JP3545005B2 - Method for producing high-purity β-diketonate ruthenium complex - Google Patents

Method for producing high-purity β-diketonate ruthenium complex Download PDF

Info

Publication number
JP3545005B2
JP3545005B2 JP06887693A JP6887693A JP3545005B2 JP 3545005 B2 JP3545005 B2 JP 3545005B2 JP 06887693 A JP06887693 A JP 06887693A JP 6887693 A JP6887693 A JP 6887693A JP 3545005 B2 JP3545005 B2 JP 3545005B2
Authority
JP
Japan
Prior art keywords
complex
diketonate
ruthenium
purity
ruthenium complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06887693A
Other languages
Japanese (ja)
Other versions
JPH06279473A (en
Inventor
一三 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP06887693A priority Critical patent/JP3545005B2/en
Publication of JPH06279473A publication Critical patent/JPH06279473A/en
Application granted granted Critical
Publication of JP3545005B2 publication Critical patent/JP3545005B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、ルテニウム(Ru)の高純度β−ジケトネート錯体の製造方法に関する。この錯体は、ルテニウムを含む化合物の薄膜の成膜用材料などとして従来にない好適な材料である。
【0002】
【従来の技術】
集積回路の高集積化が進むなかで、PZT(Pb(Zr,Ti)O3)、PLZT((Pb,La)(Zr,Ti)O3)などの強誘電体を使った不揮発性メモリーにおいて、誘電体薄膜の劣化を抑えることが技術的な重要課題である。不揮発性メモリーにおいて、データの書き換えを繰り返すと膜が劣化することを、膜の疲労と呼んでいる。この疲労を抑制するためには、強誘電体材料そのものの面からの研究は勿論のこと、この膜の両面に接触する電極材料の面からの研究も最近盛んに試みられている。従来、電極としては白金(Pt)がよく使われている。最近、疲労を抑制するための電極材料の研究が活発に行われているが、電極材料として白金(Pt)に代えて酸化ルテニウムを用いると疲労抑制効果があることが報告されている(例えば、L.Krsinら(J.Electrochem. Soc. 135巻,2610頁(1988)、E.Kolawaら(Thim. Solid Films 173巻,217頁(1989))。また、1992年3月9〜11日、米国のカリフォルニアで開催された第4回強誘電体集積化シンポジウム(International Symposium on Integrated Ferroelectrics; ISIF)でも、RuO2薄膜電極の膜の疲労防止効果について議論されている。
【0003】
それらの報告では、酸化ルテニウム電極を成膜するための方法として、ルテニウムの有機物を使うCVD法では、カーボンによる汚染のために満足な電極膜が得られないという。ただし、どの程度の品質の原料を使用した結果であるのかは定かでない。そのため、多くはスパッタ法によって酸化ルテニウム電極を成膜している。しかしスパッタ法は、CVD法に比べて装置及び操作が複雑であり、一方CVD法は、集積回路の各種成膜工程に多用されていることから、RuO2成膜にCVD法を適用できれば、製造上都合が良い。そこで、集積回路の誘電体層電極の成膜用原料に適したルテニウムの有機化合物の開発が望まれる。有機化合物のなかでも、特にβ−ジケトネート錯体のような錯化合物が、揮発性と反応性の面からCVD法用としては好ましい。
【0004】
