 6 Refrigerant flow passage 7 Refrigerant inlet 8 Refrigerant outlet 9 Oxygen gas dispersion supply chamber 10 Oxygen gas supply pipe 11 Oxygen gas outlet 12 Outlet Steel port 13 Slag port 14 Electrode 15 Furnace wall A Upper surface on furnace wall side B Lower surface on furnace wall side

Claims (1)

弧光式電気炉の炉殻鉄皮(1)の炉床側下方面(B)に耐火物層(2)を内張りし、さらに該炉殻鉄皮(1)の炉壁側上方面(A)に冷媒流通路(6)を内蔵すると共に該炉殻鉄皮(1)を貫通する酸素ガス供給パイプ(10)を連接しかつ被溶解材方向に指向する酸素ガス吹出し口(11)を炉周方向に多数穿設した酸素ガス分散供給室(9)を任意な位置に併設した冷媒流通パネル(3)を内張りした事を特徴とする製鋼用弧光式電気炉。The refractory layer (2) is lined on the lower surface (B) of the hearth shell (1) of the arc light type electric furnace, and the upper surface (A) of the furnace shell (1) on the furnace wall side. And an oxygen gas supply pipe (10) penetrating through the furnace shell (1) and connected to the furnace shell (1), and an oxygen gas outlet (11) directed toward the material to be melted is provided around the furnace. An arc-type electric furnace for steelmaking, characterized in that a refrigerant distribution panel (3) in which a large number of oxygen gas dispersion supply chambers (9) perforated in the direction are provided at optional positions.
JP2000404303A 2000-12-18 2000-12-18 Arc electric furnace for steelmaking Expired - Lifetime JP3546843B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000404303A JP3546843B2 (en) 2000-12-18 2000-12-18 Arc electric furnace for steelmaking
KR10-2001-0079514A KR100471459B1 (en) 2000-12-18 2001-12-14 Electric arc furnace for steel manufacturing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000404303A JP3546843B2 (en) 2000-12-18 2000-12-18 Arc electric furnace for steelmaking

Publications (2)

Publication Number Publication Date
JP2002188888A JP2002188888A (en) 2002-07-05
JP3546843B2 true JP3546843B2 (en) 2004-07-28

Family

ID=18868284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000404303A Expired - Lifetime JP3546843B2 (en) 2000-12-18 2000-12-18 Arc electric furnace for steelmaking

Country Status (2)

Country Link
JP (1) JP3546843B2 (en)
KR (1) KR100471459B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101485534B1 (en) * 2012-10-24 2015-01-22 주식회사 포스코 Apparatus for rising temperature for refractory and method for rising temperature for refractory

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11293325A (en) * 1998-04-09 1999-10-26 Daido Steel Co Ltd Operation of electric arc furnace
JPH11293326A (en) * 1998-04-09 1999-10-26 Daido Steel Co Ltd Operation of electric arc furnace

Also Published As

Publication number Publication date
KR20020048878A (en) 2002-06-24
KR100471459B1 (en) 2005-03-08
JP2002188888A (en) 2002-07-05

Similar Documents

Publication Publication Date Title
RU2096706C1 (en) Electric arc furnace for steel production, steel production from scrap, and/or from sponge iron, and/or from blast-furnace cast iron in electric arc furnace, and method for steel production from scrap in electric arc furnace
US7951325B2 (en) Methods of implementing a water-cooling system into a burner panel and related apparatuses
CA2449774C (en) Method for melting and decarburization of iron carbon melts
JPH0726318A (en) Operation of electric furnace for steelmaking
JP6203376B2 (en) Method for melting metal material in melting plant and melting plant
JP3546843B2 (en) Arc electric furnace for steelmaking
US7830947B2 (en) Furnace installation and method for melting down metallic or metal-containing charge materials
US3880648A (en) Method for producing steel in an electric arc furnace
KR101159969B1 (en) lance apparatus of electric furnace
JP2002090066A (en) Scrap preheating type electric steel making furnace
BR112020018110A2 (en) FUSION GROUP FOR STEEL PRODUCTION
KR100868506B1 (en) Combustion device for oxygen in electro furnace
JP3650193B2 (en) Method for melting metal raw materials
JP2555017B2 (en) Method and apparatus for melting scrap
CN115418433B (en) High-temperature furnace drying method for opening new converter
KR100405904B1 (en) Operation method of twin shell electrode arc furnace
JP3431877B2 (en) Operating method of electric furnace and electric furnace
RU2451753C2 (en) Oxygen blast steel converter
JP3521277B2 (en) Cold iron source melting method and melting equipment
Jones et al. Optimization of EAF operations through offgas system analysis
JP2000008115A (en) Melting of cold iron source
Cantacuzene et al. Advanced EAF oxygen usage at Saint-Saulve steelworks
RU2025497C1 (en) Open-heart furnace to smelt steel
SU1629320A1 (en) Method of steelmaking in a hearth furnace
JPH0796682B2 (en) How to dissolve scrap

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040405

R150 Certificate of patent or registration of utility model

Ref document number: 3546843

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term