ルテニウムのβ−ジケトネート錯体の合成方法については、Endoらの論文(Inorg. Chimica Acta, 150巻,25-34頁(1988))に詳しく発表されている。それによれば、以前はルテニウムのβ−ジケトネート錯体の合成方法の一つとして、塩化ルテニウムとβ−ジケトンとを溶融し、アルカリ(例えばKHCO3)でpHを調整しつつ合成し、ベンゼンにより抽出する方法があるが、高温では錯体が分解し易く、純度の高い錯体が得られない。そこで塩化ルテニウムとβ−ジケトンとをメタノールと水の混合溶液中でアルカリ(例えばKHCO3)でpHを調整しつつ合成し、ヘキサンに抽出し、カラムクロマトグラフィで精製する方法を提案している。
【0005】
【発明が解決しようとする課題】
しかしながら、上述した従来法の最大の問題は、実験室的なカラムクロマトグラフィで精製する工程を含むことである。カラムクロマトグラフィで精製する前の錯体の熱重量曲線の一例を図4に示す。この図から明らかなように精製前の錯体(ルテニウムのβ−ジケトネート錯体)の熱重量曲線は3段階になっており、純粋な錯体以外の不純物である不揮発成分を含み、キレート蒸発量も91%であった。これをカラムクロマトグラフィで精製したものの熱重量曲線の一例を図3に示す。カラムクロマトグラフィによる精製で減量曲線は1段階となり、キレート蒸発量も99%となる。
このように従来法によるルテニウムのβ−ジケトネート錯体の製造方法では、合成した錯体をカラムクロマトグラフィにより精製する工程を省くことができず、このために生産性や収率が悪化し、該錯体を工業的規模で生産するには不適当である。
このように現在では、前記集積回路の誘電体層電極の成膜用などの用途に適した高純度のルテニウムのβ−ジケトネート錯体が得られていないため、不純物を含んだ錯体を用いてCVD法によりRuO2を成膜した場合にカーボン汚染などの問題が起こるものと考えられる。
【0006】
本発明は上記事情に鑑みてなされたもので、上記用途にも使用可能な高純度の錯体(β−ジケトネートルテニウム錯体)として、熱重量分析において実質的に100%の高純度な錯体を、カラムクロマトグラフィ等の実験的な手段を経ずに工業的な規模で製造可能な方法の提供を目的としている。
【0007】
【課題を解決するための手段】
本発明は塩化ルテニウムとβ−ジケトンとを、アルカリ性反応促進剤の存在下で反応させβ−ジケトネートルテニウム錯体を製造する方法において、塩化ルテニウムとβ−ジケトンとを、脱水した有機溶剤中で反応させ、熱重量分析における純度が99%以上のβ−ジケトネートルテニウム錯体を製造することを特徴としている。
【0008】
【作用】
本発明では、脱水された有機溶剤による無水雰囲気中で塩化ルテニウムとβ−ジケトンとを反応させβ−ジケトネートルテニウム錯体を合成することにより、水を含む溶剤中で該錯体を合成する従来法では必須であったカラムクロマトグラフィなどによる錯体の精製操作を行うことなく、熱重量分析における純度が99%以上の高純度な錯体が得られる。
【0009】
本発明に用いるβ−ジケトンとしては、アセチルアセトン(CH3・CO・CH2・CO・CH3)及びジピバロイルメタン((CH33・C・CO・CH・CO・C・(CH33)などが好適に用いられる。
また本発明で使用される有機溶剤は、合成されたβ−ジケトネートルテニウム錯体と反応したり分解させるような反応性を持たないものであればよく、例えばエタノール、ヘキサン、ベンゼンなど各種有機溶剤から適宜選択して用いることができ、使用する有機溶剤はモレキュラーシーブなどの脱水剤で十分に脱水したものを用いる必要がある。
【0010】
【実施例】
以下、本発明に係る実施例と、従来法に係る比較例とによってβ−ジケトネートルテニウム錯体を製造して比較した。
【0011】
(実施例1)
三塩化ルテニウム(RuCl3・3H2O)25gを脱水したエタノール2lに溶解し、これを三口フラスコに入れ、78℃で約5時間還流しながら加熱した。この間、溶液の色は褐色から深い緑色を経て青紫色に変化した。青紫色に変色した溶液を室温まで冷却し、ジピバロイルメタン(以下DPMと略記する)53gを加え、さらに78℃で1時間還流した。この溶液を室温まで冷却した後、KHCO3を10g加えて、さらに78℃で3時間還流した。この後、溶液を室温まで冷却し、その後ろ過を行った。このろ液をロータリーエバポレータで減圧乾燥した。得られた粗製品(Ru(DPM)3)をヘキサン300mlに溶解し、これをろ過した。得られたろ液をロータリーエバポレータで減圧乾燥し、エタノール200mlを加えて再結晶を行い、ろ過して得られた結晶を真空乾燥して、Ru(DPM)3 45g(収率72%)を得た。
得られたRu(DPM)3の元素分析結果を表1に示すとともに、熱重量分析結果を図1に示す。
図1に示す熱重量曲線(TG曲線)から明らかなように、得られたRu(DPM)3は熱重量的な純度であるキレート蒸発量が100%であった。
【0012】
【表1】

Figure 0003545005
【0013】
(実施例2)
三塩化ルテニウム(RuCl3・3H2O)25gを脱水したエタノール2lに溶解し、これを三口フラスコに入れ、78℃で約5時間還流しながら加熱した。この間、溶液の色は褐色から深い緑色を経て青紫色に変化した。青紫色に変色した溶液を室温まで冷却し、アセチルアセトン(以下AcAcと略記する)29gを加え、さらに78℃で1時間還流した。この溶液を室温まで冷却した後、KHCO3を10g加えて、さらに78℃で3時間還流した。この後、溶液を室温まで冷却し、その後ろ過を行った。このろ液をロータリーエバポレータで減圧乾燥した。得られた粗製品(Ru(AcAc)3)をベンゼン300mlに溶解し、これをろ過した。得られたろ液をロータリーエバポレータで減圧乾燥し、エタノール200mlを加えて再結晶を行い、ろ過して得られた結晶を真空乾燥してRu(AcAc)3 31g(収率81%)を得た。
得られたRu(AcAc)3の元素分析結果を表2に示すとともに、熱重量分析結果を図2に示す。
図2に示す熱重量曲線から明らかなように、得られたRu(AcAc)3のキレート蒸発量は100%であった。
【0014】
【表2】
Figure 0003545005
【0015】
(比較例1)
三塩化ルテニウム(RuCl3・3H2O)1.16gを、エタノール100mlとH2O50mlの混合溶液に溶解して、4〜5時間還流した。溶液の色が青紫色に変化したことを確かめて、還流を止めて室温まで冷却した。そして、次の操作を3回繰り返した。即ち、DPMを1.23g加えてさらに0.5時間還流した後、溶液を室温まで冷却し、冷却後KHCO3を0.16g加えて0.5時間還流し室温まで冷却する。
最終の反応後の還流液をロータリーエバポレータで溶媒を除去させた後、ヘキサン150mlを加えて合成された錯体を抽出した。この抽出液を40mlに濃縮して、アルミナを充填したカラムクロマトグラフィで精製した。溶離液を濃縮乾固し、0.554gのオレンジ色の錯体(Ru(DPM)3)を得た(収率19%)。この錯体の熱重量分析結果を図3に示す。この図3から明らかなように、得られたRu(DPM)3のキレート蒸発量は99%であった。
【0016】
一方、カラムクロマトグラフィ精製前までは同様の操作を行い、上記抽出液を減圧乾燥することにより、カラムクロマトグラフィ精製前の試料とした。このカラムクロマトグラフィ精製前の試料の熱重量分析結果を図4に示す。この図4から明らかなように、精製前の試料の熱重量曲線は3段階になっており、キレート蒸発量も91%と低かった。
【0017】
(比較例2)
三塩化ルテニウム(RuCl3・3H2O)1.16gを、エタノール100mlとH2O 50mlの混合溶液に溶解して、4〜5時間還流した。溶液の色が褐色から青紫色に変化したことを確かめて、還流を止めて室温まで冷却した。これにAcAc0.73gを加えてさらに40分還流した後、溶液を室温まで冷却した。冷却後KHCO3を0.73g加えて1時間還流した。反応後の還流液をロータリーエバポレータで約40mlに濃縮して、約0℃まで冷却し、粗結晶をろ過し、減圧乾燥した。この結晶をベンゼン約50mlに抽出し、活性アルミナのカラムクロマトグラフィによって精製して、小豆色の錯体(Ru(AcAc)3)を得た。収量は0.73gであり収率53%であった。この錯体の熱重量分析結果を図5に示す。この図5から明らかなように得られたRu(AcAc3)のキレート蒸発量は98%であった。
【0018】
以上の実施例と比較例の結果から明らかなように、本発明に係る実施例1,2では、脱水した有機溶剤による無水雰囲気中で塩化ルテニウムとβ−ジケトン(DPM、AcAc)とを反応させβ−ジケトネートルテニウム錯体を合成することにより、熱重量分析における純度が実質的に100%の高純度な錯体が高収率で得られた。これに対し、水を含む溶剤中で該錯体を合成する比較例1,2では合成した錯体に不純物が多く、カラムクロマトグラフィによる精製工程が必須であった。しかしカラムクロマトグラフィによる精製工程を経て製造する場合には、一度に少量の錯体しか得られず、製造に手間がかかり、しかも錯体の収率が悪かった。
この実施例1,2によって製造されたβ−ジケトネートルテニウム錯体は、熱重量分析における純度が実質的に100%の高純度なものであり、このような従来にない純度のルテニウム錯体であれば、集積回路のような厳しい用途にも使用され得るものと期待される。
【0019】
【発明の効果】
以上説明したように、本発明による高純度β−ジケトネートルテニウム錯体の製造方法では、脱水された有機溶剤による無水雰囲気中で塩化ルテニウムとβ−ジケトンとを反応させβ−ジケトネートルテニウム錯体を合成することにより、熱重量分析における純度が実質的に100%の高純度なβ−ジケトネートルテニウム錯体を工業的な規模でしかも収率良く製造することができる。
【図面の簡単な説明】
【図1】本発明に係る実施例1で得られたβ−ジケトネートルテニウム錯体の熱重量曲線を示すグラフである。
【図2】同じく実施例2で得られたβ−ジケトネートルテニウム錯体の熱重量曲線を示すグラフである。
【図3】従来法によるβ−ジケトネートルテニウム錯体の製造方法である比較例1で得られたβ−ジケトネートルテニウム錯体の熱重量曲線を示すグラフである。
【図4】同じく比較例1で得られたカラムクロマトグラフィ精製前の錯体の熱重量曲線を示すグラフである。
【図5】従来法によるβ−ジケトネートルテニウム錯体の製造方法である比較例2で得られたβ−ジケトネートルテニウム錯体の熱重量曲線を示すグラフである。[0001]
[Industrial applications]
The present invention relates to a method for producing a high-purity β-diketonate complex of ruthenium (Ru). This complex is a material which has not been conventionally used as a material for forming a thin film of a compound containing ruthenium.
[0002]
[Prior art]
As the integration of integrated circuits has increased, non-volatile memories using ferroelectrics such as PZT (Pb (Zr, Ti) O 3 ) and PLZT ((Pb, La) (Zr, Ti) O 3 ) It is a technically important issue to suppress the deterioration of the dielectric thin film. In a nonvolatile memory, deterioration of a film when data is repeatedly rewritten is referred to as film fatigue. In order to suppress this fatigue, not only research on the ferroelectric material itself, but also research on the electrode material in contact with both surfaces of the film has been actively attempted recently. Conventionally, platinum (Pt) is often used as an electrode. Recently, research on electrode materials for suppressing fatigue has been actively conducted. However, it has been reported that using ruthenium oxide instead of platinum (Pt) as an electrode material has a fatigue suppressing effect (for example, L. Krsin et al. (J. Electrochem. Soc. 135, 2610 (1988), E. Kolawa et al. (Thim. Solid Films 173, 217 (1989)), and March 9-11, 1992, The 4th International Symposium on Integrated Ferroelectrics (ISIF) held in California, USA, also discusses the effect of preventing the fatigue of the RuO 2 thin film electrode film.
[0003]
According to those reports, as a method for forming a ruthenium oxide electrode, a satisfactory electrode film cannot be obtained due to carbon contamination by a CVD method using an organic substance of ruthenium. However, it is not clear what quality raw materials were used. Therefore, in many cases, a ruthenium oxide electrode is formed by a sputtering method. However sputtering method, apparatus and operation as compared with the CVD method is complex, whereas the CVD method, since it is widely used in various film forming process of the integrated circuit, if applied to the CVD method RuO 2 film formation, production It is convenient. Therefore, it is desired to develop a ruthenium organic compound suitable as a material for forming a dielectric layer electrode of an integrated circuit. Among the organic compounds, a complex compound such as a β-diketonate complex is particularly preferable for the CVD method from the viewpoint of volatility and reactivity.
[0004]
A method for synthesizing a ruthenium β-diketonate complex is described in detail in a paper by Endo et al. (Inorg. Chimica Acta, vol. 150, pp. 25-34 (1988)). According to this method, as one of the methods for synthesizing a ruthenium β-diketonate complex, ruthenium chloride and β-diketone are melted, synthesized while adjusting the pH with an alkali (for example, KHCO 3 ), and extracted with benzene. Although there is a method, the complex is easily decomposed at a high temperature, and a complex with high purity cannot be obtained. Therefore, a method has been proposed in which ruthenium chloride and β-diketone are synthesized in a mixed solution of methanol and water while adjusting the pH with an alkali (for example, KHCO 3 ), extracted into hexane, and purified by column chromatography.
[0005]
[Problems to be solved by the invention]
However, the biggest problem of the above-mentioned conventional method is that it involves a step of purification by laboratory column chromatography. FIG. 4 shows an example of a thermogravimetric curve of the complex before purification by column chromatography. As is clear from this figure, the thermogravimetric curve of the complex before purification (ruthenium β-diketonate complex) has three stages, including non-volatile components which are impurities other than the pure complex, and the chelate evaporation amount is also 91%. Met. FIG. 3 shows an example of a thermogravimetric curve of the product purified by column chromatography. By purification by column chromatography, the weight loss curve becomes one step, and the amount of chelate evaporation becomes 99%.
As described above, the conventional method for producing a β-diketonate complex of ruthenium cannot omit the step of purifying the synthesized complex by column chromatography, and therefore, the productivity and yield are deteriorated, and the complex is industrially manufactured. It is unsuitable for production on a typical scale.
Thus, at present, a high-purity β-diketonate complex of ruthenium suitable for applications such as film formation of a dielectric layer electrode of the integrated circuit has not been obtained. Therefore, it is considered that problems such as carbon contamination occur when RuO 2 is formed.
[0006]
The present invention has been made in view of the above circumstances, and as a high-purity complex (β-diketonate ruthenium complex) that can also be used for the above applications, a high-purity complex of substantially 100% in thermogravimetric analysis is used. It is an object of the present invention to provide a method which can be manufactured on an industrial scale without going through experimental means such as column chromatography.
[0007]
[Means for Solving the Problems]
The present invention provides a method for producing a ruthenium complex of β-diketonate by reacting ruthenium chloride and β-diketone in the presence of an alkaline reaction accelerator, wherein ruthenium chloride and β-diketone are dehydrated in an organic solvent. Reacting to produce a β-diketonate ruthenium complex having a purity of 99% or more in thermogravimetric analysis.
[0008]
[Action]
In the present invention, a conventional method for synthesizing a ruthenium complex with a β-diketonate ruthenium complex by reacting ruthenium chloride and β-diketone in an anhydrous atmosphere with a dehydrated organic solvent to synthesize the complex in a solvent containing water is proposed. Thus, a complex having a purity of 99% or more in thermogravimetric analysis can be obtained without performing a purification operation of the complex by column chromatography or the like, which was essential.
[0009]
As the β-diketone used in the present invention, acetylacetone (CH 3 .CO.CH 2 .CO.CH 3 ) and dipivaloylmethane ((CH 3 ) 3 .C.CO.CH.CO.C. (CH 3 ) 3 ) and the like are preferably used.
The organic solvent used in the present invention may be any organic solvent having no reactivity such as reacting or decomposing with the synthesized β-diketonate ruthenium complex, for example, various organic solvents such as ethanol, hexane and benzene. The organic solvent to be used needs to be sufficiently dehydrated with a dehydrating agent such as molecular sieve.
[0010]
【Example】
Hereinafter, a β-diketonate ruthenium complex was produced and compared with an example according to the present invention and a comparative example according to a conventional method.
[0011]
(Example 1)
Ruthenium trichloride (RuCl 3 .3H 2 O) (25 g) was dissolved in dehydrated ethanol (2 L), placed in a three-necked flask, and heated at 78 ° C. under reflux for about 5 hours. During this time, the color of the solution changed from brown to deep green to bluish purple. The solution turned blue-violet was cooled to room temperature, 53 g of dipivaloylmethane (hereinafter abbreviated as DPM) was added, and the mixture was further refluxed at 78 ° C. for 1 hour. After the solution was cooled to room temperature, 10 g of KHCO 3 was added, and the mixture was further refluxed at 78 ° C. for 3 hours. Thereafter, the solution was cooled to room temperature, and then filtered. The filtrate was dried under reduced pressure with a rotary evaporator. The obtained crude product (Ru (DPM) 3 ) was dissolved in 300 ml of hexane and filtered. The obtained filtrate was dried under reduced pressure with a rotary evaporator, recrystallized by adding 200 ml of ethanol, and the crystal obtained by filtration was vacuum dried to obtain 45 g of Ru (DPM) 3 (yield: 72%). .
The results of elemental analysis of the obtained Ru (DPM) 3 are shown in Table 1, and the results of thermogravimetric analysis are shown in FIG.
As is clear from the thermogravimetric curve (TG curve) shown in FIG. 1, the obtained Ru (DPM) 3 had a thermogravimetric purity of 100% of chelate evaporation.
[0012]
[Table 1]
Figure 0003545005
[0013]
(Example 2)
Ruthenium trichloride (RuCl 3 .3H 2 O) (25 g) was dissolved in dehydrated ethanol (2 L), placed in a three-necked flask, and heated at 78 ° C. under reflux for about 5 hours. During this time, the color of the solution changed from brown to deep green to bluish purple. The solution that turned blue-violet was cooled to room temperature, 29 g of acetylacetone (hereinafter abbreviated as AcAc) was added, and the mixture was further refluxed at 78 ° C. for 1 hour. After the solution was cooled to room temperature, 10 g of KHCO 3 was added, and the mixture was further refluxed at 78 ° C. for 3 hours. Thereafter, the solution was cooled to room temperature, and then filtered. The filtrate was dried under reduced pressure with a rotary evaporator. The obtained crude product (Ru (AcAc) 3 ) was dissolved in 300 ml of benzene, and this was filtered. The obtained filtrate was dried under reduced pressure with a rotary evaporator, recrystallized by adding 200 ml of ethanol, and the obtained crystal was vacuum dried to obtain 31 g of Ru (AcAc) 3 (yield 81%).
The results of elemental analysis of the obtained Ru (AcAc) 3 are shown in Table 2, and the results of thermogravimetric analysis are shown in FIG.
As is clear from the thermogravimetric curve shown in FIG. 2, the obtained chelate evaporation amount of Ru (AcAc) 3 was 100%.
[0014]
[Table 2]
Figure 0003545005
[0015]
(Comparative Example 1)
Ruthenium trichloride (RuCl 3 · 3H 2 O) 1.16g, was dissolved in a mixed solution of ethanol 100ml and H 2 O50ml, and refluxed for 4-5 hours. After confirming that the color of the solution changed to bluish purple, the reflux was stopped and the solution was cooled to room temperature. Then, the following operation was repeated three times. That is, after adding 1.23 g of DPM and further refluxing for 0.5 hour, the solution is cooled to room temperature. After cooling, 0.16 g of KHCO 3 is added, refluxing for 0.5 hour and cooling to room temperature.
After removing the solvent from the reflux liquid after the final reaction with a rotary evaporator, 150 ml of hexane was added to extract the synthesized complex. This extract was concentrated to 40 ml and purified by column chromatography packed with alumina. The eluate was concentrated to dryness to obtain 0.554 g of an orange complex (Ru (DPM) 3 ) (19% yield). FIG. 3 shows the thermogravimetric analysis result of this complex. As is clear from FIG. 3, the chelate evaporation amount of the obtained Ru (DPM) 3 was 99%.
[0016]
On the other hand, the same operation was performed before column chromatography purification, and the extract was dried under reduced pressure to obtain a sample before column chromatography purification. FIG. 4 shows the result of thermogravimetric analysis of the sample before column chromatography purification. As is clear from FIG. 4, the thermogravimetric curve of the sample before purification had three stages, and the chelate evaporation amount was as low as 91%.
[0017]
(Comparative Example 2)
1.16 g of ruthenium trichloride (RuCl 3 .3H 2 O) was dissolved in a mixed solution of 100 ml of ethanol and 50 ml of H 2 O and refluxed for 4 to 5 hours. After confirming that the color of the solution changed from brown to bluish purple, the reflux was stopped and the solution was cooled to room temperature. 0.73 g of AcAc was added thereto, and the mixture was further refluxed for 40 minutes, and then the solution was cooled to room temperature. After cooling, 0.73 g of KHCO 3 was added, and the mixture was refluxed for 1 hour. The refluxed liquid after the reaction was concentrated to about 40 ml with a rotary evaporator, cooled to about 0 ° C., and the crude crystals were filtered and dried under reduced pressure. The crystals were extracted into about 50 ml of benzene and purified by activated alumina column chromatography to obtain a reddish-colored complex (Ru (AcAc) 3 ). The yield was 0.73 g, 53%. FIG. 5 shows the result of thermogravimetric analysis of this complex. As apparent from FIG. 5, the chelate evaporation of Ru (AcAc 3 ) obtained was 98%.
[0018]
As is clear from the results of the above Examples and Comparative Examples, in Examples 1 and 2 according to the present invention, ruthenium chloride and β-diketone (DPM, AcAc) were reacted in an anhydrous atmosphere using a dehydrated organic solvent. By synthesizing the β-diketonate ruthenium complex, a highly pure complex having a purity of substantially 100% in thermogravimetric analysis was obtained in high yield. On the other hand, in Comparative Examples 1 and 2 in which the complex was synthesized in a solvent containing water, the synthesized complex had many impurities, and a purification step by column chromatography was essential. However, when producing via a purification step by column chromatography, only a small amount of the complex was obtained at a time, the production was troublesome, and the yield of the complex was poor.
The β-diketonate ruthenium complex produced according to Examples 1 and 2 has a high purity of substantially 100% in thermogravimetric analysis. For example, it is expected that it can be used for severe applications such as integrated circuits.
[0019]
【The invention's effect】
As described above, in the method for producing a high-purity β-diketonate ruthenium complex according to the present invention, the β-diketonate ruthenium complex is reacted with ruthenium chloride and β-diketone in an anhydrous atmosphere with a dehydrated organic solvent. By synthesizing, a high-purity β-diketonate ruthenium complex having a purity of substantially 100% in thermogravimetric analysis can be produced on an industrial scale with a high yield.
[Brief description of the drawings]
FIG. 1 is a graph showing a thermogravimetric curve of a β-diketonate ruthenium complex obtained in Example 1 according to the present invention.
FIG. 2 is a graph showing a thermogravimetric curve of the β-diketonate ruthenium complex similarly obtained in Example 2.
FIG. 3 is a graph showing a thermogravimetric curve of a β-diketonate ruthenium complex obtained in Comparative Example 1, which is a method for producing a β-diketonate ruthenium complex according to a conventional method.
FIG. 4 is a graph showing a thermogravimetric curve of the complex obtained in Comparative Example 1 before column chromatography purification.
FIG. 5 is a graph showing a thermogravimetric curve of a β-diketonate ruthenium complex obtained in Comparative Example 2, which is a method for producing a β-diketonate ruthenium complex by a conventional method.

Claims (1)

塩化ルテニウムとβ−ジケトンとを、アルカリ性反応促進剤の存在下で反応させβ−ジケトネートルテニウム錯体を製造する方法において、塩化ルテニウムとβ−ジケトンとを、脱水した有機溶剤中で反応させ、熱重量分析における純度が99%以上のβ−ジケトネートルテニウム錯体を製造することを特徴とする高純度β−ジケトネートルテニウム錯体の製造方法。In a method of producing ruthenium chloride and β-diketonate by reacting ruthenium chloride and β-diketone in the presence of an alkaline reaction accelerator, ruthenium chloride and β-diketone are reacted in a dehydrated organic solvent, A method for producing a high-purity β-diketonate ruthenium complex, which comprises producing a β-diketonate ruthenium complex having a purity in thermogravimetric analysis of 99% or more.
JP06887693A 1993-03-26 1993-03-26 Method for producing high-purity β-diketonate ruthenium complex Expired - Fee Related JP3545005B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06887693A JP3545005B2 (en) 1993-03-26 1993-03-26 Method for producing high-purity β-diketonate ruthenium complex

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06887693A JP3545005B2 (en) 1993-03-26 1993-03-26 Method for producing high-purity β-diketonate ruthenium complex

Publications (2)

Publication Number Publication Date
JPH06279473A JPH06279473A (en) 1994-10-04
JP3545005B2 true JP3545005B2 (en) 2004-07-21

Family

ID=13386305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06887693A Expired - Fee Related JP3545005B2 (en) 1993-03-26 1993-03-26 Method for producing high-purity β-diketonate ruthenium complex

Country Status (1)

Country Link
JP (1) JP3545005B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113880705B (en) * 2021-11-03 2023-07-14 中国船舶重工集团公司第七一八研究所 Method for preparing tris (2, 4-pentanedione) ruthenium

Also Published As

Publication number Publication date
JPH06279473A (en) 1994-10-04

Similar Documents

Publication Publication Date Title
JP3224450B2 (en) Ruthenium oxide film forming method
JP3545005B2 (en) Method for producing high-purity β-diketonate ruthenium complex
JP2001151782A (en) Zirconium alkoxytris(beta-diketonate), method for its production and liquid composition for forming pzt film
JP3307685B2 (en) Method for producing β-diketonate complex of rare earth element
HU196143B (en) Method for producing and applying novel catalyzers containing rhodium
US20030153100A1 (en) Process for producing PZT films by chemical vapor deposition method
JP3229352B2 (en) Method for producing β-diketonate metal complex
JP2526811B2 (en) Phenethylamine derivative and method for producing the same
JP2894525B2 (en) Crystalline tetrakis (triphenylphosphine) palladium and method for producing the same
JP4104713B2 (en) Titanium complex and synthesis method thereof
JP3383330B2 (en) Method for producing metal composite oxide film
JP4307594B2 (en) Method for isolating 1- [N2-((S-ethoxycarbonyl) -3-phenylpropyl) -N6-trifluoroacetyl] -L-lysyl-L-proline and isolated product thereof
Fumagalli et al. Mixed rhodium-osmium carbonyl clusters. Synthesis of the anions [OsRh5 (CO) 16]-and [OsRh3 (CO) 12]-and crystal structures of their (. mu.-nitrido) bis (triphenylphosphorus)(1+) salts
JP4438266B2 (en) Method for synthesizing bis (alkylcyclopentadienyl) ruthenium complex, method for purifying the spent complex, and method for reusing the complex
JPH07324093A (en) Production of tris(acetylacetonato)luthenium (iii)
JPH1072475A (en) High-purity titanium beta-diketonate complex and its production
JP3919930B2 (en) Synthesis of β-diketone-based alkaline earth metal complexes
JP2002249456A (en) METHOD FOR PRODUCING HIGH PURITY ZIRCONIUM COMPLEX Zr(DPM)2(i-C3H7O)2
JP4147822B2 (en) Zirconium chelate complex, synthesis method thereof, and solution raw material containing the complex
US7012150B2 (en) Method of manufacturing bis(cyclopentadienly)ruthenium and bis(cyclopentadienyl)ruthenium manufactured by the same
JPS58128366A (en) Resolution of (r,s)-cysteine racemic compound
JP2003321475A (en) Lanthanum tris(diisobutyrylmethanate), method for producing the same and method for producing plzt film using the same by chemical vapor deposition
JPH09157851A (en) Platinum thin film forming material by organometallic chemical vapor deposition
JP4521632B2 (en) Method for producing dihalogenocyclopentadienyliridium dimer
JPH08975B2 (en) Metal acetylacetonato complex for oxide thin film formation

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040407

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees